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ABSTRACT
The Latent Dirichlet Location (LDA) model is a popular method for creating
mixed-membership clusters. Despite having been originally developed for
text analysis, LDA has been used for a wide range of other applications.
We propose a new formulation for the LDA model which incorporates
covariates. In this model, a negative binomial regression is embedded
within LDA, enabling straight-forward interpretation of the regression coef-
ficients and the analysis of the quantity of cluster-specific elements in each
sampling units (instead of the analysis being focused on modeling the pro-
portion of each cluster, as in Structural Topic Models). We use slice sam-
pling within a Gibbs sampling algorithm to estimate model parameters.
We rely on simulations to show how our algorithm is able to successfully
retrieve the true parameter values and the ability to make predictions for
the abundance matrix using the information given by the covariates. The
model is illustrated using real data sets from three different areas: text-
mining of Coronavirus articles, analysis of grocery shopping baskets, and
ecology of tree species on Barro Colorado Island (Panama). This model
allows the identification of mixed-membership clusters in discrete data and
provides inference on the relationship between covariates and the abun-
dance of these clusters.

HIGHLIGHTS
! We propose a new formulation for the Latent Dirichlet Allocation (LDA)
model which incorporates covariates.

! Our extension enables a straight-forward interpretation of the regression
coefficients and the analysis of the quantity of cluster-specific elements
in each sampling unit - including the prediction of these quantities in a
new sample through covariates.

! We illustrate the benefits of this formulation using three data sets: text-
mining of Coronavirus articles, analysis of grocery shopping baskets, and
ecology of tree species in Barro Colorado Island.

! We provide an R package that enables users to readily apply our model.
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1. Introduction

Unsupervised machine learning methods allow the analysis of multivariate data sets in which no
response variable is available. This type of analysis is especially useful as the amount of unstruc-
tured information grows (in the form of texts, for example), enabling the unveiling of latent
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structure in the data. In particular, the Latent Dirichlet location (LDA) method is an unsuper-
vised technique that focuses on identifying unobservable groups. This method is different from
traditional unsupervised methods such as hard clustering, where sampling units can only be clas-
sified into a single group. In LDA, soft clustering is performed, that is, a sample unit can belong
to several groups at the same time.

The LDA model was originally proposed by Pritchard, Stephens, and Donnelly (2000) in the
context of population genetics, but it became popular in the context of machine learning through
the work of Blei, Ng, and Jordan (2003) on text-mining applications. In these text-mining appli-
cations, the goal is to discover topics that are present in each document based on the words that
appear on these documents. This model has been applied to several areas of knowledge. For
example, Lukins, Kraft, and Etzkorn (2010) used LDA to understand software bug reports. In
another application, Lienou, Maitre, and Datcu (2010) applied this model to create annotation of
satellite imagery. LDA was also used by Xing and Girolami (2007) to detect fraudulent calls in
the telecommunications industry based on the patterns found for each customer. Finally, Valle
et al. (2014) used LDA on biodiversity data to describe groups of trees.

Several variations of LDA exist. For instance, Mcauliffe and Blei (Mcauliffe and Blei 2008)
introduced the supervised LDA model where documents are labeled with continuous or discrete
response variables. Wang and Grimson (2008) considered a spatial structure to group spatially
close elements (such as words that are close in the text). Blei and Lafferty (2006) analyzed the
evolution of topics over time through a family of probabilistic time series models. Albuquerque,
do Valle, and Li (2019) adapted the LDA model for different types of data (multinomial, binomial
and bernoulli) and used a special prior called truncated stick-breaking (TSB) prior to identify the
optimal number of groups.

In many problems, one also has access to additional information about instances that comes
in the form of features (covariates). For example, a company may have socioeconomic informa-
tion about its customers, such as age or income, that can help in understanding customer interac-
tions via chat. In these cases, it can be useful to explore the relationship between these covariates
and the identified groups.

Related work. Roberts, Stewart, and Airoldi (2016) developed Structural Topic Models (STM),
in which covariates were incorporated into LDA through a Multinomial regression model so that
the probability of each topic in a given instance is allowed to depend on covariates. The focus on
the probability of each topic, instead of the abundance of each topic, is an important limitation.
For example, the type of scientific article (e.g. a commentary or a review article) can significantly
change the number of words associated with each topic. However, STM’s might fail to identify
this effect if the proportion of the different topics remains the same. Like STM, Jacobs, Donkers,
and Fok (2016) also considers covariates to explain the proportions of each cluster through a
logarithmic link function but with a focus on predictions, not inference. Furthermore, the
approach proposed in Jacobs, Donkers, and Fok (2016) requires running the model multiple
times to determine the optimal number of clusters. On the other hand, our approach can readily
determine the optimal number of clusters by running the model just once and can be used both
for prediction and for inference on regression coefficients.

