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Abstract—A fundamental expectation of the stakehold-
ers from the Industrial Internet of Things (IIoT) is its
trustworthiness and sustainability to avoid the loss of
human lives in performing a critical task. A trustworthy
IIoT-enabled network encompasses fundamental security
characteristics, such as trust, privacy, security, reliability,
resilience, and safety. The traditional security mechanisms
and procedures are insufficient to protect these networks
owing to protocol differences, limited update options, and
older adaptations of the security mechanisms. As a result,
these networks require novel approaches to increase trust-
level and enhance security and privacy mechanisms. There-
fore, in this article, we propose a novel approach to improve
the trustworthiness of IIoT-enabled networks. We propose
an accurate and reliable supervisory control and data ac-
quisition (SCADA) network-based cyberattack detection in
these networks. The proposed scheme combines the deep-
learning-based pyramidal recurrent units (PRU) and deci-
sion tree (DT) with SCADA-based IIoT networks. We also
use an ensemble-learning method to detect cyberattacks in
SCADA-based IIoT networks. The nonlinear learning ability
of PRU and the ensemble DT address the sensitivity of
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irrelevant features, allowing high detection rates. The pro-
posed scheme is evaluated on 15 datasets generated from
SCADA-based networks. The experimental results show
that the proposed scheme outperforms traditional methods
and machine learning-based detection approaches. The
proposed scheme improves the security and associated
measure of trustworthiness in IIoT-enabled networks.

Index Terms—Cybersecurity, data acquisition networks,
deep learning, Industrial Internet of Things (IIoT), supervi-
sory control, trustworthiness.

I. INTRODUCTION

THE Industrial Internet of Things (IIoT) is a pervasive
network that connects a diverse set of smart appliances in

the industrial environment to deliver various intelligent services.
In IIoT networks, a significant amount of industrial control
systems (ICSs) premised on supervisory control and data ac-
quisition (SCADA) are linked to the corporate network through
the Internet [1]. Typically, these SCADA-based IIoT networks
consist of a large number of field devices [2], for instance,
intelligent electronic devices, sensors, and actuators, connected
to an enterprise network via heterogeneous communications [3].
This integration provides the industrial networks and systems
with supervision and a lot of flexibility and agility [2]–[4],
resulting in greater production and resource efficiency. On the
other hand, this integration exposes SCADA-based IIoT net-
works to serious security threats and vulnerabilities, posing a
significant danger to these networks and the trustworthiness
of the systems [5]. The trustworthiness of an IIoT-enabled
system ensures that it performs as expected while meeting a
variety of security requirements, including trust, security, safety,
reliability, resilience, and privacy [6]–[8]. Fig. 1 depicts the
fundamental aspects of trustworthiness in an IIoT-enabled net-
work. The basic goal of the IIoT-enabled system is to increase
trustworthiness by safeguarding identities, data, and services,
and therefore to secure SCADA-based IIoT networks from
cybercriminals [8], [9].

Several protocol updates have been proposed to meet this pur-
pose, including the distributed network protocol (DNP 3.0) [10].
However, it covers authentication and data integrity aspects only,
leaving numerous holes for attackers to use known flaws like
hash collision to carry out serious attacks [11]. Information
Technology and Industrial Operational technology bodies build
a typical risk management plan utilizing ISO 27005:2018 [10]
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Fig. 1. Security and trustworthiness goals and CIA triad.

to recognize, rank, and implement alleviation techniques in
automated or semiautomated enterprises. A comprehensive risk
management plan and adequate preventive measures may not
ensure absolute security against growing risks and attacks. This
consequently offers a difficult research challenge for industrial
and cybersecurity control researchers to 1) obtain the maximum
degree of attack detection, 2) report malicious behavior as soon
as it appears, and 3) isolate the afflicted subsystems as soon
as possible. In recent years, there has been a surge toward
the utility of artificial intelligence (AI) methods in evolving
cybersecurity approaches, including attack prediction [12], pri-
vacy preservation [13], forensic exploration [14], and malware
disclosure [15]. Deep learning (DL) is an AI approach that
incorporates better learning models with considerable success
in various disciplines [16]. However, designing a reliable and
trustworthy AI, particularly a DL-based cyberattack detection
model for the IIoT platforms, remains a research problem.

