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Abstract. During the inversion of discrete linear systems noise in data can
be amplified and result in meaningless solutions. To combat this e↵ect, reg-
ularization is imposed during the inversion. The influence of provided prior
information is controlled by non-negative regularization parameter(s). There
are a number of methods used to select appropriate regularization parameters.
New methods of unbiased risk estimation and generalized cross validation are
derived for finding spectral windowing regularization parameters. These esti-
mators are extended for finding the regularization parameters when multiple
data sets with common system matrices are available. It is demonstrated that
spectral windowing regularization parameters can be learned from these new
estimators applied for multiple data and with multiple windows. The results
demonstrate that these modified methods, which do not require the use of true
data for learning regularization parameters, are e↵ective and e�cient, and per-
form comparably to a learning method based on estimating the parameters
using true data. The theoretical developments are validated for the case of two
dimensional image deblurring. The results verify that the obtained estimates
of spectral windowing regularization parameters can be used e↵ectively on val-
idation data sets that are separate from the training data, and do not require
known data.

1. Introduction. We consider solutions of ill-conditioned linear problems described
by

Ax ⇡ d, (1)

where A 2 Rm⇥n with m � n and d = b+⌘ is measured, with ⌘ being a realization
of a random vector and b = Axtrue. Even for invertible square matrices direct
matrix inversion when A is ill-conditioned is not recommended due to the noise in
the data. Regularization is generally imposed in which desired characteristics of a
solution are described mathematically and incorporated into the formulation with
the aim to produce a more well-posed problem.
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The generalized Tikhonov regularized solution x(↵) [48] is given by

x(↵) = argmin
x2Rn

�
kAx� dk22 + ↵2kLxk22

 
, ↵ > 0, L 2 Rq⇥n. (2)

The scalar ↵ > 0 is a regularization parameter, and L is a matrix representation
of a linear operator. The term kLxk22 is an example of a penalty function [51],
and L is called the penalty matrix. If L = In, the n ⇥ n identity matrix, then
regularization via (2) is called standard or zeroth-order Tikhonov regularization
[3]. Other standard choices of L include approximations to first and second order
derivative operators [39, 46, 51].

The quality of x(↵) depends on the choice of both ↵ and L. There are a number
of methods for selecting ↵ when L has been fixed. As an example, the Morozov
discrepancy principle (MDP) [37] requires knowledge of the variance of the noise
distribution of the data and selects the regularization parameter as the root of a
function. The unbiased predictive risk estimator (UPRE) [32] also requires knowledge
of the variance of the noise distribution of the data and yields the regularization
parameter as the minimizer of a function. The method of generalized cross valida-
tion (GCV) [52, 53] does not require the noise distribution be known and also yields
the regularization parameter as a minimizer of a function. Some methods do not
solve minimization or root-finding problems; for example, the L� curve method
selects a regularization parameter as the value that locates the point of maximum
curvature of a function [22, 25]. As noted, many of these techniques, including the
UPRE, MDP, and GCV methods, have statistical foundations [27].

There has been considerable research in selecting sets of regularization parame-
ters for a pre-selected set of penalty matrices, a process called multi-parameter (MP)
regularization [7, 11, 18, 31, 55]. Approaches to MP regularization using versions of
the L� curve and MDP methods can be found in [4] and [54], respectively. An MP
GCV method was also considered in [35, 36]. Windowing, either in the data domain
or the frequency domain, can also be applied to determine multiple regularization
parameters; windowing wavelet coe�cients was considered in [16, 45]. Examples
of windowed regularization in other frequency domains, such as those generated by
discrete trigonometric transforms or the singular value decomposition (SVD), have
been presented in [10, 12, 28]. There is also recent work on learning semi-norms as
regularization operators [26].

Techniques for utilizing and analyzing multiple data (MD) sets permeate a mul-
titude of scientific fields as diverse as geoscience [6, 56], and cancer detection [44].
A comprehensive overview of data-driven approaches to inverse problems can be
found in [2], while specific examples of applying multiple data sets for the solution
of inverse problems include [1, 9, 11, 21, 29, 47, 15].