Motivation and contribution. In this work, we propose a new formulation to the LDA model
where we use covariates to explain the number of elements (e.g. number of words) in each group,
rather than the proportion of each group. Our model is more general than STM in the sense that
the probabilities of each group can also be derived from our model results. Another advantage of
our approach is that the covariate coefficients (i.e. the slope parameters) can be interpreted more
easily through the logarithmic link function of the Negative-Binomial regression rather than the
logistic link function used within the Multinomial regression in STM’s. The log link function
(Figure 1a) allows a straightforward interpretation of the coefficients: Finally, our methodology
also allows the inference about the regression coefficients through credibility intervals and the
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prediction of the abundance for each group in new samples where the values of the covariates are
known. An R package is made available to allow readers to readily fit the proposed model.

In Sec. 2 we present the proposed Bayesian model and the full conditional distributions
required for our Gibbs sampler. In Sec. 3 we describe the estimation method and the software
used. Then, in Sec. 4, we apply our model to simulated data sets to demonstrate its effectiveness
in providing inferences on the parameters of interest. In Sec. 5, we illustrate the versatility of our
model by applying it to data sets from different fields. Section 6 compares our model to STMs
using the probabilistic coherence metric. We conclude with a discussion of the advantages and
disadvantages of the method and suggestions for future research.

2. Model

We start by introducing the proposed model. Let L denote the total number of instances, K be
the total number of clusters and S be the total number of categories each element from each
instance can belong to. For example, in text analysis we can have K topics, a vocabulary of S dis-
tinct words and L documents. In this case, the words in each document are the elements. We
denote by nl,"," :¼

P
s,knl,s,k the total number of elements at instance l, where nl,s,k is a latent vari-

able representing the total number of elements of category s and cluster k in instance l. The data
that we observe consist of

! yi,l 2 1, :::, Sf g, the category of the i-th element of instance l, i ¼ 1, :::, nl,"," and l ¼ 1, :::, L:
! xl : a d-dimension vector with the features (covariates) associated to instance l, l ¼ 1, :::, L:

The data yi,l are often summarized as an instance-by-category abundance matrix. More specif-
ically, each cell in this matrix contains the total number of elements of category s on instance l,
given by wl,s :¼

P
i1ðyi,l ¼ sÞ, l ¼ 1, :::, L and s ¼ 1, :::, S:

In our model, to deal with overdispersion, the link between the covariates and the abundance
of each cluster in each instance nl,",k ¼

PS
s¼1nl,s,k is given by a Negative-Binomial regression:

nl,",k j bk,N & NegBinomðkl,k,NÞ

Figure 1. Illustration of the difference between the logarithmic (left panel) and multinomial logistic (right panel) link functions
considering 3 groups and 1 covariate (without intercept) with b1 ¼ 0:2, b2 ¼ 0:5 and b3 ¼ 0:0: Notice that, despite the positive
coefficient for group 1, there is a negative relationship in panel (b) between the covariate and the expected value of y given x.
(a) Negative-binomial log link. (b) Multinomial logistic link.
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where bk is a d-dimension vector, N is the overdispersion parameter and kl,k :¼ E½nl,",k( ¼:

exp ðxTl bkÞ: Notice that nl,",k are latent variables (and thus are not observed), and therefore we
need to estimate the coefficients of the regression function at the same time we estimate nl,",k (see
details in Sec. 2.1).

The model also assumes that

ðnl,1,k, :::, nl,S,kÞ j nl,",k,/k & Multinomialðnl,",k,/kÞ,

where /k 2 RS is a vector on a simplex that represents the composition of categories inside clus-
ter k. We call U the matrix with elements /k,s: Furthermore, note that within the standard LDA
model, a parameter of primary interest is hl,k, which is the proportion of cluster k in instance l.
This parameter can be easily retrieved based on the nl,",k results from our model by calculating
hl,k ¼ nl,",kPK

c¼1
nl,",c

: We call H the matrix with elements hl,k:

We use the following prior distributions:

N & Unifð0,N0Þ,

/k j c & DirichletðcÞ, c ¼ ðc1, :::, cSÞ,

and

bk & Ndð0,TÞ,

where T ¼ s2Id is a diagonal matrix. The hyperparameters N0, c and s are a priori set by the
modeler. Large values of N0 and s and small values of ci can be chosen to make the prior more
diffuse, and thus less informative (Gelman et al. 1995; Paulino, Turkman, and Murteira 2018). In
the Sec. 3 we discuss the values that were used.

The joint density function induced by the likelihood function and prior distributions is given by

pð nl,s,kf g, /kf g, bkf gj wl,sf g, xlf gÞ

/
YL

l¼1

YK

k¼1

Multinomialð nl,1,k, :::, nl,S,k½ ( j nl,",k,/kÞNegBinomðnl,",k j exp ðxTl bkÞ,NÞ
h i1ðwl,s¼

PK

k¼1
nl,s,kÞ

" #

)
YK

k¼1

Dirichletð/k j cÞ
" #

YK

k¼1

Ndðbk j 0,TÞ
" #

UnifðN j 0,N0Þ:

2.1. Full conditional distributions

We can obtain samples from the posterior distribution by using a Gibbs sampler (Geman and
Geman 1984). In order to do that, we first derive the full conditional distributions for the parameters
in our model. First, we derive the conditional distribution of each /k given all the other quantities:

pð/k j :::Þ /
Ynl,","

i¼1

YL

l¼1

Categoricalðyil j /kÞ
1ðzil¼kÞ

" #
Dirichletð/k j cÞ

/
Ynl,","

i¼1

YL

l¼1

/1ðyil¼1,zil¼kÞ
k,1 ) * * * ) /1ðyil¼S,zil¼kÞ

k,S

" #
/c1+1
k,1 ) * * * ) /cS+1

k,S

/ /n",1,kþc1+1
k,1 ) * * * ) /n",S,kþcS+1

k,S :
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Thus,

/k j ::: & Dirichlet n",1,k þ c1, :::, n",S,k þ cS½ (ð Þ,

which is straightforward to sample from.
The conditional distribution of bk given all of the other quantities is

pðbk j :::Þ /
YL

l¼1

NegBinom nl,",k j exp ðxTl bkÞ,N
! "

" #
Ndðbk j 0, s2IdÞ:

Because of lack of conjugacy, we rely on a slice-sampler algorithm (see Appendix C) to sample
from this FCD.

For the parameter N, we obtain

pðN j :::Þ /
YK

k¼1

YL

l¼1

NegBinom nl,",k j exp ðxTl bkÞ,N
! "

" #
Unif ðNj0,N0Þ:

Again, we rely on a slice-sampler algorithm to sample from this FCD.
Finally, we obtain the conditional distribution of zi,l (the latent group membership of the i-th

element in the l-th instance):

pðzi,l0 ¼ k j yi,l0 ¼ s0, :::Þ

/
YL

l¼1

YK

k¼1

Multinomialð nl,1,k, :::, nl,S,k½ ( j nl,",k,/kÞNegBinomðnl,",k j kl,k,NÞ
# $

After integrating /k out and simplifying this expression (a detailed derivation of these results is
provided in Appendix A and B), we obtain:

pðzi,l0 ¼ k j yi,l0 ¼ s0, :::Þ / ðnl0 ,",k þ NÞðn",s0 ,k þ cs0Þ
ðnl0,s0 ,k þ 1Þðn",",k þ

P
scsÞ

ð1+ pl0 ,kÞ:

where pl0 ,k ¼ N
Nþkl0 ,k

: Thus,

zi,l j yi,l

¼ s, ::: & Categorical

ðnl,",1þNÞðn",s,1þcsÞ
ðnl,s,1þ1Þðn",",1þ

P
s
csÞ
ð1+ pl,1Þ

PK
k¼1

ðnl,",kþNÞðn",s,kþcsÞ
ðnl,s,kþ1Þðn",",kþ

P
s
csÞ
ð1+ pl,kÞ

, :::,

ðnl,",KþNÞðn",s,KþcsÞ
ðnl,s,Kþ1Þðn",",Kþ

P
s
csÞ
ð1+ pl,KÞ

PK
k¼1

ðnl,",kþNÞðn",s,kþcsÞ
ðnl,s,kþ1Þðn",",kþ

P
s
csÞ
ð1+ pl,kÞ

2

64

3

75

0

B@

1

CA,

which is easy to sample from.

3. Estimation and software

In order to fit our model, we first need to define K, the number of clusters that will be used. We
do this by using the LDA model proposed by (Albuquerque, do Valle, and Li 2019). Instead of
relying on the standard but computationally inefficient approach of fitting multiple models (one
for each K value) to then determine the optimal number of clusters, the model in (Albuquerque,
do Valle, and Li 2019) relies on a truncated stick-breaking prior distribution to identify the
optimal number of clusters. We use the following values for the hyperparameters: N0 ¼
1000, c1 ¼ ::: ¼ cS ¼ 0:1 and T is a diagonal matrix where the diagonal elements are equal to 10.
These values are chosen to make the prior distribution less informative.

In our experiments, we use the Gibbs sampler implementation based on the conditional distri-
butions described in Sec. 2.1 with one exception: the samples from U were generated using the
model without covariates described in (Albuquerque, do Valle, and Li 2019). We took this
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approach because preliminary results revealed that this model had difficulty estimating the U
matrix even in situations where the model without covariates estimated this matrix well. This
problem arises because, differently from a standard regression in which the response variable is
observed, the response variable here is latent and has to be estimated together with the regression
parameters. As a result, a misspecified regression model can negatively impact the latent response
variable, potentially mischaracterizing the identified clusters. Our simulated data studies reveal
that this two-stage estimation results in good estimates for the parameters of interest.

In each experiment, we assessed convergence by visually evaluating trace-plots of the generated
MCMC chains. Part of our algorithm was developed in R while part of the code was made in
Cþþ using the Rcpp package (Eddelbuettel et al. 2011). An R package and a tutorial on how to
use the model can be found at https://github.com/gilsonshimizu/ldacov.

4. Simulated experiments

First, we apply our model to two simulated data sets where all parameters are known, enabling
the assessment of whether the model is estimating the parameters of interest well.

