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As Compton x-ray and gamma-ray sources become more prevalent, to understand their performance in a
precise way, it becomes important to be able to compute the distribution of scattered photons precisely. For
example, codes have been developed at Old Dominion University which were used to understand the
performance of the Dresden Compton Source in detail. An ideal model would (i) include the full Compton
effect frequency relations between incident and scattered photons, (ii) allow the field strength to be large
enough that nonlinear effects are captured, and (iii) allow the effects of electron beam emittance to be
introduced and studied. Various authors have considered various pieces of this problem, but until now, no
analytical or numerical procedure is known to us that captures these three effects simultaneously. Here we
present a model for spectrum calculations which simultaneously cover these aspects. The model is
compared to a published full quantum mechanical calculation and found to agree for a case where both full
Compton effect and nonlinear field strength are present. We use this model to investigate chirping
prescriptions to mitigate ponderomotive broadening.
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I. INTRODUCTION

Inverse Compton sources (ICS) are emerging as pre-
ferred sources of radiation in the intermediate regimes
either not covered by other high-brilliance sources (syn-
chrotron light sources and free electron lasers) or when
applications require compactness and portability so that
they can be used in hospitals, labs, universities, homeland
security, and other fields [1–3]. Because of their superior
spectral densities and narrow bandwidths, ICS are being
used as γ-ray sources in nuclear photonics, photonuclear,
and fundamental physics [4–7]. Optimizing the perfor-
mance of these ICS requires accurate theoretical under-
standing and their computational implementation for all
regimes of operation including the nonlinear regime at high
incident laser field intensity and the so-called Compton
regime where quantum mechanical electron recoil is fully
accounted for.
One approach to perform such calculations is with the

code CAIN [8], in which both the electron beam and photon

beam are treated as ensembles of particles. The resulting
scattered distribution is computed quantum mechanically
by integrating over the relevant distributions. An advantage
of such an approach is that nonlinear (due to the high laser
field intensity) effects on the scattered distribution can be
captured in the calculation. However, as discussed in
Refs. [9,10], by virtue of CAIN’s Monte Carlo algorithm
and the way it simulates physical effects, the rare events in
nature will be as rare in the simulation. This means that the
statistics in situations where low scattered photon counts
are expected—for example, in the tails of the distribution or
at very narrow apertures—will suffer from poor statistics.
In contrast, the new model introduced here computes
scattering probabilities—the likelihood of scattered photons
to be found in each portion of the spectrum, leading to the
same accuracy in each portion of the spectrum. Additionally,
CAIN simulations cannot feature different laser shapes, nor
can they capture arbitrary laser chirping. These features are
available in the new model presented here.
Early analytical and numerical formalisms for a single-

electron back-scattering off a high-intensity laser field
modeled by a 1D plane wave in which electron recoil is
neglected (nonlinear Thomson regime) were developed for
a constant laser envelope [11] and then for general non-
constant envelope shapes in Refs. [12–15]. The study of
nonconstant envelope shapes led to the discovery of
ponderomotive spectral broadening which is so deleterious
that most ICS either remain at low laser intensities or pay a
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steep price to operate at a small fraction of the physically
possible peak spectral output [14]. This ponderomotive
broadening can be almost completely corrected and elim-
inated by suitable frequency modulation (FM; chirping)
of the incident laser pulse in both the nonlinear Thomson
regime (at low-to-medium electron energies when elec-
tron recoil can be neglected) [16–19] and the nonlinear
Compton regime (at high electron energies when electron
recoil is accounted for) [20,21]. While the treatment of
the scattered spectra in the Compton regime is semi-
classical, it perfectly agrees with QED derivation presented
in Refs. [21,22].

The novel calculation presented in this work has been
developed into a computational model that simulates ICS
spectra incident upon a sensor aperture of arbitrary size and
placement. This new model, NLCS, captures both the full
nonlinear effects indicative of a high-intensity laser pulse,
i.e., ponderomotive broadening, the onset of harmonics and
subsidiary peaks, etc., and also the Compton effects that
arise from electron recoil. Earlier computational models
have used an application of Larmor’s radiation formula

combined with a Fourier to transform to develop great
insight into the scaling laws of ICS spectra; these previous
models do not, however, capture nonlinear and Compton
effects simultaneously. These earlier calculations are also
far less general: the range of parameters for which they
are valid is quite limited [23,24]. Other semiclassical
calculations have been developed to simulate nonlinear
Compton spectra by using the Baër-Katkov (BK) approxi-
mation [25–27] or the Wentzel-Kramers-Brillouin (WKB)
model [28,29]. The particle-in-cell (PIC) method has
been used to introduce QED corrections to classical
calculations [30,31]. Fully quantum calculations have been
also derived from nonperturbative QED utilizing Volkov
states [21,22,32]. These approaches have produced several
powerful computational models to simulate emitted radi-
ation from synchrotrons, laser-plasma accelerators, and
ICS. The model that we present here, however, stands
out from other ICS simulations due to the generalized
treatment of both the electron beam and the laser pulse:
each particle is treated with its own six-dimensional
coordinates and the incident laser envelope may have

TABLE I. Comparison of the physics captured by prominent photon-electron scattering calculations. The symbol✓ � indicates that the
calculation accounts for the angular distribution of the scattered photon energy without demonstrating the aperture effect on the spectral
distribution.

Scattering
calculation

Compton
recoil

Nonlinear
effects Emittance

Transverse laser
size pulse

Ultra-short
pulse Chirping

ICS spectrum
through aperture

NLCS ✓ ✓ ✓ ✓ ✓ ✓ ✓
CAIN ✓ ✓ ✓ ✓ ✓ × ✓
SENSE × ✓ ✓ ✓ ✓ ✓ ✓
NLTX × ✓ ✓ ✓ ✓ ✓ ✓
ICCS ✓ × ✓ ✓ ✓ ✓ ✓
Esarey [11] × ✓ ✓ × ✓ × ✓ �
Hartemann [12] × ✓ × ✓ ✓ × ×
Hartemann [13] × ✓ × ✓ ✓ × ×
Krafft [14] × ✓ × × ✓ × ×
Brau [15] × ✓ × × ✓ × ×
Gheb [16] × ✓ × × × ✓ ×
Terzić [17] × ✓ × × ✓ ✓ ×
Rykovanov [18] × ✓ × × ✓ ✓ ×
Terzić [19] × ✓ × × ✓ ✓ ×
Terzić [20] ✓ ✓ ✓ × ✓ ✓ ×
Maroli [34] ✓ ✓ × × ✓ ✓ ✓
Seipt [21] ✓ ✓ × × ✓ ✓ ✓
Seipt [22] ✓ ✓ × × ✓ × ×
Albert [23] ✓ ✓ ✓ ✓ × × ×
Hartemann [24] ✓ ✓ ✓ × ✓ × ✓ �
Ridgers [25] ✓ ✓ × × × × ×
Artru [26] ✓ ✓ × × × × ×
Li [27] ✓ ✓ × × × × ×
Piazza [28] ✓ ✓ × × × × ×
Piazza [29] ✓ ✓ × × × × ×
Gonoskov [30] × ✓ × × × × ×
Vranic [31] × ✓ × × × × ×
Mackenroth [32] ✓ ✓ × × × × ×
Mackenroth [35] × ✓ × ✓ × × ✓ �
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any envelope shape. Furthermore, the incident laser pulse
can optionally be programmed to simulate any FM (chirp-
ing) function to correct for ponderomotive broadening.
Table I shows a comparison of ICS models that are similar
to NLCS, including our earlier nonlinear Thomson codes
SENSE [10] and NLTX [33] and linear Compton code ICCS.
Our model applies in the regime where the laser pulse
length is short compared to the Rayleigh range of the laser
focus, so diffraction effects are negligible.
The paper is organized as follows: In Sec. II, we present