By considering the limitations of previous techniques, we
employ network attributes of industrial protocols and propose a
pyramidal recurrent unit (PRUs)- and decision tree (DT)-based
ensemble detection mechanism. The proposed mechanism has
the potential to detect cyberattacks in any extensive industrial
network. The interoperability with other detection engines and
expandability for a wider industrial network with multiple areas
distinguishes the proposed mechanism from previous studies.
The proposed detection method is disseminable across many
IIoT domains. Furthermore, our model is straightforward to
implement and deploy and can improve efficiency and accuracy
while overcoming the shortcomings of previous efforts. The fol-
lowing capabilities can characterize the novelty and contribution
of our article.

1) We propose a scalable and efficient DL- and DT-based
ensemble cyber-attack detection framework to resolve
trustworthiness issues in the SCADA-based IIoT net-
works.

2) We present an efficient probing approach by the SCADA-
based network data to solve the protocol mismatch lim-
itations of traditional security solutions for the IIoT
platform.

Fig. 2. SCADA-based industrial IoT network.

3) A statistical analytic approach for ensuring the trustwor-
thiness and reliability of the proposed model for SCADA-
based IIoT networks.

The rest of the article is organized as follows. In Section II,
we have discussed the basics of problem formulation. In Sec-
tion III, we have given details of our proposed work, followed
by the results and discussion in Section IV. Finally, Section V
concludes this article.

II. PRELIMINARIES AND METHODS

In this article, we follow the real-world settings [17] of
cyberattacks on an ICS. Through these settings, we leverage
the datasets from the power control system [18] for detecting
industrial cyberattacks. Fig. 2 illustrates the overall architecture
of a SCADA-based industrial control network. It is made up of
various layers, including a processing and central master control
layer, a physical layer, and a corporate layer, all of which are
formed in a hierarchical order.

A. Datasets

The physical layer, as indicated in Fig. 2, contains various
equipment such as breakers (BR1−BR4), intelligent electronic
devices, power generators (G1, G2), and programmable logic
controllers. The lowest physical layer collects sensor-based data
and is used by the local control logic to make control decisions
before transmitting it to the devices. They also get instructions
from the top or master control/process layers, which also are re-
sponsible for managing and keeping track of the remote physical
devices and local control layer devices. They are also equipped
with intrusion detection systems (IDS). The corporate layer
aids business operations and launches management declarations
to the master control layer. In this article, we adopt the 15
benchmark datasets obtained from the SCADA power system1

to identify and detect different kinds of attacks. The intrusion
attacks on the SCADA system are detected using two separate
classification events. The binary classification events, compris-
ing 37 events, are divided into 28 attacks and 9 normal events.
The other is the multiclass classification events, encompassing

1https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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Fig. 3. PRU network.

37 different events, such as natural events, regular events, and
attack events, each with its own set of class labels.

Each of the 15 datasets has thousands of distinct attacks. The
datasets are randomly sampled at 1% to decrease the influence
of a small sample size. Accordingly, there are 3711 attack-event
samples, 1221 natural-event samples, and 294 no-event samples.

B. Problem Formulation

Assume a dataset D = {(x1, y1), . . . , (xn, yn)} with training
examples, where xi indicates a vector of real or discrete values.
Further, these values represent the features of vector xi, ex-
pressed as 〈xi1, xi2, xi3, . . . , xim〉. xij represents the jth feature
of any given vector xi. In contrast, the values of yi are of dual
nature. One type indicates binary classification, while the other
consists of classes {1, . . . ,K}, representing multiclassification.
Different from that, the second type includes real values, repre-
senting regression. In a nutshell, given a training dataset D with
E examples, the goal is to train a learning algorithm, which
can produce a classifier output T . The classifier T indicates
a hypothesis in the means of a true function, expressed as
f(xi) = yi that predicts new values for yi every given value
of xi.

III. PROPOSED MODEL

A. PRU Models

Deep PRUs [19] are deep learning models used to manipulate
sequential data. Fig. 3 provides an overview of the cell structure
of a PRU cell. The PRU comprises several cells, each with three
major layers: 1) the forget gate, 2) input gate, and 3) output
gate. Also, PRU applies the pyramidal transformation to the
input vector and uses a grouped linear transformation (GLT) to
the context vector. Then, they combine them under the umbrella
of PRU and feed it as input to the LSTM cell.