4.1. Simulation set 1

The first simulated dataset consists of 1000 instances, 100 categories and four clusters. Four cova-
riates are also used, where each covariate explains only one of the four clusters, that is, the matrix
with the regression slope coefficients is an identity matrix. We also choose covariate values such
that some elements of the H are equal to 1 (i.e. some instances have elements from only one
cluster). Similarly, we assume that some categories are only present in a single cluster. We do this
to help model identifiability. Figure 2a and b show a high correlation between the true and esti-
mated elements of U and H, indicating that the true parameter values can be recovered from the
model when it is estimated using the strategy described in Sec. 3.

Table 1 shows the posterior means of the regression parameters bk, as well as an indicator (")
of whether their respective 99% credible intervals did not contain the value 0. In all cases, the
true parameter values are contained in the corresponding credible intervals, demonstrating that
our model yields accurate inference about the parameters of interest. We will omit here and in
the other examples, but trace-plots of the log likelihood and model parameters (see Appendix D)
demonstrated the convergence of the algorithm.

Figure 2c and d show that the model proposed by Robert manages to estimate the H matrix
well but has difficulty in estimating the U matrix.

Our method can be used to make predictions for the abundance matrix on the data samples
using the information given by the covariates. Figure 3 shows that the method leads to high pre-
diction accuracy on a hold-out set with 1000 instances.

4.2. Simulation set 2

The second set of simulated data is similar to the one described previously. However, instead of
using the correct set of covariates, we relied on randomly generated covariates. As result, these
covariates were independent of the number of individuals in each cluster. The purpose of this
data set is to verify whether the model is able to infer when none of the covariates are relevant.

Figure 4a and b show that both U and H were well estimated. Table 2 shows that all 99%
credible intervals for b’s contained the value zero, which are the correct values given that the
covariates were independent of the number of elements in each cluster.

Again, the model proposed by Roberts, Stewart, and Airoldi (2016) manages to estimate the H
matrix well but has difficulties in estimating the U matrix (Figure 4c and d).
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Taken together, these results reveal that our model is able to estimate the matrices U and H as
well as identify the relevant variables to explain the quantities in each cluster.

5. Applications

To demonstrate the model’s effectiveness and flexibility, we applied it to three real data sets from
different areas:

Figure 2. Scatter plots of true and estimated values of the parameters U and H for the simulated data set 1 using new LDA for-
mulation and STM. (a) U - new LDA. (b) H - new LDA. (c) U - STM. (d) H - STM.

Table 1. Posterior mean for the regression parameters of the simulated dataset 1. All true parameter values are contained in
the corresponding credible intervals.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

True Estimated True Estimated True Estimated True Estimated

Intercept 1.592 2.131" 1.872 2.055" 1.755 2.127" 1.860 1.827"
Var 1 1.000 0.787" 0.000 +0.055 0.000 +0.044 0.000 +0.027
Var 2 0.000 0.021 0.000 0.008 1.000 0.883" 0.000 0.072
Var 3 0.000 +0.030 1.000 0.870" 0.000 +0.043 0.000 +0.040
Var 4 0.000 +0.018 0.000 0.018 0.000 0.054 1.000 1.015"
"“Statistically significant” results, defined as parameters for which the 99% credible intervals did not overlap zero.
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! [Covid Articles] This dataset, available on Kaggle (https://www.kaggle.com/allen-institute-for-
ai/CORD-19-research-challenge), contains 134,000 articles on Covid-19 and other coronavirus
(on 22 April 2020). A sample of size 2,000 was extracted for analysis. We use a bag-of-words
representation of the abstract in which we remove stop words, numbers and words that
appear in less than 6% of abstracts. In this way, we end up with 211 words as tokens. We use
the year in which the paper was published and keywords of the respective journal as covari-
ates. The following keywords were used: virology, chemistry, infectious diseases, microbiology,
veterinary, vaccine, immunology, medicine, public health and bioinformatics.

! [Grocery Shopping] This dataset is also available in Kaggle (https://www.kaggle.com/karthick-
veerakumar/orders-data) and contains information about 5,000 customer purchases of 99
products at a supermarket. A sample of size 2,000 was used. We use the day of the week of
the purchase and the number of days since the last purchase as covariates.

! [Barro Colorado Island] (Harms et al. 2001) We evaluated the spatial patterns in the tree
composition of the moist lowland 50-ha forest dynamic plot (FDP) on the Barro Colorado
Island (BCI), Panama. FDP on BCI was established in 1981 and all free-standing woody plants
with diameter at breast height (dbh) greater or equal to 1 cm were measured in 1982–93,
1985, 1990, 1995, 2000, 2005, 2010 and 2015. Annual rainfall averages 2600mm, with a four-
month dry season between December and April, while mean annual temperature is 27

-
C.

The total number of species identified at BCI is 326. For our analysis, we only utilized data
from the last survey (2015) and we divided the FDP into 200 quadrats of size (50 m ) 50 m);
this was deemed the most appropriate scale to identify the spatial structure in biodiversity in
BCI. We then aggregated the 2015 BCI census data by calculating the abundance of each spe-
cies at each of the 200 quadrants. Before analyzing these data, we removed species that were
extremely rare (defined as those species with less than 10 trees across the entire 50-ha plot).
Our criteria resulted in the removal of 70 (21%) species, representing less than 0.1% of the
total number of trees in our dataset.

