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Abstract The weighted ensemble (WE) strategy has been demonstrated to be highly e�cient in
generating pathways and rate constants for rare events such as protein folding and protein binding
using atomistic molecular dynamics simulations. Here we present two sets of tutorials instructing
users in the best practices for preparing, carrying out, and analyzing WE simulations for various
applications using the WESTPA software. The �rst set of more basic tutorials describes a range of
simulation types, from a molecular association process in explicit solvent to more complex pro-
cesses such as host-guest association, peptide conformational sampling, and protein folding. The
second set ecompasses six advanced tutorials instructing users in the best practices of using key
new features and plugins/extensions of the WESTPA 2.0 software package, which consists of ma-
jor upgrades for larger systems and/or slower processes. The advanced tutorials demonstrate the
use of the following key features: (i) a generalized resampler module for the creation of “binless”
schemes, (ii) a minimal adaptive binning scheme for more e�cient surmounting of free energy
barriers, (iii) streamlined handling of large simulation datasets using an HDF5 framework, (iv) two
di�erent schemes for more e�cient rate-constant estimation, (v) a Python API for simpli�ed anal-
ysis of WE simulations, and (vi) plugins/extensions for Markovian Weighted Ensemble Milestoning
and WE rule-based modeling for systems biology models. Applications of the advanced tutorials
include atomistic and non-spatial models, and consist of complex processes such as protein fold-
ing and the membrane permeability of a drug-like molecule. Users are expected to already have
signi�cant experience with running conventional molecular dynamics or systems biology simula-
tions.
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1 Introduction and Scope of Tutorials
The WESTPA (Weighted Ensemble Simulation Toolkit with
Parallelization and Analysis) software package [1, 2] is a
highly scalable implementation of the weighted ensemble
(WE) path sampling strategy [3, 4] that has helped transform
what is feasible for molecular simulations in the generation
of pathways for long-timescale processes (> µs) with rigorous
kinetics. Among these simulations are atomically detailed
simulations of protein folding [5], protein-protein binding
[6], protein-ligand unbinding [7], and the large-scale opening
of the SARS-CoV-2 spike protein [8]. The latter involved
the slowest process (seconds-timescale) yet studied for a
massive system (one million atoms) using WE simulations.
As a “bleeding edge” application, these e�orts have moti-
vated major upgrades to WESTPA (version 2.0) that enable
the sampling of processes at even longer timescales and
more streamlined handling of large datasets [2]. Like its
predecessor, WESTPA 2.0 is a Python package that is (i)
interoperable, enabling the use of any type of stochastic
dynamics simulation (e.g., MD or Monte Carlo simulations)
and any model resolution (e.g., atomistic, coarse-grained,
non-spatial or spatially resolved systems biology models)
[9, 10]; and (ii) extensible, making it straightforward to mod-
ify existing modules or create plug-ins in order to support
new scienti�c e�orts.

Here we present a suite of tutorials organized into two
groups. The �rst four tutorials, presented in the original ver-
sion of this paper, range in order of di�culty from basic to
intermediate, including a tutorial involving the suite of analy-
sis tools.

The second group of tutorials addresses new features
in the major upgrades appearing in the WESTPA 2.0 soft-
ware package. Among these tutorials is one involving the
Markovian Weighted Ensemble Milestoning (M-WEM) ap-
proach [11], which interfaces the WE strategy with another
path sampling method called milestoning [12, 13]. In the
�nal tutorial, we broaden the scope of path sampling to a
systems biology application involving a WESTPA plugin for
enhancing the e�ciency of Monte Carlo simulations using
the BioNetGen systems biology package [14, 15].

For general prerequisites to attempting these tutorials,
please see Section 1.3 below. All �les for the tutorials can
be found online in the WESTPA Tutorials GitHub repository
https://github.com/westpa/tutorials. In each tutorial, we out-
line learning objectives and expected outcomes.

1.1 Learning objectives
After completing the Basic Tutorial 7.1 involving the simula-
tion of Na+/Cl- association, the user should be able to:

1. Understand the main simulation directory layout
2. Choose a progress coordinate
3. Choose an appropriate binning scheme
4. Prepare input �les
5. Monitor a simulation

After completing the Intermediate Tutorial 7.2 involving
the conformation sampling of a p53 peptide fragment, the
user should be able to:

1. Set up a two-dimensional progress coordinate
2. Monitor this coordinate as the simulation progresses
3. Evaluate whether the binning scheme is e�ective
4. Combine and create bins “on-the-�y”
5. Store and access auxiliary data

After completing Intermediate Tutorial 7.3 involving
the folding/unfolding of the chignolin mini-protein the user
should be able to:

1. Use brute force simulations to identify appropriate ini-
tial and/or target states

2. Obtain the probability �ux into the target state of a
WESTPA simulation, convert it to a mean rate constant,
and interpret the results

3. Approach larger, more biologically relevant events (like
protein folding) with a WE-oriented mindset

After completing the Analysis Tutorials 7.4, the user
should be able to:

1. Calculate progress coordinates using an external anal-
ysis suite (MDTraj or MDAnalysis)

2. Automate analysis and interactively explore WE simula-
tion data using the w_ipa tool
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3. Create amovie of howaprobability distribution evolves
with time

After completing Advanced Tutorial 7.5, which involves
the simulation of Na+/Cl- association, the user should be able
to:

1. Create a customized binless resampler scheme for split-
ting andmerging trajectories based on by k-means clus-
tering using the BinlessMapper resampler module;

2. Initiate a WE simulation from multiple starting confor-
mations;

3. CombinemultipleWE simulations for analysis using the
w_multi_west multitool;

4. Perform post-simulation analysis using the w_crawl
tool.

After completing Advanced Tutorial 7.6 involving the
simulation of drug membrane permeation, the user should
be able to:

1. Set up a double membrane bilayer system for perme-
ability studies;

2. Use the highly scalable HDF5 framework for more e�-
cient restarting, storage, and analysis of simulations;

3. Apply the minimal adaptive binning (MAB) scheme.

After completing Advanced Tutorial 7.7 involving the
simulation of ms-timescale protein folding, the user should
be able to:

1. Apply the haMSMplugin for periodic reweighting of sim-
ulations;

2. Use the msm_we package to build an haMSM from WE
data;

3. Estimate the distribution of �rst passage times.

After completingAdvanced Tutorial 7.8 involving the cre-
ation of custom analysis routines and calculation of rate con-
stants, the user should be able to:

1. Access simulation data in a west.h5 �le using the
high-level Run interface of the westpa.analysis
Python API and retrieve trajectory data using the
BasicMDTrajectory and HDF5MDTrajectory readers;

2. Access steady-state populations and �uxes from the
assign.h5 and direct.h5 data �les, convert �uxes to
rate constants, and plot the rate constants using an
appropriate averaging scheme;

3. Apply the RED analysis scheme to estimate rate con-
stants from shorter trajectories;

After completing Advanced Tutorial 7.9 involving simu-
lations of alanine dipeptide using the M-WEM method, the
user should be able to:

1. Install theM-WEM software and perform aM-WEM sim-
ulation;

2. Create milestones to de�ne the M-WEM progress coor-
dinate;

3. Analyze an M-WEM simulation to compute the mean
�rst passage time, committor, and free energy land-
scape.

After completing Advanced Tutorial 7.10 involving
rule-based modeling of a gene switch motif using the
WESTPA/BNG plugin, the user should be able to:

1. Install the WESTPA/BNG plugin and set up a WEST-
PA/BNG simulation;

2. Apply adaptive Voronoi binning, which can be used for
both non-spatial and molecular systems;

3. Run basic analyses tailored for high-dimensional
WESTPA simulations.

The tutorials will use an array of di�erent dynamics pack-
ages to showcase WESTPA’s interoperability. In each tutorial,
all of the required software, including the dynamics engine
and analysis tools, are freely available with easily-accessible
online documentation. Please note the version of each soft-
ware package listed in the Computational Requirements
section of each tutorial.

1.2 The Weighted Ensemble Strategy
WE is a highly-parallel path sampling strategy for generating
rare events, for studying non-equilibrium steady states, and
less commonly, for studying equilibrium properties. At heart,
it is a simple and �exible strategy which is agnostic to sys-
tem type and which therefore lends itself to numerous appli-
cations and optimizations. The properties of WE, including
strengths and limitations, have been reviewed in detail be-
fore [4], although improvements continue to be developed
[17–21]. Here, we brie�y review key aspects of WE.

The Basic WE Procedure. See Figure 1. WE orchestrates
multiple trajectories—each assigned a weight—run in paral-
lel by stopping them at regular time intervals of length ⌧ (typ-
ically a large multiple of the underlying simulation time step),
examining the trajectories, and restarting a new set of tra-
jectories. The new trajectories are always continuations of
the existing set, but some trajectories may not be continued
(they are “pruned”) and others may be replicated. Discon-
tinued trajectories result from probabilistic “merge” events
where a continued trajectory absorbs the weight of one that
is pruned. Replicated trajectories are said to be “split” with
the original weight shared equally among the copies. Usu-
ally bins in con�guration space are used to guide split and
merge events based on a target number of trajectories for
each bin, but any protocol—including binless strategies high-
lighted below—may be used for this purpose. Regardless of
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Figure 1. Overview of the weighted ensemble (WE) strategy [10]. WE typically employs bins, demarcated here by dashed vertical lines, to guide
a set of trajectories to sample throughout con�guration space. Using only ordinary dynamics—without biasing forces—WE replicates (“splits”)
trajectories in unoccupied or under-occupied regions of space and prunes (“merges”) trajectories in over-occupied regions, according to the
user-speci�ed allocation scheme which here is a target of two trajectories per bin. Throughout the process, weights (partially �lled circles)
are tracked by statistical rules of inheritance that ensure that the overall ensemble dynamics are consistent with non-equilibrium statistical
mechanics [16]. Figure adapted with permission from [9].

the resampling protocol, a “recycling” protocol often is used
whereby events reaching a user-speci�ed target state are re-
initiated according to a speci�ed distribution of start states
[22]. This recycling protocol focuses all sampling on a single
direction of a process of interest and has valuable properties
as noted below.

WE is Resampling, and Hence Unbiased. The simple
steps de�ning WE simulations stem from its basis as a sta-
tistical “resampling” procedure [16]. The split/merge steps
generate a statistically equivalent (re)sample of an initial tra-
jectory set by increasing/reducing trajectory density in some
regions of con�guration space at a given time, using weight
adjustments to maintain the underlying trajectory distribu-
tion. The trajectory set is therefore unbiased at all times, i.e.,
average time-dependent observables derived frommanyWE
runs will match the average of a large number of conven-
tional simulations without splitting or merging events [16].
Furthermore, the distributions of transition path times (“bar-
rier crossing times”) from WE runs match those from con-
verged conventional simulations, and can be generated in
orders of magnitude less computing time [23, 24]. The lack
of bias in the dynamics of WE runs holds true regardless of
whether recycling is employed.

Observables and Ensembles Sampled by WE. WE can
yield transient and/or steady-state observables. When recy-
cling is not used, WE provides pathways, i.e., sequences of
conformations in a transition and the frequencies of those
sequences, in addition to time-dependent observables as the
system relaxes to equilibrium, e.g., the probability of a given
event at a given time after initiation in the chosen starting
state. Complex systems are unlikely to relax fully to equi-
librium during a WE simulation. With a recycling protocol,
the system will not relax to equilibrium but instead to a non-
equilibrium steady state (NESS) that has steady probability
�ow from initial to target state. If reached, the NESS provides
a simplemechanism for computing rate constants via the Hill
relation [22]. However, although relaxation to a NESS can
be considerably faster than relaxation to equilibrium [25, 26],
the process may be too slow for WE to reach NESS on prac-
tical timescales, motivating the haMSM approach [5, 18] de-
scribed below.

Resampling Introduces Correlations, which Increase
Variance. WE has intrinsic limitations, like any method
[27], and it is essential to understand them. Most funda-
mentally, splitting and merging introduce correlations into
the sampled trajectory ensemble that could decrease its
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information content. These stem primarily from splitting
events: multiple trajectories share an identical history up
to the time of the split event and hence do not contribute
fully independent information to any observable. These
correlations, in turn, can lead to large run-to-run variance [5]
because the trajectory ensemble in eachWE run results from
a relatively small number of “parent” trajectories which have
been split repeatedly. This variance is addressed to some
extent by the iterative haMSMprotocol described below, and
more directly by ongoing mathematical optimizations noted
below. Importantly, correlations within WE ensembles lead
to signi�cant challenges in quantifying uncertainty [4, 28].

Ongiong E�orts at Optimization and Variance Re-
duction. Because WE is unbiased so long as a correct
resampling protocol is used [16], there is an opportunity to
reduce the run-to-run variance noted above by improved
resampling procedures. In the context of binned WE sim-
ulations, both the construction of bins and the number of
trajectories per bin can be optimized based on a recently
developed mathematical formulation [21, 29] or based on
heuristics [19]. Bins do not need to be kept static over time
[16, 19]. Optimization approaches are actively being studied
and incorporated into WESTPA as appropriate.

WE Cannot Solve Every Problem. Despite its great
strengths and highly notable achievements [5, 7, 8], users
should not assume WE can tackle any problem. Indepen-
dent of the correlation/variance issues noted above, certain
systems will remain too complex for WE given current hard-
ware and algorithms. In every system, there is a minimum
transition path time tTP (also called tb) [30, 31] for physi-
cally realistic events which sets an absolute requirement
on sampling required: in a WE run, a set of trajectories
exceeding the minimum tTP must be generated, which may
be a prohibitive cost. Additionally, even if the necessary
computing resources are available, current binning and
resampling strategies might not be su�cient to generate
events of interest. And �nally, even if events of interest are
generated, the sampled trajectories may be insu�cient for
producing observables of interest such as a reliable estimate
of the rate constant.

1.3 Prerequisites and Computing
Requirements

Background Knowledge and Experience. The WESTPA
software is not intended for total beginners in molecular
simulation. Users should already have extensive experience
running conventional simulations using the underlying
dynamics engine of interest (Amber [32], OpenMM [33],
BioNetGen [14], etc.). Prior to applying the WE strategy
to their own systems, we suggest that users run multiple

conventional simulations to (i) ensure that the preparation
of the system and propagation of dynamics is according to
best practices (e.g., see [34]), (ii) identify potential progress
coordinates and initially de�ne the target state, and (iii)
estimate the ns/day on a single CPU/GPU for your system
and storage needs for the full-scale WE simulation. We
highly recommend that new WESTPA users read this review
article [4] and this introduction to non-equilibrium physics
of trajectories [35]. It is also important to identify sources of
validation for your simulation (e.g., from experiment and/or
standard simulations) and to be familiar with the estimation
of statistical uncertainty in the computed observables,
including those used for validation [36].

Software Requirements. The WESTPA 2.0 software is
a standard Python package that can be used on any Unix
operating system. The software requires Python versions
�3.8 and a number of standard Python scienti�c computing
packages. We recommend installing WESTPA either as a PyPI
or conda package using miniconda. Both packages provide
all required software dependencies and can be installed us-
ing one-line commands: (1) python -m pip install westpa
or (2) conda install -c conda-forge westpa. Note that it is
a best practice to install WESTPA into an isolated virtual or
conda environment, along with the dependencies speci�c
to your project. Due to the use of the MDTraj Python library
with the WESTPA 2.0 HDF5 framework, certain modi�cations
to the installation procedure are required for running
WESTPA 2.0 on ppc64Ie architectures (e.g., TACC Longhorn
or ORNL Summit supercomputers; see https://github.com/
westpa/westpa/wiki/Alternate-Installation-Instructions).

WESTPA 2.0 is designed to be interoperable with any
dynamics engine, requiring an external dynamics engine to
propagate the dynamics in a WE simulation. Please see the
prerequisite sections of each tutorial for additional software
requirements that are speci�c to that tutorial.

Hardware Requirements. Like its predecessor, WESTPA
2.0 is highly-scalable on CPUs/GPUs, making optimal use of
high-performance computing (HPC) clusters available at aca-
demic institutions or supercomputing centers. Memory re-
quirements are dependent on the underlying dynamics en-
gine, e.g., ~1 GB per CPU core (or GPU) for atomistic MD sim-
ulations. Users should refer to the best practices of their dy-
namics engine of choice to determine the optimal allocation
of resources for each CPU/GPU. The most e�cient way to
runWESTPA is to use a computing resource that provides the
user with a number of CPUs/GPUs—all the same processor
speed—that either matches the number of trajectories per
WE iteration or a number by which the number of trajecto-
ries at any point in time is evenly divisible. WE can neverthe-
less run on heterogeneous hardware (di�erent processor or
memory bus speeds) or with trajectory counts that do not
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Table 1. WE parameters used for notable applications in the literature. The asterisk (*) indicates an application with I/O operations that is too
frequent for supercomputers and gaming GPUs.

Rare-event
process

System and size WE Parameters Suitable computing
resources

millisecond
protein
folding [28]

NTL9 protein in generalized Born (GB)
implicit solvent with low and high
solvent viscosity (collision frequency
of 5 ps-1 and 80 ps-1, respectively):
627 atoms

1D progress coordinate: C↵ RMSD
from the folded structure.
Binning: 53 bins, that are �nely
spaced for near-folded structures (35
bins for 1.0 Å < RMSD < 4.4 Å) and
more coarsely spaced for more un-
folded structures:
(12 bins for 4.4 Å < RMSD < 6.6 Å and
5 bins for 6.6 Å < RMSD < 10.2 Å).
⌧ = 10 ps; 1200 WE iterations;
4 trajectories/bin

Professional-
graphics-
programming GPUs*

(e.g. NVIDIA Quadro
RTX 5000)

peptide-
protein
association
[37]

p53 peptide/MDM2 protein in GB/SA
implicit solvent: 1685 atoms

2D progress coordinate: heavy-atom
RMSD of p53 peptide relative to its
MDM2-bound conformation follow-
ing alignment on (i) MDM2 and (ii) it-
self.
Binning: 16 bins with 0.5 Å widths
along the p53-aligned RMSD and
widths ranging from 0.2 to 2 Å for the
MDM2-aligned RMSD.
⌧ = 50 ps; 396 WE iterations;
8 trajectories/bin

1600 CPU cores on a
supercomputer (e.g.
PSC’s Bridges-2) or
16 GPUs (e.g. NVIDIA
A100 GPUs)

protein-
protein
association
[6]

barnase/barstar proteins in explicit
solvent: >100,000 atoms

2D progress coordinate: (i) heavy-
atom RMSD of barstar residues D35
and D39 after alignment on barnase,
and (ii) minimum protein-protein sep-
aration distance. D35 and D39 are
the barstar residues that become the
most buried upon binding barnase.
⌧ = 20 ps; 650 WE iterations
Binning: 72 bins with coarsely spaced
bins every 1 Å from 10 to 60 Å and
more �nely spaced bins every 0.5 Å
from 0 to 10 Å along the RMSD coor-
dinate; two bins along the distance co-
ordinate separated by a bin boundary
at 5 Å; �xed total number of trajecto-
ries (1600)

1600 CPU cores on a
supercomputer (e.g.
PSC’s Bridges-2) or
16 GPUs (e.g. NVIDIA
A100 GPUs)

7 of 53 https://doi.org/10.33011/livecoms.5.1.1655
Living J. Comp. Mol. Sci. 2023, 5(1), 1655

https://doi.org/10.33011/livecoms.5.1.1655


A LiveCoMS Tutorial

Table 2. $WEST_SIM_ROOT organization and �le explanations

bstates/ directory containing basis states
env.sh set environment variables

init.sh initialize the WESTPA simulation
common_files/ directory containing �les for

dynamics (i.e. topologies)
run.sh run the WESTPA simulation

tstate.file de�ne the target state (for
steady state simulations only)

west.cfg specify main WE simulation
parameters

westpa_scripts/ directory containing essential scripts
system.py a separate script to de�ne functions

or parameters (optional)
reference/ directory containing reference �les for

calculations (optional)

divide evenly onto CPUs/GPUs, but this scenario decreases
e�ciency as some processors are inevitably idle for at least
a portion of the overall runtime.

Users can estimate the approximate storage space re-
quired for their project by taking the product of the following:
(i) amount of disk space required for storing data from one
trajectory segment of length ⌧ , (ii) the maximum number of
trajectories per WE iteration, and (iii) the total number of
WE iterations required to generate a reasonable maximum
trajectory length. To optimize the use of storage space, we
recommend that users tar up trajectory �les into a single �le
for each WE iteration and remove coordinates of the system
that are not of primary interest (e.g., solvent coordinates
for certain processes). We note that the WESTPA 2.0 HDF5
framework dramatically reduces the storage space required
for trajectory coordinates by consolidating the data from
millions of small trajectory �les into a relatively small num-
ber of larger HDF5 �les, reducing the large overhead from
the �le system that results from the storage of numerous
small trajectory �les. By doing so, the HDF5 framework also
alleviates potential I/O bottlenecks when a large amount of
simulation �les are written after each WE iteration.

2 Work�ow of Running a WE Simulation
An overview of the work�ow for running a WE simulation us-
ingWESTPA is detailed below. This work�ow is only meant to
give a sense of themechanics and �owof usingWESTPA once
your system andWE parameters have already been carefully
chosen. See Table 2 for a summary of all �les mentioned in
this work�ow.

Overall Flow
Ready: The purpose of this step is to ensure that the

chosen WE parameters are correctly speci�ed in the proper
places and that all environment variables are correctly set.
Most of the WE parameters (such as the number of WE it-
erations, binning scheme etc.) and auxiliary datasets (aux-
data; see Section 7.2) are speci�ed in the west.cfg �le. You
can view an example of this �le in any of the tutorials be-
low; labels exist directing where to specify each parameter.
More complex binning schemes (such as recursive schemes
or schemes involving functional bin mappers) can be spec-
i�ed in an external �le called system.py. A user may also
choose to write functions to this �le. Usually, these functions
will calculate progress coordinate or auxiliary data and are
more complex than usual.

The environment is set up in the env.sh �le. The location
of the main WESTPA simulation directory ($WEST_SIM_ROOT)
and the location of dynamics/analysis programs are placed
in your system path. When setting up WESTPA on a cluster,
program modules will be loaded in the runwe.slurm �le
instead of the env.sh �le (see Section 7.1.3 and view the
cluster-speci�c runwe.slurm �le). It is a best practice to
de�ne variables in env.sh for each program that will be
called. These variables should contain the full path to that
program (such as CPPTRAJ=$(which cpptraj), see Section
5.1 for more information). Always source env.sh before
trying to run WESTPA just to see if any errors appear relating
to programs not being found. If errors are present, edit
env.sh to specify the proper locations of programs and try
to source it again. The goal of this action is to make sure
that any issues with your environment are �xed before
continuing so that troubleshooting becomes much easier
later on.

Set: After setting up the system environment and specify-
ing theWEparameters, userswill need to initialize the simula-
tion. This involves running the init.sh script, which will take
an initial structure (or structures), calculate a progress coordi-
nate (pcoord for short, this is also the name used in WESTPA
datasets pertaining to the progress coordinate) value for that
structure and thenplace that structure in the appropriate bin.
The init.sh �le is also the location where users can spec-
ify whether the simulation will be run under equilibrium or
steady-state conditions.

Place the starting structure(s) in the bstates/ directory.
The structure should be a coordinate �le giving the starting
con�guration of your system (e.g. Amber restart �le). The
bstate.file tellsWESTPAwhich structure to use as the initial
structure for the simulation. If you have only one structure,
this �le will contain the name of that structure only; if you
have more than one structure, bstate.file should list each
structure along with its associated statistical weight. An ex-
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ample of the latter is a representative ensemble of unbound
protein conformations in a binding process that could be gen-
erated using a prior equilibrium WE simulation [6, 37].