the equations underpinning our new nonlinear inverse
Compton scattering model, including the recovery of linear
Compton and nonlinear Thomson as limiting cases. In
Sec. III, we use the code based on the new formalism to
compute spectra of ICS operating in the nonlinear Compton
regime; the advantages afforded by longitudinal laser
chirping are clearly illustrated. Finally, in Sec. IV, we
conclude.

II. NONLINEAR INVERSE COMPTON
SCATTERING MODEL

A step toward simulating a realistic ICS was taken after
generalizing these approaches for an on-axis single-elec-
tron backscattering into codes for the computation of
scattered spectra from an entire electron distribution with
an energy spread and emittance into a finite aperture for
the nonlinear Thomson regime [10,33,36] and for the
linear Compton regime [9,37]. These codes were shown
to be in excellent agreement with other codes and exper-
imental results, such as those from the Dresden Compton
Source [10]. Here we present a formalism that unifies and
subsumes these two formalisms—nonlinear Thomson and
linear Compton—into a heretofore unexplored nonlinear
Compton regime in which nonlinearities arise due to both
high laser field intensities and electron recoil. Including
electron emittance and electron energy spread effects in
strong-field QED spectral calculations [22], if executed,
could provide an alternate means of calculating the new
results presented here.
In order to allow the widest applicability of our results,

we allow completely arbitrary incident electron and linearly
or circularly polarized photon conditions. First, the model
is constructed out of plane waves; later, we indicate
modifications that can successfully capture effects such
as transversely varying intensities. Our notation will follow
closely that found in Ref. [37] on linear Compton scatter-
ing. First define notation: all quantities in this paper are in
the lab frame. The incident plane-wave vector potential is
AðξÞε with ξ ¼ ðct − k̂ · xÞ and with ε · k ¼ 0. The incident
laser propagation four-vector is thus ωð1; k̂Þ with ω the
frequency in the incident photon beam. The relativistic
four-momentum of the individual electron is ðγ; γβÞmc.

Using standard conventions, the scattered propagation four-
vector is ω0ð1; k̂0Þ with ω0 the scattered frequency and
assuming the scattered radiation polarization vector is ε0.
As in Ref. [37], the general formula relating the scattered
frequency to the incident frequency including the full
Compton effect is

ω0ðωÞ ¼ ωð1 − β · k̂Þ
1 − β · k̂0 þ ℏω

γmec2
ð1 − k̂ · k̂0Þ ; ð1Þ

with inverse relation

ωðω0Þ ¼ ω0ð1 − β · k̂0Þ
1 − β · k̂ − ℏω0

γmec2
ð1 − k̂ · k̂0Þ : ð2Þ

For linear polarization, the scattered energy distribution for
linear Compton scattering is

d2E0

dω0dΩ
¼ ϵ0

2πc
jẼðωðω0Þ=cÞj2 dσ

dΩ

�
ω0

ω

dω
dω0

�
; ð3Þ

where E0 is the scattered energy, ϵ0 is the permittivity of
free space, and ẼðkÞ ¼ −ωÃðkÞ is the spatial Fourier
transform of the electric field; where the scattering cross
section into the scattered polarization ε0 is the Klein-
Nishina cross section

dσ
dΩ

¼ r2e
γ2ð1− β · k̂Þ2

�
ω0

ω

�
2
�
ω0ð1− β · k̂0Þ
4ωð1− β · k̂Þ þ

ωð1− β · k̂Þ
4ω0ð1− β · k̂0Þ

−
1

2
þ ½εb · ε0b�2

�
; ð4Þ

and re is the classical electron radius; and where

εb · ε0b ¼ ε · ε0 þ ðβ · εÞðk̂ · ε0Þ
ð1 − β · k̂Þ þ ðβ · ε0Þðk̂0 · εÞ

ð1 − β · k̂0Þ

þ ðβ · εÞðβ · ε0Þ
ð1 − β · k̂Þð1 − β · k̂0Þ ðk̂ · k̂

0 − 1Þ: ð5Þ

Equation (5) does not appear explicitly in Ref. [37] but may
be derived directly by computing k̂ · k̂0 − 1 using Eq. (15)
and inserting in Eq. (17) or by expanding the four-scalar
products in Eq. (18) there.
Similarly, calculations of nonlinear Thomson spectra [14]

have been recently completed with arbitrary electron and
incident photon initial conditions in Ref. [33]. The result for
the spectrum into the general polarization ε0, after converting
to notation here, is
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d2E0
ε0

dω0dΩ
¼ e2ω02

32π3ϵ0c3

����D1ðω00Þðε · ε0Þ þD1ðω00Þ β · ε

ð1 − β · k̂Þ ðk̂ · ε
0Þ −D2ðω00Þðk̂ · ε0Þ

−
½ðβ · εÞð1 − k̂ · k̂0Þ=ð1 − β · k̂Þ − ðk̂0 · εÞ�D1ðω00Þ − ð1 − k̂ · k̂0ÞD2ðω00Þ

1 − β · k̂0
β · ε0

����
2

; ð6Þ

where

D1ðω0; θ;φÞ ¼ 1

γð1 − β · k̂Þ

Z
Ãðξ0ÞeiΦðξ0Þdξ0

D2ðω0; θ;φÞ ¼ 1

γ2ð1 − β · k̂Þ2
Z

Ã2ðξ0Þ
2

eiΦðξ0Þdξ0

Φðξ0Þ ¼ ω0

c

0
BBBBBBBBB@

ξ0 ð1−β·k̂
0Þ

ð1−β·k̂Þ

−
�

β·ε
ð1−β·k̂Þ ð1 − k̂ · k̂0Þ − k̂0 · ε

� Zξ0

−∞

Ãðξ00Þ
γð1−β·k̂Þ dξ

00

þð1 − k̂ · k̂0Þ
Zξ0

−∞

Ã2ðξ00Þ
2γ2ð1 − β · k̂Þ2 dξ

00

1
CCCCCCCCCA
; ð7Þ

Ã ¼ qA=mc is the normalized vector potential, and ω00 is
defined in a moment. Examining the terms in Eq. (6) closely,
notice that the terms proportional to D1 within the complex
square exactly correspond to the elements of the linear cross
section on the right-hand side of Eq. (5). One can make a
general nonlinear Compton theory by replacing εb · ε0b in the
linear Compton result with the full nonlinear expressions in
Eq. (6), as long as one can make sure the Ẽ and D̃1 can be
made to agree for a suitable choice of arguments.
Two approaches can be used to determine the proper