Figure 3. Scatter plot of the predicted abundance matrix versus true abundance matrix for the simulated data set 1.
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5.1. Covid articles

The number of monthly articles about coronavirus practically doubled in the first quarter of 2020
in relation to the monthly average of publications in 2019. Given this significant increase and
relevance of the subject, our goal here is to find and understand the differences between possible
clusters of articles. Other works involving the analysis of Twitter data and medical documents
about Covid-19 can be found at (Liu et al. 2020; Ordun, Purushotham, and Raff 2020;
Otmakhova et al. 2020). Instead of only analyzing tabular information from articles, our analysis
complements the work of Liu et al. (2020) by extracting information from the abstracts of these
articles.

In this text-mining application, we follow the literature in referring to topics instead of clus-
ters. We set the maximum number of topics to 10 and use the TSB prior model proposed by
Albuquerque, do Valle, and Li (2019) to identify the optimal number of topics. This analysis
identifies that the optimal number of topics was equal to 5 for this dataset.

Table 3 shows the most relevant words found in each topic. A word is defined to be relevant
for a given topic if it appears at least twice as frequently in this topic than in any other topic.
Table 4 shows the estimated regression weights for each topic.

Based on these results we can describe the topics found as follows:

Figure 4. Test Scatter plots of true and estimated values of the parameters U and H for the simulated data set 2 using new
LDA formulation and STM. (a) U - new LDA. (b) H - new LDA. (c) U - STM. (d) H - STM.
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! Topic 1: This topic is related to virology and genetics. Furthermore, this topic is more com-
mon in older articles.

! Topic 2: This topic is related to recent public health articles. This topic seems to be strongly
associated with the current pandemic given that the prominent words were China, countries,
outbreak, prevention, etc.

! Topic 3: This topic is related to recent articles on infectious diseases and medicine. The most
relevant words in this topic suggest that it is related to tests and symptoms of Covid-19.

! Topic 4: This topic is related to older articles on vaccines, immunology and veterinary. Words
like” mice” and” animal” indicate vaccine tests on non-human animals.

! Topic 5: This topic is related to older articles on viruses and influenza.

Topics 2 and 3 are more related to Covid-19 and, as expected, are strongly associated with diagnos-
tic tests, symptoms, public health and prevention since, at the time this dataset was retrieved, there
were still no vaccines or in-depth genetic studies on Covid-19. Topics 1 and 4 are related to older
articles and are focused on types of studies that had not been conducted for Covid-19 at the time these
data were gathered: vaccines, animal tests, and genetic studies. Topic 5 is focused on other viruses.

Although it is natural that there is a strong relationship between keywords and topics, we
emphasize that the use of these keywords as covariates allowed an easier interpretation of topics
than just analyzing the relevant words of each topic.

5.2. Grocery shopping

Our goal is to find clusters of grocery shopping baskets while also identifying how these clusters
are associate with day of week and days since last purchase. Other works such as (Christidis,
Apostolou, and Mentzas 2010; Jacobs, Donkers, and Fok 2016) also analyze this type of data
using the LDA model.

After running the model without covariates, we obtain an ideal number of clusters equal to 4.
Tables 5 and 6 show the relevant products of each cluster and the estimates of the regression
parameters, respectively.

Below we describe the clusters that were found:

! Cluster 1: This cluster has many products with purchases made on any day of the week and
with varying frequencies. The products are of daily use like breads, cereals, coffee and also
cleaning products.

! Cluster 2: This cluster contains herbs, spices, vegetables, poultry, etc. This type of purchase
might be associated with the preparation of a special meal. This purchase is usually made on a
Saturday.

! Cluster 3: This cluster contains frozen meals and prepared soups.
! Cluster 4: This cluster is very peculiar with baby formulas, beers and wines. This cluster is

reflective of the classic example of basket analysis, where parents go to buy baby diapers and
take the opportunity to buy beer and wine. These purchases are made less frequently than
other clusters and are generally not made on Saturdays.

Table 2. Posterior mean for the regression parameters of the simulated dataset 2. All true parameter values are contained in
the corresponding credible intervals.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

True Estimated True Estimated True Estimated True Estimated

Var 1 0.000 0.046 0.000 +0.052 0.000 +0.009 0.000 +0.002
Var 2 0.000 0.018 0.000 +0.059 0.000 0.028 0.000 +0.018
Var 3 0.000 0.110 0.000 0.082 0.000 +0.102 0.000 0.012
Var 4 0.000 0.047 0.000 +0.028 0.000 0.020 0.000 0.022
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We note here that a customer can buy more than one basket (cluster) at the same time, which
is a very interesting feature of the LDA models (compared to traditional cluster analysis) and
more realistic for this data set. In a conventional cluster analysis a customer would be classified
into just one cluster.