Next, specify whether the simulation will be run under
equilibrium or steady-state conditions. This speci�cation is
made in the init.sh �le. Including a $TSTATE_ARGS argument
for w_init will signal for WESTPA to run under steady state
conditions. The tstate.txt �le in the main simulation di-
rectory is where the progress coordinate value of the target
state is speci�ed. If the $TSTATE_ARGS argument is absent, the
simulation will be run under equilibrium conditions. See the
tutorials in Sections 7.1 and 7.2 below for examples of how
init.sh will change from running a steady-state simulation
versus an equilibrium simulation (respectively).

Running init.sh will cause WESTPA to execute
get_pcoord.sh, which is a script located in westpa_scripts/.
This script will give an initial progress-coordinate value for
the basis state(s) (located in bstates/) to WESTPA.

Users will need to modify get_pcoord.sh to either read
or calculate the progress coordinate for their particular
simulation. For instance, in the Basic Tutorial 7.1, the dis-
tance between the Na+ and Cl- ions is used as the progress
coordinate. The get_pcoord.sh �le for that tutorial simply
prints the contents of an already-existing �le (pcoord.init,
which already contains the calculated value) and passes
that value to WESTPA. However, get_pcoord.sh can also
perform the calculation for the basis state, as in the In-
termediate Tutorial 7.2. However this is done, a value
(or values) for that progress coordinate should be echoed
into $WEST_PCOORD_RETURN, a WESTPA variable containing
all of the progress coordinate values for the entire simu-
lation (see Section 7.2 for the added considerations if a
two-dimensional progress coordinate is used).

If errors appear while trying to initialize the simulation,
the following troubleshooting methods are recommended.
First, make sure that the command entered in get_pcoord.sh
properly calculates the progress coordinate. Copy the initial
structure from the bstates/ directory to another directory
and run the command. If the command does not work, make
sure the proper atoms and residues are selected and then try
running the command again. If the command works, make
sure that the calculated value is being successfully echoed
into $WEST_PCOORD_RETURN.

To make troubleshooting easier, turn on logging for
the get_pcoord step in the west.cfg �le. By setting the
location of the standard output (stdout) and/or standard
error (stderr) to $WEST_SIM_ROOT/get_pcoord.log, you can
more closely monitor the output of the get_pcoord.sh script
to try to �nd out where things are not working.

Go: Running the run.sh script will start a WESTPA simu-
lation. If init.sh was just run, a new simulation will begin

and continue until the number of WE iterations speci�ed
in west.cfg have been completed. If the simulation was
stopped after previously running, run.sh will continue the
simulation from the point at which it was stopped. If WESTPA
is being run on a cluster, then this script will take the form
of a Slurm or other submission script (such as runwe.slurm,
see the Basic Tutorial 7.1 for an example). WESTPA will
propagate dynamics for one trajectory segment (of length ⌧ )
and calculate progress coordinate values (and all auxiliary
data) for the propagated structure(s). After completing
a trajectory segment, WESTPA will combine and replicate
trajectories tomaintain the target number of trajectories per
bin (as speci�ed in the west.cfg �le). One cycle of dynamics
and combination/replication is referred to as a single WE
iteration. The number of iterations is repeated until the
observable of interest (e.g. rate constant) is reasonably
converged.

Running run.sh will cause WESTPA to execute runseg.sh,
which is a script similar to get_pcoord.sh, located in
westpa_scripts/. Users will need to modify runseg.sh to
call the dynamics engine and calculate the appropriate
progress coordinate (and auxiliary data) value(s). Refer to
the runseg.sh �le in the Basic Tutorial 7.1 as an example.
This particular simulation uses Amber’s pmemd program for
dynamics propagation. Running this program requires a
certain input/output syntax that is speci�c to the dynamics
engine (such as Gromacs or OpenMM). The section of this �le
that calculates the progress coordinate will be identical to
that in the get_pcoord.sh �le. If a user is collecting auxiliary
data (as speci�ed in the west.cfg �le), those values will need
to be calculated after calculating the progress coordinate
value (see Intermediate Tutorial 7.2).

Since runseg.sh will cause many di�erent �les to be gen-
erated, it is important to consider how WESTPA is handling
these �les, especially when using a shared �le space such as
on a cluster. The methods used in the example runseg.sh
�les that have been provided in the tutorials below are suf-
�cient in most cases, but please refer to Section 5.1 for a
discussion on �le management and network tra�c.

If there are any errors in the WESTPA setup (e.g. incor-
rect number of elements in the pcoord array, misplaced in-
put �les), the simulation will not proceed past the �rst WE
iteration. If this is the case, check the west.log �le to see if
there is a good reason for why the simulation is failing. Usu-
ally, however, detailed logging of any errors is available in the
seg_logs/ directory for each segment of each iteration. View
the segment log for a particular segment to see if the dynam-
ics are completing successfully and that the progress coordi-
nate (and auxdata) values are being calculated and passed to
the appropriate variables (such as $WEST_PCOORD_RETURN).
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If the dynamics fail to start, copy all necessary input �les
into an empty directory and run the dynamicsmanually. If no
errors appear, make sure that your progress coordinate con-
sists of the proper number of datapoints (as speci�ed in the
west.cfg �le). Also remember that you must include the par-
ent coordinate �le as your �rst data point when storing the
progress coordinate data. This will ensure that the analysis
tools work properly.

This is determined by the frequency at which the
progress coordinate is being calculated. For example, if
WESTPA expects 50 progress coordinate values per ⌧ and
only receives 10 values, the simulation will fail after the �rst
WE iteration. Check the dynamics input �le (md.in in the
Basic and Intermediate Tutorials 7.1-7.2) to make sure
that the coordinates of your system are being saved at a
frequency that matches the number of speci�ed progress
coordinate values.

If the simulation proceeds to the second iteration, there
should not be any errors in the WESTPA setup. To monitor
the progress of the WE simulation, use w_pdist to generate
probability distributions as a function of your progress coor-
dinate and WE iteration. WESTPA’s plothist command will
allow you to visualize these probabity distributionswith a few
di�erent visualization options (see Tutorials 7.1-7.2).

Analyze: All data generated from the simulation is con-
tained in one place: the west.h5 file. From this data, users
can track the evolution of progress coordinate values, calcu-
late �uxes into certain bins or states (see the w_ipa analysis
tutorial in Section 7.4.2) and view other statistics pertaining
to the simulation. To visualize a completed trajectory, refer
to Basic Tutorial 7.1 and the Analysis Tutorial 7.4 involving
the visualization of trajectories (Section 7.4.3).

To assess the convergence of the simulation, a usermight
want to monitor the evolution of the �ux into a target state
as a function of the number of WE iterations by using the
hdfview program to plot the target_flux_evolution dataset
in the direct.h5 �le generated by w_ipa (see Tutorial 7.1).

3 Additional Simulation Work�ow with
WESTPA 2.0 Upgrades

Given the major upgrades in the WESTPA 2.0 software pack-
age [2], we recommend the three-stage simulation work�ow
illustrated in Figure 2. These work�ow details are meant to
supplement the simulation work�ow outlined above. Details
of the particular schemes mentioned are provided in the rel-
evant Advanced tutorials 7.5-7.10.

In the �rst (“Ready”) stage, if one uses a binned resam-
pling scheme, we recommend using one of the two adaptive
binning schemes available in WESTPA 2.0: the minimal
adaptive binning (MAB) scheme or adaptive Voronoi binning
scheme. These adaptive binning schemes enable quicker

explorations of the chosen progress coordinate than man-
ual, �xed binning schemes. The MAB scheme is e�ective at
surmounting barriers in a direction of interest [19] while the
adaptive Voronoi binning scheme [16] is ideal for enhanced
sampling in high-dimensional space (more than three di-
mensions) when all parts of the progress-coordinate space
are potentially important. However, if progress-coordinate
space includes, for example, undesirable unfolded protein
conformations, adaptive Voronoi binning might allocate
bins and computing resources to those regions. Besides
the adaptive binning schemes, one can opt for a “binless”
resampling scheme by de�ning a grouping function as
described in Advanced Tutorial 7.5 below. The choice of ⌧
(the resampling interval used for your WE simulation) should
also bemade on a system-by-system basis, with a su�ciently
long time interval to capture relevant motions of interest
but not so long that no net progress is made toward the
target state. Examples of ⌧ values used for various systems
in previous WE studies are provided in the �rst suite of
WESTPA tutorials [38], but some trial-and-error will likely be
necessary. Convergence of a WE simulation will ultimately
depend on the overall goal of running the simulation, but
will most likely involve the time-evolution of an observable
of interest leveling o� over time (e.g., trajectory �ux into a
user-de�ned target state). If the convergence criterion is
not met, a WE simulation using WESTPA can be resumed by
simply running the run.sh script or resubmitting the job if it
was originally run with slurm. Even if changes were made to
the progress coordinate or binning, WESTPA will incorporate
those changes and resume the simulation accordingly.

In the second (“Set”) stage, we recommend starting
the WE simulation from multiple, pre-equilibrated starting
conformations that are representative of the initial stable
state (at least one “basis state” for each trajectory walker)
to improve the sampling of the initial state and diversity of
generated pathways to the target state. Initial structures for
a WE simulation should be chosen on a system-by-system
basis, but in general, more starting structures (each with a
slightly di�erent initial con�guration) should provide you
with a more diverse trajectory ensemble. When the initial
state of interest is well-de�ned, only a small number of
structures may be necessary, but a truly heterogeneous
initial state such as the unbound or unfolded states will
require more structures to be representative of the intrinsic
diversity. As discussed in Section 7.5, these "basis" struc-
tures will govern the recycling process (if used), so care
should be exercised in choosing them.

In the third (“Go/Analyze”) stage, we recommend apply-
ing one of the following three options to further accelerate
convergence to a steady state once successful pathways are
generated. The Rates from Event Durations (RED) analysis
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scheme [20] estimates rate constants more e�ciently than
the original WE scheme [3] by exploiting information in the
transient region of the simulation. Another option is the
haMSM plugin, which employs a �ne-grained “microbin”
analysis and can be used to not only estimate rate constants
followingWESTPA simulation (e.g., for the seconds-timescale
coronavirus spike opening process [39]), but to also restart
trajectories with their weights adjusted for a steady state
[2]. Because restarts in the haMSM plugin are initiated
from con�gurations occurring throughout previously run
trajectories, the continuity of the generated pathways is
broken. The third option is the weighted ensemble steady
state (WESS) plugin [22], which uses the less �ne-grained WE
bins to estimate steady state but preserves the continuity of
pathways, restarting from only the �nal points of trajectories.
While all trajectory �les of the chosen dynamics engine are
saved by default, we recommend storing the trajectory
coordinates using the WESTPA 2.0 HDF5 framework, which
greatly facilitates the restarting, storage e�ciency, and
analysis of WE simulations. When possible, users should run
multiple WE simulations, which provides a greater number
of independent pathways and enables straightforward
estimation of error using the Bayesian bootstrap method
[28] (see https://github.com/ZuckermanLab/BayesianBootstrap).

Random Seeds for Simulations. For WE trajectories to
diverge from one another after a splitting event, a stochas-
tic thermostat is required for MD simulations. Furthermore,
the randomnumber seeds for such thermostatsmust be suf-
�ciently random (uncorrelated) to avoid undesired bias of
the dynamics when trajectories are restarted at short time
intervals (e.g., in the case of WE simulations) [40]. To avoid
such bias, we strongly recommend using WESTPA’s system
entropy-seeded random number facility instead of any time-
seeded random number generator of the chosen dynamics
engine. To use this facility, we �rst set the random seed to
RAND in the dynamics input �le (e.g., ig=RAND in the AMBER
md.in �le) and then specify this input �le in runseg.sh, which
will replace the RAND string with theWESTPA random number
seed.

Extremely Low Trajectory Weights. While it is pos-
sible to set a minimum threshold weight (e.g., 10-100) for
trajectories to be considered for splitting, the generation of
trajectories with extremely low weights (e.g., <10-100) is a
potential warning sign that the division of con�gurational
space is not capturing all relevant free energy barriers.
If a WE simulation yields such trajectories, we strongly
suggest re-evaluating the choice of progress coordinate
and/or restricting the binning to a carefully chosen subset of
con�gurational space that would avoid generating such tra-
jectories. For example of the latter, see Advanced Tutorial
7.6.

Ready

Set

Go!/Analyze
1. Run multiple, independent simulations and 

estimate uncertainty using the Bayesian 
Bootstrapping method

Choose a resampling scheme

Generate multiple, pre-equilibrated 
starting conformations

3. Assess convergence to a 
steady state

2. Store trajectory coordinates using the 
HDF5 framework

adaptive binning

haMSM pluginRED scheme WESS plugin

MAB Voronoi Any grouping function 
(e.g. k-means)

binless
Choose WE 
simulation 
parameters 

Run, monitor, and 
analyze the WE 
simulation

Choose system starting 
configuration 

Figure 2. Recommended simulation work�ow thatmakes use of ma-
jor upgrades in the WESTPA 2.0 software.

4 General Guidelines for Choosing WE
Parameters

SuitableWEparameters such as the progress coordinate, bin-
ning scheme, and resampling interval ⌧ depend on the partic-
ular system under investigation and the particular process of
interest. Note that all of theseWE parameters are tightly cou-
pled to one another. Below are general recommendations
that aim to assist in choosing these parameters. See Table 2
for examples from the literature. Currently, choosing WE pa-
rameters is something of an art, although the hope is to auto-
mate some aspects of parameter selection in the future. For
now, we suggest what may be considered a semi-systematic,
trial-and-error procedure:

1. Initially, choose the simplest 1D coordinate that would
be expected to capture the slowest relevant motion
along with initial bin spacings, ⌧ value, and number
of trajectories/bin. Choose these initial parameters
following examples in the tutorials and/or literature,
bearing in mind they likely will require modi�cation.

2. The ⌧ value should be su�ciently long such that at least
one trajectory progresses to the next bin. In addition, a
code scaling test (plot of the time required to complete
a WE iteration vs. ⌧ value) should be carried out for a
range of potential ⌧ values on the intended computer
hardware to identify a ⌧ value that yields reasonable
linear scaling.
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3. If your system stops advancing along your progress
coordinate, consider reducing the ⌧ value, increasing
the number of trajectories/bin, and/or using a �ner
bin spacing in that region of the progress coordinate
while combining bins from higher probability regions.
Note that bin spacings are arbitrary in WESTPA and
the most e�cient bin sizes likely are not exactly equal.
Details for combining and creating bins “on-the-�y” are
provided below in the Intermediate Tutorial 7.2.

4. If none of the above e�orts in step 3 are e�ective
based on a one-dimensional progress coordinate, your
progress coordinate may be missing orthogonal and
relevant slow degrees of freedom. To address this
issue, consider using a two-dimensional progress coor-
dinate (Section 7.2) [[6, 37]] or a “nested” coordinate in
which the progress coordinate switches to monitoring
another observable once a particular value for the
initial observable is reached. Note that additional di-
mensions in the progress coordinate greatly increase
the number of bins and hence the cost of the WE run,
which is the motivation for nesting an additional coor-
dinate in only a subset of the initial bins. You might
also consider binning strategies that are not based on
user-de�ned coordinates, but instead employ Voronoi
cells potentially in conjunction with a string method.
The WESTPA community will continue researching
the important topic of self-adjusting adaptive bins.
If all of your best e�orts fail to generate transitions,
consider simplifying your system (e.g. coarse-graining
the model) and/or applying methods that involve the
introduction of external forces (e.g. umbrella sampling)
to generate initial transitions that can further inform
the choice of progress coordinate.

5 Cluster-Speci�c Considerations
To take full advantage of WESTPA’s scaling and parallelizabil-
ity, users may seek to run the software on HPC clusters. The
tutorials included herein are writtenwith the goal of teaching
new and relatively inexperienced users the basics of using
the software and therefore do not focus on optimizations
pertaining to the code. We recommend that users become
familiar with running WESTPA on a cluster, especially the
cluster-speci�c issues and considerations that may arise.

5.1 Minimizing the Number of Output Files
It is advisable to minimize the number of output �les gen-
erated by your simulation as this reduces the I/O overhead
andwill therefore be less taxing on the �lesystem of the com-
puting cluster. We recommend saving only the restart �les
that are necessary for continuing trajectories and analysis

of the simulation. If the user needs additional information
(e.g. coordinates that have been saved at a greater frequency
than the ⌧ value) contained in certain output �les, those �les
should of course be kept. To further reduce the number of
�les, we suggest separately tarring up the �les for each WE
iteration. The resulting tarballs will also facilitate any trans-
ferring of your simulation data to another location.

In some cases such as WE simulations that are run using
GPUs, trajectory segments can complete too quickly, leading
to a bottleneck where the transfer of �les over the network
to the local storage of the node is too slow or there are too
many transfers over the network. In such cases, copy over
the data of the entire previousWE iteration as a tarball to the
local storage of the node, run the entire iteration from this
local storage, and copy back the results to the scratch space
in a single tarball. While these transfers over the network will
add some overhead to each WE iteration, they will avoid the
network bottleneck.

5.2 Data Management
A single WE simulation may generate multiple terabytes of
data, presenting a challenge for storage and retrieval of data.
Moreover, using short trajectory segments inWE simulations
commonly results in a large numbers of small �les, which are
managed more slowly on some �le systems than a smaller
number of large �les with the same overall disk size. To alle-
viate these potential issues, we recommend the following:

1. Perform an initial run to monitor data storage and
retrieval. Note that the initial number of trajectory
segments may be a small fraction of the amount that
would be generated in the eventual production run.

2. Delete unnecessary �les as each trajectory segment
is simulated (see example runseg.sh �les in the Basic
and Intermediate Tutorials 7.1-7.3). Unnecessary
�les may include input �les, log �les from analysis
tools, and raw text output �les from analysis tools.
Often, useful data from log �les (e.g., temperature
from an MD simulation) may be extracted from the log
�les and saved as auxiliary data to the WESTPA data
�le (west.h5 �le), which stores data more e�ciently
than raw text.

3. Tar and optionally compress data from each WE itera-
tion. This strikes a balance between excessive �le count
and excessive �le size, either of which is typically sub-
optimal for long term storage, especially on tape sys-
tems that may not guarantee the integrity of large �les.

4. Consider saving coordinates for only the solute atoms
of your system to an H5 �le.
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5.3 Minimizing Network Tra�c Across
Multiple Computing Nodes

Given the large scale of a WESTPA simulation, it is advisable
to limit the number and frequency of network operations (e.g.
I/O operations and �le transfers from the local disk to the
global �lesystem). We recommend the following strategies
for reducing network tra�c:

1. Perform a code scaling test to identify an appropriate ⌧
value (see Section 4 above).

2. Set environment variables to the full pathnames of re-
peatedly used programs (e.g. analysis tools used to cal-
culate progress coordinates; see Basic Tutorial 7.1).

3. Copy repeatedly accessed �les (e.g. reference struc-
tures and analysis scripts) to local scratch space and
temporarily write the output �les to this scratch space.
After each trajectory segment of length ⌧ completes,
tar the output �les, and copy the tarred �les to the
globally accessible �lesystem using rsync.

5.4 Advice when Using GPUs
If your WE simulation has extremely frequent starting up
of simulation segments, your simulation may overheat
gaming GPUs and potentially damage the hardware. For
example, folding simulations of the NTL9 protein in implicit
solvent with a ⌧ value of 15 ps resulted in such issues
on gaming GPUs (i.e. NVIDIA GTX 1080Ti GPUs) while the
same simulations have no such issues on professional-
graphics-programming GPUs. Coarse-grained simulations
(residue-level models and coarse-grained) with high I/O are
also problematic on gaming GPUs.

6 Uncertainty Quanti�cation and
Monitoring of Convergence

Although they can report on much longer timescales, WE cal-
culations still have limitations analogous to those of conven-
tional MD simulations – namely, force �eld inaccuracy and
inadequate sampling. Assessing convergence requires care,
as noted below. Even if sampling is adequate, as with any
simulation result, error bars are required to set the results in
context because there is always a�nite range of resultswhich
are predicted in any stochastic calculation [36]. Error analysis
is particularly challenging because WE results ultimately de-
pend on a large number of trajectories which typically are sig-
ni�cantly correlated with one another due to repeated repli-
cation (“splitting”) events. Over the years, di�erent error anal-
yses have been employed [28, 31, 37]. Here we give a brief
overview of current practice.

The primary recommendation is to performmultiple, fully
independent WE simulations when possible. To understand

the variation intrinsic to WE sampling, we suggest perform-
ing these runs from identical starting states. The data from
these runs will not go to waste, as it can be combined for
estimating observables, convergence, and error bars. When
multiple runs are not feasible for a large-scale application, a
su�ciently large number of trajectories/bin (at least 4 trajec-
tories/bin) should be used to increase the chances of obtain-
ing a diverse ensemble of pathways. To further enhance the
diversity of the pathways, we recommend starting the sim-
ulation from multiple starting states when that is physically
appropriate such as in protein binding. We note that a sin-
gle run with a large number of trajectories/bin (4-50 trajecto-
ries/bin) has been shown to be more e�cient in calculating
rate constants thanmultiple runs with a small number of tra-
jectories/bin (i.e. < 4 trajectories/bin) for molecular associa-
tion/dissociation systems [41].

We focus here on understanding uncertainty in rate-
constant estimation. First, there is the issue of “conver-
gence”: howmuch time is required to obtain a result without
systematic bias that is governed only by statistical noise?
In a typical simulation started in a single state (A), the rate
constant into a target state B is estimated by the steady-
state probability �ux into B – i.e., the amount of probability
arriving per unit time as sketched in Figure 3. However,
there is a transient regime before the �ux levels o� to
its steady value, and it is unknown in advance how long
the transient will last. Of course, one should examine the
time-dependence of the average �ux (averaged over all WE
runs) by eye, but this is unlikely to be su�cient. In addition,
one can plot the �ux as a function of some continuous
coordinate which progresses from A to B: in steady state, the
�ux will be constant along any such coordinate [18]. Finally,
we recommend using a “history augmented” Markov state
model (haMSM) employing very �ne bins/microstates, which
can be built from the WE data as a di�erent means for esti-
mating steady-state �ux values which can be compared to
those measured directly in WE simulation [18]. Alternatively,
the impact of transient e�ects on rate-constant estimation
can be reduced by incorporating the distribution of event
durations (excluding dwell time in the initial stable state)
that correspond to pathways captured by the simulation.
This strategy has been shown to yield rate constants using a
fraction of the simulation time required by the original WE
method [20].

Once the transient has completed, if multiple runs were
performed, it is necessary to estimate the uncertainty in the
rate constant based on the group of independent WE runs.
The �ux curves from the individual runs, plotted as a function
of molecular time, may vary signi�cantly as sketched in Fig-
ure 3. This large variation invalidates typical uncertainty es-
timation schemes based on the standard error of the mean,
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Figure 3. Convergence assessment and error analysis in the face
of large run-to-run variation. The �ux of probability into the target
state B computed as a function of continuous molecular time, tmol ,
is shown for several independent WE runs (grey). The large variation
among individual runs makes it challenging both to assess whether
the transient period has ended and to construct reliable error bars
(see text). The history augmentedMarkov StateModel (haMSM) anal-
ysis (green lines) provides an estimate of the long-time behavior, and
the Bayesian bootstrap credibility region (red lines) estimates the av-
erage transient behavior.

and we therefore recommend employing a Bayesian boot-
strapping procedure [28]. This approach appears to be bet-
ter than alternative approaches for handling estimateswhich
vary over orders of magnitude, but we emphasize that the
nominal 95% “credibility regions” produced are overly opti-
mistic and only cover the true mean a much smaller percent-
age of the time [28].

7 Tutorials
7.1 Basic Tutorial: Na+/Cl- Association
7.1.1 Introduction
This tutorial involves carrying out aWE simulation of amolec-
ular association process: Na+/Cl- association. After complet-
ing this tutorial, a user should be able to set up a simple WE
simulation using the WESTPA software and develop an intu-
ition for how changes in theWE parameters will in�uence the
e�ciency of sampling a process of interest, thus allowing the
user to choose appropriate parameters for that process.