argument to place in the D functions. The first is simply to

require that the general theory reduce the linear Compton
result at low field strengths, as is verified below. The
second justification, more in keeping with the original
derivation of the linear Compton theory [37], is to deter-
mine expressions for the D functions as a function of
incident frequency, and as in the linear Compton theory,
simply replace all instances of ω in the formula with ωðω0Þ
as given in Eq. (2).
In terms of the incident frequency, theD functions within

nonlinear Thomson theory become

D1ðω; θ;φÞ ¼
1

γð1 − β · k̂Þ

Z
Ãðξ0ÞeiΦðξ0Þdξ0

D2ðω; θ;φÞ ¼
1

γ2ð1 − β · k̂Þ2
Z

Ã2ðξ0Þ
2

eiΦðξ0Þdξ0

Φðξ0Þ ¼ ω

c

0
BBBBBBBBB@

ξ0

− ð1−β·k̂Þ
ð1−β·k̂0Þ

�
β·ε

ð1−β·k̂Þ ð1 − k̂ · k̂0Þ − k̂0 · ε
� Zξ0

−∞

Ãðξ00Þ
γð1 − β · k̂Þ dξ

00

þ ð1−β·k̂Þ
ð1−β·k̂0Þ ð1 − k̂ · k̂0Þ

Zξ0

−∞

Ã2ðξ00Þ
2γ2ð1 − β · k̂Þ2 dξ

00

1
CCCCCCCCCA
: ð8Þ

Replacing ω by ωðω0Þ and re-expressing the phase integral in terms of the original expression, one obtains
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Φðξ0Þ ¼ ωðω0Þ
c

ð1 − β · k̂Þ
ð1 − β · k̂0Þ

0
BBBBBBBBBB@

ξ0 ð1−β·k̂
0Þ

ð1−β·k̂Þ

−
�

β·ε
ð1−β·k̂Þ ð1 − k̂ · k̂0Þ − k̂0 · ε

� Zξ0

−∞

Ãðξ00Þ
γð1 − β · k̂Þ dξ

00

þð1 − k̂ · k̂0Þ
Zξ0

−∞

Ã2ðξ00Þ
2γ2ð1 − β · k̂Þ2 dξ

00

1
CCCCCCCCCCA
: ð9Þ

From this expression, the modification for constructing the general nonlinear Compton theory follows. The input
frequencies to theD functions should be Compton shifted from the input frequencies in the Thomson nonlinear theory [20].
From Eqs. (2) and (9), the general shift formula is

ω00 ¼ ωð1 − β · k̂Þ
1 − β · k̂0

¼ ω0ð1 − β · k̂Þ
1 − β · k̂ − ℏω0

γmec2
ð1 − k̂ · k̂0Þ ; ð10Þ

with the shifted frequency being placed into the argument of the phase integrals when evaluating theD functions. It reduces
to the Thomson result in the Thomson limit as ω00 → ω0 when ℏ ¼ 0 in Eq. (10).
To summarize, the energy scattered by a single electron in the new nonlinear Compton scattering model is

d2E0
tot

dω0dΩ
¼

�
e2ω02

32π3ϵ0c3
jD1ðω00Þj2

�
ω0ð1 − β · k̂0Þ
2ωð1 − β · k̂Þ þ

ωð1 − β · k̂Þ
2ω0ð1 − β · k̂0Þ − 1

�
þ

d2E0
ε0⊥

dω0dΩ
þ

d2E0
ε0k

dω0dΩ

��
ω0

ω

dω
dω0

�
: ð11Þ

The total scattered energy is obtained by incoherently
summing this quantity over all the electrons in the beam.
The first term in Eq. (11) gives the quantum correction to
the scattering cross section in going from Thomson to
Compton scattering. The second and third terms quantify
the nonlinear scattering into two suitable transverse polar-
izations indicated here by E0

ε0⊥
and E0

ε0k
.

A fairly thorough discussion of the new model in the
restricted case of perfect backscattering (the electron and
incident photons perfectly antialigned), and with a more
extensive discussion of frequency shifts and harmonic
frequency values, appears in a recent publication [20].

A. Recovering appropriate limits

By its construction, the general model in Eq. (11) limits
properly to the linear Compton theory and nonlinear
Thomson theory. Automatically, D2 ≪ D1 in the linear
(small field strength) limit with jÃj ≪ 1. When Ã integrates
into something small, D1 reduces to the Fourier transform
of Ã. Specifically,

D1ðω00Þ → Ãðω=cÞ
γð1 − β · k̂Þ ¼ −

qẼðω=cÞ
mcωγð1 − β · k̂Þ : ð12Þ

In this circumstance, thegeneral calculation leads back exactly
to Eq. (3). This recovery of the nonlinear Thomson energy
density spectrum is shown explicitly in Appendix A.

For the Thomson limit ω00 ¼ ω0 ¼ ωð1 − β · k̂Þ=
ð1 − β · k̂0Þ, the first term in Eq. (11) vanishes, and�

ω0

ω

dω
dω0

�
¼ 1: ð13Þ

Thus, the general calculation in Eq. (11) exactly reproduces
the results in Refs. [14,37] that it was built from. This
recovery of the linear Compton energy density spectrum is
shown explicitly in Appendix B.

B. Nonzero crossing angle

In the case of near-backscattering (the incident laser is
aligned within an angle of 1=γ of perfect backscattering), the
following generalization can be used to include a transverse
dependence of the incident laser field. In computing, the
scattering simply use Ãðx; yÞ to compute the D functions,
where ðx; yÞ is the transverse offset of the electron as it passes
the interaction point of the collision. Because the electron
angles within the beam are small, the electron moves
transversely a negligible amount as it passes through the
laser pulse. On the other hand, for example, in 90° scattering,
such a simple approach must be corrected because the
electron moves by a significant amount transversely during
the collision. The calculation of the D function must then
include the change in the amplitude of Ã as the electron
moves through the laser pulse. This complication adds an
additional integration to the spectrum calculation, which is
not needed in the cases reported in this paper.
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C. Capturing the transverse laser pulse effects

The finite transverse extent of the laser pulse is modeled
as detailed in Ref. [10]. Here we briefly summarize it for
completeness.
The effective strength of the laser field, which an electron

experiences, depends on the path it takes through the laser
pulse. An on-axis electron experiences the maxi-
mum strength, a0, while others “see” an effective strength
attenuated by the amount commensurate to the electron
closest transverse approach ðx; yÞ to the center of the pulse:
aeff ¼ a0 expð−x2=σ2l;x − y2=σ2l;yÞ, where σl;x and σl;y are
horizontal and vertical rms size of the laser pulse, respec-
tively. For each particle sampling the electron beam distri-
bution, an inverse Compton-scattered spectrum is computed
using the formalism that uses a 1D plane-wave model of the
laser pulse, described earlier in this section. The transverse
extent of the laser pulse is then captured by summing all of
the computed spectra weighed by their effective strength of
the laser field a2eff . The effects of the finite transversewaist of

the laser pulse are shown in Fig. 1: as the relative size of the
laser waist compared to the electron beam waist reduces, the
peak spectral density drops, the structure smooths out and
FM becomes less effective [10].