5.3. Barro Colorado Island

We ran the LDA model without covariates and, from a total of 20 potential groups, found 11
dominant groups that together comprised approximately 91% of all individuals. We find relatively
strong spatial patterns in the distribution of these groups (Figure 5). For instance, group 10 is

Table 3. Relevant words in topics of the Covid dataset.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

protein health patients mice influenza
rna public symptoms vaccine viruses
expression china positive responses human
mechanism countries lower levels virus
sequence outbreak acute evaluated assay
replication epidemic age groups strains
target prevention collected animals highly
genes emerging samples group detection
species diseases confirmed induced
host transmission without response
genome spread common immune
mechanisms research respectively increased
molecular future tested antibodies
antiviral information performed significantly
small population severe effects
shown infectious patient higher
revealed use associated caused
function strategies hospital type
furthermore will detected observed
involved current total compared
previously effective clinical effect
cell since syndrome significant
specific care among
thus number diagnosis

evidence sars
review rate

pathogen
available
data
new
risk

Table 4. Estimated Regression parameters of the covid dataset.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Intercept 2.876" 2.078" 1.510" 0.041 +0.256"
Year 2020 +0.658" 0.468" 0.475" +1.044" +3.227"
Virology 0.462" +0.823" +0.168 0.549" 0.835"
Chemistry 0.093 +1.055" +0.688" +3.455" +0.166
Infect disease +0.468" 0.410" 0.910" +0.281 0.814"
Microbiology 0.250" +0.302" +0.175 +0.031 0.525"
Veterinary +0.065 0.169 0.206 0.535" +0.607"
Vaccine 0.054 +0.109 +0.178 1.602" 0.697"
Immunology 0.135 +0.643" +0.312" 0.825" +0.931"
Medicine +0.436" 0.501" 0.507" +0.589" 0.638"
Public Health +0.969" 1.066" 0.137 +0.223 +0.722"
Comput bioinformatic 0.049" 0.586" +3.765" +3.037" +0.749
"“Statistically significant” results, defined as parameters for which the 95% credible intervals did not overlap zero.
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clearly restricted to the areas with steep slopes while group 3 has much higher abundance in flat
areas. Interestingly, several of the groups identified here seems to closely correspond to the BCI
habitat classification proposed by Harms et al. (2001). For example, group 11 seems to match the
“old forest, swamp” class while group 10 seems to match the “Old forest, Streamside”. However,
different from this discrete classification of habitats, we find spatial patterns that reflect substan-
tial mixed membership.

Similar results could have been obtained from the LDA model without covariates. The novelty
of the proposed model is the ability to make formal inference on the effect of covariates (Table
7). We find that all groups, except for group 2, were strongly associated with one or more covari-
ates. For example, as expected, groups 10 and 3 were positively and negatively associated with
slope, respectively. The variables that tended to influence a large number of groups were slope,
convexity, magnesium and zinc.

6. Model comparison using probabilistic coherence

Up to this point, we have compared STM to our model using simulated data because it enables
us to determine how well these approaches estimate the true parameter values. The problem is
that this approach implicitly assumes that the data follow our generative model. To avoid this
assumption, we can also compare our model to STM (Roberts, Stewart, and Airoldi 2016) using a
measure of the quality of each cluster, known as probabilistic coherence, as proposed by Jones
(2021).

The probabilistic coherence calculates for each pair of categories the measure Pðs1js2Þ + Pðs1Þ,
where category s1 is more likely than category s2 in the focus cluster. Note that Pðs1js2Þ + Pðs1Þ
will be close to zero if s1 and s2 are independent and, as a result, probabilistic coherence measures
how strongly associated are categories s1 and s2. A well delineated cluster with a high frequency
of these categories should have a high probabilistic coherence. By definition, we consider only the
top M most frequent categories in the clusters and use the sum of the probabilistic coherence of
all clusters as a measure of the quality of the estimated U matrix. For a specific cluster k, the

probabilities Pðs1js2Þ and Pðs1Þ are estimated by number of instances of categories s1 and s2 in kj j
number of instances of category s2 in kj j and

Table 5. Relevant products in clusters of the grocery dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

cereal fresh herbs frozen vegan vegetarian red wines
ice cream ice canned jarred vegetables frozen meals baby food formula
water seltzer sparkling water spices seasonings frozen breakfast beers coolers
candy chocolate fresh vegetables tofu meat alternatives
refrigerated poultry counter frozen pizza
frozen appetizers sides asian foods fresh dips tapenades
tea grains rice dried goods energy granola bars
packaged produce canned meals beans prepared soups salads
laundry oils vinegars
paper goods specialty cheeses
chips pretzels pickled goods olives
coffee dry pasta
frozen meat seafood packaged poultry
bread
cleaning products
lunch meat
spreads
soap
dish detergents
soft drinks
…
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number of instances of category s1 in kj j
number of instances in kj j , respectively. We used the textmineR package (Jones 2019) in R to

calculate probabilistic coherence with the default value of M (Damlen, Wakefield, and Walker 1999).
Table 8 shows these measures for all datasets analyzed in this work. In all cases, the proposed

model obtained better probabilistic coherence measures than the STM model, indicating that the
topics that are found with our method are more coherent.