Learning Objectives. Though we strive to make the
WESTPA software as user-friendly as possible, there are
many system-speci�c parameters that must be carefully
speci�ed. The purpose of this basic tutorial is to introduce
a new user to WESTPA and have that user become familiar
with the �ow of setting up and running a WE simulation.
Speci�c learning objectives are:

1. Become familiar with the main simulation directory lay-
out

2. Choose a progress coordinate
3. Choose an appropriate binning scheme
4. Prepare input �les
5. Monitor a simulation

7.1.2 Prerequisites
Users should install the latest version of the WESTPA soft-
ware package through Conda. Installation instructions can
be found on our Github wiki (https://github.com/westpa/
westpa/wiki/Installing-WESTPA). For analysis of simulation
data, the hdfview software greatly facilitates the visualization
of large datasets. We will make use of that program in the
Analysis Tutorials (Section 7.4).

Users should have basic knowledge of command line us-
age and the Python programming language. SinceWESTPA is
designed to conveniently interface with any external dynam-
ics engine, users will also need to have experience using an
MD engine (Amber, Gromacs, etc.). This tutorial will not pro-
vide instructions on how to use those engines; only how to in-
terface the engines withWESTPA. In addition, a knowledge of
analysis programs (such as Amber’s cpptraj program or the
MDAnalysis software) is necessary and will not be covered
here. This tutorial will go over examples of the various input
�les that are necessary for interfacing with WESTPA. This tu-
torial also assumes the user has some knowledge of the WE
strategy, as its basic theory is not discussed herein.

Computational Requirements. A user should set aside
at least 18 GB of disk space. This simulation took ~50 hrs to
complete using 1 Intel Xenon 3.50 GHz CPU core.

This tutorial uses OpenMMversion 7.3 for dynamics prop-
agation (http://openmm.org/) and MDTraj 1.9.3 for progress
coordinate calculations (http://mdtraj.org/1.9.3/index.html).
System setup and equilibration was performed separately
in OpenMM. A minimum version of 3.1.0 for HDFView is
required for H5 �le analysis.

7.1.3 Setting up a WE Simulation Using WESTPA
Overview. WESTPA is run by calling the w_run program from
the command line with the appropriate options. This is nor-
mally done by running the run.sh script from the main sim-
ulation directory. The simulation will then run until it has
either completed the number of iterations speci�ed by the
user or has run out of time. Both of these parameters can be
adjusted. Before a simulation can be run, however, the sys-
tem must be initialized by calling the w_init program from
the command line with the appropriate options. This is nor-
mally done by running the init.sh script from the main sim-
ulation directory.

Therefore, assuming the system is set up properly and all
parameters have been properly speci�ed, the WESTPA sim-
ulation can be run with the following at the command line
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(throughout our suite of tutorials, the command prompt is
indicated with $, which itself is not part of the commands
that should be entered by the user):

$ ./init.sh
$ ./run.sh

Data from a WESTPA simulation will be stored in a �le
called west.h5, which is an H5 �le that can be opened with
Python’s h5py package or with a graphical interface such as
hdfview.

To monitor the simulation’s progress, we will use the
w_pdist program of WESTPA. This will generate probability
distributions (histograms) as a function of the progress co-
ordinate and will enable the user to view those histograms
with the plothist program.

A WESTPA simulation, even after the requested number
of iterations, may not be “complete.” Completion is assessed
by whether some observable has converged to an expected
or steady value. The choice of this observable is up to the
user. To obtain these observables (such as the �ux or rate
constant), one will have to access the data in the H5 �le and
plot it using Python’s matplotlib package (or another equiv-
alent package).

Once a simulation is deemed complete, users can make
use of the WESTPA analysis tools suite of programs, speci�-
cally w_ipa in order to extract relevant data from the H5 �le.

The System. To obtain a basic understanding of
WESTPA’s parameters and learn how the software works,
we will begin by studying the molecular association of
Na+ and Cl- ions. Our system will consist of a single Na+

cation along with a single Cl- anion modeled with Joung and
Cheatham parameters [42] and solvated in a box of TIP3P
water molecules [43]. These ions are initially dissociated
at a separation distance of 12 Å. The system was prepared
using OpenMM and the appropriate input �les are provided
under “westpa/tutorials” on GitHub, where you will also �nd
a copy of this tutorial’s simulation directory (basic_nacl).
We will not cover how the input �les were generated or the
rationale behind choices made when setting up the system
(e.g. force �eld, water model etc.).

Choosing an Initial State. In looking at the association
of two entities, especially thinking about how to extensively
sample this process, there are some things we want to con-
sider before we begin WE. The �rst is how our initial state
should look. If we choose to place the ions too close together,
wemay only observe one “type” of binding pathway, since the
ions will not have as much time to orient themselves before
binding. In reality, ions are symmetrical and we will not need
this consideration but this would be an issue when determin-
ing how far apart to space, say, a drug and protein system or
two protein binding partners. We also do not want to space

the ions too far apart, as that would unnecessarily increase
the time needed to observe binding events. Wewill therefore
choose a generous distance of 12 Å.

The coordinates (and velocities) of this starting structure,
bstate.xml, are placed in the bstates/ directory. This is an
OpenMM save-state �le, which was saved after equilibration.
This is the �le needed to directly resume dynamics. Depend-
ing on the dynamics engine you are using, this �le will be
di�erent but will have the same function (for instance, an
Amber restart �le would be placed here if one were using
sander to run dynamics). Also in this directory is a �le named
bstates.txt. This �le contains the name of our basis state
structure and the probability of it being chosen if we want
to sample a variety of initial structures (since we are prepar-
ing only one basis state, that probability is just 1). To more
fully sample the con�gurational space of some process, it is
often prudent to include more than one initial structure. In
that case, all of those structure �les can be placed in this di-
rectory with their �le names and probabilities included in the
bstates.txt �le.

Files for Dynamic Propagation. Also necessary for run-
ning an Amber simulation are the topology and simulation
input �les. Those two �les (bstate.pdb and nacl_prod.py)
are placed in the common_files/ directory. This is a catch-all
folder for any �les needed while running dynamics. Notice
that our ⌧ value is de�ned in the nacl_prod.py �le, which is
a Python script that runs OpenMM. This is the length of each
WE iteration; so if the MD input script will run dynamics for,
say, 10 ps then your ⌧ value is 10 ps. This number needs to be
carefully chosen depending on your system of interest. For
this simulation, we will use a ⌧ value of 50 ps.

Preparing the System Environment. Next, we will want
to make sure that WESTPA can properly access the MD en-
gine we want to use and set up our simulation environment
properly. These variables are all de�ned in the env.sh �le.
You will need to open that in vim or another text editor and
make sure that your WESTPA environment is being sourced
correctly (only if you are not using the Conda environment)
and that your dynamics environment is being sourced cor-
rectly. It is also advised to set the runtime command vari-
ables for more e�cient system calls, if applicable.

Equilibrium vs Steady State WE. Now, let’s examine the
init.sh �le, which initializes the simulation. In this �le, we
can specify whether to run an equilibrium or steady state
simulation. The �le in the tutorial directory is set up to run a
steady state simulation. This is speci�ed with the de�nition
of the $TSTATE_ARGS variable and its use in the w_init com-
mand. To run an equilibrium simulation, simply delete those
two lines.

The choice of whether to run an equilibrium vs steady
state simulation will depend on the research question being
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asked. Where do we want the system to go? Equilibrium sim-
ulations can be e�cient in exploring con�gurational space
and sampling ensembles of conformations. On the other
hand, steady state simulations, where trajectories that reach
some target state are recycled back to the initial state (along
with their trajectory weights), can be more e�cient in gen-
erating rate constants, and for exploring pathways towards
some known target state [41].

In our simulation, we do have a speci�c target state in
mind and we know exactly what it looks like: Na+ and Cl- in-
teracting ionically at a close distance. We will therefore pre-
pare to run a steady state simulation.

Progress Coordinate, Binning Scheme and ⌧⌧⌧ value.
For any WE simulation, we recommend choosing a progress
coordinate that monitors the slowest relevant motion(s)
such that faster motions will “go along for the ride.” The
e�ciency of generating pathways is tightly coupled to the
choice of progress coordinate, along with how you choose
to divide up that coordinate into bins. For the molecular
association process involving the Na+ and Cl- ions, a logical
choice of progress coordinate would simply be the distance
between the two ions, assuming that the surrounding
solvent molecules respond relatively quickly to the positions
of the ions. In other words, we can measure the simulation’s
“progress” by how close the ions are to each other in a
particular trajectory. This will turn out to be a good choice
for our system, but for systems in which the binding partners
involve ensembles of conformations, a pure distance-based
progress coordinate will not be adequate and must be com-
bined with a second dimension of the progress coordinate
that tracks some other motion of the system.

Now that we have chosen a progress coordinate, we will
need to consider our binning scheme. Imagine a space that
contains all of the possible values of our progress coordinate.
A good place to start is to perhaps de�ne our progress coor-
dinate as ranging from your initial state (basis state) to a pre-
liminary de�nition of your target state and divide up this co-
ordinate into 1 Å-wide bins. One way to obtain a preliminary
de�nition of the target state for the Na+/Cl- association pro-
cess is to subject a model of the associated Na+ and Cl- ions
to energyminimization using the same force �eld that will be
used during theWE simulation and calculate the resulting dis-
tance between the ions using cpptraj. This distance ended
up being 2.6124 Å, sowewill set 2.60 Å as our preliminary def-
inition of the target state. We recommend choosing themost
strict de�nition possible for the target state for the recycling
of trajectories in a steady state WE simulation to enable the
use of more lenient de�nitions after the completion of the
simulation. Make sure to add this number to tstate.file in
the main simulation directory, where your steady-state tar-
get state de�nition should always be placed.

Back to our bin de�nitions. If we choose to space our bins
by ones from 2.6 to 12 Å by 1 Å’s (or some similar increment),
this can lead to your simulation stalling. If trajectories can-
not move to the next bin before a round of combination and
replication occurs, the bins may be too large with respect to
the chosen ⌧ value or progress coordinate. It is a good idea,
therefore, to run a short (10-20 iterations) WESTPA equilib-
rium simulation to see how your trajectories are progressing
with theWEparameters you have set. If necessary, adjust the
binning or include an additional dimension to your progress
coordinate.

Here is the preliminary binning scheme we will employ,
which is de�ned in the west.cfg �le:

[0.00, 2.60, 2.80, 3.00, 3.20, 3.40, 3.60, 3.80,
4.00, 4.50, 5.00, 5.50, 6.0, 7.0, 8.0, 9.0,
10.0, 11.0, 12.0, 13.0, 14.0, 15.0, ‘inf’]

Notice howwe start at 15 Å (a little bit beyond our initial value
of 12 Å) and increment by ones, but as we get closer to our
preliminary state of 2.60 Å, we start incrementingmore �nely.
This �ner binning will help to collect probability closer to our
target state and promote more binding events.

OtherWEParameters. The followingWEparameters are
discussed along with where they are speci�ed in the param-
eter �les. First, make sure you have chosen an appropriate
⌧ value (see Section 4) and that it is properly speci�ed in
your dynamics input �le. As mentioned above, the ⌧ value,
along with the number of trajectories per bin, is coupled to
the choice of progress coordinate and binning scheme. We
recommend starting with ~4-5 trajectories/bin. This value is
speci�ed in the west.cfg �le as bin_target_counts. Make
sure that the frequency at which conformations are saved
in your trajectories (as indicated in your dynamics input �le,
e.g. md.in for Amber) matches the number of elements in
the pcoord array of the west.cfg �le. We recommend run-
ning the simulation for a short time to test the e�ectiveness
of the WE parameters, setting max_total_iterations to 10
in the west.cfg �le before letting the simulation run to a full
100 iterations.

Trajectory Imaging. Since the replication and combina-
tion of trajectories in a WE simulation depends on the values
of the progress coordinate, trajectories that are carried out
with periodic boundary conditions should be imaged before
calculating the progress coordinate (e.g., after completing
each trajectory segment of length ⌧ ). Otherwise, erroneous
values of the progress coordinate may result from parts
of the simulation system drifting outside of the periodic
box. MDTraj, which is used to calculate the distance in this
tutorial, is able to only calculate distances for nearest-image
ion pairs (essentially what Amber does with the autoimage
command in AmberTools’ cpptraj program.)
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7.1.4 Initializing the WE Simulation
To initialize the simulation, run the init.sh script as men-
tioned before. You will see a body of text output indicat-
ing that the initialization has completed successfully. We will
brie�y present the key features of this script.

As mentioned before, init.sh calls the w_init program,
which in turn, runs a script in the westpa_scripts/ directory
called get_pcoord.sh. This script, in this tutorial, is very sim-
ple. It prints the contents of a �le, pcoord.init, and gives
that to $WEST_PCOORD_RETURN. The pcoord.init �le contains
the progress coordinate value of the basis state, and so this
operation essentially tells WESTPA which bin your basis state
falls into. The pcoord.init �le is generated by running the
get_distance.py script in common_files/ on bstate.xml and
redirecting the output into a �le named pcoord.init. Initializ-
ing your system this way is often a good idea, as it allows you
to test out your particularmethod of progress coordinate cal-
culation. However, get_pcoord.sh can calculate the progress
coordinate directly (see Intermediate Tutorial 7.2), or run
whatever script you need to do so. In fact, get_pcoord.sh
can include any additional commands; this built-in �exibility
allows you to perform operations on your basis states before
beginning the WESTPA simulation.

7.1.5 Running the WE Simulation
To carry out the simulation, run the run.sh script as men-
tioned before. Youwill not see any output. What run.sh does
is call w_run which, among other things, runs the runseg.sh
script that is in the westpa_scripts/ directory. This script will
run dynamics each iteration, calculate a progress-coordinate
value for the updated structure and then return that value to
$WEST_PCOORD_RETURN.

In this tutorial, OpenMM is used to run dynamics (by run-
ning the nacl_prod.py script) andMDTraj is used to calculate
the progress coordinate (by running the get_distance.py
script). If a user wishes to change either the dynamics or
analysis programs, these are the two locations where it will
need to be done.

For an example script for using Slurm to run a job on a
computing cluster, see runwe.slurm. You can adapt this tem-
plate script to run WESTPA on your desired cluster.

7.1.6 Monitoring the WE Simulation
We recommend checking the progress of yourWE simulation
every 10 iterations or so. This can be done with the w_pdist
program. Touse this program, �rst stop the simulation (it can
be started easily from the point it left o� by running run.sh
again) and then call w_pdist:

$ w_pdist

-ln
 P

(x
)

Figure 4. Probabiity evolution of Na+/Cl- association as a function
of interatomic distance and WE iteration. The distribution from your
particular simulation may look slightly di�erent. Observe that at the
beginning of the simulation, the probability is centered around 12 Å
(the initial distance).

This will produce a new H5 �le called pdist.h5. To see
how our progress coordinate is evolving over time, we can
use the plothist program with the evolution option:

$ plothist evolution pdist.h5

This will produce a pdf �le called hist.pdf. Open this �le,
the contents of which are displayed in Figure 4.

As expected, most of the probability at the start of our
simulation is concentrated around the progress coordinate
value for our initial state (10 Å). As our simulation progresses,
the probabilities fan out in both directions, with most of the
probabilities moving towards larger values and some of the
probabilities nearing our target value of 2.6 Å. To see if your
simulation has generated some successful binding events af-
ter only 10 iterations, run the following:

$ w_succ

The example simulation had its �rst successful event af-
ter 14 iterations. The output will show (if a successful event
occured) the iteration and segment number in which the �rst
event occurred (e.g. iteration 14, segment 2).

You can trace this successful trajectory back to the basis
state to obtain a complete trajectory with the w_trace com-
mand. You will need to provide the iteration and segment of
the successful trajectory as options separated by a colon:

$ w_trace 14:2

The output will be written to the �le traj_14_2_trace.txt.
That �le contains the parents of the successful trajectory all
the way back to the basis state.
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7.1.7 Analyzing the WE Simulation
One way to assess the convergence of our simulation is to
determine when the primary observable of interest (i.e. the
�ux into the target state) levels o�. To monitor the �ux, we
will �rst need to prepare our west.cfg �le to analyze the sim-
ulation. This is normally done by adding an analysis module
to the end, which is already present in this tutorial’s �les. Use
this as a template for future analyses.

You will see that we create an analysis instance called
TEST and then de�ne bins and states for this scheme. These
bins are strictly for analysis and have nothing to do with our
progress coordinate bins de�ned earlier. Since we only need
to designate the bound and unbound states here, we de�ne
three bins:

[0.0, 2.6, 10.0, ‘inf’]

The way that state de�nitions work is that you provide
a progress coordinate in the con�gurational space and
whichever analysis bin that coordinate is in becomes that
state. For instance, our bound state de�nition is given by [0],
so whichever bin above that the value 0 falls into will be our
“bound” state. This is the bin from 0 to 2.6. The same goes
for the unbound state (10.0 to in�nity). The intermediate
state (2.6 to 10.0) does not need to be de�ned.

With these states de�ned we can now analyze howmuch
probability, in the form of trajectory weight, is entering or
leaving each state using the w_ipa program, which will run
two separate WESTPA tools, w_assign and w_direct. To gen-
erate the H5 �les needed to analyze the �uxes, run the fol-
lowing from the main simulation directory:

$ w_ipa -ao

You will see that a new directory titled ANALYSIS has been
created, inside of which is a subdirectory corresponding to
our TEST analysis scheme that was de�ned in the west.cfg
�le. Inside of this subdirectory are our assign.h5 and
direct.h5 �les. The direct.h5 �le is where the �uxes are
stored. We can open it up with hdfview and view all of the
datasets.

The target_flux_evolution dataset gives the �ux over
time (number of WE iterations) into each state we de�ned
earlier. To view this dataset, double click on it. The 0th col-
umn corresponds to the �ux into state 0, which we de�ned
as our target state. The iter stop is at the beginning of that
iteration, so if you had a binding event by iteration 10, ob-
serve the �ux into our target state. Highlight the “expected”
column and click the plotting button in the upper-left hand
corner to view the �ux evolution as a function of 0-indexed
iteration.

By iteration 10, the �ux has most likely not levelled o�, so
our simulation cannot be considered converged. Let’s con-

Figure 5. Mean �ux evolution of Na+/Cl- association as a function
of WE iteration. The mean �ux alternatively rises sharply and then
relaxes. These "peaks" correspond to probability crossing into the
target state. Your plot may still not be completely converged after
100 WE iterations.

tinue the simulation for a total of 100 WE iterations and ana-
lyze the resulting dataset. A completed H5 �le is included in
the for_analysis/ directory for your convenience. Your plot
should look something similar to Figure 5, which was gener-
ated in matplotlib.

While the �ux into the target state has not completely
levelled o�, it is much more steady than previously, so we
can stop the simulation here and consider how much longer
we should extend the simulation. For other systems, you
may want to run the simulation longer for better conver-
gence. You may also want to have additional criteria for
convergence.

To visualize a trajectory, one must �rst identify a continu-
ous series of trajectory segments in each iteration from the
basis state to the target state. This will be given in the w_succ
output along with w_trace, as we have done previously. How-
ever, you will also need to retrieve the trajectory �le from
each of those segments and combine themusing cpptraj. To
automate this process, we have provided the amberTraj.sh
script, which can be adapted for other systems. This script
uses the cpptraj program available in AmberTools to extract
the binding trajectory of a successful event. The resulting tra-
jectory �le can be loaded alongwith the system topology into
the VMD visualization software to generate amovie of the as-
sociation process.

7.1.8 Conclusion
Hopefully by this point you have gained a good idea of the
work �ow required to set up, run, and analyze a WESTPA
simulation using a simple progress coordinate. If you de-
sire more complex options for your simulations (e.g. multi-
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dimensional progress coordinates) and further discussion of
how to choose various simulation parameters, we highly sug-
gest going through the other tutorials to get a sense of how
that can be done.

7.2 Intermediate Tutorial: P53 Peptide
Conformational Sampling

7.2.1 Introduction
Since the WE algorithm aims to �ll empty bins in con�gura-
tional space, WE simulations can be e�ective in the enhance-
ment of conformational sampling [1] as well as the genera-
tion of pathways and rate constants for rare events. This tu-
torial will focus on the conformational sampling of a peptide
and instruct users on how to set up and analyze a simula-
tion involving a two-dimensional progress coordinate. In ad-
dition, wewill go over how the binning scheme can be chosen
and adjusted in order to balance e�ciency and performance.

Learning Objectives. This tutorial will help users
develop a sense for which progress coordinates may be
e�ective for conformational sampling of a peptide and how
to bin along those progress coordinates.

Speci�c learning objectives include:

1. How to set up a two-dimensional progress coordinate
2. How to monitor this coordinate as the simulation pro-

gresses
3. How to evaluate whether the binning scheme is e�ec-

tive
4. Combining and creating bins “on-the-�y”
5. Storing and accessing auxiliary data

7.2.2 Prerequisites
Users should have completed the Basic Tutorial 7.1 and
have a potential progress coordinate in mind for their
system of interest.

Computational Requirements. This simulation re-
quired at least 10 GB of disk space and ~36 hours to
complete (40 iterations) on a 12-core, 2.6 GHz Intel Xeon
node. This tutorial uses AmberTools19’s sander package for
dynamics propagation and the cpptraj package for progress
coordinate calculations (http://ambermd.org/AmberTools.php).
AmberTools is available free of charge.

7.2.3 Adding Another Dimension to the Progress
Coordinate

While a one-dimensional progress coordinate can be e�ec-
tive for molecular association processes (e.g. Na+/Cl- in the
Basic Tutorial), a two-dimensional coordinate may be nec-
essary for more complex processes such as peptide/protein
conformational transitions. To add another dimension to the
progress coordinate, we �rst specify the progress coordinate

dimensionality as “2” in the west.cfg �le. Next, we calculate
the values corresponding to each dimension of the progress
coordinate and pass the resulting two values at the same
time to $WEST_PCOORD_RETURN in both the get_pcoord.sh and
runseg.sh scripts. For example, if the �rst dimension of the
progress coordinate has a value of 1 and the second dimen-
sion has a value of 5, (1 5)must be passed at the same time to
$WEST_PCOORD_RETURN instead of sequentially as 1 and then 5.
This can be done with the paste command in bash (see ex-
ample get_pcoord.sh and runseg.sh �les). In addition, the
bins will need to be speci�ed as two lists, one for each of
the two dimensions. This is done by adding dashed entries
(one underneath the other) in the west.cfg section for bin
de�nitions. A user may alternatively choose to de�ne a two-
dimensional binning scheme in a system.py �le.

7.2.4 Preparing the WE System
The System. We will focus on the conformational sampling
of a 15-residue, N-terminal peptide fragment of tumor sup-
pressor p53 that has been thought to be disordered in its
unbound state and adopts an ↵-helical conformation upon
binding theMDM2 protein. Simulations were run at 275 K us-
ing the Amber �14SBonlysc force �eld [44] and generalized
Born implicit solvent [45]. As in the Basic Tutorial, we will not
go into detail about how the �les were generated in Amber
or the decisions made in setting up the system with Amber.

Choosing an Initial State. Our WE simulation will be
started from theMDM2-bound conformation of the p53 pep-
tide. In particular, coordinates for the peptide conformation
will be extracted from the crystal structure of the MDM2-p53
peptide complex [46]. This ↵-helical conformation of the
peptide will then be energy-minimized and equilibrated
before subjecting the resulting, solvated system to a WE
simulation.

Files for Dynamics. The topology �le (P53.MDM2.prmtop)
and dynamics input �le (md.in) can be found in the
common_files/ directory. In the md.in �le, it should be
speci�ed that the trajectory segment will be run for a length
that corresponds to a ⌧ value of 50 ps.