1) Pyramidal Transformation (PR) for Input: Instead of lin-
early transforming a given input vector x to an output vector
y as y = FL(x) = W.x, where W ∈ RN×M is the weight
matrix (x ∈ RN to y ∈ RM ), PR subsample it intoK pyramidal
levels to obtain various representations with different scales. The
subsampling propagates K vectors as

xk ∈ R
N

2k−1 (1)

where 2k−1 denotes the sampling rate and k = {1, . . . ,K}. For
each k = {1, . . . ,K}, the PR learns a scale-specific transforma-
tion as

Wk ∈ R
N

2k−1 ×M
K

1 . (2)

Then, PR concatenates the transformed subsamples to get the
pyramidal output y ∈ RM as

y = FP (x) =
[
W1 · x1, . . . ,WK · xK

]
(3)

where [·, ·] denotes the concatenation operation. Given an input
vectorx, PR subsamples it using a kernel k with 2e+ 1 elements
as

xk =

N/s∑

i=1

e∑

j=−e

xk−1[si]κ[j] (4)

where s denotes the stride operation while k = {2, . . . ,K}.
2) Grouped Linear Transformation: GLT breaks down the

traditional linear transformation through factoring in two parts.
First, given the input vector h ∈ RN , GLT split it into g smaller
groups as

h =
{
h1, . . . ,hg

}
∀hi ∈ R

N
g . (5)

Then, through a linear transformation FL : R
N
g → R

M
g , GLT

transforms hi into zi ∈ R
M
g for each i = {1, . . . , g}. The final

output vector is then formed by concatenating the resulting g
output vectors zi as

z = FG(h) =
[
W1 · h1, . . . ,Wg · hg

]
. (6)

3) Pyramidal Recurrent Unit: PRU is created by extending
the vanilla LSTM architecture using the pyramidal and the GLTs
described above. At a given time t, PRU combines both input
and context vectors through a transformation function using

Ĝv (xt,ht−1) = F̂P (xt) + FG (ht−1) (7)

wherev ∈ {f, i, c, o} indicates the forget, input, and output gates
of the vanilla LSTM. F̂P (·) denotes the pyramidal, whereas
FG(·) represent the GLTs. The resultant Gv is then fed to the
vanilla LSTM architecture to model PRU. Specifically, a PRU
cell takesxt ∈ RN ,ht−1 ∈ RM , and ct−1 ∈ RM at a given time
t as input and generate the forget gate signal as

ft = σ
(
Ĝf (xt,ht−1) . (8)

The forget gate is in charge of removing each cell’s prior
information. The input and content gates, which update cell
information is then calculated as

it = σ
(
Ĝi (xt,ht−1)
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TABLE I
PRUS SETTINGS FOR THE PROPOSED METHOD

ĉt = tanh
(
Ĝc (xt,ht−1) . (9)

Similarly, the output gate is calculated as

ot = σ
(
Ĝo (xt,ht−1) . (10)

Context vector and cell state are then generated by combining
the inputs with these gate signals as

ct = ft ⊗ ct−1 + it ⊗ ĉt

ht = ot ⊗ tanh (ct) (11)

where ⊗ is the elementwise multiplication, σ represents the
sigmoid while tanh denotes the tangent activation function. In
general, PRU cells are composed of only one layer. However,
increasing the network depth enhances its efficiency and effec-
tiveness when it comes to learning and recognizing complex
sequential patterns [19]. Thus, we use a stack of PRUs with
different configurations to better classify normal and attack
events. The network size and number of layers are two of the
most significant characteristics to consider while designing our
PRUs. Table I lists the PRUs used in our method.

B. Ensemble of PRUs

To produce an aggregated outcome on the result of PRUs, we
employ a DT unit. Suppose DT combines a set of different PRUs
(denoted by L) over a subspace S for features Fi ⊇ F , indicated
as {Fi(·)}j=1,...,S . {yi}j=1,...,S denotes the class label, which is
acquired through distinct PRUs L. Each L can be independently
classified for any given example x ∈ Fi through its feature
subspace Fi. The DT considers a set of confidence rates for
each class in the dataset before deciding on the result. The DT
module receives the input from L as

Input of DT = {Li,c where i ∈ { Number of L}

AND c ∈ Number of Classes} (12)

where Li,c indicates the confidence rate of ith trained model
for class c. As an input, the DT takes these confidence rates
and determines the association among the true label of network
data and the L confidence rate in a hierarchical manner. Fig. 4
shows the schematic structure of the DT and its functions in our
proposed scheme. Suppose a training set DFi

M , of M samples
and F features, which each i ∈ S. In the same fashion, DFi

N
represents the test set with N samples and F features. DT

Fig. 4. Flowchart of the proposed method.

determines the PRU output space manifold and provides a model
for classifying the output class label yi. The proposed approach
is efficient in training and testing, requires little memory, and is
appropriate and scalable for intrusion detection in SCADA IIoT
because of its ability to eliminate irrelevant features.