D. Frequency modulation function

Originally proposed by Ghebregziabher et al. [16],
modulating the frequency (chirping) of the incident laser
pulse increases brilliance in the scattered spectrum. In the
plane-wave approximation, this chirping is defined by the
function fðξÞ which modifies the phase of the normalized
incident laser pulse vector potential

ÃðξÞ ¼ eAðξÞ
mc

¼ aðξÞ cos
�
2πξfðξÞ

λ

�
; ð14Þ

where e is the electron charge, ξ ¼ zþ ct is the coordinate
along the laser pulse, aðξÞ is the envelope of the vector
potential, and λ is the wavelength of the incident photons.
The optimal solution for any envelope shape in the plane-
wave approximation may be found through the integral [17]

fðξÞ ¼ 1

1þ a20=2

�
1þ

R ξ
0 a

2ðξ0Þdξ0
2ξ

�
: ð15Þ

Optimized chirping prescriptions have also been developed
for incident laser fields outside of the plane-wave approxi-
mation [10,38]. The shapes of exact FM functions for
various laser envelopes are derived in Ref. [36] and plotted
in Ref. [20]. Looking toward laser chirping shapes that are
more easily realizable in the lab, recently, it has been shown
that a simple saw-tooth chirping prescription leads to near-
perfect recovery of narrow bandwidth and increased peak
spectral density to within a few percent of the perfect
compensation [33]. Even simpler (and more likely to be
implemented experimentally), it has been shown recently
that a substantial improvement in the peak spectral density
in ICS can be achieved with just a linear chirp [39]. The
computational models in the new code can simulate any
general chirping prescription fðξÞ.

E. Circular polarization

The generalization to obtain nonlinear Compton scatter-
ing of a circularly polarized incident laser pulse can be
found using the expression

d2E0

dω0dΩ
¼ e2ω02

32π3ϵ0c3

2
666664

�
ω0ð1−β·k̂0Þ
2ωð1−β·k̂Þ þ

ωð1−β·k̂Þ
2ω0ð1−β·k̂0Þ − 1

�
jD1ðω00Þj2

þjD1ðω00Þ β·ε
ð1−β·k̂ÞKþD1ðω00ÞE −D2ðω00ÞK

− ½ðβ·εÞð1−k̂·k̂0Þ−ð1−β·k̂Þðk̂0·εÞ�D1ðω00Þ−ð1−β·k̂Þð1−k̂·k̂0ÞD2ðω00Þ
1−β·k̂0

Pj2

3
777775
×

�
ω0

ω

dω
dω0

�
; ð16Þ

FIG. 1. Radiation spectra computed with our NLCS new code as
the relative size of the laser waist (σl) compared to the electron
beam waist (σe) is varied: significantly larger than (σl ¼ 10σe;
solid lines); somewhat larger than (σl ¼ 2σe; dashed lines); and
equal to (σl ¼ σe; dotted lines) the electron beam waist. Un-
compensated spectrum (no FM) shown in red lines and optimally
compensated (FM) shown in black lines. The red and black
crosses come from the top panel of Fig. 2 in Ref. [21]. Spectra
shown are for a linearly polarized 800-nm laser with a pulse
duration of 21 fs and a0 ¼ 1 on a Gaussian-distributed electron
beam with a mean energy of 51 GeV.
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where K ¼ ðk̂0 · k̂Þk̂0 − k̂, E ¼ ðk̂0 · εÞk̂0 − ε, and

P ¼ ðk̂0 · pÞk̂0 − pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2 þ  p ·  p

p
−  p · k̂

¼ ðk̂0 · βÞk̂0 − β

ð1 − β · k̂Þ : ð17Þ

Once the integrals are computed to obtain theD functions,
the various terms should be summed as indicated to form a
vector quantity. This vector is dotted with its complex
conjugate to obtain the final spectrum. One caution when
calculating the circular polarized case, care must be taken to
properly calculate the phases in the integrals when the D
functions are evaluated. For example, when evaluating D2

and the phases in the integrals, thevector potential squaredno
longer oscillates at the second harmonic frequency. The
resulting harmonic generation is therefore entirely different
between the linear polarization and circular polarization
cases andmust be calculatedwith a somewhat different code.
The formulas presented here are only for the perfectly

polarized case. The model reported can be extended to an
elliptically polarized laser beam. However, the expressions
for the elliptically polarized case are more complicated and
presently unknown.

F. NLCS code

The new code NLCS (Nonlinear Compton Spectra)
implements the model described above. NLCS is a gener-
alization of our nonlinear Thomson codes SENSE [10] and
NLTX [33] to the nonlinear Compton regime. It computes
the spectral energy density d2E0=ðdω0dΩÞ [as well as
the related spectral number density d2N=ðdω0dΩÞ] of the
scattered radiation due to Npart individual simulation

particles colliding with a laser pulse. The laser pulse is
specified by an arbitrary longitudinal envelope aðξÞ and a
finite transverse rms size. That ensemble of simulation
particles can be specified from an input file or randomly
sampled from a phase-space distribution with specified rms
properties. Monte Carlo integration over a solid angle
dΩðθ;ϕÞ of the physical aperture with the angular size
of θa is used to compute a spectrum dE0ðω0Þ=dω0 ¼R
d2Eðω0;ΩÞ=ðdω0dΩÞdΩ for each of the Npart simulation

particles sampling a distribution of Ne electrons. The total
spectrum is the average of these individual spectra. NLCS is
written in PYTHON and uses CYTHON and NUMPY for
computational efficiency [40,41]. It is parallelized to run
on multiple CPUs. All of the spectra reported in the next
section are computed using NLCS.
Figures 1 and 2 illustrate the new functionalities of the

NLCS code as compared to the formalism developed
previously in Refs. [20,21]. Figure 1 shows the new code
accounting for the finite transverse size of the laser pulse.
The left panel of Fig. 2 illustrates the effects of the
previously unaccounted for electron beam emittance: it
broadens the spectra, smears out the structure, and makes
FM less effective. The right panel of Fig. 2 shows the
effects of spectra collected over a finite aperture (circular or
rectangular), dN=dE0, as opposed to the back-scattered
case, d2N=ðdE0dΩÞ: increasing the aperture broadens the
scattered spectra and makes FM less effective.
At a very high-field regime (a0 ≫ 1), the spectrum

contains more energy in higher harmonics, which are
emitted at lower frequencies due to the ponderomotive
effect. This necessitates the calculation of scattered

FIG. 2. Radiation spectrum for the nonlinear Compton scattering: uncompensated spectrum (no FM) is shown in red lines and
optimally compensated (FM) in black. Left: Backscattered spectra (d2N=ðdΩdE0) for an electron beam with zero emittance (or for a
single, on-axis particle) are shown in solid lines; εx ¼ εy ¼ 10−7 m rad emittance in dashed; and εx ¼ εy ¼ 2 × 10−7 m rad emittance in
dotted lines. Right: Spectra collected over a finite aperture, dN=dE0, for an electron beam with zero emittance (or for a single, on-axis
particle) and: θ ¼ 0.1 μrad shown in solid lines; θ ¼ 3 μrad shown in solid lines; θ ¼ 5 μrad shown in solid lines. The solid red and
black lines in both panels correspond to the same-colored lines in the top panel of Fig. 4 in Ref. [20] and the top panel of Fig. 2 in
Ref. [21]. Spectra shown are for a linearly polarized 800-nm laser with pulse duration of 21 fs and a0 ¼ 1 on an Gaussian-distributed
electron beam with mean energy of 51 GeV.
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radiation at a broader range of scattered frequencies,
thereby incurring an additional computational costs. The
computational cost is linearly proportional to the number of
frequencies at which scattered spectrum is computed.
While substantial, computational cost is rendered manage-
able even for distribution with long tails by massively
parallelizing the code’s execution.