Preparing the Simulation Environment. See the corre-
sponding subsection in the Basic Tutorial 7.1.

Equilibrium vs Steady State WE. In the init.sh �le,
observe that all lines mentioning TSTATE_ARGS have been
removed. This signals WESTPA to run an equilibrium WE
simulation in which we do not have a set target state. This is
a good option when the goal of your process is to generate
as many con�gurations as possible and you have no set
target state in mind.

Progress Coordinate, Binning Scheme and ⌧⌧⌧ Value.
To extensively sample the conformations of the peptide, we
might de�ne a progress coordinate that monitors the extent
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of “unfoldedness” in the peptide using the RMSD of a given
conformation from the initial structure. However, RMSD
cannot di�erentiate among conformations that have the
same large RMSD values. To further di�erentiate between
such conformations, we can include another orthogonal
measure of unfoldedness such as the end-to-end distance
of the peptide.

To determine a suitable binning scheme, wewill start with
an upper limit of 10 Å for the heavy-atom RMSD dimension
of the progress coordinate. Spacing the bins along this di-
mension by 1’s may be too large for any transitions to occur
between bins so we opt for a �ner bin spacing:

[0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8,
2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0,
8.0, 9.0, 10.0, ‘inf’]

We will see how the trajectories progress and adjust accord-
ingly. Notice that a bin spacing of 0.2 is not maintained for
the entire length, as 50 bins even along one dimensionwould
result in a very large number of total trajectories (4 trajecto-
ries per bin would yield a total of 200 trajectories if all of the
bins are occupied). Furthermore, care must be exercised in
the addition of bins along a second dimension as the total
number of trajectories can “blow up” to an enormous num-
ber of trajectory segments (e.g. 10,000).

To get a feel for how the end-to-end distance evolves in
the simulation, let’s expand out from the initial distance of
28.5 Å with 0.5-Å wide bins in either direction:

[0, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5,
24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5, 28,
28.5, 29, 29.5, 30, 30.5, 31, 31.5, 32, 32.5,
33, 33.5, 34, 34.5, 35, 35.5, 36, ‘inf’]

Our ⌧ value should allow for successful transitions between
bins of this spacing.

Other WE Parameters. Let’s run our WE simulation with
4 trajectories/bin for 40 iterations. Since the goal here is the
conformational sampling of a peptide and we are running an
equilibriumWE simulation, we do not need to de�ne a target
state.

7.2.5 Tracking the Auxiliary Data
While it is possible to go back after a simulation has run and
calculate some value you wish you had kept track of, it can
be tricky to do so (though possible with a tool called w_crawl
which is not discussed in this guide). We strongly recommend
conducting all relevant analysis during the simulation and
storing the resulting data as auxdata in the H5 �le. In our
case, we will calculate and store the �/ backbone dihedral
angles of the peptide as auxdata for each of the sampled con-
formations.

-ln
 P

(x
)

-ln
 P

(x
)

Figure 6. Probability distributions for each of the two progress co-
ordinate dimensions versus WE iteration for the p53 system. The
simulation was analyzed after 10 WE iterations.

To signal for WESTPA to collect auxdata, you will need to
add an auxiliary dataset into the west.cfg �le andmake sure
it is enabled. See the west.cfg �le in the tutorial directory
for an example of how this might look. You can name the
dataset whatever you would like.

Once you have speci�ed the datasets and named them,
you will need to add in commands to runseg.sh that cal-
culate those values and pass them to WESTPA system
variables. The variables will be named $WEST_XYZ_RETURN
where “xyz” is the name given to the dataset in the west.cfg
�le. This can be treated analogously to the pcoord value and
$WEST_PCORD_RETURN.

7.2.6 Initializing and Running the WE Simulation
Make sure that your get_pcoord.sh and runseg.sh �les are
calculating the RMSD and end-to-end distance and returning
these values to $WEST_PCOORD_RETURN. The get_pcoord.sh
script will calculate the initial progress coordinates using
AmberTools’ cpptraj program from within the script, as
opposed to reading the value from an external �le as in the
Basic Tutorial 7.1. The runseg.sh uses AmberTools’ sander
program for dynamics propagation and does so within the
script.
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7.2.7 Monitoring the WE Simulation (10 Iterations)
Once the simulation has run for about 10-20 iterations, copy
the H5 �le and run w_pdistwith the copied �le. You can then
use plothist to view each dimension of the progress coor-
dinates separately as the values evolve over the course of
those few iterations:

$ plothist evolution pdist.h5 0 -o hist_dim0.pdf
$ plothist evolution pdist.h5 1 -o hist_dim1.pdf

Where the “0” or “1” after the plothist command is the
progress coordinate dimension (zero indexed). Observe the
two probability distributions in Figure 6.

7.2.8 Adjusting Bin Spacings "On the Fly"
The RMSD has reached a value of 4-5 Å and the end-to-end
distance has reached ~10 Å, which is encouraging progress
for only 10 iterations. Note that most of the probability (and
thereforemost of the computation) is still stalled in the initial
states of 1-2 Å RMSD and 20-25 Å end-to-end distance. We
can help focus the computing power on the more interest-
ing “edge” conformations by modifying the binning scheme
before continuing the simulation.

In WESTPA, the binning scheme can be updated at any
time since the trajectory weights are independent of the bins
(and progress coordinate). To do so, �rst stop the simulation
and then adjust the bins in your west.cfg �le. Re-start your
simulation by running the run.sh script again and the simu-
lation will continue from where it left o�. At the start of the
next iteration, the new bins will have been implemented.

In our case, I would like to focus sampling on higher RMSD
values (3-4 Å) instead of those ~1-2 Å. To do this, I will collapse
the bins from 0 to 1.8 Å and de�ne some more bins past 10
Å:

[0.0, 1.8, 2.2, 2.6, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0
8.0, 9.0, 10.0, 11, 12, 14, 16, 18, 20, ‘inf’]

For the end-to-end distance, I will add more bins for the
lower distances and collapse bins over 26 Å. We would nor-
mally want to keep these bins over 26 Å but having fewer will
shorten the runtime of this tutorial.

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21,
22, 23, 24, 25, 26, ‘inf’]

The reason we eliminated the initial 0.5 Å spacings is that
this degree of freedom is readily explored in the system.

7.2.9 Monitoring the WE Simulation (40 Iterations)
After running the simulation for another 30 iterations (for a
total of 40), we obtained the following updated probability
distributions displayed in Figure 7. The completed H5 �le is
included in for_analysis/ for your convenience.

Figure 7. Probability distributions for each of the two progress co-
ordinate dimensions versus WE iteration for the p53 system. The
simulation was re-analyzed after 40 WE iterations

The e�ects of the bin-modi�cations can clearly be seen in
the case of the end-to-end distribution. Nomore trajectories
with an end-to-end distance >30 Å can be seen after iteration
10, a result of the choice not to bin over 26 Å in that dimen-
sion.

The end-to-end distance seems to have reached 2-3
Å around iteration 20. The RMSD plateaued a bit from
iterations 20-30 but then proceeded to values around 7 Å.
Two lessons can be learned from these observations. First,
if you do not have bins in a particular direction, you may
not see sampling in that direction. Second, even though the
RMSD coordinate appeared to have stalled around iteration
20-30, it eventually was able to surmount whatever barrier
existed and attain some higher RMSD values. Patience is
key, as a single trajectory may replicate to become many
trajectories if it crosses into a new bin.

7.2.10 Accessing Auxiliary Data
To access the auxdata from the H5 �le, you can open
west.h5 in hdfview but this will not allow you really use the
data. To plot all of the dihedrals as a Ramachandran plot
in matplotlib as shown in Figure 8 (actually, we just did
so for the second dihedral, but you could extend it to all if
you so desire), you will need to utilize the h5py package in
Python to extract the auxdata values from the west.h5 �le
and then plot them. The plotting script is included in the
tutorial directory.
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Figure 8. Ramachandran plot showing the occurance of �/ angles
of the second peptide bond of the p53 peptide, for eachWE segment
throughout the course of the simiulation.

7.2.11 Conclusion
Users should now be familiar with setting up a two-
dimensional progress coordinate and working with auxiliary
data. These two "tools" will help to expand your repertoire
of WESTPA simulation techniques and give you access to
more complex and informative simulations. Users should
also now be familiar with changing bin spacings “on-the-�y”
as well.

7.3 Intermediate Tutorial: Folding of
Chignolin Mini-Protein

7.3.1 Introduction
Protein folding processes have been challenging to simulate
due to the relatively long time scales involved. In this tutorial,
we will use WESTPA to simulate the folding and unfolding of
the chignolin mini-protein and to calculate the correspond-
ing rate constants. We will run steady-state WE simulations
of chignolin folding and unfolding processes separately. We
will also compare the results of these simulations with those
from brute force MD simulations, demonstrating the correct-
ness and potential usefulness of the WE strategy.

Learning Objectives. This tutorial demonstrates how
steady state WE simulations can be used to generate
pathways and rate constants for both protein folding and
unfolding processes.

Speci�c learning objectives include:

1. How to use brute force simulations to identify appropri-
ate initial and/or a target states

2. How to obtain the probability �ux into the target state
of a WESTPA simulation, how to convert it to a mean
rate constant, and how to interpret the results

Prerequisites. Users should have completed the Basic
Tutorial 7.1.

Computational Requirements. We note that signif-
icantly more computing time is required for the folding
simulations to yield converged rate constants and hence we
suggest the user should start with the unfolding simulations.
In particular, the WE unfolding simulation required ~53
hours for 1000 iterations on 32 CPU cores of 2.6 GHz Intel
Xeon processors (~5 GB of disk space) while the WE folding
simulation required ~8 days for 10,000 iterations (200 ns of
molecular time) using the same resource (~50 GB of disk
space). To become familiar with setting up and running the
WE simulations, the users can carry out several iterations.
Also, the brute-force simulation described below can be
performed for tens of ns, as we benchmarked this system
to produce ~150 ns per day on one of the above-mentioned
CPUs. Output �les for 1000 iterations of the WE unfolding
and 10000 iterations of the WE folding simulations (as well
as for 4 us of the brute-force simulation) can be found in the
corresponding subdirectories. These �les should be used for
the analysis procedures outlined below. This tutorial uses
AmberTools19’s sander package for dynamics propagation
and the cpptraj package for progress coordinate calcula-
tions (http://ambermd.org/AmberTools.php). AmberTools is
available free of charge.

The System. The chignolin mini-protein with the se-
quence GYDPETGTWG forms a �-hairpin and folds/unfolds
on a timescale that is accessible to brute force simulations,
which provide a reference data set for comparison with
WESTPA results. The folded chignolin structure (PDB code:
1UAO, [47]), serves as the starting structure for both the
brute-force and WE unfolding simulations. Both dynamics
propagation and simulation analysis are carried out using
the Amber software package. Simulations were run at
275 K using the Amber �14SBonlysc force �eld [44] and
generalized Born implicit solvent [45].

7.3.2 Brute Force Simulations
Overview. As mentioned in Section 1.3, it is important to
run multiple, short, brute force simulations prior to using
WESTPA. In the case of chignolin, which both folds and
unfolds on timescales accessible to brute force simulation,
brute force simulations can provide information on de�ning
the unfolded and folded states.

Running and Analyzing the Brute Force Simulation.
We perform a 4-µs brute force simulation of chignolin and
write out coordinates every 20 ps. All �les can be found
in the brute_force/ directory. The user can change these
parameters in the MD con�g �le md.in. The simulation can
be submitted with the following command:

$ ./run.sh
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Figure 9. C↵ RMSD vs simulation time for the brute force simulation
of chignolin.

This submission script may have to be adjusted to the
user’s computing platform.

The chignolin C↵ RMSD can be computed in the following
way:

$ cpptraj chignolin.prmtop < get_rmsd.in

This command assumes the brute force simulation trajec-
tory as well as the chignolin parameter topology and folded
structure pdb �les are all in the current directory.

The output RMSD data �le, rmsd.dat, lists the time evolu-
tion of the chignolin C↵ RMSD over the course of the simula-
tion (each line corresponds to a frame).

Figure 9 shows the C↵ RMSD over simulation time for a
brute-force simulation that started from the folded �-hairpin,
revealing several unfolding and refolding events within 4 µs.
The unfolded and folded states are de�ned by visual inspec-
tion of the RMSD plot and simulated conformations, which
show a fully formed �-sheet and native hydrogen bonds at
RMSD < 0.5 Å and a disrupted �-sheet with broken native hy-
drogen bonds at RMSD > 4 Å (this pair of RMSD values will
also be used later to de�ne target states in WESTPA simula-
tions). Note that the (un)folding rate constants will be sensi-
tive to the state de�nitions, and de�ning states is a challeng-
ing process beyond the scope of this tutorial. Our state de�-
nitions are designed to avoid potential recrossing artifacts in
rate calculations: once a trajectory reaches a state it should
tend to remain there, rather than immediately returning to
the previous state.

According to the Hill relation [48], the rate constant is ex-
actly the inverse mean �rst-passage time (MFPT) of the un-
derlying process, where, for instance, the FPT for unfolding
is the time required to reach the unfolded state (RMSD > 4 Å)
after �rst folding (RMSD < 0.5 Å). The user can run the follow-
ing to obtain the MFPTs for both the folding and unfolding
processes:

$ python get_mfpt.py rmsd.dat 20e-12 0.5 4.0

The command-line arguments are the RMSD data �le,
time interval at which the RMSD values are calculated in
seconds, and threshold RMSD values for the folded and
unfolded states in Angstroms. The rate constant of unfolding
is estimated to be 0.13 x 108 s-1 (con�dence interval: 0.09 x
108 s-1 – 0.18 x 108 s-1) and that of folding is estimated to
be 0.71 x 107 s-1 (con�dence interval: 0.44 x 107 s-1 – 1.24 x
107 s-1). Con�dence intervals are derived from a Bayesian
bootstrapping procedure [28].

7.3.3 Using WESTPA
Overview. We will carry out separate steady-state WE simu-
lations for the unfolding and folding processes. This strategy
is not only more e�cient than equilibriumWE simulations in
estimating rate constants (see Section 7.1.3), but enables us
to set WE parameters for each process (e.g. bin spacing) in
a more process-speci�c way if needed. The target state of
the folding simulation will be used as the initial state of the
unfolding simulation and vice versa.

Choosing an Initial State. As done for the brute force
simulations, WE simulations of the unfolding process will be
started from the NMR structure of chignolin. WE simulations
of the folding process will be started from an unfolded con-
formation of chignolin (RMSD > 4 Å) that has been generated
by the above brute force simulations.

Files for Dynamics. All �les are in the common_files/ sub-
directory of either the WE_folding/ or the WE_unfolding/ di-
rectory.

Preparing the Simulation Environment. See the corre-
sponding subsection in Basic Tutorial 7.1.

Equilibrium vs Steady State WE. Here we will run sepa-
rate steady state WE simulations of the folding and unfold-
ing processes, de�ning a target state (TSTATE_ARGS) in the
init.sh �les.

Progress Coordinate, Binning Scheme and ⌧⌧⌧ value. As
mentioned above, we will use a one-dimensional progress
coordinate consisting of the C↵ RMSD from the folded struc-
ture of chignolin. Although the RMSD with respect to a sin-
gle reference structure may not be an ideal coordinate for
distinguishing between various conformation, it proves su�-
cient for our example. Folded and unfolded states are de-
�ned based on maximum and minimum RMSD values, re-
spectively, that have been sampled by the above brute force
simulations. We will use a bin spacing of 0.2 Å and a ⌧ value
of 20 ps. However, the very �rst bin for the unfolding simu-
lations is larger than the regular bin width with RMSD = [0 Å,
0.5 Å] because any structure with RMSD < 0.5 Å is considered
to be in the folded initial state. Analogously, for the folding
simulations, the very last bin is larger than the regular bin
width of 0.2 Å.
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OtherWE Parameters. As done in the previous tutorials,
our WE simulations were carried out using 4 trajectories/bin.
The unfolding and folding simulations were run for 1000 and
10,000 WE iterations, respectively, in order to reach a steady
value of the corresponding rate constants.

Initializing and Running the WE simulations. The
init.sh and run.sh �les can be found in the correspond-
ing directories for both WESTPA simulations. The RMSD
progress coordinate is calculated and its values returned to
$WEST_PCOORD_RETURN.

Monitoring and Analyzing the WE Simulations. To
compute the rate constant for the folding or unfolding
process, we �rst calculate the mean probability �ux into the
target state by running the following WESTPA analysis tool:

$ w_fluxanl

The output is the H5 �le fluxanl.h5, which contains the in-
stantaneous probability �ux into the target state for each iter-
ation. The following Python script calculates, for any WE iter-
ation, the average rate constant based on the corresponding
probability �ux arriving in the target state over a preceding
window of molecular simulation times (e.g., over 1 ns):

$ python get_mean_rate.py 20e-12 1e-9

The command-line arguments are the ⌧ value and the
time width for window-averaging. Both arguments are in
units of seconds.

Figure 10 shows the evolution of the average unfolding
rate constant of chignolin as a function of molecular time
for three independent WE simulations. After a few ns, the
average rate constants for all of these simulations have lev-
eled o� and are roughly comparable to that derived from
brute force simulations. One di�erence between theWE and
brute force simulations is that the former estimates theMFPT
based on the chosen initial structure(s) which may not cor-
respond precisely to the ensemble of starting structures im-
plicit in extracting �rst-passage events from brute force sim-
ulations. Note that a three-fold di�erence in the rate con-
stants among the threeWE simulations amounts to only ~0.6
kcal/mol di�erence in the e�ective free energy barrier to un-
folding (at the simulation temperature of 275 K).

Figure 11 shows the evolution of the average folding
rate constant for chignolin as a function of molecular time
for three independent WE simulations. Compared with
unfolding simulations, the folding simulations require much
longer to reach a converged average rate constant that is in
rough agreement with that from the brute force simulations;
we note that the average rate constant is dominated by the
largest �ux. In addition, the folding rate constant exhibits
signi�cantly larger �uctuations, even after the apparent
transient period of the �rst ~100 ns, indicating that the cho-
sen bins are less suited for the folding process. During the

Figure 10. Estimating the unfolding rate constant of chignolin. The
1 ns window-averaged unfolding rate constant is shown in a semi-
logarithmic plot for three independent WE simulations (black, red,
and green) that were started from the same folded starting structure
(see lower left). The corresponding unfolding rate constant from the
brute force simulation is indicated by the horizontal blue line and its
con�dence interval by the shaded region. The molecular time is the
time elapsed, N⌧ where N is the number of WE iterations that each
have a length of ⌧ . The aggregate simulation time was on average,
~1.3 µs for each simulation.

folding process, distinct hydrogen bonds must be formed
between the neighboring anti-parallel strands, and possibly
in a speci�c order, to eventually reach an RMSD < 0.5 Å. In
contrast, the unfolding process results in faster convergence
of the corresponding rate constant and likely involves the
simultaneous breaking of hydrogen bonds in order to reach
an RMSD > 4 Å.

The resulting WE simulations consist of multiple continu-
ous unfolding or folding pathways that may cover di�erent
regions of con�gurational space at any given time. To select
for particular pathways (trajectories), we can run the follow-
ing:

$ python get_target_trajs.py 1 10000

The command-line arguments indicate the �rst and last
iteration number to be considered. The output �le
target_trajs.dat has two columns: one with the itera-
tion number and one with the segment number of the
trajectory that has reached the target state at that iteration.
Thus, the number of rows indicates the total number of
generated events. The iteration and segment numbers can
be used by w_trace to obtain the full path of a particular
folding or unfolding event (see Section 7.1.6).

7.3.4 Conclusion
In this tutorial, you have learned how to apply the WE
strategy to simulate a protein folding process under steady
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Figure 11. Estimating the folding rate constant of chignolin. The
20-ns window-averaged folding rate constant is shown in a semi-
logarithmic plot for three independent WESTPA simulations (black,
red, and green pro�les) with the same unfolded starting structure
(see lower left). Note the signi�cantly longer molecular and aggre-
gate simulation times for each simulation to obtain converged rate
constants of folding compared to unfolding (see Figure 10). The
corresponding rate constant from the brute force simulation is in-
dicated by the horizontal blue line and its con�dence interval by the
shaded region.

state conditions. The recycling of trajectories at a target
state allows the generation of a non-equilibrium steady
state, to which the trajectory ensemble converges faster
compared to an equilibrium ensemble of trajectories. Such
steady states trajectories enable the direct computation of
rate constants as described in this tutorial.

7.4 Analysis Tutorials
In this tutorial, wewill go over how to calculate progress coor-
dinates using external analysis suites, automate analysis of
a WE simulation using the WESTPA w_ipa tool and visualize
the evolution of WE datasets with time. We focus on the p53
peptide system described above in the Intermediate Tuto-
rial 7.2 in which the progress coordinate is the C↵ RMSD of
the peptide from its folded, ↵-helical conformation.

7.4.1 Calculating Progress Coordinates Using
External Analysis Suites

Introduction. Here wewill demonstrate how to write scripts
for calculating custom progress coordinates for WESTPA sim-
ulations using the external analysis suites MDAnalysis and
MDTraj [49–51]. A prerequisite to this tutorial is completion
of the Basic Tutorial 7.1. You will also need to install the
MDAnalysis or MDTraj analysis suites. Other required �les
are provided on GitHub.

Learning Objectives. The speci�c learning objective of
this tutorial is to calculate progress coordinates using an ex-
ternal analysis suite (MDAnalysis or MDTraj).

Explanation of Files and Scripts. The master con�gu-
ration �le for the simulation, west.cfg, speci�es the dimen-
sionality of the progress coordinate (pcoord_ndim), as well
as how many progress coordinate data points should be re-
turned from each segment (pcoord_len) (it speci�es many
other things but these are of primary interest for this tuto-
rial as they specify the shape of the progress coordinate).

The script rmsd.py is responsible for using MDTraj or MD-
Analysis to calculate the RMSD values during the simulation.
Read the comments in the script to understand its setup for
each package (there is a unique version for both).

Two scripts are responsible for calling rmsd.py at di�erent
points in the simulation (both found in westpa_scripts/):

• get_pcoord.sh calculates the progress coordinate
during the initialization of the system. Because dy-
namics have not been run yet, WESTPA only needs a
single point progress coordinate, rather than an array.
This di�erence is controlled by the FORM argument,
explained in the rmsd.py script.

• runseg.sh calculates the progress coordinate during
dynamics propagation. It passes each segment’s tra-
jectory �le as input to the custom progress coordinate
loader, rmsd.py.

There are slight di�erences in these �les for the MDAnal-
ysis and MDTraj setups, explained in the comments of each
script.
Files in amber_con�g/ directory:

• P53.MDM2.prmtop - The topology �le.
• md.in - The input �le which speci�es conditions for dy-
namics propagation.

The other �les needed for the simulation are found in the
bstates folder, and are explained in the MDAnalysis/MDTraj
speci�c sections below.

Running the Simulation. Before running the simulation,
you may want to change the binning scheme, the number
of iterations, or other parameters, which can be found in
west.cfg.
To run the simulation, only two scripts must be executed.
To initialize the system:

$ ./init.sh

To run the simulation in the background:

$ ./run.sh &

To monitor the progress of the simulation:

$ tail -f west.log

The rest of the tutorial is speci�c to the software package
used. See below for speci�cs involving the MDAnalysis and
MDTraj analysis suites.
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Using the MDAnalysis Analysis Suite
Files in bstates/ directory:

• P53.MDM2.ncrst - Used as initial crystal structure to
compare to the trajectory when calculating the RMSD
and to start new trajectories in runseg.sh.

• bstates.txt - specify restart �le P53.MDM2.ncrst.

Using the MDTraj Analysis Suite
Files in bstates/ directory:

• P53.MDM2.nc - becauseMDTraj does not support restart
�les, this �le is used in get_pcoord.sh to calculate the
initial progress coordinate. It is also used by runseg.sh
as an initial crystal structure to compare to the trajec-
tory when calculating the RMSD.