Theorem 1: Our method is trusted to detect SCADA-based
IIoT cyberattacks through the ensemble of PRUs and DT.

Proof: Suppose S represents a group of training instances
and a deep-learning model D can build a learner L. L can
be considered a hypothesis around a true function f , which
accepts an instance x and assigns a label y to it. The pro-
posed model produces a collection of learners/hypotheses (L)
and explores a space H for optimal hypotheses. The proposed
learning process can discover various distinct hypotheses in H ,
where each provides identical or varying accuracy outcomes on
training examples of distinct random feature sets. The proposed
approach reduces the likelihood of selecting incorrect learners
by generating a collection of accurate learners and combining
them through a DT. Combining precise hypotheses can better
statistically approximate the function f . Hence, the proposed
model is trusted to identify intrusion attacks in SCADA-based
IIoT networks.

IV. EVALUATIONS AND FINDINGS

We conducted a wide range of experiments with the bench-
mark datasets discussed in Section II-A. We implemented our
proposed model using Python 3.7 and the popular deep learning
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Fig. 5. Performance analysis of our proposed scheme for binary clas-
sification in terms of accuracy.

framework PyTorch.2 We ran all experiments on the NVIDIA
GEFORCE GTX 1080 GPU for our proposed models and al-
ternative baselines. We trained six distinct PRUs, each with a
varied structure. We employ Adam [20], which delivers faster
convergence than the SGD and avoids the challenge of adjust-
ing the learning rate [16]. We selected 256 as the batch size,
200 as the epoch, 0.001 as the learning rate and determined
the hyperparameters through experiments. We also employed
a 10-fold cross-validation approach [21] for both training and
testing, which breaks a dataset randomly into ten segments and
takes one segment for testing and the remaining nine for training.
However, we divided the dataset into three parts at random and
utilized eight segments for training, one segment for testing, and
one segment for validation. We use the following metrics and
detection time to measure the effectiveness of our model:

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

False positive rate =
FP

FP + TN
(14)

where FP, FN, TP, and TP represent the false positive, false
negative, true positive, and true negative, respectively. Accuracy
measures the samples accurately detected by a classifier divided
by total samples.

A. Results
Figs. 5–8 demonstrate the experimental outcomes of the

baselines and our proposed model. Fig. 5 shows the accuracy,
whereas Fig. 6 describes the false-positive rate for detecting both
normal and abnormal events. In the same fashion, Fig. 7 shows
the accuracy, whereas Fig. 8 illustrates the false-positive rate for
classifying the normal and various attacks in traffic events.

B. Comparison With Benchmark Methods

We compare our method with RKNN [10] and RSRT [14]
models in terms of accuracy and computational time to illus-
trate its superior performance. We follow the same structure
as reported in their work for a fair comparison. We compare
the accuracy results for all of the 15 datasets, and in terms

2https://pytorch.org/

Fig. 6. Performance analysis of the proposed model for multiclassifi-
cation in terms of accuracy.

Fig. 7. Performance analysis of the proposed model for binary classi-
fication in terms of false-positive rates.

Fig. 8. Performance analysis of the proposed model for multiclassifi-
cation in terms of false-positive rates.

of computational time costs, we only consider dataset 9. In
addition, we also use a statistical analysis test to assess the
statistical variations in accuracy results.

1) Comparison of Accuracy Results: We conducted experi-
ments with each model on all 15 datasets. We conducted exper-
iments with each model on all 15 datasets. Figs. 5 and 6 and
Table II illustrate the accuracy results. As can be seen in both
Figs. 5 and 6, PRU model 4 is the best model. Thus, for clarity, we
only showcase the results of PRU 4. Table II shows how well our
model detects both normal and abnormal events when compared
to other baselines. Similarly, our model also outperforms the
baseline models in the multiclassification attack settings. Also,
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TABLE II
COMPARISON RESULT OF OUR METHOD AND OTHER BASELINE METHODS IN

TERMS OF ACCURACY FOR BINARY AND MULTICLASSIFICATION

c

it can be seen that our proposed model outperforms both RSRT
and RSKNN for detecting both normal and abnormal events for
binary and multiclass classification.