III. RESULTS

Next we present specific cases calculated with the new
model. Figure 3 presents the results of a spectrum calcu-
lation from a single, on-axis electron. Parameters are
chosen as indicated by color and placement in the upper
left plot. In the upper right plot, with relatively small
Compton red shift, the radiation comes out as a single line
(solid black) at a0 ¼ 0.2 and as a significantly broadened

spectrum from the ponderomotive effect (solid blue)
at a0 ¼ 1. When proper chirping is added to the incident
laser pulse, a narrow line is recovered (dashed blue).
The lower right plot indicated the Compton red-shifting
that appears at higher electron recoil parameter X ≡
4ELEe=ðmec2Þ2 (green), where EL ¼ ℏc=λ0 is the photon
energy, Ee is the electron energy, and me is the electron
mass. Finally, the lower left plot illustrates the combined
effect of Compton and ponderomotive red-shifting (solid
red) and the fact that the ponderomotive red-shift can still
be corrected by chirping to increase spectral density
(dashed red).
Figure 4 presents the results of a spectrum calculation

including emittance and with a ponderomotive red shift at
a0 ¼ 0.5. Even at the lowest normalized emittance in the
figure (green), the spectrum no longer clearly exhibits the
interference dips evident in Fig. 3. Physically, the dips

FIG. 3. Interplay between nonlinearities due to the high laser field (a0 ≫ 0) and due to the electron recoil (X ≫ 0) and their influence
on the scattered spectra. Top left: four cases sampling different regimes of the ICS parameter space—linear Thomson (black star); linear
Compton (green star); nonlinear Thomson (blue star); and nonlinear Compton (red star). The remaining panels show the comparison
between the single on-axis electron backscattered spectra for a linear Thomson case (X ¼ 0.01, E ¼ 421 MeV, a0 ¼ 0.2; black lines)
and a nonlinear Thomson case (X ¼ 0.01, E ¼ 421 MeV, a0 ¼ 1; blue lines) (top right); a nonlinear Compton case (X ¼ 0.05,
E ¼ 2.1 GeV, a0 ¼ 1; red lines) (bottom left); a linear Compton case (X ¼ 0.05, E ¼ 2.1 GeV, a0 ¼ 0.2; green lines) (bottom right).
Also shown in the bottom right panel are the spectra at an oblique mean scattering angle of θ0 ¼ 3=ð4γÞ in the vertical direction. Dashed
lines denote the spectra with FM and solid lines those without. Laser parameters are λ ¼ 800 nm, s≡ σz=λ ¼ 11.1. The aperture used is
in all of the simulations is 10 μrad.
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appear at different frequencies when emittance and energy
spread are present and they are clearly washed out after
integrating over the electron distribution. In the beginning,
emittance acts to generate a low-energy tail in the spectrum
(blue). When the emittance is large enough, the emitted line
becomes so wide that the peak spectral density is reduced
(red) [9].
Another interesting case is the ICS being built at

ELI-NP [42]. The left-hand plot in Fig. 5 shows the calcu-
lated spectrum for the baseline parameters given in Table II.
The two curves are spectra with the full Compton effect and
for the Thomson limit where ℏ ¼ 0 in the spectrum calcu-
lation. One observes a substantial red-shift in the spectrum
due to electron recoil at ELI-NP parameters. Even more
interesting is to exercise this new theory to compute spectra
with a larger field strength in the incident laser pulse. In the
center and right-hand plots, the maximum a0 is 1 while all
other parameters in the calculation are the same. Without
beam chirping (solid line spectra), the spectrum is spread out
from ω0=ω0

0 ¼ 1 to ω0=ω0
0 ¼ 2=3, as expected from the

ponderomotive broadening of the spectral peak.

FIG. 4. Effects of emittance on spectral width and height. Back-
scattered spectra for the normalized emittance of ϵ ¼ 10−7 m rad
(green line), ϵ ¼ 10−6 m rad (blue line), ϵ ¼ 10−5 m rad (red line).
Dashed green line represents the spectrum of the ϵ ¼ 10−7 case
with FM. Electron beam mean energy is E ¼ 360 MeV, energy
spread 6.5 × 10−4; laser beam parameters are: a0 ¼ 0.5,
λ ¼ 523 nm, s ¼ σz=λ ¼ 2295. The aperture used is 1 μrad.

FIG. 5. Spectra for ELI-NP parameters, as listed in Table II. Left: Nominal parameters (a0 ¼ 0.036). Middle: a0 ¼ 1.0 with and
without FM. Normalized to the maximum of the FM spectrum. Nonlinear subsidiary peaks arising from the non-negligible value of the
laser field strength parameter a0 are evident. Right: Middle panel enlarged around the main peaks. Note that the y range for the plots in
the middle and the right are the same and are scaled by a factor of 1000 from the y range in the panel on the left.
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When incident beam chirping is applied (dashed line
spectra), we observed full recovery of the narrow spectral
widths in the scattered radiation, even though because
of emittance, the individual electrons are not perfectly
(anti)aligned with the incident laser pulse. Applying
chirping increases the peak spectral density by an order
of magnitude. By calculating cases with higher electron
beam emittance, it is shown that as long as the normalized
emittance is less than 2 × 10−6 m rad, obtaining the full
spectrum maximum in the scattered radiation is possible
[33]. We believe our calculations using this new method are
the first to quantify this possible limit to laser chirping.
For ELI-NP parameters, the efficacy of laser chirping has

been evaluated as a function of a0. The results are presented
in Fig. 6. They indicate close to perfect recovery of the peak
spectral density at a0 ¼ 1. This result is consistent with our

previous studies of chirping [36] but now includes the full
Compton effect properly.
The new code, NLCS, subsumes ICS codes we developed

earlier: SENSE [10] and NLTX [33] valid in the nonlinear
Thomson regime and ICCS [37] in the linearCompton regime.
Appendixes A and B show how the new methodology
presented here reduces to the two special cases above:
nonlinear Thomson in the limit of negligible electron recoil
and linear Compton in the limit of the weak laser field.
Therefore, benchmarks against experimental data of the
nonlinear Thomson codes [10] and linear Compton code [37]
reported earlier (or presently underway [43]) directly apply to
benchmarking of the new NLCS code.