• P53.MDM2.ncrst - Used to start new trajectories in
runseg.sh.

• bstates.txt - specify restart �le P53.MDM2.ncrst.

Conclusion. You have learned in this tutorial the basic
structure of a Python script to calculate progress coordi-
nates for WESTPA using the MDAnalysis and MDTraj analysis
suites. There are two scripts run by WESTPA which call
pcoord_loader.py, triggering the calculation of progress
coordinates. The bash script, get_pcoord.sh, triggers
the calculation of only a single progress coordinate, while
runseg.sh triggers the calculation of the progress coordinate
at multiple points in a trajectory, as de�ned in west.cfg. It
is important to include the last line of the Python scripts,
setting segment.pcoord equal to the progress coordinate
array, so that the progress coordinate may be used to
further the simulation.

7.4.2 The w_ipa Analysis Tool
Introduction. The w_ipa analysis tool is designed to facili-
tate analysis of WESTPA simulation datasets through a single
interface (Jupyter Notebooks or the command line). In par-
ticular, w_ipa automates analysis routines, ensures data con-
sistency through the use of automatically updated “analysis
schemes”, enables a user to easily view aparticular dataset or
trajectory segment in the H5 �le, and monitors the progress
of the simulation (e.g. trajectory weights, progress coordi-
nates, and other properties of interest).

Learning Objectives. The speci�c learning objectives of
this tutorial are to use the w_ipa analysis tool to:

1. Calculate rate constants
2. Trace and analyze trajectory segments (weight, pcoord,

auxdata)
3. Plot datasets

Setting Up. Using w_ipa is straightforward. The west.cfg
�le, which speci�es most of the simulation parameters, also

speci�es the analysis parameters under the Analysis head-
ing.

The general format of the analysis section can be seen
in the included west.cfg �le. More detailed examples are
available in theBasic and Intermediate Tutorials (Sections
7.1-7.3).

In order to run w_ipa, there must be at least a single anal-
ysis scheme speci�ed. This scheme does not have to con-
sist of the bins and/or state de�nitions used during the sim-
ulation. Less physically relevant schemes may be employed.
Any changes made to analysis schemes in the west.cfg �le
will be actualized the next time w_ipa is run. The user is there-
fore guaranteed to never wonder whether the analysis �les
are up to date.

The assign.h5, reweight.h5, and direct.h5 �les are
stored under ANALYSIS/SCHEME_NAME. The optional argu-
ments that can be passed to w_assign, w_direct, and
w_reweight can be speci�ed by creating a section with the
tool name and using the value pairs argument.

The Interface. To run w_ipa from the command line, en-
ter the command w_ipa after having sourced westpa.sh (if
not already sourced). To run w_ipa in a Jupyter notebook en-
ter the command w_jupyter from the command line. When
you create a new Jupyter notebook, there are some basic
Python commands that must be executed:

import w_ipa
w = w_ipa.WIPI()
# At startup, it will load or run the analysis
schemes specified in the configuration file
(typically west.cfg)

w.main()
w.interface = ’matplotlib’

The Python kernel must be launched with the use of
w_jupyter, or otherwise, the $PYTHON_PATH variable must
be set to include the WESTPA directories. The command
w_env, which ships with WESTPA, is responsible for setting
environment variables and can be used with the Jupyter
notebook command to ensure w_ipa is importable.

All commands are applicable from both the command
line and Jupyter notebook interface; if plotting functions are
called from the command line, the plot will appear within
the console (it can be con�gured to use matplotlib if desired;
this requires an active, available X session).

All of the variables are now accessible from the w object.
Changing Schemes and Accessing Datasets. A typical

analysis routine begins by selecting an appropriate analysis
scheme thatmay consist ofmultiple state de�nitions, averag-
ing options, or reweighting parameters that are appropriate
for the simulation. Most of the datasets are presented from
the current, “active” state, although access to other datasets
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is conveniently available. All numerical datasets are given as
NumPy arrays, allowing for easy analysis of data.

To seewhat schemes are available, run the following com-
mand:

$ w.list_schemes

To change schemes, you may set the w.scheme variable
to a string or integer value (corresponding to the index of
the scheme). For instance, suppose you have the following
two schemes: “EXAMPLE”, and “ALTERNATE”, and the current
scheme is "EXAMPLE". To access the properties of the current
iteration in the current scheme (explained in more detail be-
low), you would type the following:

$ w.current

However, to access the alternate scheme, you would run
the following command:

$ w.schemes.ALTERNATE.current

Where “ALTERNATE” corresponds to the schemenamewrit-
ten in the west.cfg �le.

The w_ipa tool works by presenting an iteration and all its
data as a single object. Each iteration object contains numer-
ous datasets and helper functions designed to ease analysis.
After loading, w_ipa defaults to the �nal iteration. You can
change the iteration by using the following command:

$ w.iteration = 39

At any time, we have three iteration objects available
in the object w: current, past, future. The past and future
datasets are keyed to the parents and children of the
segments in the current dataset. For instance, if you are
analyzing segment 200 in the current iteration and wish to
analyze the parent segment it came from, you could access
the two datasets using the following iteration objects:

$ w.current[200]
$ w.past[200]

Even though it is very unlikely that the actual segment ID
of the parent of segment 200 is 200, it is mapped correctly to
enable convenient analysis. To obtain the actual segment ID,
just run:

$ w.past[200].seg_id

OR

w.past[200][‘seg_id’]

As indicated above, objects in w_ipa can be called either
as Python dictionaries or as attributes on the object. These
can be listed by calling the print method on the parent object.
In addition, as w_ipa is using iPython under the hood, tab

completionworks as when using the command-line interface
(CLI).

To access the main datasets of interest, pcoord and
auxdata, type the following:

$ w.current.pcoord
$ w.current.auxdata

These commands will output the full datasets, which can
beuseful for calculating properties on all trajectory segments
at once. But what if we are only interested in looking at the
properties of particular segments?

You could manually �nd a segment of interest, but w_ipa
includes a few convenient properties that return certain seg-
ments. In particular, w.current provides the following:

maxweight
minweight
successful_trajectories

The maxweight and minweight properties return objects
which contain data about the segments that carry the high-
est and lowest weights in the current iteration, respectively.
The successful_trajectories property returns the IDs
of the segments that successfully transitioned between
states (the states are de�ned in your west.cfg). Calling
these functions on an iteration object yields all datasets
pertaining to the segment with the desired property. In
this WE simulation, each trajectory contains 101 timepoints.
Therefore, the maxweight segment (seg_id 177) in iteration
49 has (101,2) pcoord values, 101 auxdata values, and it
can switch bins and states 101 times. You can see this by
running w.current.maxweight.

The auxdata dataset is unique in that the simulations can
contain any number of auxiliary datasets with any unique
name. Here, they are returned as a dictionary where the key
is the dataset name de�ned in west.cfg and the value is a
NumPy array containing the actual dataset.

Segment 177 above was in state 1 during the entire itera-
tion. But what is state 1? It is de�ned in west.cfg, but we do
not have to go back to west.cfg to look it up. Simply run:

$ w.state_labels

It is also in bin 0 the entire time (note that these are the
bins de�ned in west.cfg for this analysis scheme and not the
bins used in the simulation). What is the pcoord value of that
bin? Run:

$ w.bin_labels

To track the immediate parent and children of a segment,
we can use w.past and w.future. These iteration objects are
similar to w.current, but keyed to give information about the
segments in w.current. For instance, to look up the weight
of segment 177’s parent, run the following:
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$ w.past[177].weights

Likewise, to see whether the same segment had any chil-
dren, run:

$ w.future[177]

Segments always have a past, but do not always have a fu-
ture. They may also produce multiple children, so the values
returned by w.future[seg_id] are usuallymore complicated.
Rather than being given the datasets directly, w.future re-
turns a list of the datasets.

To determine the properties of a complete trajectory (that
is, the string of segments going back to the �rst iteration),
w_ipa includes a fast trace function. To trace segment 177 in
iteration 39 (current iteration), run the following:

$ s = w.trace(177)

It returns an object similar to w.current[177], except that
it also contains all historical information. The auxdata, bins,
pcoord, and states datasets are all going to be very large;
their shape should be the product of the number of time-
points per iteration and the trajectory length. As we are at
iteration 39, and have 101 time points per ⌧ value, we should
have 3939 values in each dataset!

Plotting. Rather than visually inspecting each value, let
us just plot it. Run the following:

$ clear
$ s.weights.plot()
$ clear
$ s.pcoord.plot()
$ clear

Many datasets, such as weight, default to a logscale; oth-
ers, such as pcoord, use a linear scale. By default, the 0th
dimension of pcoord is plotted. When the plotting function
is called via the CLI, a rough estimate of how the trajectory’s
pcoord has evolved is plotted in the terminal.

The w.current iteration object contains information
about the rate constants that were calculated in the active
analysis scheme. To view an array containing the rate con-
stants along with the upper and lower con�dence intervals,
run the following (do not forget about tab completion):

$ w.current.direct.rate_evolution

OR

$ w.current.rate_evolution.direct

To view a plot of their evolution, run the following:

$ w.current.direct.rate_evolution.plot()

The w_ipa tool displays the upper and lower con�dence
intervals on the plot as well.

Figure 12. Two-dimensional probability distribution as a function of
the progress coordinate. Two representative, continuous trajecto-
ries that originate from distinct initial states are traced in cyan and
white, respectively.

7.4.3 Visualization of WE Datasets
In addition to generating probability distributions as a func-
tion of the progress coordinate (or other observables of in-
terest), it can be helpful to examine movies of how the dis-
tributions evolve with time. Such movies can be used to de-
termine the optimal number of trajectories per bin in a par-
ticular region of the progress coordinate by tracking how the
probability distribution evolves with the number of trajecto-
ries that region.

Learning Objectives. The speci�c learning objectives of
this tutorial are:

1. Create amovie of howaprobability distribution evolves
with time.

2. Trace representative trajectories over this probability
distribution.

Here, we will create a movie of how a two-dimensional
probability distribution (Figure 12) evolves with time. This
movie-making feature is currently carried out using a bash
script (pdist_evol.sh) and will eventually be added to the
WESTPA plothist tool.

The bash script involves the following three steps: (1) run
the w_pdist tool on the west.h5 �le to generate probability
distributions in a speci�ed folder that will also contain the
eventual movie of how the distributions evolve with time, (2)
generate a plot of a two-dimensional probability distribution
for each iteration as a cumulative moving average from iter-
ation 1 to 40 and (3) create the movie from the 40 generated
frames of the probability distributions. The most important
part of this script is the --postprocess-function option of
plothist that is de�ned in postprocess.py. This function re-
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quires a basic knowledge of Python and matplotlib, and can
be used to modify features of the plot (e.g. adjustment of
axis labels, tick marks, titles, and lines) via the matplotlib in-
terface. In addition, external �les from various analyses can
be uploaded and overlaid on the plot as demonstrated in this
example.

Here, we will select two trajectories from the last WE it-
eration and overlay their pathways on the probability distri-
bution of the overall simulation as a function of progress co-
ordinate. First, we will use the trace_walker function to de-
termine the segment number of the selected trajectories in
each WE iteration going all the way back to the correspond-
ing conformation of the initial state ensemble. This process
of tracing can also be accomplished by using WESTPA tools
w_ipa and w_trace. After the segment numbers are obtained,
the get_pcoords function loads in 10 progress coordinate val-
ues per iteration for the trajectories. Finally, a movie-making
tool (here, we use mencoder) creates a movie from the 40
frames of probability distributions.

7.5 Advanced Tutorial: Creating “Binless”
Resampling Schemes: Na+/Cl-

Association Simulations
7.5.1 Introduction
The non-linearity of certain progress coordinates (e.g., those
identi�ed by machine learning tools) requires the creation
of “binless” rather than binned resampling schemes for rare-
event sampling (Figure 13). In addition, binless schemes can
be useful in grouping trajectories by a feature of interest for
resampling. For example, trajectories could be grouped by
history (sharing the same parent structure) to improve the
diversity of trajectories that successfully reach the target
state, or by a simple k-means clustering. This tutorial builds
upon the Basic Tutorial (Na+/Cl- association simulations,
Section 7.1) by introducing users to running and analyzing
a WESTPA simulation that employs “binless” resampling
schemes. This tutorial is a prerequisite for Advanced
Tutorials 7.6-7.8.

Learning Objectives. This tutorial introduces users to
the generalized resampler module in the WESTPA 2.0 soft-
ware package that allows for the creation of either binned or
binless resampling schemes.

The tutorial also instructs users on how to initiate a WE
simulation from multiple representative conformations of
the starting state and how to apply two key post-simulation
analysis tools. Speci�c learning objectives are:

1. How to create a binless scheme for splitting and merg-
ing trajectories based on k-means clustering using the
BinlessMapper resampler module;

Figure 13. Flow chart for simulating Na+/Cl- association using the
new binless resampler module. After dynamics propagation in
step 1, trajectories in each bin are grouped with the user-speci�ed
group.py function. In this example, trajectory walkers are grouped
using k-means clustering.

2. How to initiate a WE simulation from multiple starting
conformations;

3. How to combine multiple WE simulations for analysis
using the w_multi_west tool;

4. How to perform post-simulation analysis using the
w_crawl tool.

7.5.2 Prerequisites
Computational Requirements. This simulation can be
completed in 5 hrs using 8 Intel Xeon W3550 3.07 GHz CPU
cores, generating 1 GB of data using the HDF5 framework
of the WESTPA 2.0 software package. Two independent
west.h5 �les, each containing 100 WE iterations of simu-
lation data, are provided for the analysis portions of this
tutorial in the for_analysis/ directory. This tutorial uses the
OpenMM 7.6 software package for dynamics propagation
(https://openmm.org) and the MDTraj 1.9.5 analysis suite
(https://www.mdtraj.org/1.9.5/index.html) for calculations of
the WE progress coordinate. The scikit-learn 1.1.0 package
(https://scikit-learn.org) is used to identify the “binless”
groups.

Jupyter Notebook. Sample code for running and ana-
lyzing a WESTPA simulation according to “best practices” is
made available in a Jupyter notebook. For the visualization
portions of the notebook, nglview,matplotlib, and ipympl are
required.
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Quick Start for this Tutorial. Users can run the follow-
ing command within the tutorial7.5-hdf5/ directory to in-
stall all the software dependencies for this tutorial to an ex-
isting conda environment:

$ conda env update --name <your WESTPA conda env>
--file environment.yml

7.5.3 Setting up the WE Simulation
This simulation uses the same WE parameters (⌧ , number of
trajectories per bin, etc.) as the Basic Tutorial (Na+/Cl- as-
sociation simulations, Section 7.1). The following are major
di�erences from the Basic Tutorial that highlight more ad-
vanced features of WESTPA simulation setup.

Binless Resampler Module. The binless resam-
pler module can be accessed from the west.cfg �le in
the system_options section where binned and binless
schemes are all de�ned. If the BinlessMapper is used
by itself, the entirety of con�gurational space will be
binless. To recycle trajectories while using a binless frame-
work, we will need to place a BinlessMapper inside of a
RecursiveBinMapper bin and demarcate the target state
in a separate RecursiveBinMapper bin. This framework is
identical to the one used for the MAB scheme with recycling.

The BinlessMapper takes three mandatory arguments.
The �rst, ngroups, speci�es the total number of groups to
assign trajectory walkers in the binless space. The second,
ndims, speci�es the dimensionality of the progress coordi-
nate and is limited to either 1 or 2 at this time. The ndims
parameter speci�es the dimensionality of clustering, e.g.,
2 for generating clusters in two-dimensional space (each
dimension will not be grouped separately as is typically the
case for binned resampling schemes). The clustering of
trajectories enables sampling of high-dimensional space
without an exponential increase in the number of walkers.
The �nal argument is group_function, which speci�es the
function for grouping trajectories in an external �le (here,
group.py) and will take as input the progress coordinates
and the ngroups values. We provide a general example of
using this function for a one-dimensional progress coordi-
nate using k-means clustering. Additional keyword options
can be speci�ed under group_arguments in the west.cfg �le.
An example of using a recursive binless scheme is shown in
the west.cfg snippet below:

west:
system:

system_options:
bins:

type: RecursiveBinMapper
base:

type: RectilinearBinMapper

boundaries: # Under base:
- [0, 2.60, ’inf’]

mappers:
- type: BinlessMapper

ngroups: [5] # Number of groups
ndims: [1] # Number of grouping

# dimensions
group_function: group.kmeans
at: [5] # Location of binless mapper

# relative to base mapper

Initiating a WE Simulation from Multiple Structures.
Ideally, a WE simulation is initiated from multiple pre-
equilibrated structures that are representative of the initial
state for the rare-event process of interest, e.g. using a
conventional simulation or a separate WE simulation of the
initial state. Within the WESTPA framework, we refer to
these structures as "basis states". If the simulation is run
under non-equilibrium steady-state conditions, trajectories
that reach the target state are “recycled” by terminating
that trajectory and initiating a new trajectory with the same
statistical weight from one of the basis states. Structural
�les (XML �les in this tutorial) for basis states contain the
coordinates and velocities, and are placed in separate,
numbered folders within the bstates/ directory. Accompa-
nying each XML �le is a pcoord.init text �le which contains
the progress coordinate value of that basis state. These
progress coordinates are saved to the HDF5 �le during the
initialization process. The bstates/ directory also contains a
reference �le (bstates.txt) that lists all of the available basis
states. The bstates.txt �le is formatted with three columns,
corresponding to the basis states’ names, associated prob-
abilities, and folder name, respectively. Additional basis
states can be added as separate, additional lines at the end
of the bstates.txt �le. The probability over all basis states
must sum to one, and will be normalized by WESTPA during
the initialization process to sum to one if the condition is not
met. Compared to the Basic tutorial 7.1 involving Na+/Cl-

association [38], the get_pcoord.sh and runseg.sh �les
are also modi�ed such that $WEST_DATA_STRUCT_REF now
corresponds to the directory for each basis state and not
the xml �le itself.

7.5.4 Running the WE Simulation
As with previous versions of WESTPA, the simulation can be
initialized using ./init.sh and run using ./run.sh. Alterna-
tively, both steps could be executed consecutively using the
new Python API by running the following command:

$ python init_and_run.py

The init_and_run.py script will print out simulation up-
dates to the console in real-time. An example runwe.slurm
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�le with commands for both methods of execution is pro-
vided for use with SLURM-like workload managers. We also
provide a Jupyter notebook that demonstrates the steps for
cleaning up, initializing, and running the WE simulation.

Note that this tutorial is using the new HDF5 trajectory
storage framework, which will be explained further in
Advanced Tutorial 7.6. To enable the use of the HDF5
framework in your own simulation, you may use the current
tutorials directory as an example. The location of the
trajectory h5 �les will need to be speci�ed in the west.cfg
�le, and the appropriate restart and topology �les will need
to be copied to the locations speci�ed in the get_pcoord.sh
and runseg.sh �les. You will also need to make sure that
the �le extensions for any trajectory �les are readable
by mdtraj.load(), (e.g., Amber restart �les must end in
.ncrst) which simply requires renaming. To save disk space,
trajectory �les outputted by the dynamics engine can be
deleted after every iteration in the post_iter.sh �le, which
is located in the westpa_scripts/ directory.

7.5.5 Monitoring and Analyzing the WE Simulation
Combining Multiple WE Simulations for Analysis. To com-
bine multiple WE simulations into a single aggregate simula-
tion �le for analysis, we can use the w_multi_west tool, which
creates a single multi.h5 �le that contains the data from all
of the west.h5 �les of each WE simulation. Each WE iteration
in the multi.h5 �le contains all of the trajectory segments
from the corresponding iterations of the individual WE sim-
ulations, all normalized to the total weight for that iteration.
For backwards compatibility, a version of w_multi_west for
use with previously run WESTPA 1.0 simulations (v2020.XX)
has been available since version 2020.04.

To apply the multitool to a combination of west.h5 �les,
place the west.h5 �le for each simulation in a numbered di-
rectory starting with 01/. If all of the simulations used a cus-
tom grouping function (such as in group.py), you must also
include that �le in the top-level analysis directory.
The �les will be organized as follows:

01/
west.h5

02/
west.h5

group.py [if used in simulation]

Next, in this directory, run the following to merge the
west.h5 �les:

$ w_multi_west -m . -n 2

The -m �ag speci�es the path to your directories and the
-n �ag speci�es the number of WE simulations to combine
for analysis. To combine auxiliary datasets, one can add

either an --aux=NAME_OF_DATASET �ag for a speci�c dataset
or an --auxall �ag for all auxiliary datasets; note that the
inclusion of auxiliary datasets will substantially extend the
time needed to combine the simulation data. The above
w_multi_west --auxall command will generate a list of
WE simulation datasets to combine based on the datasets
listed in 01/west.h5 and generate a multi.h5 �le with the
combined simulation datasets. The --ibstates �ag will
merge the initial and basis states if the bstates dataset is
identical across all the simulations. Youmay want to rename
this �le to west.h5 in order to apply the w_pdist tool to the
combined simulation dataset. Note that the w_multi_west
tool will only merge up to the N-1 WE iteration, ignoring the
last WE iteration. The resulting multi.h5 �le will not link to
the individual iteration HDF5 �les generated using the HDF5
framework.

Post-Simulation Analysis. As mentioned above,
WESTPA 2.0 enables e�cient post-simulation analysis of
trajectory data by storing trajectory data in highly com-
pressed HDF5 �les. The w_crawl tool can then be used
to “crawl” through the trajectory data in single HDF5 �les
per WE iteration rather than millions of trajectory �les.
Results from the analysis are written to a dataset in a new
HDF5 �le. Before crawling through an entire simulation
dataset, we recommend that users �rst test their analysis
scheme in the wcrawl_functions.py �le to ensure that the
scheme works as expected. For this tutorial, we will only
be using a single CPU core for these w_crawl calculations
but also include a sample script as an example of how
to use w_crawl on multiple CPU cores in parallel. The
wcrawl_functions.py �le contains the main analysis code.
This script �rst identi�es the �nal frame of a segment’s
parent trajectory �le from the previous WE iteration and
makes sure this is eventually combined with the trajectory
segment from the current WE iteration. The inclusion of the
parent structure at the beginning of the current iteration
trajectory is necessary for using the crawled dataset with
WESTPA’s kinetics analysis tools. In this example, trajectory
coordinates of only Na+ and Cl- are extracted using the
MDTraj analysis suite and multiplied by 10 to convert from
nm to Å. Resulting per-iteration coordinate values are then
saved to an array, which is subsequently saved to a coord.h5
�le. The coord.h5 �le is formatted similarly to a west.h5
�le, where the new per-iteration values are stored under
iterations/iter_{n_iter:08d}/coord. To ease analysis, a
copy_h5_dataset.py script is provided to copy coord.h5’s
contents into a west.h5 �le as an auxiliary dataset. Note that
if you store a WESTPA simulation’s trajectory HDF5 �les in
a separate directory from what is used in this tutorial, you
need to specify the directory where the iter_XXXXXX.h5 �les
are located in the wcrawl_functions.py �le.
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The run_w_crawl.sh shell script runs the w_crawl tool
at the command line and provides options for running the
tool in serial or parallel modes. In this tutorial example,
we will run the w_crawl tool in the serial mode using the
--serial �ag, analyzing one WE iteration at a time on a
single CPU core. While the serial mode is su�cient for
“crawling” relatively small datasets, the parallel mode using
the --parallel �ag is desirable for datasets with over 100
trajectory segments per WE iteration and/or hundreds of
WE iterations. In the parallel mode, each CPU core of a
single compute node analyzes a di�erent WE iteration at the
same time. To run the w_crawl tool across multiple nodes,
one can use the ZMQ work manager. Once satis�ed with
the wcrawl_functions.py and run_w_crawl.sh �les, run the
w_crawl tool locally:

$ ./run_w_crawl.sh

or on amulti-node cluster using the Slurmworkloadman-
ager:

$ sbatch run_w_crawl.sh

To monitor the progress of the analysis, we examine the
w_crawl.log �le, which contains analysis results for each WE
iteration and each trajectory segment. Finally, to copy the
coord.h5 �le to the west.h5 �le, run the copy_h5_dataset.py
script.