2) Statistical Analysis of Accuracy Results: We used the
nonparametric Mann–Whitney T-test for a statistical analysis
and looked at the implications of the accuracy results for RSRT
and our proposed method. The nonparametric Mann–Whitney T-
test is considered resilient against outliers, better for small sam-
ple sizes, and is independent of distributional assumptions [22].
The Mann–Whitney T-test compares the observations of two
groups and uses their size for ranking them, and is computed as

T = R1 −
n1 (n1 + 1)

2
+R2 −

n2 (n2 + 1)
2

(15)

where R1 and R2 imply the sum of rank in 1 and 2, respectively,
and n1 and n1 represent sample sizes 1 and 2, respectively, by
utilizing the sum of ranks and mean rank for every single group.
The best group is ranked first, whereas the second-best is ranked
second in this situation. The statistical analysis’s testing question
can be stated as follows “Is there a statistically significant
difference between the accuracy results obtained by RSRT and
the proposed models?” We begin by presenting the hypothesis
and classifying the assert in the following manner

1) Alternate Hypothesis: There are statistical variations for
classifying normal and abnormal events (binary clas-
sification) or various kinds of attacks in traffic events
(multiclassification) in the accuracy outcomes of the two
models.

2) Null Hypothesis: There are no statistical variations for
classifying normal and abnormal events (binary clas-
sification) or various kinds of attacks in traffic events
(multiclassification) in the accuracy outcomes of the two
models.

Fig. 9 depicts the standard error of standard deviation for clas-
sifying normal and abnormal attacks, whereas Fig. 10 illustrates
the standard error of standard deviation in the multiclassification
settings. We used the statistical SPSS tool to conduct the test.
For binary classification, Tables III– V summarize the rank, test

Fig. 9. Standard deviation of the proposed method for binary classifi-
cation in terms of accuracy.

Fig. 10. Standard deviation of the proposed method for multiclassifi-
cation in terms of accuracy.

TABLE III
DESCRIPTIVE STATISTICS OF OUR METHOD FOR BINARY AND

MULTICLASSIFICATION IN TERMS OF ACCURACY RESULTS

d
c

TABLE IV
COMPARISON BETWEEN RSRT AND OUR PROPOSED METHOD FOR BINARY

AND MULTICLASSIFICATION IN TERMS OF RANKS

TABLE V
TEST STATISTICS OF OUR METHOD FOR BINARY AND MULTICLASSIFICATION

IN TERMS OF ACCURACY RESULTS
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TABLE VI
COMPARATIVE RESULTS OF PROPOSED MODEL WITH RSRT IN TERMS OF

AVERAGE TIME (SECONDS) AND TRAINING AND TESTING COST

statistics, and descriptive statistics in terms of accuracy results.
The two-tailed p-value, as indicated in Table V, is below 0.05.
Thus, with a confidence level of 95%, we refuse the null and
adopt the alternative hypothesis. Consequently, we infer that the
accuracy outcomes of the two models differ statistically. From
Table IV, we may further deduce that these variations are for
our proposed method, indicating its superiority over the RSRT,
based on the sum of ranks and mean rank results. Likewise, we
establish the following hypothesis for classifying normal and
various other attacks in traffic events.

C. Comparison of Computational Time Costs:

We used dataset 9, which comprises 5340 different instances,
to compare the time costs for both our proposed and RSRT
methods. After preprocessing, the dataset contains 3738 and
1602 instances for both training and testing, respectively. We
examine both binary and multiclass configurations to determine
the time cost. On the specified dataset, for both training and
testing, Table VI shows the average time cost. We can see that
our proposed method requires somewhat more time to train than
the RSRT. This is due to the fact that the RSRT model does not
utilize a deep learning method. On the other hand, our proposed
method takes substantially less time for testing than the RSRT
model, making it more effective in real-world scenarios.