7. Discussion

We propose a new formulation for the LDA model that allows the incorporation of covariates.
This model differs from other LDA methods because it models how covariates affects the number
of elements of each cluster rather than the proportions of the clusters. Because these proportions
can be derived from the number of elements, our model generalizes existing LDA models that
also incorporate covariates.

The main advantage of our model is that it enables a much more straight-forward interpret-
ation of the regression coefficients. This is due to the use of the logarithmic link function on the
quantities in each cluster instead of a multinomial logistic function on the proportions.

Table 6. Estimated regression parameters of the grocery dataset.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Intercept 1.864" 0.562" +1.800" +3.386"
Last order >¼ 6 days 0.219 0.051 +0.070 0.974"
Saturday 0.152 0.376" 0.330 +0.671"
"“Statistically significant” results, defined as parameters for which the 95% credible intervals did not overlap zero.

Figure 5. Spatial distribution of the groups identified by our model. Each panel displays the results for a given group. Hotter col-
ors indicate higher abundance. Elevation is shown with level curves at 5-m intervals.
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Furthermore, by more faithfully representing uncertainty, inference on the regression coefficients
is likely to be better with our Gibbs sampler algorithm than when using approximate variational
estimation methods.

In our simulated examples, we are able to show that our model estimates well the U and H
matrices with or without relevant covariates. We also illustrate the model’s ability to make infer-
ences about regression coefficients through credible intervals and the ability to make predictions
for the abundance matrix on the data samples using the information given by the covariates.
Importantly, our examples with real data sets demonstrate the flexibility of the model to be
applied in different areas and for different types of data.

The dataset about Covid articles, for example, is a traditional text mining data set. The use of
covariates, together with the main words of each topic, enabled us to determine how the focus of
these articles has changed as the new coronavirus spurs a pandemic across the world. In the data
set on supermarket purchases our model was able to create clusters and relate them to the time
and day of the week covariates. We believe that this tool is very useful to segment customers and
also to optimize the layout of products within a grocery store. Finally, when applied to the BCI
dataset, our model was able to find clusters with distinct spatial patterns and at the same time
relate these patterns to some of the soil and topography features.

A disadvantage of our method is the computational cost (especially in large datasets with many
sample units and categories) compared to models using variational Bayes methods. A possible future
work would be to consider a version of this model with a variational inference approach.

Appendix A: Full conditional distribution of zi,l
For simplicity, we consider only 2 clusters (K¼ 2). Suppose that our focus is on l ¼ l0 and s ¼ s0: It is also assumed
that after removing the i-th element we have ½nl0 ,",1, nl0 ,",2(, ½nl0 ,1,1, :::, nl0 ,S,1( and ½nl0 ,1,2, :::, nl0 ,S,2(: We consider kl,k ¼
exp ðxTl bkÞ and pl,k ¼ N

Nþkl,k
: We can integrate out /k from

pðzi,l0 ¼ 1 j yi,l0 ¼ s0, :::Þ

/
YK

k¼1

NBðnl,",k j kl,k,NÞ
ð YL

l¼1

Multinomialð nl,1,k, :::, nl,S,k½ ( j nl,",k,/kÞ
 !

Dirichlet /k j c
! "

d/k

" #
:

Table 7. Estimated regression parameters of the BCI dataset.

Groups

Covariates 1 2 3 4 5 6 7 8 9 10 11

Intercept 5.474" 5.524" 5.238" 4.926" 4.678" 4.974" 4.746" 4.829" 4.529" 4.541" 4.645"
Elevation 0.107 0.13 +0.337" +0.114 0.296" 0.016 0.008 0.227" 0.054 0.203" 0.009
Slope +0.060 +0.093 +0.239" 0.028 0.125 0.156" 0.274" 0.032 0.143" 0.337" +0.073
Convexity +0.088 +0.03 0.138" 0.094" +0.043 0.086 +0.038 +0.129" 0.101" +0.153" +0.131"
Al +0.091 0.06 0.129 +0.009 +0.118 +0.090 +0.095 +0.129 0.021 +0.187" 0.043
Mn 0.186" +0.027 +0.150" 0.021 +0.047 0.084 0.303" 0.140" +0.137 0.168" +0.245"
Zn +0.094 +0.016 0.013 +0.116 0.232" +0.217" +0.259" +0.206" 0.451" +0.041 0.105
N 0.039 0.005 0.071 0.030 +0.132 +0.145" 0.114 0.000 +0.011 +0.226" +0.029
pH +0.126 0.080 0.009 +0.034 0.194 +0.099 0.022 +0.277" +0.136 +0.002 +0.071
"“Statistically significant” results, defined as parameters for which the 95% credible intervals did not overlap zero.

Table 8. Probabilistic coherence for all datasets comparing LDA with covariates and STM. Larger values are better and best
values are highlighted in bold.