7.5.6 Conclusion
After completing this tutorial, users will gain an understand-
ing of how to con�gure the upgraded resampler module
for using a binless scheme, initiate a WE simulation from
multiple structures using the new HDF5 trajectory stor-
age framework, and apply the w_multi_west and w_crawl
post-simulation analysis tools.

7.6 Advanced Tutorial: Simulations of
Membrane Permeation by 1-Butanol

7.6.1 Introduction
The ability of a drug-like molecule to cross (or permeate) a
lipid bilayer has been of great interest to drug discovery [52],
but is challenging to simulate due to the long timescales in-
volved. In this tutorial, we will use WESTPA 2.0 to simulate
pathways for membrane permeation by a small molecule (1-
butanol) and calculate the permeability coe�cient. Our WE
protocol employs and explains two new features in WESTPA
2.0 [2]: (i) the Minimal Adaptive Binning (MAB) scheme [19],
and (ii) the HDF5 framework for e�cient restarting, storage,
and analysis of a WE simulation.

Learning Objectives. This tutorial demonstrates how
steady state WE simulations can be used to generate
pathways and permeability coe�cients for membrane

permeation by a small molecule. Speci�c learning objectives
include:

1. How to set up a double membrane bilayer system for
permeability studies;

2. How to use the highly scalable HDF5 framework for
more e�cient restarting, storage, and analysis of
simulations;

3. How to apply the minimal adaptive binning (MAB)
scheme.

7.6.2 Prerequisites
In addition to completing the Basic and Intermediate
WESTPA Tutorials [38], a prerequisite to this advanced
tutorial is completion of the above Advanced Tutorial 7.6.
Also required is a working knowledge of the CHARMM-GUI
membrane builder, PACKMOL, OpenEye Scienti�c’s OEChem
and Omega toolkits (for system preparation only), MDTraj
analysis suite, and the OpenMM 7.6 dynamics engine (for
running WE).

Computational Requirements. The membrane perme-
ability tutorial simulation runs best using, at minimum, a
dual-GPU workstation. For this tutorial, simulations were
tested with a compute node containing both a NVIDIA Titan
X (Pascal) GPU and a NVIDIA GTX 1080 GPU, as well as a
16-core Intel Xeon X5550 CPU running at 2.67 GHz with a
total of 100 GB of system memory. In the case a user does
not have a GPU and only CPUs, switch between OpenMM’s
GPU and CPU platforms by changing the platform name in
line 22 of memb_prod.py to CPU instead of CUDA. The complete
tutorial simulation run length (37 iterations) required ~4
days of continuous wall clock time on both GPUs, as well as
~30 GB of hard disk space with the HDF5 framework and
MAB options turned on.

This tutorial uses the OpenMM 7.6 dynamics engine [33]
andMDTraj 1.9.5 analysis suite (https://www.mdtraj.org/1.9.5/
index.html) for progress coordinate calculations. Force �elds
used in this tutorial can be installed via openmmforce�elds
(https://github.com/openmm/openmmforcefields). System
setup and equilibration were performed separately using
OpenMM. In order to run the companion Jupyter notebook,
nglview, matplotlib are required for visualization purposes.
Other dependencies, including NumPy and MDTraj, are
installed with WESTPA 2.0 itself.

Quick Start for this Tutorial. Users can run the follow-
ing commandwithin the tutorial7.6-membrane/ directory to
install all the software dependencies to an existing conda en-
vironment:

$ conda env update --name <your WESTPA conda env>
--file environment.yml
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Figure 14. The equilibrated double-membrane bilayer system used
for initiating WE simulations of membrane permeation by 1-butanol
in this tutorial. Both the POPC membrane bilayers (gray; hydrogens
removed for clarity) and 1-butanol (black) are represented in van der
Waals representation, while layers of explicit water molecules are
shown as a transparent blue surface.

7.6.3 Preparing the simulation
The following preparation steps have already been com-
pleted and are presented to instruct the reader on how to
prepare similar systems for WE simulation.

Our system consists of a 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphatidylcholine (POPC) membrane bilayer. The
1-butanol-double POPC membrane bilayer system was pre-
pared by piecing together several smaller molecular systems
in the following way. First, a single POPC membrane bilayer
was generated using CHARMM-GUI’s membrane builder
with 50 lipids per lea�et and zero salt concentration. This
membrane was then equilibrated using a single GPU with
the OpenMM dynamics engine using the standard CHARMM-
GUI procedure. The membrane plus the outer aqueous
layer to the membrane, once combined, (see Figure 14) was
equilibrated for an additional 500 ns. A 2D representation
of 1-butanol was generated from an input SMILES string
(CCCCO) using OEChem, and converted to a 3D structure
using the Omega TK toolkit. The 3D structure of 1-butanol
was then solvated with a 2 nm slab of water molecules at a
density of 1 gm/cm3 using PACKMOL along with the OEChem
TK and Omega TK toolkits from OpenEye. Finally, the full
double-membrane bilayer system was assembled by placing
the butanol-embedded slab of water at the origin, with a
single-membrane system at each z-edge of the water slab.
The resulting systemwas then subjected to energy minimiza-
tion and equilibrated before the initiated WE simulations of
butanol permeating the membrane bilayer were initialized.

The System. In this tutorial, we will run a WE simulation
of 1-butanol crossing onemembrane of a double POPCmem-
brane bilayer system. To run the WESTPA 2.0 simulation, the
AMBER LIPID17 force�eld is applied to all POPC lipids, explicit
water molecules are represented by the TIP3P model, while

the parameters for 1-butanol were taken from the GAFF 2.11
force �eld. All force �eld parameters were applied using the
openmmforce�elds Python package.

Progress Coordinate. The progress coordinate (z) is de-
�ned as the (signed) distance from the center of mass (COM)
of the butanolmolecule to that of the closestmembrane. The
width of a single lea�et of the membrane is roughly 2 nm, so
a z < -2 nm, between -2 nm and 2 nm, or >2 nm indicates that
the butanol molecule has not yet crossed, is currently cross-
ing, or has crossed the membrane, respectively. A target
state of z �3.5 nm is used to recycle trajectory walkers. The
actual computation is performed by measuring the signed
distances between the COMs of butanol and each of the two
membranes, z1 and z2, using the MDTraj analysis suite and
then taking the larger value of the two, z=max(z1, z2).

Preparing the Simulation Environment. Once we have
constructed and equilibrated the 1-butanol membrane sys-
tem, we will prepare the WESTPA system environment. First,
we will analyze the equilibrated double membrane bilayer
system to de�ne an initial progress coordinate. The progress
coordinate, equilibrated coordinate �le (e.g. XML �le), and
bstates.txt �le describing the initial basis states are placed
in the bstates/ directory. Second, we will edit the west.cfg
�le with options for using the MAB scheme and HDF5 frame-
work. To initialize the WESTPA 2.0 environment, we will run
./init.sh. This command will source the WESTPA 2.0 envi-
ronment, construct the seg_logs/, traj_segs/, and istates/
directories, and will run the w_init command with the cor-
rect settings for the target state (z = 3.5 nm) and the basis
states constructed above.

Adaptive Binning using the MAB Scheme. By default,
this tutorial uses a manual, �xed binning scheme, but can be
modi�ed to use theMinimal Adaptive Binning (MAB) module,
which adaptively positions bins along the progress coordi-
nate. To enable this adaptive binning scheme, uncomment
the MAB-related lines in the west.cfg �le, which specify the
MABBinMapper as the primary binmapper type, and comment
the lines related to the inner RectilinearBinMapper. Next,
de�ne n_bins (the number of MAB bins placed per progress
coordinate dimension) in the same section of the west.cfg
(e.g., if a two-dimensional progress coordinate is being
used, [20, 20] indicates 20 bins in each dimension). It is
important to note that if the recycling of trajectories at a
target state is desired within the MAB framework, recursive
bins must be speci�ed by adding a MABBinMapper inside of a
RecursiveBinMapper outer bin and de�ning the target state
in terms of the recursive outer bins. An example of a MAB
recursive binning scheme is shown below:
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west:
system:

system_options:
bins:

type: RecursiveBinMapper
base:

type: RectilinearBinMapper
boundaries:

- [-inf, -44, 34, inf]
mappers:
- type: MABBinMapper

nbins: [20] # Number of bins
direction: [0] # Split both directions
skip: [0] # Bin along this dimension
at: [0] # Location of MAB mapper

relative to base mapper

In the above example, the at option in the last line
speci�es which outer bin to place the MAB scheme inside
of range [-44, 34]. For a two-dimensional progress coordi-
nate, this option will require a list with two values, one for
each dimension. The nbins option speci�es the number of
MAB linear bins that will be used inside the bin, plus two
more bins for extrema and bottleneck trajectories, respec-
tively. Optional direction, skip and mab_log parameters
can also be speci�ed for the MAB scheme. The direction
parameter (0, -1, or 1) can be used to specify the direction
along the progress coordinate for splitting of trajectories,
where 0 indicates both directions, -1 indicates the direction
of decreasing values along the progress coordinate, and
1 indicates the direction of increasing values along the
progress coordinate. The skip parameter (1 or 0) designates
whether a particular dimension along the progress coordi-
nate will be binned during the simulation, but will be used
to de�ne the target state (1 indicates that the dimension will
be skipped for binning and 0 indicates that the dimension
will not be skipped for binning). The mab_log parameter,
when enabled with true, will print MAB-related statistics
such as the progress coordinate values of extrema walkers
to the west.log �le. Multiple MAB schemes can be added to
a recursive binning setup, but only one MAB scheme may be
used per each outer bin.

If users choose to combine the application of the MAB
scheme with the weighted ensemble steady-state (WESS)
plugin [22], which reweights trajectories towards a non-
equilibrium steady state, they must provide �xed bins for
the reweighting procedure. The positions of these �xed bins
can be speci�ed in the WESS plugin section of the west.cfg
�le:

Per-Iteration Files

Iteration ! + 1

Iteration !

MD Engine Files 
(.dcd, .xml, etc.)

Restart Files 
(.xml, .rst, etc.)

BA

File Preparation
○ by the user
○ by WESTPA

Simulation
PCoord

Calculation

Returns
○ pcoord
+ restart files
+ trajectory files
+ logs

Vanilla WESTPA
HDF5 Framework

Propagation Procedure 

Figure 15. Diagrams showing the di�erences in the propagation pro-
cedure between a vanillaWESTPA run and a runwith theHDF5 frame-
work. A) Procedures for propagating one WE iteration using the orig-
inal WESTPA 1.0 framework (blue text) and WESTPA 2.0 HDF5 frame-
work (red text). Using theWESTPA 2.0 HDF5 framework, the WESTPA
software prepares the input �les while the user is responsible for
returning the progress coordinate (pcoord), restart, trajectory, and
optional log �les. B) Work�ow for using theWESTPA 2.0 HDF5 frame-
work. Blue: Steps and �les from the original WESTPA 1.0 procedure.
Red: Files generated or prepared by the WESTPA 2.0 HDF5 frame-
work.

plugins:
- plugin: westpa.westext.wess.WESSDriver

enabled: true
do_reweighting: true
window_size: 0.75
bins:

type: RectilinearBinMapper
boundaries:

- [’-inf’, 0.5, 1.0, 1.5, 2.0, 2.5, ’inf’]

HDF5 Framework. The setup for a WESTPA simulation
with the HDF5 framework is similar to a vanilla one with the
addition of the following procedures, which are a more de-
tailed list of the same steps discussed brie�y in Advanced
Tutorial 7.5 above:

1. An iteration entry was provided in west.cfg under
west.data.data_refs to specify where and how the
per-iteration HDF5 �les should be saved and named.

2. All the necessary �les needed for propagating the
next segment, such as state/restart and topology �les,
are passed on to WESTPA through the environment
variable, $WEST_RESTART_RETURN, after initialization
and propagation of each iteration (Figure 15A). This
information is typically placed in the get_pcoord.sh
and runseg.sh �les.

3. All the trajectory �les, and topology �les if the topology
is not stored as part of the trajectory �le, are pro-
vided to WESTPA through the environment variable,

34 of 53 https://doi.org/10.33011/livecoms.5.1.1655
Living J. Comp. Mol. Sci. 2023, 5(1), 1655

https://doi.org/10.33011/livecoms.5.1.1655


A LiveCoMS Tutorial

$WEST_TRAJECTORY_RETURN, after the propagation of
each iteration. This, again, is typically placed in the
get_pcoord.sh and runseg.sh �les. The coordinates
of the basis states can be provided through the envi-
ronment variable during initialization to be stored as
the “trajectories” of the zero-th iteration. Note that the
procedures described in step 2 and 3 are similar to
how the progress coordinates are returned through
$WEST_PCOORD_RETURN in the vanilla WESTPA simulation.
The trajectory and restart �les will be saved as part of
the per-iteration HDF5 �les. In turn, these �les do not
need to be located and copied over to the directory
for propagating the next segment, and they will be
automatically extracted and put into the segment
folder by WESTPA instead (Figure 15B).

These additional procedures simplify the data manage-
ment on the user’s end for two reasons. First, all the trajecto-
ries are stored in a standard way which enables fast and easy
access to these trajectories with their associated WE-related
data using the newly added analysis module (see Section
7.5.4). Second, the restart/state �les are much easier to lo-
cate as when they are generated than when they are needed
in the next iteration, so letting the users pass trajectory and
restart �les to WESTPA for it to manage frees users from
tracking those �les themselves which would require the crit-
ical knowledge of how two WESTPA-assigned environment
variables work (namely, $WEST_CURRENT_SEG_INITPOINT_TYPE
and $WEST_PARENT_DATA_REF).

For this membrane permeation example, the per-
iteration HDF5 �les are saved in a folder named traj_segs/
and named following the pattern iter_XXXXXX.h5. The basis
states are returned to WESTPA in get_pcoord.sh as both
the “trajectories” of the zero-th iteration and the restart
�les for propagating the �rst iteration and recycled walkers.
The dynamics is propagated using OpenMM for 100 ps for
each iteration, and the output trajectory �les and state XML
�les are returned to WESTPA in runseg.sh. These �les are
deleted once they are returned in order to save disk space.
See the sample project setup �les for detail.

7.6.4 Running the WE Simulation
Similar to other examples, the simulation can be run using
./run.sh from the top-level permeability tutorial directory.

7.6.5 Analyzing the WE Simulation
The analysis of the membrane permeation simulation can
be found in the accompanying Jupyter notebook titled
Membrane Permeability Tutorial (Analysis). In this tutorial
notebook, we demonstrate how to extract a complete,
continuous pathway of a membrane-crossing event and
calculate the incoming �ux to the target state from the WE
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Figure 16. Schematic of haMSM restarting procedure. Trajectories
from one or more WE runs are used together to build an haMSM. An
estimate of steady-state is obtained from the haMSM, and is used to
assign weights to all sampled structures. New WE runs are initiated
from these steady-state weighted structures, and the procedure re-
peats. Figure reprintedwith permission from [2]. Further permission
related to the source material should be requested from ACS.

membrane permeation simulation. Note that this tutorial
assumes that you already have a completed simulation
using the HDF5 framework with at least one crossing event
(~40 iterations).

7.6.6 Conclusion
In this tutorial, we have illustrated the relative ease in which
one may use the WESTPA 2.0 software package to perform
advanced WE path sampling simulations of membrane
permeation for a small molecule (butanol). Using a single
workstation with two GPUs, our WE simulation can generate
membrane permeation events within a few days of wall-
clock time. WE simulations, when using the WESTPA 2.0
HDF5 framework and MAB binning scheme, are relatively
cost e�ective, both in terms of total computing time and
disk storage.

7.7 Advanced Tutorial: Analysis and
restarting with haMSMs: NTL9 Protein
Folding

7.7.1 Introduction
Although the WE strategy provides an e�cient framework
for unbiased rare-event sampling, slow relaxation to steady
state and impractically large variance in rate constant es-
timates may still be limiting factors for complex systems.
History-augmented Markov state models (haMSMs) have
been demonstrated to provide estimates of steady state
from transient, relaxation-phase WE data, which can be
used to start new WE simulations [18]. As shown in Fig-
ure 16, the haMSM plugin for the WESTPA 2.0 software
package automatically constructs an haMSM from one or
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more independent WE simulations to estimate steady-state
observables and then can automatically initiate new sim-
ulations from those estimates and iteratively repeat this
procedure when those simulations complete. The under-
lying haMSM analysis library, msm_we, can also be used to
perform stand-alone haMSM analysis of existing WESTPA
data.

Learning Objectives. This tutorial demonstrates the use
of an haMSM restarting work�ow in WE simulations of the
ms-timescale folding process of the NTL9 protein. Speci�c
objectives are:

1. How to apply the haMSM plugin for periodic restarting
of simulations;

2. How to use the msm_wepackage to build an haMSM from
WE data;

3. How to estimate the distribution of �rst passage times
from the haMSM, using msm_we.

7.7.2 Prerequisites
The Basic and Intermediate WESTPA Tutorials [38] should be
completed before running this tutorial.

Computational Requirements. This tutorial can be com-
pleted on a computer with a single NVIDIAGTX 1080GPU and
a 2.4GHz Intel Xeon E5-2620 in 90min. TheWE simulationwill
generate ~5GBof data, though on a typical cluster �lesystem,
overhead associatedwith data redundancymay increase this
to ~15 GB. A version of the Amber software package compati-
blewith Amber 16 restart and topology �lesmust be installed
to propagate the dynamics and calculate theWE progress co-
ordinate.

The msm_we Python package must also be installed,
which can be done by �rst cloning the repository and then
installing it into your existing conda environment (with
WESTPA already installed) by running:

$ git clone https://github.com/westpa/msm_we
$ cd msm_we
$ conda env update --name <your WESTPA conda env>

--file environment.yml

7.7.3 Plugin functionality
Once we initiate a WESTPA run with the haMSM plugin en-
abled, the pluginwill execute a series of independentWE sim-
ulations (runs) from the same starting con�guration for the
number of WE iterations speci�ed in west.cfg. For this tuto-
rial, the runs will not use the HDF5 trajectory-saving frame-
work.

If none of the WE runs have reached the target state, the
haMSMpluginwill sequentially extend each run for a number
of iterations speci�ed in west.cfg. This extension procedure
will be repeated until at least one run has reached the target
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Figure 17. Sample �ux pro�le generated by haMSM restarting
plugin after a restart. The x-axis is labeled "pseudocommittor",
since these are committor values generated from a unidirectional
path ensemble. This plot should �atten in successive restarts un-
til steady state is reached. The color scale indicates the progress
coordinate associated with each pseudocommittor—notably, most
of the dynamic range in committor-space is restricted to a small
range of progress coordinate values. This image can be found in
restart0/plots/psuedocomm-�ux_plot_pcoordcolor.pdf after restart
is performed.

state. For consistency, all of the other runs in the set will be
extended to match the length of this run. As a result of this
extension procedure, runs used for the �rst restart may be
longer than runs in subsequent restarts.

After completing the extension procedure, the plugin
will construct an haMSM from these runs, and estimate
the steady-state distribution and �ux into the target state.
All structures sampled by the set of runs are used to build
this haMSM, and are then weighted according to a steady
state. Note that this haMSM uses only the �rst and last
frame of each WE iteration, which e�ectively sets the
lag-time equal to the WE resampling time. A number
of plots are automatically generated from the model. The
�ux pro�le, shown in Figure 17, provides an important
metric of convergence, and should be examined carefully.
A �atter �ux pro�le indicates more converged weighted
ensemble.

A new set of runs from the resulting weighted structured
are initialized. These runs are correlated but independent
from this point onward. As a technical note, when initializing
the new WE simulations, these structures are used as "start
states". Within the WESTPA 2.0 framework, start states are
a third category of state, in addition to basis states and tar-
get states. Like basis states, start states are used for seeding
trajectory walkers when initializing a simulation with w_init;
however, unlike basis states, start states are not used after
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this point and walkers reaching the target state will not be
recycled into start states but rather only to the basis states.
The new WE runs are executed for the number of WE itera-
tions speci�ed in west.cfg, in series. At this point, the model
is saved, a new restart is prepared, and the process repeats
from that point onward.

Please see [2, 18] for more theoretical background on the
models used by this plugin.

7.7.4 Preparing the system
The system. For our simulation of the NTL9 protein fold-
ing process, we use a stochastic Langevin thermostat with
low-friction (collision frequency � = 5 ps-1) and a generalized
Born implicit solvent model. The system consists of ~600
atoms. Wewill use the haMSM restart plugin to automatically
perform three independentWESTPA runs serially before con-
structing an haMSM. A single restart will be performed from
the haMSM steady state estimate, and then WE simulation
will be continued for another 106 WE iterations for each of
the three runs.

To reduce runtime for this tutorial, we provide a partially
completed set of three independent WE simulations. In this
set of simulations, the �rst two runs have completed, and the
third is nearing completion. None of these simulations have
yet reached the target state.

After continuing this set of WE simulations, the third sim-
ulation will �nish and reach its maximum number of WE it-
erations. With very high probability, none will have reached
the target folded state, and pre-restart extensions will be trig-
gered. The initialized runs were chosen such that it is unlikely
that the third run will reach the target state before the next
restart. However, it is possible that in the remaining few WE
iterations of the third simulation, this simulation will reach
the target state, in which case we will skip the extension pro-
cedure.

After a single round of extensions, the target state should
be reached in run 2, though not necessarily runs 1 or 3. We
will construct the haMSM from the three extended runs, and
restart a new set of three runs from the steady-state esti-
mates.

Structure of Plugin-Speci�c Files. A list of important
�les used and generated in $WEST_SIM_ROOT by the haMSM
plugin is shown in Table 3.

The following �les contain more adjustable parameters
or are more tightly integrated in the work�ow and therefore
warrant a more in-depth explanation.

west.cfg: The haMSM restarting plugin requires a num-
ber of parameters to be set in the appropriate section of
west.cfg. Details regarding these parameters are listed at
https://westpa.readthedocs.io/en/latest/documentation/ext/
westpa.westext.hamsm_restarting.html#west-cfg.

Table 3. haMSM plugin organization and �le explanations

restart.dat Tracks current restart/run
restart_ User provided on start,
initialization.json modi�ed by plugin during run
west.h5 Generated by WESTPA

for the currently active run
restart0/ Stores data from the

�rst restart. 0-indexed.
/JtargetSS.txt haMSM target steady-state

�ux estimate
/pSS.txt haMSM steady-state

distribution estimate
/hamsm.obj Pickled msm_we.ModelWE object
/startstates.txt Used for next restart,

holds all weighted structures
/basisstates.txt The initial set of basis states

supplied to w_init
/targetstates.txt The initial set of target states

supplied to w_init
/struct/ Complete set of structure �les

for all structures in startstates/
/run*/ Backed up traj_segs/, seg_logs/,

and west.h5 from each run
in this marathon. 1-indexed.