D. Reliability and Trustworthiness

To examine the reliability, assume that our method comprises
10 PRUs or learners. Because of the heterogeneous nature of
ensemble learning, the errors that occur in these PRUs are uncor-
related. If some learners are inaccurate, the remaining learners
may be accurate, enabling our method to properly categorize
intrusion attacks in SCADA-based IIoT networks. Fig. 11 shows
a simulated probability of error for 10 different learners. We
can see that each learner has an error of less than or equal to
0.14, and 7 of them have an error of less than 0.09, making
our method good enough to detect attacks in SCADA-based
IIoT networks. We carry out experiments with dataset 1 to
verify the trustworthiness of our proposed model by classifying
attacks with various numbers of learners. Fig. 12 shows the
accuracy results of the proposed model utilizing an ensemble
of 10 base learners corresponding to a single learner. Also, we
can observe how the accuracy of our proposed method increases
by combining multiple learners.

We can also reveal the trustworthiness of our method by
offering a mapping of the trusted computing base (TCB) model
to the defense-in-depth model. This mapping can help explain

Fig. 11. Error probability for various learners.

Fig. 12. Accuracy results of the proposed method for various learners.

Fig. 13. TCB security paradigm employing a defense-in-depth method
to ensure trustworthiness.

how confidentiality–integrity–availability (CIA) is sustained.
Fig. 13 illustrates the TCB security paradigm, which is em-
bedded in our proposed SCADA-based model. The elements
of the trusted zone inside the security outline include security
control, hardware and software, and policies, which are coupled
to guarantee the maintenance of the CIA triad and the total secu-
rity system adds to trustworthiness. The TCB/SCADA reference
monitor/physical security control paradigm prevents and detects
unwanted illegal actions to resources within the trusted zone’s
boundary. This layer often includes automated physical access
control systems (PACS), for instance, mantraps, CCTV cameras,
and motion detectors. On the other hand, SCADA systems
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and associated subsystems are typically positioned in remote
locations, where PACS deployment is challenging. Hence, in this
case, a defense-in-depth approach must be supplemented with
extra measures, for example, establishing antimalware resources
or IDSs in the logical control.

They are incompatible with the SCADA settings since they
are dependent on application program interfaces or protocols. As
a result, these classical detective or preventative security con-
trols fail against blocking unauthorized access. Hence, accurate
and reliable security control must be established to ensure a
defense-in-depth approach and improve the trustworthiness of
the SCADA system. We solved these shortcomings in our pro-
posed model, formed a reliable cyber-attack detection method,
and verified it with massive SCADA network traffic with various
attacks targeting several vulnerabilities of SCADA components
and the overall system.

V. CONCLUSION

The ability to protect SCADA-based IIoT networks against
cyberattacks increases their trustworthiness. The existing se-
curity methods along with machine learning algorithms were
inefficient and inaccurate for protecting IIoT networks. In this
article, we proposed a cyberattacks detection mechanism using
enhanced deep and ensemble learning in a SCADA-based IIoT
network. The proposed mechanism is reliable and accurate
because an ensemble detection model was built using a com-
bination of the PRU and the DT. The proposed method was
evaluated across 15 datasets generated from a SCADA-based
network, and a considerable increase in terms of classification
accuracy was obtained. Compared to state-of-the-art techniques,
the obtained outcomes of our method exhibited a good balance
between reliability, trustworthiness, classification accuracy, and
model complexity, resulting in improved performance.

In the future, we will employ more powerful deep learning
models to further improve trustworthiness by detecting cyberat-
tacks accurately. In addition, we will try to formulate and assess
its performance in real-world scenarios. Also, we will work on
the selection of optimal features in scenarios when the features
are not sufficient.

REFERENCES

[1] Y. Luo, Y. Duan, W. Li, P. Pace, and G. Fortino, “A novel mobile and
hierarchical data transmission architecture for smart factories,” IEEE
Trans. Ind. Informat., vol. 14, no. 8, pp. 3534–3546, Aug. 2018.

[2] C. Gavriluta, C. Boudinet, F. Kupzog, A. Gomez-Exposito, and R.
Caire, “Cyber-physical framework for emulating distributed control sys-
tems in smart grids,” Int. J. Elect. Power Energy Syst., vol. 114, 2020,
Art. no. 105375.

[3] M. S. Mahmoud, M. M. Hamdan, and U. A. Baroudi, “Modeling and
control of cyber-physical systems subject to cyber attacks: A survey of
recent advances and challenges,” Neurocomputing, vol. 338, pp. 101–115,
2019.

[4] T. Wang, G. Zhang, M. Z. A. Bhuiyan, A. Liu, W. Jia, and M. Xie, “A
novel trust mechanism based on fog computing in sensor–cloud system,”
Future Gener. Comput. Syst., vol. 109, pp. 573–582, 2020.