IV. CONCLUSION

In this study, we developed a new formalism for comput-
ing scattered spectra in the nonlinear Compton regime. It
unifies the approaches previously used to separately inves-
tigate the nonlinear Thomson and the linear Compton
regimes. The new approach, numerically implemented in
the NLCS code is the first to properly model three features
essential to the operation of ICS: (i) electron recoil at high
electron beam energies, (ii) nonlinear behavior associated
with high laser field strengths, and (iii) emittance in the
realistic electron beam distributions. Adding an optional
chirp to the frequencies of the laser pulse allows for a
computational study of the advantages this novel technique.
In this paper, we have generated new results in cases

where both Compton red-shifting and ponderomotive
spectral broadening are significant. In addition, we have
confirmed that the interference peaks associated with
ponderomotive broadening tend to be washed out when
the full emittance and energy spread of the beam are
included in the calculation [39].
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APPENDIX A: REDUCTION TO NONLINEAR
THOMSON

In this appendix, we show that the nonlinear Compton
energy density spectrum reduces to the nonlinear Thomson
energy density spectrum, i.e., Eq. (11) reduces to Eq. (6). The
Thomson limit may be applied by taking the limit ℏ → 0.
First, the Thomson limit will be applied to ω and ω0, i.e.,

Eqs. (1) and (2):

TABLE II. Main parameters of electron and laser beams for
ELI-NP project [42].

Quantity Unit Beam A

Electron beam mean energy Ee MeV 360
Electron beam energy spread σE=Ee MeV 0.234
Electron beam normalized
horizontal emittance εx

mmmrad 0.65

Electron beam normalized
vertical emittance εy

mmmrad 0.6

Electron beam horizontal size σe;x μm 13.5
Electron beam vertical size σe;y μm 13.5

Laser wavelength λ0 μm 0.523
Laser energy E J 1
Laser duration τ ps 4
Laser waist σl;x ¼ σl;y μm 35
Field strength parameter a0 0.036

FIG. 6. Peak spectral density for ELI-NP parameters as the
field strength parameter a0 is varied. Black line denote non-FM
spectra and red lines denote FM. Nominal ELI-NP parameters
(a0 ¼ 0.036) is shown as a blue circle.
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lim
ℏ→0

ω ¼ lim
ℏ→0

ω0ð1 − β · k̂0Þ
1 − β · k̂ − ℏω0

γmec2
ð1 − k̂ · k̂0Þ ¼

ω0ð1 − β · k̂0Þ
1 − β · k̂

;

ðA1Þ

and

lim
ℏ→0

ω0 ¼ lim
ℏ→0

ωð1 − β · k̂Þ
1 − β · k̂0 þ ℏω

γmec2
ð1 − k̂ · k̂0Þ ¼

ωð1 − β · k̂Þ
1 − β · k̂0

:

ðA2Þ

Substituting Eq. (A1) into the portion of the Eq. (11) in the
round brackets yields

ω0ð1 − β · k̂0Þ
2ωð1 − β · k̂Þ þ

ωð1 − β · k̂Þ
2ω0ð1 − β · k̂0Þ − 1

¼ ω0ð1 − β · k̂0Þ
2ð1 − β · k̂Þ

1 − β · k̂

ω0ð1 − β · k̂0Þ

þ ð1 − β · k̂Þ
2ω0ð1 − β · k̂0Þ

ω0ð1 − β · k̂0Þ
1 − β · k̂

− 1 ¼ 1

2
þ 1

2
− 1 ¼ 0:

ðA3Þ
Similarly, combining Eqs. (1) and (2), we arrive at the ratio
of the scattered to incoming frequencies

ω0

ω
¼

1 − β · k̂ − ℏω0
γmec2

ð1 − k̂ · k̂0Þ
ð1 − β · k̂0Þ ; ðA4Þ

which, after applying the Thomson limit, becomes

lim
ℏ→0

ω0

ω
¼ 1 − β · k̂

1 − β · k̂0
: ðA5Þ

Solving for the derivative of ω with respect to ω0, we obtain

dω
dω0 ¼

d
dω0

�
ω0ð1− β · k̂0Þ

1− β · k̂− ℏω0
γmec2

ð1− k̂ · k̂0Þ

�

¼ ð1− β · k̂0Þ
1− β · k̂− ℏω0

γmec2
ð1− k̂ · k̂0Þ

−
ω0ð1− β · k̂0Þ

ð1− β · k̂− ℏω0
γmec2

ð1− k̂ · k̂0ÞÞ2
ℏð1− k̂ · k̂0Þ

γmec2
: ðA6Þ

Applying the Thomson limit to the derivative, it follows

lim
ℏ→0

dω
dω0 ¼

1 − β · k̂0

1 − β · k̂
: ðA7Þ

Finally, multiply Eqs. (A5) and (A7) to get unity,
½ðω0=ωÞðdω=dω0Þ� ¼ 1. Equation (11) becomes

d2E0
tot

dω0dΩ
¼ d2E0

ε0

dω0dΩ
: ðA8Þ

The last step to show that NLCS can reduce to the nonlinear
Thomson regime is to show that ω00 → ω0 in the Thomson
limit. The Compton-shifted nonlinear scattered frequency
is defined as [37]

ω00 ¼ ω0ð1 − β · k̂Þ
1 − β · k̂ − ℏω0

γmec2
ð1 − k̂ · k̂0Þ : ðA9Þ

Note that −ðℏω0=γmec2Þð1 − k̂ · k̂0Þ accounts for the
Compton recoil. Now apply the Thomson limit to obtain

lim
ℏ→0

ω00 ¼ ω0ð1 − β · k̂Þ
1 − β · k̂

¼ ω0: ðA10Þ

All of these steps are how NLCS reduces to NLTX and how
it can simulate the Thomson regime exactly like NLTX.
Furthermore, NLCS must also be able to reduce to linear
Compton, i.e., NLCS must reduce to ICCS.

APPENDIX B: REDUCTION TO LINEAR
COMPTON

In this appendix, we show that the nonlinear Compton
energy density spectrum reduces to the linear Compton
energy density spectrum, i.e., Eq. (11) reduces to Eq. (3).The
limit for the linear Compton regime is a0 ≪ 1. From the
definition ofD1 andD2 inEq. (7), the amplitude of Ã isa0, so
this implies that D1 ≫ D2. In the linear limit, the nonlinear
Thomson element in Eq. (6) becomes

lim
a0≪1

d2E0
ε0

dω0dΩ
¼ e2ω02

16π3ϵ0c3
jD1ðω00Þj2

����ðε · ε0Þ þ ðβ · εÞðk̂ · ε0Þ
ð1 − β · k̂Þ

−
ðβ · ε0Þðβ · εÞð1 − k̂ · k̂0Þ
ð1 − β · k̂Þð1 − β · k̂0Þ þ ðβ · ε0Þðk̂ · εÞ

ð1 − β · k̂0Þ

����
2

¼ e2ω02

16π3ϵ0c3
jD1ðω00Þj2jεb · ε0bj2: ðB1Þ

Next, substitute Eq. (B1) into Eq. (6)

d2E0
tot

dω0dΩ
¼ e2ω02

32π3ϵ0c3
jD1ðω00Þj2

�
ω0ð1 − β · k̂0Þ
2ωð1 − β · k̂Þ

þ ωð1 − β · k̂Þ
2ω0ð1 − β · k̂0Þ − 1þ 2jεb · ε0bj2

��
ω0

ω

dω
dω0

�
:

ðB2Þ

Now it will be shown thatD1 in Eq. (7) reduces to the Fourier
transform for the electric field. This will produce the energy
density spectrum equation for linear Compton scattering. For
the same reason thatD1 ≫ D2,Φðξ0Þ inEq. (7) reduces to the
exponential argument in the Fourier transform in the linear
limit. For a0 ≪ 1, the following is true
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ξ0 ≫
1

γð1 − β · k̂Þ

Zξ0

−∞

Ãðξ0ÞeiΦðξ0Þdξ0

≫
1

γ2ð1 − β · k̂Þ2
Zξ0

−∞

Ã2ðξ0Þ
2

eiΦðξ0Þdξ0: ðB3Þ

Therefore the phase argument Φðξ0Þ, Eq. (7) becomes

lim
a0≪1

Φðξ0Þ ¼ ωðω0Þ
c

ξ0: ðB4Þ

Notice the term in the first set of brackets in Eq. (B2) is
similar to the Klein-Nishina cross section in Eq. (4). The
energy density spectrum for the linear Compton regime may
be written in terms of Eq. (4):

d2E0
tot

dω0dΩ
¼ e2ω02

32π3ϵ0c3
jD1ðω00Þj2 γ

2ð1 − β · k̂Þ2
r2e

�
ω

ω0

�
2 dσ
dΩ

×

�
ω0

ω

dω
dω0

�
: ðB5Þ

The argument of the modulus squared may be rewritten as

d2E0
tot

dω0dΩ
¼ e2

32π3ϵ0c3

����D1ðω00Þγð1 − β · k̂Þω
re

����
2 dσ
dΩ

�
ω0

ω

dω
dω0

�
:

ðB6Þ

The argument inside of the modulus squared is equal to the
Fourier transform of the electric field Ẽðωðω0Þ=cÞ

D1ðω00Þγð1 − β · k̂Þ
re

¼ ω

c

Z
Ãðξ0Þeiξ0ωcdξ0

¼ ωe
mc2

Z
Aðξ0Þeiξ0ωcdξ0

¼ e
mc2

Ẽ

�
ωðω0Þ
c

�
: ðB7Þ

Substituting Eq. (B8) back into Eq. (B6) yields

d2E0
tot

dω0dΩ
¼ e4

32π3ϵ0c5r2em2

����Ẽ
�
ωðω0Þ
c

�����
2 dσ
dΩ

�
ω0

ω

dω
dω0

�
: ðB8Þ

The electron radius re is defined in terms of the constants
used in Eq. (B8):

re ¼
e2

4πϵ0mc2
: ðB9Þ

After substituting Eq. (B9) into Eq. (B8), the energy density
spectrum for ICCS, Eq. (3), is recovered:

d2E0
tot

dω0dΩ
¼ ϵ0

2πc

����Ẽ
�
ωðω0Þ
c

�����
2 dσ
dΩ

�
ω0

ω

dω
dω0

�
:

[1] G. A. Krafft and G. Priebe, Rev. Accel. Sci. Technol. 03,
147 (2010).

[2] B. Günther, R. Gradl, C. Jud, E. Eggl, J. Huang, S. Kulpe,
K. Achterhold, B. Gleich, M. Dierolf, and F. Pfeiffer, J.
Synchrotron Radiat. 27, 1395 (2020).

[3] W. S. Graves, J. Bessuille, P. Brown, S. Carbajo, V.
Dolgashev, K. H. Hong, E. Ihloff, B. Khaykovich, H.
Lin, K. Murari, E. A. Nanni, G. Resta, S. Tantawi, L. E.
Zapata, F. X. Kärtner, and D. E. Moncton, Phys. Rev. ST
Accel. Beams 17, 120701 (2014).

[4] C. Sun and Y. K. Wu, Phys. Rev. ST Accel. Beams 14,
044701 (2011).

[5] O. Adriani et al., ELI-NP-GBS Technical Design Report,
http://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf, 2014.

[6] D. Micieli, I. Drebot, A. Bacci, E. Milotti, V. Petrillo, M.
Rossetti Conti, A. R. Rossi, E. Tassi, and L. Serafini, Phys.
Rev. Accel. Beams 19, 093401 (2016).

[7] K. Deitrick, C. Franck, G. Hoffstaetter, B. Muratori, P.
Williams, G. Krafft, B. Terzić, J. Crone, and H. Owen,
Phys. Rev. Accel. Beams 24, 050701 (2021).

[8] P. Chen, G. Horton-Smith, T. Ohgaki, A. W. Weidemann,
and K. Yokoya, Nucl. Instrum. Methods Phys. Res., Sect.
A 355, 107 (1995). Gamma-Gamma Colliders.

[9] N. Ranjan, B. Terzić, G. A. Krafft, V. Petrillo, I. Drebot, and
L. Serafini, Phys. Rev. Accel. Beams 21, 030701 (2018).

[10] B. Terzić, A. Brown, I. Drebot, T. Hagerman, E. Johnson,
G. A. Krafft, C. Maroli, V. Petrillo, and M. Ruijter, Euro-
phys. Lett. 126, 12003 (2019).

[11] E. Esarey, S. Ride, and P. Sprangle, Phys. Rev. E 48, 3003
(1993).

[12] F. V. Hartemann, J. R. Van Meter, A. L. Troha, E. C.
Landahl, N. C. Luhmann, H. A. Baldis, A. Gupta, and
A. K. Kerman, Phys. Rev. E 58, 5001 (1998).

[13] F. V. Hartemann, Phys. Plasmas 5, 2037 (1998).
[14] G. A. Krafft, Phys. Rev. Lett. 92, 204802 (2004).
[15] C. Brau, Phys. Rev. ST Accel. Beams 7, 020701 (2004).
[16] I. Ghebregziabher, B. A. Shadwick, and D. Umstadter,

Phys. Rev. ST Accel. Beams 16, 030705 (2013).
[17] B. Terzić, K. Deitrick, A. S. Hofler, and G. A. Krafft, Phys.

Rev. Lett. 112, 074801 (2014).
[18] S. G. Rykovanov, C. G. R. Geddes, C. B. Schroeder, E.

Esarey, and W. P. Leemans, Phys. Rev. Accel. Beams 19,
030701 (2016).

[19] B. Terzić and G. A. Krafft, Phys. Rev. Accel. Beams 19,
098001 (2016).

[20] B. Terzić, J. McKaig, E. Johnson, T. Dharanikota, and G A.
Krafft, Phys. Rev. Accel. Beams 24, 094401 (2021).

[21] D. Seipt, S. G. Rykovanov, A. Surzhykov, and S. Fritzsche,
Phys. Rev. A 91, 033402 (2015).

[22] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101 (2011).
[23] F. Albert, S. G. Anderson, D. J. Gibson, R. A. Marsh, C. W.