/plots/*.pdf Various auto-generated plots
restart*/ Other restarts

restart_initialization.json: When initializing each
run, the plugin needs to know what con�guration it should
be launched with. After the �rst restart, this is automatically
generated. However, before the �rst restart (i.e. in producing
the initial set of runs in Work�ow Step 1), there is no way for
the plugin to determine how the �rst run was initialized. So,
the parameters initially passed to w_init must be manually
entered into restart_initialization.json.

westpa_scripts/restart_overrides.py: When building
the haMSM, some dimensionality reduction is typically nec-
essary as it’s generally neither practical nor useful to analyze
the model on the full set of coordinates. This dimensionality
reduction is highly system-speci�c, so no general procedure
is distributed with the plugin. Instead, the user is required to
de�ne a function which takes in an array of full-atomic coor-
dinates of shape (n_segments, n_atoms, 3), perform the de-
sired dimensionality reduction, and then return the reduced
coordinates in an array of shape (n_segments, n_features).
This functions are then loaded by the haMSM analysis code
at run-time, and used throughout. More details are available
at https://westpa.readthedocs.io/en/latest/documentation/ext/
westpa.westext.hamsm_restarting.html#featurization-overrides.
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Preparing theWESimulation Environment. Toprepare
the system for using the haMSM restarting plugin, �rst clone
the tutorial repository. In env.sh, change $TEMPDIR_ROOT to
point to a directory on your �lesystem where temporary
�les will be created (on a cluster, this should ideally be
some node-local scratch/temp space that supports I/O,
but on a local workstation can be a new folder such as
$WEST_SIM_ROOT/temp). This temp space will be used for tem-
porary �les created during progress coordinate calculation.
In the same �le, change AMBER_EXEC and CPPTRAJ to point to
your AMBER and CPPTRAJ executables. In west.cfg, change
ray_tempdir to point to the same directory as TEMPDIR_ROOT.
Then examine haMSM plugin-speci�c con�guration �les
above to familiarize yourself with them, though for this
tutorial, no further changes are required. To download and
extract the prepared �les for the in-progress simulation this
tutorial uses, run the following command from within the
main simulation directory.

$ bash pull_sample_data.sh

7.7.5 Running the WE simulation
Now, we are ready to (re)start theWE simulation. The haMSM
plugin will automatically perform the restarting and analy-
sis. Typically, we would initialize the system using w_init as
we do for all WE simulations using the WESTPA 2.0 software
package. However, to reduce the runtime for this tutorial, we
have provided a pre-prepared system, and running w_init is
not required. Once we have con�gured the haMSM plugin
through west.cfg, we can restart the WE simulation and run
the simulation for a few iterations, by simply executing the
following command.

$ ./run.sh

If the target state has not been reached after running
for the speci�ed number of iterations, additional rounds of
restarting/extending the WE simulation will automatically
be launched. Once the target state has been reached,
the plugin will build an haMSM, update statistical weights
for each sampled structure, and restart a new set of WE
trajectories initialized from those structures with updated
weights. This will all be done automatically.

Start States. After performing a restart, we will �nd
under the restart0/ directory a startstates.txt refer-
ence �le that lists all the structures used for the restart
(start states) and their associated weights for initializing
new WE simulations from the �rst round of restarting.
As noted, these are distinct from the basis states. The
startstates.txt text �le is formatted with three columns,
which de�ne the names (e.g., “b21s0”), associated proba-
bilities, and name of the directory containing the structure

�les of the start states (relative to the path de�ned under
west.data_refs.basis_states in west.cfg). Structure �les
corresponding to these start states are in restart0/structs/
and are named according to the structure’s haMSM bin and
the structure’s index within that bin. Start states can be
added to the pool of potential structures for WE initialization
by adding the --sstates-from or --sstates option to the
w_init command. Similar to the --bstates options for
basis states in the above Intermediate Tutorial 7.3, the
--sstates-from option is used to indicate a text �le with a list
of start states and the --sstates option is used to append
additional start states through the command line.

7.7.6 Analyzing the WE simulation
After the plugin �nishes running, you will �nd the associated
west.h5 for each run and the associated haMSM pickled
hamsm.obj objects for each marathon in the restart*/
directories. Although the plugin will automatically build the
haMSMs and perform some of the analysis based on the
con�guration �les, haMSM analysis can also be manually
performed post-simulation on WESTPA data with the msm_we
library (as used internally by the plugin).

For this tutorial, you can use either the data generated
by the steps above, or the pre-prepared west.h5 �les con-
taining data generated from a similar simulation con�gura-
tion. This analysis largely follows the msm_we usage instruc-
tions provided in the msm_we documentation (https://msm-we.
readthedocs.io/en/latest/usage.html).

For detailed instructions on how to analyze your simula-
tion results, please refer to the Jupyter notebook distributed
along with this tutorial.

7.7.7 Conclusion
Complex systemsmay exhibit relaxation slow enough to pre-
vent direct measurement of rate constants using probability
�ux inWE. This tutorial therefore presents the haMSMplugin
for leveraging relaxation-phase WE simulations by automat-
ically (i) building a haMSM; (ii) generating an estimate of the
steady-state probability distribution and the corresponding
steady �ux; and (iii) if desired, restarting a newWE simulation
or set of simulations from the estimated steady state. Each
haMSM yields an estimate for the MFPT and FPT distribution
using msm_we.

7.8 Advanced Tutorial: Creating Custom
Analysis Routines and Calculating Rate
Constants

7.8.1 Introduction
In this tutorial, we will go over how to create custom analy-
sis routines using the westpa.analysis Python API and how
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to calculate rate constants using the Rate from Event Dura-
tions (RED) analysis scheme, which enables rate-constant es-
timates from transient, pre- steady-state data and therefore
shares the same motivation as the haMSM analysis scheme
[2, 18] used in the above Advanced Tutorial 7.7. For the cre-
ation of custom analysis routines, we will focus on the mem-
brane permeability simulations completed in Advanced Tu-
torial 7.6. For the calculation of rate constants, we will focus
on previously published protein-protein binding simulations
involving the barnase/barstar system [6].

Learning objectives. Speci�c learning objectives for this
tutorial include:

1. How to access simulation data in a west.h5 �le using
the high-level Run interface of the westpa.analysis
Python API and how to retrieve trajectory data using
the BasicMDTrajectory and HDF5MDTrajectory readers;

2. How to access steady-state populations and �uxes
from the assign.h5 and direct.h5 data �les, convert
�uxes to rate constants, and plot the rate constants
using an appropriate averaging scheme;

3. How to apply the RED analysis scheme to estimate rate
constants from shorter trajectories.

7.8.2 Prerequisites
In addition to completing the Basic and Intermediate Tuto-
rials 7.1-7.4 [38], a prerequisite to this tutorial is completion
of the above Advanced Tutorials 7.5 and 7.6.

Computational requirements. Users should have ac-
cess to at least 1 CPU core for running the analysis tools. For
larger datasets, onemaywant to parallelize someof the tools
(especially w_direct). The size of a dataset is mainly deter-
mined by the number of iterations. For a dataset of greater
than 1000 iterations, it may be best to use at least 4 CPU
cores at a time.

7.8.3 Creating custom analysis routines
For this part of the tutorial, we will create custom analysis
routines using the westpa.analysis API for the membrane
permeability simulations completed in Advanced Tutorial
7.6.

The main abstraction of the westpa.analysis API is the
Run class, which provides a read-only view of the data in the
main WESTPA output �le (west.h5). We will start by open-
ing the west.h5 �le from the permeability run. We assume
that the current working directory is the simulation root di-
rectory you are interested in analyzing, though the resulting
west.h5 �le fromAdvanced Tutorial 7.6 is linked to themain
directory of this tutorial for convenience. Open a Python in-
terpreter and run the following commands:

>>> from westpa.analysis import Run
>>> run = Run.open(‘west.h5’)
>>> run

<WESTPA Run with 500 iterations at 0x7fcaf8f0d5b0>

We now have convenient access to a wealth of informa-
tion about the permeability simulation, including all trajec-
tory segments at each WE iteration and any data associated
with those segments, including values of the progress coordi-
nate and other auxiliary data. Iterating over a run yields a se-
quence of Iteration objects, each of which is a collection of
Walker objects. For example, the following loop iterates over
all trajectory walkers in a run, but does nothing with each tra-
jectory walker:

>>> for iteration in run:
... for walker in iteration:
... pass

We can access awalker by providing its (1-based) iteration
number and (0-based) segment ID:

>>> walker = run.iteration(10).walker(4)
>>> walker
Walker(4, Iteration(10, <WESTPA Run

with 500 iterations at 0x7fcaf8f0d5b0>))

To access the progress coordinates of a certain trajectory
walker, we use the pcoords attribute:

>>> pcoords = walker.pcoords

Other properties available through this Python API in-
clude the weight, parent and children of a trajectory walker.
We can access auxiliary data by looking up the dataset of
interest in the auxiliary_data dictionary attribute (note that
the following auxiliary dataset is not actually present, and
the command is provided as an example):

>>> auxdata = walker.auxiliary_data[‘test_data’]

We can also view a list of all recycled (successful) trajec-
tory walkers and choose one walker to trace its pathway
through the membrane:

>>> walkers = run.recycled_walkers
>>> walker = max(walkers,
... key=lambda walker: walker.weight)

The history of a trajectory walker can be traced by using
the trace() method, which returns a Trace object:

>>> trace = walker.trace()
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Using the WE iteration and IDs of the trajectory segments
obtained from this trace, we can plot the data of our traced
trajectory to see how that property is changing. Remember
that the test_data auxiliary dataset does not actually exist,
but can be replaced with an auxiliary dataset of your choice.

>>> xs = [walker.iteration.number
... for walker in trace]
>>> ys = [walker.auxiliary_data[‘test_data’]
... for walker in trace]
>>> import matplotlib.pyplot as plt
>>> plt.plot(xs, ys)

One goal of the westpa.analysis API is to simplify the
retrieval of trajectory coordinates. Two built-in readers
are provided for retrieving MD trajectory coordinates: (1)
BasicMDTrajectory, which handles trajectory �les outputted
by the dynamics engine; or (2) HDF5MDTrajectory, which
handles trajectories stored using the new HDF5 framework,
as is done in the above Tutorials 7.5 and 7.6. For users
requiring greater �exibility, custom trajectory readers can be
implemented using themore general Trajectory class. Here
we provide a brief overview of both the BasicMDTrajectory
and the HDF5MDTrajectory readers. The following is included
only as an example, since the trajectory �les required are not
provided. MD trajectories stored in the traditional manner
may be retrieved using the BasicMDTrajectory reader with
its default settings:

>>> from westpa.analysis import BasicMDTrajectory
>>> trajectory = BasicMDTrajectory()

Here, trajectory is a callable object that takes either
a walker() or a trace() object as input and returns an
mdtraj.Trajectory() object (https://mdtraj.org/1.9.5/api/
generated/mdtraj.Trajectory.html). To retrieve the trajectory
of the trace obtained above, then save the coordinates to a
DCD �le (e.g., for visualization using the VMD program), we
can run the following:

>>> traj = trajectory(trace)
>>> traj.save(‘trace-coords.dcd’)

Note that in the code above, we have relied on the fact
that the traj_segs/ directory of interest is contained in the
current working directory. In the general case, the name of
the simulation root directory may be provided to the trajec-
tory reader via the optional sim_root parameter. Minor vari-
ations of the "basic" trajectory storage protocol (e.g., use of
di�erent �le formats) can be handled by changing the param-
eters of the BasicMDTrajectory reader:

>>> trajectory = BasicMDTrajectory(
traj_ext=’.nc’, state_ext=’.ncrst’, top=None)

However, suppose that instead of storing the coordinate
and topology data for trajectory segments in separate
�les (seg.dcd and bstate.pdb), we store them together
in an HDF5 trajectory �le (such as iter_XXXXXX.h5) using
the new HDF5 restarting framework available in WESTPA
2.0. This change can be accommodated by using the
HDF5MDTrajectory reader:

>>> trajectory = HDF5MDTrajectory()

The examples above highlight the �exibility and conve-
nience provided by the westpa.analysis package and pro-
vide the building blocks available to a userwanting to explore
the west.h5 �le and create custom analysis routines using
data in the west.h5 �le.

7.8.4 Calculating rate constants using the original
WE scheme

For the two remaining sections of this tutorial, we will focus
on applying the RED analysis scheme [20] to calculate the
association rate constant from previously published protein-
protein binding simulations involving the barnase/barstar
system [6]. The RED scheme involves three steps:

1. Calculate State Populations and the Flux into the
Target State. The target state can be de�ned using either
the WE progress coordinate or auxiliary coordinates. The
analysis bins and state de�nitions are placed in the analysis
section of the west.cfg �le.

west:
analysis:

kinetics:
evolution: cumulative

analysis_schemes:
OVERALL:

enabled: True
bins:

- type: RectilinearBinMapper
boundaries:

- [0, 3.5, ’inf’]
- [0, 3, 15, ’inf’]

states:
- label: unbound

coords:
- [0.5, 50.0]
- [50.0, 50.0]

- label: bound
coords:

- [0.5, 0.5]
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To calculate the �ux into a state de�ned by the progress
coordinate, we can use the w_ipa program. Flux calculation
with w_ipa involves two steps: (1) assigning trajectory seg-
ments to states using the w_assign command-line tool, and
(2) calculating the probability �ux between each pair of de-
�ned states using the w_direct command-line tool. Given
the large size of the barnase-barstar simulation HDF5 �le, we
have provided the resulting assign.h5 and direct.h5 �les for
the remainder of the tutorial. To use w_ipa for �ux analysis,
one would run the following at the command line:

$ w_ipa -ao

This command will analyze the pcoord data from west.h5
using the scheme for bins and states de�ned in west.cfg
and not drop the user into an IPython environment (to make
use of that functionality, remove the -ao options from the
above command). The resulting assign.h5 and direct.h5
�les, the latter containing the �uxes, will be outputted to
a newly created directory that is named for the relevant
scheme (in this case that will be in ./ANALYSIS/OVERALL/. The
evolution:cumulative option (which is the default option)
ensures that all evolution datasets are calculated with a
rolling average, a requirement for using the RED scheme
(see below).

To calculate the �ux into a state de�ned by auxiliary
coordinates, we still use the scheme for bins and states
de�ned in the west.cfg �le. However, instead of using the
w_ipa program, we use the command-line tools, w_assign
and w_direct. Before using these tools, we need to
copy module.py to your current directory �rst (by default,
module.py is located in the ./scripts/ directory). Then, we
can assign trajectory segments to speci�ed states using the
w_assign tool:

$ w_assign --config-from-file --scheme OVERALL
--construct-dataset module.load_auxdata --serial

The --config-from-file option tells the program to read
analysis parameters from the west.cfg �le’s analysis section
and the --scheme option speci�es the relevant scheme for
bins and states. The --construct-dataset option provides a
function to w_assign for loading in the auxiliary data which
is located in the �le module.py. The --serial option tells
w_assign to run the assignment in serial mode. Running
w_assign will generate an ANALYSIS/ directory and place an
assign.h5 �le in a scheme-speci�c folder there. Next, we
apply the w_direct tool to the assign.h5 �le.

$ w_direct all -a ./ANALYSIS/OVERALL/assign.h5

This command will generate a direct.h5 �le in the same
directory where we ran the w_direct command. Move this

�le to the analysis/ folder that was generated by w_assign
andproceedwith the analysis. Note that the above is not part
of the following tutorial and is only included to provide an
example to users of how to perform an analysis on auxiliary
data.

2. Correct the Fluxes using the RED Scheme. To
correct the calculated �uxes using the RED scheme, we
apply the w_red command-line tool, which will read in the
rate_evolution and durations datasets in your direct.h5
�le and calculates a correction factor for the �ux value at
each iteration. To use this tool, add the following to the
analysis section of your west.cfg �le:

red:
scheme: OVERALL
istate_label: unbound
fstate_label: bound
nstiter: 21
nstrep: 1

For the scheme option, specify the desired scheme for bins
and states to use from your west.cfg analysis section and
for the istate_label and fstate_label options, specify the
initial and target states, respectively. The nstiter parameter
is the number of frames per WE iteration that were saved
during the WESTPA simulation and nstrep is the frequency
of outputting progress of the RED calculation. After setting
all parameters, run the w_red tool from the command line:

$ w_red
A new dataset containing the corrected �uxes, named
red_flux_evolution, will be added to your direct.h5 �le. If
that dataset already exists, the w_red tool will ask if you want
to overwrite the existing dataset.

The new red_flux_evolution dataset is created
by adjusting the rate_evolution dataset by the cor-
rection factor determined by the RED scheme. The
rate_evolution dataset, in turn, is composed of the
relevant conditional_flux_evolution dataset (from
direct.h5) normalized by the steady state populations
from labeled_populations (from assign.h5). Therefore,
when using the RED scheme (or the original rate_evolution
dataset), no explicit normalization of the �uxes by the steady
state populations is necessary.

3. Convert the Flux to a Rate Constant. The �uxes that
we just calculated are already rate constants in units of in-
verse ⌧ (the resampling interval used for yourWE simulation).

For a unimolecular process, the �nal units of the rate con-
stant should be inverse time (e.g., s-1) and can be obtained
by converting from units of per ⌧ for the extracted �ux ar-
ray to the desired time unit. Note that the ⌧ value needs to
be provided by the user and is not currently recorded in the
west.h5 �le.
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Figure 18. A) A comparison of the RED and original schemes for es-
timating the rate constant for protein-protein association involving
the barnase/barstar system from previously published WE simula-
tions [6]. In this case, the simulation has not converged to a steady
state, as indicated by di�erent rate-constant estimates using the
original and RED schemes. B) A comparison of di�erent averaging
schemes using the same dataset. While the RED scheme is, in princi-
ple, only compatible with rolling averages, the use of block and win-
dow averaging can still be informative for monitoring convergence
of the simulation. C-E) Schematic illustrations of rolling, window, and
block averaging schemes, indicating points where averages are cal-
culated (blue) and the extent of data used for the averages (red).

For a bimolecular process, which is the case for our
OVERALL scheme, the rate constant should be in units of
inverse time and inverse concentration (e.g., M-1s-1) and can
be obtained by �rst converting to the desired time unit, as
done for unimolecular processes, and dividing the resulting
�ux values by the e�ective concentration of the solutes
involved in the bimolecular process given the volume of the
simulation box. In the case of our barnase-barstar system,
the ⌧ value was 20 ps and the e�ective concentration for the
barstar ligand was 1.7 mM. We will therefore divide all of the
conditional_flux values by 20 ⇥ 10-12 s and 0.0017 M to
obtain per iteration rate constants in units of M-1s-1.

7.8.5 Monitoring Convergence of the Rate Constant
To monitor the convergence of the rate-constant estimate,
we can plot the time-evolution of the rate constant using
both the original and RED schemes and assess how close our
original estimate is to the RED estimate. If the two schemes
are converging to the same value, that can be one indication
that the simulation has begun to converge.

To obtain the rate constant using the original scheme
[3], simply convert the rate_evolution dataset to the ap-
propriate units as discussed above. The time-evolution
of this rate-constant estimate can then be compared with
the RED-scheme estimate to assess convergence of the
simulation to a steady state (Figure 18A).

A note on averaging schemes. There are three main
types of averaging schemes that can be used to monitor con-
vergence when plotting the rate constant evolution using the
original scheme. It may be useful to plot di�erent schemes
depending on the behavior of your speci�c system. A few ex-
amples are shown here with instructions on how to generate
the plots.

The �rst averaging scheme is the default which is a rolling
average (Figure 18B), which can be achieved by specifying
evolution: cumulative in the analysis section of west.cfg
and setting step_iter: 1. Thismethod of visualizing the rate
constant evolution o�ers the smoothest curve and is recom-
mended as themost stringent way of assessing convergence,
as it incorporates information from the entire simulation. A
rolling average is also implicitly incorporated into the RED
scheme, which by design never excludes data from the start
of a simulation. When analyzing rate constant estimates gen-
erated by the RED scheme, specify evolution: cumulative
to ensure that only the implicit rolling average is performed.

The second averaging scheme is a window aver-
age, which can be achieved in w_ipa by specifying
evolution: cumulative and step_iter: 10, or whatever
your desired averaging window is. A recommended starting
averaging window size is 10% of the length of your simu-
lation, but the most robust would be the lag time of your
simulation as determined from an autocorrelation of the
�ux plot. A windowed average is not as smooth as the rolling
average but can give a better indication of convergence at
di�erent stages of your simulation relative to other stages.

The third and �nal averaging scheme is a block av-
erage. This will require setting evolution: blocked and
step_iter: 10. The rationale behind choosing the block
size here is the same as the window size discussed above.
The block average will appear like a step function where
each block an average of the preceding block is plotted.
This method of plotting is the least smooth, but can be best
for obtaining a �nal value of the rate constant that is not
in�uenced by earlier, lower values.
7.8.6 Conclusion
Among the upgrades introduced in the WESTPA 2.0 software
package are ones that enable the creation and execution of
more streamlined analysis of simulations and more e�cient
estimation of rate constants. The westpa.analysis sub-
package can be utilized to more carefully inspect WESTPA
trajectory data and to create custom analysis routines. The
RED analysis scheme for correcting rate constants based
on the “ramp-up” time in the �uxes is implemented in
the w_red command-line tool. The �les contained in this
tutorial for utilizing the RED scheme are intended to provide
useful starting points for analyzing the kinetics of WESTPA
simulations.
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7.9 Advanced Tutorial: M-WEM Simulations
of Alanine Dipeptide

7.9.1 Introduction
TheMarkovianWeighted Ensemble Milestoning (M-WEM) ap-
proach [11] is a modi�ed version of the Weighted Ensemble
Milestoning (WEM) [53, 54] approach. Both approaches are
designed to use the WE strategy to enhance the e�ciency of
the milestoning method in calculating equilibrium and non-
equilibrium properties (e.g., free energy landscape and rate
constants, respectively).

In the milestoning method [12, 13] the reaction coordi-
nate is strati�edusingmultiple high-dimensional interfaces—
or milestones. Short trajectories are propagated between
the interfaces and using the principles of continuous time
Markov chains, the properties of a long timescale process
can be calculated. But the milestones need to be placed sig-
ni�cantly far from each other to losememory of the previous
milestone. But converging the transition statistics between
distantmilestones canbe expensive depending on theunder-
lying free energy landscape and the complexity of the system.
Because of the use of shorter trajectories that do not require
trajectories to transit from the initial to �nal states, the WEM
and M-WEM calculations are computationally less expensive
than a WE simulation. On the downside, however, one can-
not obtain continuous pathways due to the lack of continu-
ous trajectories between the starting and the �nal state.

In theM-WEM approach, regions between themilestones
are referred to as “cells”. WE simulation is performed within
the cell with half-harmonic walls present at the milestone in-
terfaces to prevent trajectory escape [11, 55, 56]. In this tuto-
rial, we will use M-WEM to calculate the mean �rst passage
time (MFPT), free energy landscape and committor function
for the conformational transition in the alanine dipeptide sys-
tem.

Learning objectives. This tutorial covers the installation
of and use of the Markovian Weighted Ensemble Mileston-
ing (M-WEM) software in combination with WESTPA to com-
pute the kinetics and the free energy landscape of an alanine
dipeptide. Speci�c learning objectives include:

1. How to install the M-WEM software and perform an M-
WEM simulation;

2. How to create milestones to de�ne the M-WEM
progress coordinate;

3. How to analyze an M-WEM simulation to compute the
mean �rst passage time, committor, and free energy
landscape.

7.9.2 Prerequisites
The users should have a basic understanding of running
WE simulations using the Minimal Adaptive Binning (MAB)

scheme, and should have completed Advanced Tutorial
7.6 before commencing the M-WEM tutorial. Also, a basic
idea of the Markovian Milestoning framework is necessary.
For that purpose, the users should refer to the following
manuscripts [11, 55, 56].

Computational requirements. In terms of software,
this tutorial requires several Python modules (NumPy, SciPy,
and Matplotlib) in addition to the WESTPA 2.0 software and
NAMD 2.14 simulation package.
Note: M-WEM is implemented using the Colvars mod-
ule in NAMD. Please check out the NAMD tutorial (http:
//www.ks.uiuc.edu/Training/Tutorials/namd-index.html) and
colvars tutorial (https://colvars.github.io/colvars-refman-namd/
colvars-refman-namd.html).