[5] K. Guo et al., “MDMaaS: Medical-assisted diagnosis model as a service
with artificial intelligence and trust,” IEEE Trans. Ind. Informat., vol. 16,
no. 3, pp. 2102–2114, Mar. 2020.

[6] M. Al-Hawawreh and E. Sitnikova, “Developing a security testbed for
industrial Internet of Things,” IEEE Internet of Things J., vol. 8, no. 7,
pp. 5558–5573, Apr. 2021.

[7] M. A. Shahriar et al., “Modelling attacks in blockchain systems using
petri nets,” in Proc. IEEE 19th Int. Conf. Trust Secur. Privacy Comput.
Commun., 2020, pp. 1069–1078.

[8] M. Abdel-Basset, V. Chang, H. Hawash, R. K. Chakrabortty, and M.
Ryan, “Deep-IFS: Intrusion detection approach for IIoT traffic in fog
environment,” IEEE Trans. Ind. Informat., vol. 17, no. 11, pp. 7704–7715,
Nov. 2021.

[9] S. Huda, J. Abawajy, B. Al-Rubaie, L. Pan, and M. M. Hassan, “Automatic
extraction and integration of behavioural indicators of malware for protec-
tion of cyber–physical networks,” Future Gener. Comput. Syst., vol. 101,
pp. 1247–1258, 2019.

[10] Information Technology-Security Techniques-Information Security Risk
Management, ISO/IEC 27005:2018, 2018.

[11] X. Yan, Y. Xu, X. Xing, B. Cui, Z. Guo, and T. Guo, “Trustworthy network
anomaly detection based on an adaptive learning rate and momentum
in IIoT,” IEEE Trans. Ind. Informat., vol. 16, no. 9, pp. 6182–6192,
Sep. 2020.

[12] D. Wu, Z. Jiang, X. Xie, X. Wei, W. Yu, and R. Li, “LSTM learning
with Bayesian and Gaussian processing for anomaly detection in industrial
IoT,” IEEE Trans. Ind. Informat., vol. 16, no. 8, pp. 5244–5253, Aug. 2020.

[13] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),” in
Proc. Mil. Commun. Inf. Syst. Conf., 2015, pp. 1–6.

[14] M. M. Hassan, A. Gumaei, S. Huda, and A. Almogren, “Increasing
the trustworthiness in the industrial IoT networks through a reliable
cyberattack detection model,” IEEE Trans. Ind. Informat., vol. 16, no. 9,
pp. 6154–6162, Sep. 2020.

[15] A. N. Jahromi et al., “An improved two-hidden-layer extreme learning ma-
chine for malware hunting,” Comput. Secur., vol. 89, 2020, Art. no. 101655.

[16] S. T. U. Shah, J. Li, Z. Guo, G. Li, and Q. Zhou, “DDFL: A deep dual
function learning-based model for recommender systems,” in Proc. Int.
Conf. Database Syst. Adv. Appl., 2020, pp. 590–606.

[17] R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari,
and S. Pan, “Machine learning for power system disturbance and cyber-
attack discrimination,” in Proc. 7th Int. Symp. Resilient Control Syst., 2014,
pp. 1–8.

[18] A. Derhab et al., “Blockchain and random subspace learning-based IDS
for SDN-enabled industrial IoT security,” Sensors, vol. 19, no. 14, 2019,
Art. no. 3119.

[19] S. Mehta, R. Koncel-Kedziorski, M. Rastegari, and H. Hajishirzi, “Pyra-
midal recurrent unit for language modeling,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2018, pp. 4620–4630.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[21] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,” Encyclopedia
Database Syst., vol. 5, pp. 532–538, 2009.

[22] G. W. Zeoli and T. S. Fong, “Performance of a two-sample Mann-Whitney
nonparametric detector in a radar application,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol. AES-7, no. 5, pp. 951–959, Sep. 1971.

Fazlullah Khan (Senior Member, IEEE) re-
ceived the Ph.D. degree in computer science
from Abdul Wali Khan University Mardan, Mar-
dan, Pakistan, in 2020.