Siders, C. P. J. Barty, and F. V. Hartemann, Phys. Plasmas
18, 013108 (2011).

KRAFFT, TERZIĆ, JOHNSON, and WILSON PHYS. REV. ACCEL. BEAMS 26, 034401 (2023)

034401-12

https://doi.org/10.1142/S1793626810000440
https://doi.org/10.1142/S1793626810000440
https://doi.org/10.1107/S1600577520008309
https://doi.org/10.1107/S1600577520008309
https://doi.org/10.1103/PhysRevSTAB.17.120701
https://doi.org/10.1103/PhysRevSTAB.17.120701
https://doi.org/10.1103/PhysRevSTAB.14.044701
https://doi.org/10.1103/PhysRevSTAB.14.044701
http://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf
http://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf
http://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf
http://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf
https://doi.org/10.1103/PhysRevAccelBeams.19.093401
https://doi.org/10.1103/PhysRevAccelBeams.19.093401
https://doi.org/10.1103/PhysRevAccelBeams.24.050701
https://doi.org/10.1016/0168-9002(94)01186-9
https://doi.org/10.1016/0168-9002(94)01186-9
https://doi.org/10.1103/PhysRevAccelBeams.21.030701
https://doi.org/10.1209/0295-5075/126/12003
https://doi.org/10.1209/0295-5075/126/12003
https://doi.org/10.1103/PhysRevE.48.3003
https://doi.org/10.1103/PhysRevE.48.3003
https://doi.org/10.1103/PhysRevE.58.5001
https://doi.org/10.1063/1.872875
https://doi.org/10.1103/PhysRevLett.92.204802
https://doi.org/10.1103/PhysRevSTAB.7.020701
https://doi.org/10.1103/PhysRevSTAB.16.030705
https://doi.org/10.1103/PhysRevLett.112.074801
https://doi.org/10.1103/PhysRevLett.112.074801
https://doi.org/10.1103/PhysRevAccelBeams.19.030701
https://doi.org/10.1103/PhysRevAccelBeams.19.030701
https://doi.org/10.1103/PhysRevAccelBeams.19.098001
https://doi.org/10.1103/PhysRevAccelBeams.19.098001
https://doi.org/10.1103/PhysRevAccelBeams.24.094401
https://doi.org/10.1103/PhysRevA.91.033402
https://doi.org/10.1103/PhysRevA.83.022101
https://doi.org/10.1063/1.3536457
https://doi.org/10.1063/1.3536457


[24] F. V. Hartemann,W. J. Brown,D. J. Gibson, S. G.Anderson,
A.M. Tremaine, P. T. Springer, A. J. Wootton, E. P.
Hartouni, and C. P. J. Barty, Phys. Rev. ST Accel. Beams
8, 100702 (2005).

[25] C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn,
C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell,
J. Comput. Phys. 260, 273 (2014).

[26] X. Artru, Phys. Rev. Accel. Beams 22, 050705 (2019).
[27] Y. Li, R. Shaisultanov, K. Z. Hatsagortsyan, F. Wan, C. H.

Keitel, and J. Li, Phys. Rev. Lett. 122, 154801 (2019).
[28] A. Di Piazza, Phys. Rev. Lett. 113, 040402 (2014).
[29] A. Di Piazza, Phys. Rev. D 103, 076011 (2021).
[30] A. Gonoskov, S. Bastrakov, E. Efimenko, A. Ilderton, M.

Marklund, I. Meyerov, A. Muraviev, A. Sergeev, I. Surmin,
and E. Wallin, Phys. Rev. E 92, 023305 (2015).

[31] M. Vranic, T. Grismayer, R. A. Fonseca, and L. O. Silva,
New J. Phys. 18, 073035 (2016).

[32] F. Mackenroth, N. Kumar, N. Neitz, and C. H. Keitel, Phys.
Rev. E 99, 033205 (2019).

[33] E. Johnson, E. Breen, G. A. Krafft, and B. Terzić, Phys.
Rev. Accel. Beams 25, 054401 (2022).

[34] C. Maroli, V. Petrillo, I. Drebot, L. Serafini, B. Terzić, and
G. A. Krafft, J. Appl. Phys. 124, 063105 (2018).

[35] F. Mackenroth, A. R. Holkundkar, and H. P. Schlenvoigt,
New J. Phys. 21, 123028 (2019).

[36] B. Terzić, C. Reeves, and G. A. Krafft, Phys. Rev. Accel.
Beams 19, 044403 (2016).

[37] G. Krafft, E. Johnson, K. Deitrick, B. Terzić, R. Kelmar, T.
Hodges, W. Melnitchouk, and J. Delayen, Phys. Rev.
Accel. Beams 19, 121302 (2016).

[38] C. Maroli, V. Petrillo, I. Drebot, L. Serafini, B. Terzić, and
G. Krafft, J. Appl. Phys. 124, 063105 (2018).

[39] M. A. Valialshchikov, V. Yu. Kharin, and S. G. Rykovanov,
Phys. Rev. Lett. 126, 194801 (2021).

[40] The Python programming language, http://www.python
.org.

[41] Cython: C-extensions for Python, http://www.cython.org.
[42] C. Vaccarezza et al., in Proceedings of the 3rd Inter-

national Particle Accelerator Conference, New Orleans,
LA, 2012 (IEEE, Piscataway, NJ, 2012), p. 1086.

[43] B. Günther, B. Terzić, M. Dierolf, G. Krafft, and F. Pfeiffer
(to be published).

SCATTERED SPECTRA FROM INVERSE COMPTON … PHYS. REV. ACCEL. BEAMS 26, 034401 (2023)

034401-13

https://doi.org/10.1103/PhysRevSTAB.8.100702
https://doi.org/10.1103/PhysRevSTAB.8.100702
https://doi.org/10.1016/j.jcp.2013.12.007
https://doi.org/10.1103/PhysRevAccelBeams.22.050705
https://doi.org/10.1103/PhysRevLett.122.154801
https://doi.org/10.1103/PhysRevLett.113.040402
https://doi.org/10.1103/PhysRevD.103.076011
https://doi.org/10.1103/PhysRevE.92.023305
https://doi.org/10.1088/1367-2630/18/7/073035
https://doi.org/10.1103/PhysRevE.99.033205
https://doi.org/10.1103/PhysRevE.99.033205
https://doi.org/10.1103/PhysRevAccelBeams.25.054401
https://doi.org/10.1103/PhysRevAccelBeams.25.054401
https://doi.org/10.1063/1.5033549
https://doi.org/10.1088/1367-2630/ab5c4d
https://doi.org/10.1103/PhysRevAccelBeams.19.044403
https://doi.org/10.1103/PhysRevAccelBeams.19.044403
https://doi.org/10.1103/PhysRevAccelBeams.19.121302
https://doi.org/10.1103/PhysRevAccelBeams.19.121302
https://doi.org/10.1063/1.5033549
https://doi.org/10.1103/PhysRevLett.126.194801
http://www.python.org
http://www.python.org
http://www.python.org
http://www.cython.org
http://www.cython.org
http://www.cython.org