In terms of computer hardware, this tutorial will require
approximately 4 GB of disk space. Running the simulation
100 WE iterations for each milestone takes ~85 min on an In-
tel Core i5-8250UCPU@1.60GHz processorwith 4 CPU cores.
For 8 milestones that amounts to about 11-12 hr if the calcu-
lation is performed serially with 4 CPU cores used at a time.
But if a computer cluster is available, each milestone should
be run in parallel which will signi�cantly reduce the wall clock
time. The analysis for each milestone takes ~5 min for each
milestonewith the same computing hardware butwith 1 CPU
core. For 8 milestone cells that would be ~40 min, but simi-
lar to the simulation, the analysis for each milestone can be
done in parallel.

7.9.3 Installation of the M-WEM software package
The M-WEM software package can be downloaded from https:
//github.com/dhimanray/MWEM. To install the package go to
themain directory that contains the setup.py �le and run the
following command:

$ python -m pip install .

The M-WEM software should be installed in the same
conda environment in which WESTPA 2.0 is installed.

7.9.4 Setting up a M-WEM environment
Overview. For performing the M-WEM simulation, we need
to �rst create the milestone anchors along the transition
pathway. This is a typical prerequisite for milestoning simu-
lation. It is typically done using steered MD simulation [57]
which is a common technique in MD simulation. To avoid
spending extra time and possible variability in the results,
we have generated the milestone anchors and provided
them in the anchors directory.

The system. We will be studying the conformational
change of gas phase alanine dipeptide using the M-WEM
scheme. The details of this example are provided in [11].
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Figure 19. Free energy landscape of alanine dipeptide in the gas
phase. Milestone positions are shown as vertical lines. Our aim is to
simulate the MFPT of the transition from state A to state B.

The free energy landscape for the system is shown in Fig-
ure 19. To simulate the transition from state A to state B, 9
milestones are placed at � = -80�, -60�, -40�, -20�, 0�, 20�,
40�, 60�, 80�. This created 8 cells bound by the milestones.
The anchors are chosen in a way that they are located ap-
proximately in the middle of each cell.

Preparing the simulation environment. The
tutorial7.9-mwem/ directory contains all simulation and
analysis �les and will be referred to as the simulation home
directory for the rest of the tutorial. The milestone anchors
for all cells generated from the steered MD simulation are
provided as pdb �les in the anchors/ directory.

The build.py script is a python script which will set up all
the milestones for the simulation. Each milestone cell will be
simulated in a di�erent directory, numbered from 0 to 7.

The template/ directory is a generic template for M-WEM
simulation for any one cell. It contains all necessary �les ex-
cept for the pdb �les which are speci�c to each cell (which are
in the anchors/ directory). Also, the colvars.in �les have re-
placeable strings which are used by the build.py script to
create cell speci�c �les. For example, there are terms like
"CENTER", "HIGH", and "LOW". These are places where the
position of the center and the two milestones are written by
the build.py code. Make sure to edit the env.sh �le to in-
clude the path to your NAMD installation.

In the common_files/ directory the topology (.psf), the
parameter (.prm) and the NAMD con�guration �les are
provided. The structure �le (.pdb) in this directory and in
the equilibration/ directory are prepared by the build.py
script, and are di�erent for each milestone cell.

Once you have yourM-WEM setup ready, prepare the cell-
speci�c folders by running the following command:

$ python build.py

7.9.5 Running the M-WEM simulation
In the equilibration/ directory of each cell, a constrained
equilibration of the anchor will need to be performed
to keep the anchor approximately in the middle of
the cell. The milestone_equilibration.colvars.traj
�le contains the collective variable information, which,
in this case, are the Phi and Psi torsion angles of the
alanine dipeptide. The milestone_equilibration.xsc,
milestone_equilibration.coor and
milestone_equilibration.vel �les are NAMD restart
�les that will be used to start WE trajectories from the
endpoint of the equilibration simulation.

The running of the M-WEM simulation for each individual
cell is done separately, for the convenience of parallelizing it
in a computing cluster. The run.sh script performs the sim-
ulation via the command ./run.sh. Unlike typical WESTPA
setups, the initialization setup code is included in the run.sh
script here. Although it does not make a signi�cant di�er-
ence for a small system like this, we found it is more conve-
nient to submit multiple milestone jobs to a computer clus-
ter by using a single run.sh script. Both the equilibration and
running of each cell is performed by executing the following
command from within each cell-speci�c folder:

$ ./run.sh

In the �rst part of the script, equilibration is performed.
Then relevant �les are copied to the bstates/ directory, from
which they are read by the westpa_scripts/runseg.sh. Then
the WE simulation is initialized and propagated as usual by
the w_init and w_run commands. In this example script, only
one trajectory is propagated at a time. But this can be paral-
lelized based on the computing resources available. Alterna-
tive Slurm scripts for running and restarting the simulation
are also provided in the same directory.

The total number of iterations performed per milestone
is 100. The user may choose to change this number accord-
ing to their preference. The results reported in this work are
from 100 iterations. The convergence is achieved after 40
iterations in our calculation. But it may slightly vary for inde-
pendent calculations.

7.9.6 Analyzing the M-WEM simulations
After the M-WEM simulations are completed, it is important
to properly analyze the results. Please refer to the M-WEM
publication for the theoretical details of the analysis [11]. We
perform the analysis in two steps:

Step 1. Move into the analysis/ directory and execute
the following command:

$ python analysis_build.py
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Figure 20. Convergence of the mean �rst passage time (MFPT) as a
function of M-WEM iterations.

The analysis_build.py script will produce directories
cell_0/ through cell_7/ and copy the corresponding
west.h5 �les (WESTPA output �les) from the propagation/
directory into each cell. It will also copy the west.cfg �les
(di�erent from the west.cfg �les for propagation), and the
analysis.py �les from westpa_analysis_files/ directory to
each cell. The analysis.py �le also has strings like "LOW"
and "HIGH", which will be replaced by �oating point numbers
corresponding to the left and right milestones.

Running the analysis.py script from within a speci�c cell
directory will produce the trajectories.pkl, crossings.pkl
and weights.txt �les. The �les generated by analysis.py
contain information on the trajectory traces (history of the
segments in the �nal iteration), the time and location (which
milestone right or left) of the milestone crossings, and the
weights of each traced trajectory respectively.

Perform analysis in all cells by running the following com-
mand from within the analysis/ directory:

$ ./analyze_all_convergence.sh

This script will execute python analysis.py from within
each cell-speci�c directory to produce the .pkl and .txt
outputs for the �nal iteration. But, for the sake of checking
convergence of our results, it will also produce similar �les
for some subsequent iterations. To do that, the script
will copy the analysis.py to analysis_x.py (where x =
iteration number) and replace the w.niters inside each
analysis.py to the corresponding iteration number. Then,
it will produce trajectories_x.pkl, crossings_x.pkl and
the weights_x.txt �les for each x. This step can take
several minutes to a few hours depending on the comput-
ing hardware. If you have access to a computing cluster,
you may choose to submit this as a job. Note that the
analyze_all_convergence.sh script is customizable. For
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Figure 21. Committor function along the � coordinate fromM-WEM
simulation.

example, if you want to run all cells in parallel on a cluster
you can create separate bash scripts for each cell. Also,
analysis_build.py will produce the following directories
for milestoning analysis in Step 2: cell_probability/,
N_i_j_files/, R_i_files/, and committor/.

Step 2. After the analysis of the WESTPA output �les
are done, we will proceed to analyze our results using the
Markovian milestoning framework in two Jupyter notebooks:
kinetics.ipynb and free-energy-landscape.ipynb.

First, run the kinetics.ipynb notebook to obtain the
mean �rst passage time and the committors. This will also
produce the probability distribution �le in the milestone
space. Details can be found inside the notebook. The MFPT
convergence plots and the committor functions should look
like Figures 20 and 21.

Next, run the free-energy-landscape.ipynb to re-
construct the free energy landscape along Phi and Psi
coordinates from the M-WEM data. It will �rst produce
the unscaled probability distribution, rescale it and then
compute the rescaled free energy landscape. The �nal free
energy landscape should look like Figure 22.

Note that before executing any notebook, you will need
to set the kernel to the environment in which you installed
the M-WEM software. If the kernel is not available, activate
the Jupyter notebook for that environment by executing:

$ python -m ipykernel install --user --name=westpa2

Replace westpa2 with the environment in which you installed
M-WEM.

7.9.7 Conclusion
This tutorial presents the Markovian Weighted Ensemble
Milestoning (M-WEM) Python package for use with the
WESTPA 2.0 software package to estimate equilibrium and
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Figure 22. Free energy landscape reconstructed from an M-WEM
simulation.

non-equilibrium observables for the alanine dipeptide. In
the M-WEM approach, the WE strategy is applied to enhance
the e�ciency of the Markovian milestoning approach to
accelerate the convergence between milestones. While it is
not possible to use this approach to generate continuous
pathways between the initial and �nal states of a rare-event
process, the M-WEM approach can be highly e�cient in the
calculation of “end-point properties” such as the MFPT and
free energy di�erences between the two states. Beyond the
alanine dipeptide, the M-WEM approach has been applied
to more complex processes such as receptor-ligand binding,
yielding the kon, ko� , and binding free energy for the trypsin
benzamidine complex [11].

7.10 Advanced Tutorial: Systems Biology
Simulations using the WESTPA/BNG
Plugin

7.10.1 Introduction
This tutorial focuses on a scenario in systems biology in
which the WE strategy can be useful: enhanced sampling
of rare events in a non-spatial model. Here we focus on a
BioNetGen language (BNGL) rule-based model for a biolog-
ical signaling network that consists of a set of structured
molecule types and a set of rules that de�ne the interactions
between the molecule types. While the average steady-state
behavior of the model can be obtained using ordinary
di�erential equations, the full kinetics of the model can
only be obtained from stochastic simulations. However,
adequate sampling of any rare events in the model can
be a challenge for stochastic simulations. In this tutorial,
we will use WESTPA to orchestrate BNGL simulations that
are propagated by the BNG software package. As men-
tioned above, WESTPA is interoperable with any stochastic
dynamics engine, including the BNG software.

Learning objectives. Wewill simulate a BNGL rule-based
model of a two-gene switch motif that exhibits mutually ex-
clusive activation and inhibition. Speci�c learning objectives
include:

1. How to install the WESTPA/BNG plugin and set up a
WESTPA/BNG simulation;

2. How to apply adaptive Voronoi binning, which can be
used for both non-spatial and molecular systems;

3. How to runbasic analyses tailored for high-dimensional
WESTPA/BNG simulations.

7.10.2 Prerequisites
Users should have a working knowledge of BNGL models
(http://bionetgen.org) and the WESTPA 2.0 software package.
This tutorial will make use of the WEBNG Python package,
which facilitates the integration of WESTPA with the BNG
software and requires Python 3.8 or later versions. To install
the WEBNG package:

$ git clone
https://github.com/ASinanSaglam/webng.git

$ python -m pip install -e .

For common installation issues, see https://webng.
readthedocs.io/en/latest/quickstart.html#installation. Al-
ternatively the user can use a Docker container where
the environment is already prepared correctly using the
command:

$ docker pull
ghcr.io/westpa/westpa2_tutorials:webng

Note that this requires a Docker installation, for
more information see Docker documentation (https:
//docs.docker.com/get-docker). Once the docker image
is downloaded, you can run the image with:

$ docker run -it --entrypoint /bin/bash
ghcr.io/westpa/westpa2_tutorials:webng

Computational requirements. This tutorial requires
~500 MB disk space. The simulation takes at most 1
hour of wall-clock time using a single CPU core of a
3.2GHz Intel Core i7 processor. We recommend using
the WEBNG package on a Unix system. While the pack-
age has not been tested on Windows systems, one
can try using the Windows subsystem for Linux (WSL;
https://docs.microsoft.com/en-us/windows/wsl/install).

7.10.3 Setting up the simulation
The model. Our BNGL model consists of two genes, gene A
and gene B, that are transcribed to produce proteins A and
B, respectively (Figure 23). Protein A binds to the gene A pro-
moter site to activate protein A production and to the gene
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Figure 23. Two-gene network of exclusive mutual inhibition and self
activation. Blue squares represent genes and orange circles repre-
sent proteins.

B promoter site to repress B production. Likewise, protein B
activates gene B and represses gene A. The two most popu-
lated states therefore consist of either (1) high quantities of
protein A and low quantities of protein B, or (2) high quanti-
ties of protein B and low quantities of protein A. Transitions
between these two states are rare events.

Preparing the simulation environment. For this por-
tion of the tutorial, you can use either your own BNGLmodel
or the ExMISA model described above, which is the default
WEBNG example. WEBNG uses a YAML con�guration �le to
set up a WESTPA folder. The WEBNG template subcommand
gives you a YAML con�g �le with the same defaults which
you can then edit and use to generate the WESTPA simula-
tion folder.

If you are using the default example, the command to gen-
erate the template is the following:

$ webng template -o mysim.yaml

If you are using your own model �le called exmisa.bngl,
the command is:

$ webng template -i exmisa.bngl -o mysim.yaml

This command will generate the YAML �le, mysim.yaml.
For the full set of con�guration options, see https:
//webng.readthedocs.io/en/latest/config.html. Path op-
tions are speci�ed automatically using the libraries that are
already installed. Propagator options will also be automat-
ically populated according to the BNGL model. By default,
this simulation setup will use an adaptive Voronoi binning
scheme [16] due to the fact that rectilinear binning is not
feasible for high-dimensional BNGmodels. The center_freq
option sets the frequency of Voronoi bin addition, in units
of WE iterations, max_centers is the maximum number of
Voronoi bins that will be added, traj_per_bin is the number
of trajectory walkers per Voronoi bin, and max_iter option
sets the maximum number of WE iterations. All of these
options can be modi�ed after the simulation folder is set

up (see https://github.com/westpa/westpa/wiki/User-Guide#
Setting_Up_a_WESTPA_Simulation).

By default, the stochastic simulator is set to libroadrunner
(http://libroadrunner.org). To use this simulator, we must �rst
convert the BNGL model to a systems biology markup lan-
guage (SBML) model. Next, we use the WEBNG software to
compile the SBML model into a Python object, which allows
for e�cient simulation of the model. WEBNG also supports
the use of the BNG simulation package. However, the use of
this packagewill result in higher �le I/O operations. Any other
stochastic simulator will require the use of a customWESTPA
propagator.

7.10.4 Running the WE simulation
To run the simulation, we �rst need to generate a WESTPA
folder using the YAML con�guration �le generated in the pre-
vious step:

$ webng setup --opts mysim.yaml

The above command will use the path option sim_name as
the WESTPA folder, which is automatically set to the model
name in the folder you ran the template command. Next, we
initialize the simulation and run the model in a serial mode
using a single CPU:

$ cd exmisa
$ ./init.sh
$ w_run --serial

To run the model in a parallel mode using multiple CPU
cores, please refer to WESTPA documentation for options
available with the w_run command-line tool. The resulting
simulation can be found in the exmisa/ folder directory.

7.10.5 Analyzing the WE simulation
To analyze the simulation, we will use the WEBNG package.
To begin, we edit the YAML �le under the folder that contains
the con�guration �le mysim.yaml, setting analyses.enable,
analyses.average.enable, and analyses.evolution.enable
to True; and analyses.average.first-iter to the simulation
half point (default: 50). To run the analysis, we use the follow-
ing command:

$ webng analysis --opts mysim.yaml

The above command will generate an analysis/ folder in
the simulation folder, run the analyses, and generate associ-
ated �gures.

By default, average.png provides an N⇥N matrix of plots
of the average two-dimensional probability distributions
of each observable (dimension) of the WE progress coor-
dinate (Figure 24) and each of the other observables. The
evolution.png �le gives the time-evolution (number of WE
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Figure 24. Probability distributions as a function of the two-
dimensional progress coordinate (o�-diagonal) and each dimension
of the progress coordinate (diagonal). Axes A and B show the quan-
tity of each protein in the two-gene model. Grey lines in each o�-
diagonal plot delineate adaptive Voronoi bins used during the WE
simulation.

iterations) of probability distributions for each observable
(Figure 25) and can be used to assess the convergence of
simulation, making modi�cations to the binning scheme if
necessary.

The average two-dimensional probability distributions re-
veal a total of four states: a low A/low B state, the symmetric
low A/high B state and high A/low B states, and a high A/high
B state (Figure 24). The fourth state is the least probable
while the �rst three states are all highly probable. Transi-
tions from low A/high B to high A/low B states are di�cult
to sample and transitions from low A/high B to high A/high B
states are evenmore di�cult to sample. TheWE algorithm al-
lows the user to sample these states and transitions between
the states. All analyses should be based on the portion of
the simulation that is done evolving. If the simulation is still
evolving, we recommend extending the simulation until the
observables of interest are reasonably converged.

7.10.6 Conclusion
As demonstrated by this tutorial, the WEBNG Python pack-
age provides a framework for applying the WESTPA 2.0
software package to BNGL models with minimal user input
and simpli�ed installation. The adaptive Voronoi binning
scheme enables e�cient application of high-dimensional
progress coordinates for both molecular and non-spatial
systems. Voronoi bins can be e�ective for exploratory simu-
lations, placing bins as far away as possible from previous
bins to inform the creation of a custom binning scheme for
sampling the rare-event process of interest. However, such
bins may not be as e�ective for surmounting barriers (e.g.,
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Figure 25. Probability distributions of each observable (A or B) of the
two-dimensional progress coordinate as a function of WE iteration.
The striped nature of the distributions is due to the fact that A and B
are discrete as opposed to continuous observables.

compared to the MAB scheme [19]), as demonstrated by
the probability distribution as a function of the WE progress
coordinate where many bins near the edges of the con�gu-
rational space are occupied, but are not of interest. Future
work withWEBNGwill includemore detailed analysis options
such as automated clustering, generation of networks from
bins and clusters, and the estimation of rate constants for
transitions between the clusters.
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PROTOCOL FOR RUNNING WE SIMULATIONS

I Ready.

(1) Organize �les into directories. The initial coordinate �le(s) should go in bstates and the topology and MD input
�les should go in common_files. In addition, any scripts needed to calculate the progress coordinate should be
placed in common_files. (Section 7.1.3)

(2) Prepare the system environment. Edit env.sh accordingly for your system environment, i.e. source any �les
needed to set up the dynamics engine and set variables equal to the full paths of programs (see Section 7.1.3).

(3) Specify WE parameters. In the west.cfg �le, specify the number of WE iterations that will be carried out, progress
coordinate, number of progress coordinate values that will be recorded per iteration, bin spacing, and number of
trajectories per bin (see Section 4; Table 2). If a nested coordinate is desired, the bin spacing should be de�ned
in system.py (See point 4 in Section 4). The ⌧ value is speci�ed in the main input �le for dynamics propagation (in
common_files/) through the total number of MD steps.

(4) Set up calculations of auxiliary data. Decide if you want to store any data that is auxiliary to the progress coordi-
nate and add the corresponding datasets to west.cfg.

(5) Specify whether to run equilibrium or steady-state WE. Edit the init.sh �le to include $TSTATE_ARGS if you plan
to run steady-state WE. Also, edit tstate.file to include the target state progress coordinate value(s). (Section
7.1.3)

(6) Calculate your initial progress coordinate value(s). You can either set us this calculation manually, placing the
contents in pcoord.init (see Basic Tutorial 7.1), or edit get_pcoord.sh to calculate it (see Intermediate Tutorial
7.2) before those values are passed to WESTPA. (Section 7.1.3)

II Set.

(1) Initialize the WE simulation. This is done by running init.sh.
(2) Prepare to run the WE simulation. Edit runseg.sh to run dynamics, calculate the progress coordinate and store

any auxiliary data. (Section 7.1.4)

III Go!

(1) Run theWE simulation. To execute w_run on your cluster, run an appropriate submission script (e.g., using Slurm).
(2) Monitor simulation progress. Backup your west.h5 �le and use w_pdist and plothist to calculate and visualize

probability distributions (Section 7.1.6). If your WE simulation is not making any bin-to-bin transitions stop the
simulation and restart the simulation with a shorter ⌧ , adjustments in the progress coordinate, and/or adjustments
in bin spacings (Tutorial 7.2.4).

(3) Assess simulation convergence. Plot the average �ux into the target state (or other observable of interest) as a
function of WE iteration (Section 7.1.7).

IV Analyze.

(1) Progress coordinate and auxiliary data. Progress coordinate and auxiliary datasets are stored in the west.h5 �le
and can be extracted using hdfview or the h5py Python package. The w_ipa tool can be used to calculate kinetic
observables (e.g. rate constants), which are outputted to the assign.h5 and direct.h5 files. (Section 7.4.2) To
plot a dataset, use a plotting tool such as matplotlib.

(2) Visualize a successful trajectory. Start by running w_succ to obtain the WE iteration and segment of the �nal
conformation from the successful trajectory (Section 7.1.6). Then, run w_trace to obtain the series of conformations
in the trajectory by tracing backwards from the �nal to initial conformations of the trajectory. The resulting series
of conformations can then be visualized using a software package such as VMD. (Section 7.1.7)
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CHECKLIST FOR TROUBLESHOOTING WE SIMULATIONS

Files for Dynamics Propagation

⇤ Have you set up all of the �les for propagating the dynamics using your dynamics engine (e.g. Amber, OpenMM)?

System Con�guration (west.cfg �le)

⇤ Is pcoord_len set to the number of data points that corresponds to the frequency with which the dynamics engine
outputs the progress coordinate? Note: Many MD engines (e.g. Gromacs) output the initial point (i.e. zero).

⇤ Are the bins in the expected positions? You can easily view the positions of the bins using a Python interpreter.

Initializing the simulation (init.sh �le)

⇤ Is the directory structure for the trajectory output �les consistent with speci�cations in the west.cfg �le?
⇤ Are the basis (bstate) states, and if applicable, target states (tstate), speci�ed correctly?

Calculating the progress coordinate for initial states (get_pcoord.sh �le)

⇤ Ensure that the procedure to extract the progress coordinate works by calculating your progress coordinate manu-
ally for one (or more) basis state �les.

⇤ Examine structure(s) of the initial states using visualization software (e.g. VMD, PyMOL) to verify that the structure(s)
match the progress coordinate in the H5 �le

Segment implementation (runseg.sh)

⇤ Ensure that the progress coordinate is being calculated correctly by manually running a single dynamics segment
of length ⌧ for a single trajectory walker. Check that your analysis pipeline works using the output from the single
dynamics segment.

⇤ Are you feeding the information (e.g., coordinates, velocities) that is required for continuing trajectories?
⇤ Are you including the parent coordinate �le at the beginning of your analysis?
⇤ Are you imaging the trajectory before calculating the progress coordinate? Or equivalently using a function that can

image your trajectory on-the-�y?
⇤ Check the seg_log �le to further ensure correct calculation of the progress coordinate.
⇤ Ensure you are saving everything you might need to restart your simulation later on, including random seeds for

stochastic dynamics as auxiliary data in the H5 �le.

Storage

⇤ WESTPA simulations can generate a lot of data! Make sure you have enough space before starting the simulation.
⇤ Do you have a plan for backing up the simulation? Consider using tar to compress �les from past iterations for

easier backup. Keep �le sizes =<300 GB.
⇤ For all-atom explicit water simulations, it’s a good idea to save a separate copy of your trajectories without water

coordinates for more e�cient analysis.

Simulation Progress (west.h5 �le)

⇤ Check that the �rst WE iteration has been initialized by typing h5ls west.h5/iterations into the command line.
You should see iter_00000001 in the output.

⇤ In addition, the progress coordinate should be initialized. Check this by using the command
h5ls -d west.h5/iterations/iter_00000001/pcoord. If all is well, the output will show that the array is populated
by zeros and the �rst point is the value calculated by get_pcoord.sh.

Analysis

⇤ If you are running analysis on a shared computing resource, use the --serial �ag with the analysis tool. Otherwise,
many of the included tools default to parallel mode (e.g., w_assign), which will create as many Python threads as
there are CPU cores available on your resource.
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