His research has been published in theIEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS,
IEEE TRANSACTIONS ON INTELLIGENT TRANS-
PORTATION SYSTEMS,IEEE TRANSACTIONS ON
GREEN COMMUNICATIONS AND NETWORKING,
IEEE INTERNET OF THINGS JOURNAL, IEEE AC-
CESS, Elsevier Computer Networks, Elsevier Fu-

ture Generation Computer Systems, Elsevier Journal of Network and
Computer Applications, Elsevier Computers & Electrical Engineering,
Springer Mobile Networks & Applications (MoNET), and Springer Neural
Computing and Applications (NCAA). His research interests include
security and privacy, Internet of Things, machine learning, artificial in-
telligence, security and privacy issues in the Internet of Vehicles, SDN,
fog/cloud computing, and big data analytics.

Dr. Khan was the Guest Editor of the IEEE JOURNAL OF BIOMED-
ICAL AND HEALTH INFORMATICS, Elsevier Digital Communications and
Networks, Springer Multimedia Technology and Applications, Springer
MoNET, and Springer NCAA. He has served more than 10 conferences
in leadership capacities including General Chair, General Co-Chair, Pro-
gram Co-Chair, Track Chair, and Session Chair.

Authorized licensed use limited to: The University of Toronto. Downloaded on December 15,2022 at 07:45:56 UTC from IEEE Xplore.  Restrictions apply. 



1038 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

Ryan Alturki (Senior Member, IEEE) received
the Ph.D. degree in computer systems from the
University of Technology Sydney, Ultimo, NSW,
Australia.

He is currently an Assistant Professor with
the Department of Information Science, College
of Computers and Information Systems, Umm
Al-Qura University, Makkah, Saudi Arabia. He
authored or coauthored several publications in
high-ranked international journals, conferences,
and chapters of books. His research interests

include eHealth, mobile technologies, the Internet of Things, artificial
intelligence, cloud computing, and cybersecurity.

Md Arafatur Rahman (Senior Member, IEEE)
received the Ph.D. degree in ETE from the Uni-
versity of Naples Federico II, Naples, Italy, in
2013.

He is currently a Senior Lecturer with the
School of Engineering, Computing & Mathe-
matical Sciences, University of Wolverhampton,
Wolverhampton, U.K. His research interests in-
clude IoT, wireless communication networks,
cognitive radio networks, 5G, vehicular commu-
nication, big data, cloud-fog-edge computing,

machine learning, and security.

Spyridon Mastorakis (Member, IEEE) received
the five-year diploma (equivalent to M.Eng.)
in electrical and computer engineering from
the National Technical University of Athens
(NTUA), Athens, Greece, in 2014, and the M.S.
and the Ph.D. degrees in computer science from
the University of California, Los Angeles, Los
Angeles, CA, USA, in 2017 and 2019, respec-
tively.

He is currently an Assistant Professor in com-
puter science with the University of Nebraska

Omaha, Omaha, Nebraska. His research interests include network sys-
tems and protocols, Internet architectures, IoT and edge computing, and
security.

Imran Razzak (Senior Member, IEEE) received
the Ph.D. degree from University of Technol-
ogy Sydney Australian, Australia, in 2019. He is
currently a Senior Lecturer in human-centered
AI and machine learning with the School of
Computer Science and Engineering, University
of New South Wales, Sydney, Sydney, NSW,
Australia. He is also an Associate Editors/Guest
Editor of several journals such as IEEE TRANS-
ACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,
IEEE JOURNAL OF BIOMEDICAL AND HEALTH IN-

FORMATICS, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, etc. His
research interests include machine learning and NLP with its application
to a broad range of topics, particularly deep learning, big data analytics,
healthcare, and cyber security, mainly focusing on the healthcare sector,
and he is passionate about making the healthcare industry a better place
through emerging technologies.

Syed Tauhidullah Shah received the B.S. de-
gree in computer science from Abdul Wali Khan
University Mardan, Mardan, Pakistan, and the
M.S. degree from the School of Computer Sci-
ence and Technology, Huazhong University of
Science and Technology, Wuhan, China, in
2017 and 2020. He is currently working toward
the Ph.D. degree in machine learning and natu-
ral language processing for requirement elicita-
tion with the Department of Software Engineer-
ing, University of Calgary, Calgary, AB, Canada.

His research interests include deep learning, recommender systems,
Internet of Things, and natural language processing.

Authorized licensed use limited to: The University of Toronto. Downloaded on December 15,2022 at 07:45:56 UTC from IEEE Xplore.  Restrictions apply. 