Dataset

Method Simulation set 1 Simulation set 2 Covid Articles Grocery Shopping BCI

LDA Covariates 1.554 1.550 0.713 0.370 0.021
STM 0.395 0.455 0.592 0.235 0.011
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The integral involving /k is available in closed form (see Appendix B). Furthermore, several elements in the
equation above can be eliminated because they are constants. As a result, we obtain the following expression:

pðzi,l0 ¼ 1 j yi,l0 ¼ s0, :::Þ

/
C nl0 ,",1 þ 1þ Nð ÞpNl0 ,1 1+ pl0 ,1ð Þ nl0 ,",1þ1ð Þ

CðNÞ nl0 ,",1 þ 1ð Þ!
)
C nl0 ,",2 þ Nð ÞpNl0 ,2 1+ pl0 ,2ð Þ nl0 ,",2ð Þ

CðNÞnl" ,",2!

" #

)
Y

l6¼l0

nl,",1!
nl,1,1!:::nl,S,1!

 !
ðnl0 ,",1 þ 1Þ!

nl0 ,1,1!:::ðnl0 ,s,1 þ 1Þ!:::nl0 ,S,1!

& ' ðn",s0 ,1 þ 1þ csÞ
Q

s6¼s0ðn",s,1 þ csÞ
Cðn",",1 þ 1þ

P
scsÞ

) nl,",2!
nl,1,2!:::nl,S,2!

Q
s¼1ðn",s,2 þ csÞ

Cðn",",2 þ
P

scsÞ
:

We drop additional terms that are constants to obtain:

pðzi,l0 ¼ 1 j yi,l0 ¼ s0, :::Þ

/
C nl0 ,",1 þ 1þ Nð Þ 1+ pl0 ,1ð Þ nl0 ,",1þ1ð Þ

nl0 ,",1 þ 1ð Þ!
)
C nl0 ,",2 þ Nð Þ 1+ pl0 ,2ð Þ nl0 ,",2ð Þ

nl" ,",2!

" #

) ðnl0 ,",1 þ 1Þ!
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& '
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Cðn",",1 þ 1þ
P

scsÞ

) nl0 ,",2!
nl0 ,1,2!:::nl0 ,s0 ,2!:::nl0 ,S,2!

& '
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C n",",2 þ
P

scs
! " / b1a1

where:

a1 ¼
ðnl0 ,",1 þ 1Þ!
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& '
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P
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) nl0 ,",2!
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P
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! " and

b1 ¼
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nl0 ,",1 þ 1ð Þ!
)
C nl0 ,",2 þ Nð Þ 1+ pl0 ,2ð Þ nl0 ,",2ð Þ

nl" ,",2!

" #

:

Similarly, it can be shown that
pðzi,l0 ¼ 2 j yi,l0 ¼ s0, :::Þ / b2a2

where

a2 ¼
nl0 ,",1!

nl0 ,1,1!:::nl0 ,s0 ,1!:::nl0 ,S,1!

& '
n",s0 ,1 þ cs0ð Þ

C n",",1 þ
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b2 ¼
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)
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:

Because zi,l0 is either equal to 1 or 2, we can divide both by b1a1 þ b2a2 and, using factorial and gamma func-
tion rules, we obtain:

pðzi,l0 ¼ 1 j yi,l0 ¼ s0, :::Þ

/

nl0 ,",1þ1ð Þ n",s0 ,1þcs0ð Þ
nl0 ,s0þ1ð Þ n",",1þ

P
s
cs

! "

nl0 ,",1þ1ð Þ n",s0 ,1þcs0ð Þ
nl0 ,s0 ,1þ1ð Þ n",",1þ

P
s
cs

! "þ nl0 ,",2þ1ð Þ n",s0 ,2þcs0ð Þ
nl0 ,s0 ,2þ1ð Þ n",",2þ

P
s
cs

! "

0

BB@

1

CCA

nl0 ,",1þNð Þ 1+pl0 ,1ð Þ
nl0 ,",1þ1ð Þ

nl0 ,",1þNð Þ 1+pl0 ,1ð Þ
nl0 ,",1þ1ð Þ þ nl0 ,",2þNð Þ 1+pl0 ,2ð Þ

nl0 ,",2þ1ð Þ

0

@

1

A

/
nl0 ,",1 þ Nð Þ n"s0 ,1 þ cs0ð Þ

nl0s0 ,1 þ 1ð Þ n",",1 þ
P

scs
! " 1+ pl0 ,1ð Þ:
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And finally we have that
zi,l j yi,l

¼ s, ::: & Categorical
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Appendix B: Multinomial integration in /k

To simplify the calculation of the conditional distribution of zi,l we can integrate out /k as shown below.
YK

k¼1
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! "
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Appendix C: Slice sampling

Algorithm 1: Slice Sampling (Damlen, Wakefield, and Walker 1999)

1. Choose an initial value x0 for which f ðx0Þ > 0:
2. Sample a value of y uniformly between 0 and f ðx0Þ:
3. Draw a horizontal line through the curve at this y position.
4. Sample a point (x, y) from the line inside the curve.
5. Repeat from step 2 using the new value of x.
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Appendix D: MCMC convergence diagnostics

Figure 6a–e show the convergence diagnosis of the maximum likelihood function for all analyzed data sets.

Figure 6. MCMC convergence diagnostics of simulated and real data. (a) Simulation 1. (b) Simulation 2. (c) Covid. (d) Grocery.
(e) BCI.
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