A main contribution of this paper is demonstrating and validating how the func-
tions associated with the UPRE and GCV methods can be modified to handle multiple
data sets, using both scalar and sets of regularization parameters dependent on
spectral windows. These are chosen as representative methods that either require
(UPRE), or do not require (GCV), prior knowledge of the statistics of the noise in the
data. There is a distinction between the modified methods and those that would
use averages of the parameter selection functions; see [8]. Here, the estimators for
spectral windowing regularization are derived from first principles. The results show
that whereas the UPRE method easily extends for spectral windowing regularization,
the GCV yields an alternative estimator, as was noted already in [10]. The result for
the GCV was shown for standard form regularization and is here extended for general
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form Tikhonov regularization. The development of these new methods is presented
in Section 3, with proofs of main results in Appendices A and B. Sections 3.1 to 3.2
pertain to the UPRE and GCV methods, respectively. In addition to developing these
modified parameter selection methods, results are presented regarding their rela-
tionship(s) with the original method(s) and the simplified expressions for obtaining
the required functions using the generalized singular value decomposition are pro-
vided for each function. Proofs for the functions and simplified expressions are
given in Appendices A to D. The approach using the UPRE and GCV estimators is
contrasted with a machine learning approach relying on the knowledge of true data
in Section 4. Numerical results are shown in Section 4. Conclusions are given in
Section 5.

Significant contributions: It is demonstrated through this work how multi-
ple data sets can be used in conjunction with windowed regularization using the
formulation introduced in [10]. Windowed parameter versions of the GCV method
for standard Tikhonov regularization were presented in [10]. Here the windowed
GCV is derived from first principles for the generalized Tikhonov regularization. The
UPRE extension is also derived from first principles for standard and generalized
Tikhonov regularization. For non-overlapping spectral windows the UPRE estimator
is separable in the spectral domain, so that windows can be found for each window
independently. This is not the case for the GCV estimator. Moreover, the windowed
UPRE follows immediately from the standard formula for the scalar parameter UPRE
estimate, while the GCV function is considerably modified if the leave-one-out ap-
proach is strictly applied. Numerical results for the restoration of 2D signalsi,
demonstrate that these new windowed regularization parameter estimators can be
used for multiple data sets without knowledge of the true data and that their perfor-
mance competes with a learning approach in which the training stage requires the
knowledge of true data. Furthermore, parameters that have been obtained from one
set of training images can be used on a separate set of validation (testing) images
distinct from the original set, provided that the signal-to-noise ratios are close.

1.1. Summary of notation. Due to the consideration of multiple data sets as
well as the windowed parameter regularization for these data sets, the notation in
this paper is extensive and will therefore be briefly summarized. We will use the
acronym “MD” in the textual body of the paper and plots to refer to the multi-data
generalizations of these methods and their corresponding functions. For example,
the MD UPRE method means the extension of the UPRE method for multiple data
sets, and the notation win is used to indicate a function that is defined with respect
to regularization parameters used for spectral windows. In the formulation, R
denotes the number of data sets being considered, which are indexed by r. The
index r may either be placed as a subscript or a superscript with parentheses;
for example, A(r), x(r), and d(r) represent the system matrix, solution, and data,
respectively, associated with the rth system. The tilde (⇠) is placed above matrices,
vectors, or functions to denote their use for MD. Specifically, for matrices the tilde
indicates the formation of a block diagonal matrix, e.g. eA = diag(A(1), . . . ,A(R))

for {A(r)}Rr=1. For vectors, the tilde indicates vertical concatenation, e.g. ed is
the ordered vertical concatenation of the vectors {d(r)}Rr=1. The functions used in
each parameter selection method are indicated using F with subscripts denoting
which method is being considered. For example, eFUPRE(↵) represents the scalar

iResults for 1D problems and all derivations using the MDP method are given in [8]
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UPRE function for MD sets. Pr represents the number of windows/parameters being
considered for the rth data set; the individual windows are indexed by p, p = 1 : P .
For matrices, vectors, and functions being used for windowed regularization, the
subscript “win” is added. Letters are bolded to indicate vectors; the term eFUPRE

win
(↵)

represents the UPRE function for use in the most general case, where MD are being
used for windowed regularization with the parameters contained in the vector ↵.
null(A) is used to denote the null space of the matrix A.

2. Regularized solutions for single and multiple data sets. We provide first
the standard background for determining the solution of the regularized problem
(2) for a given scalar regularization parameter ↵ [3, 23]. We then extend this
for the solution of (2) using windowing with respect to the spectral domain [10].
Finally, we explain how the scalar and windowed solutions provide a formulation
for multiple data sets, as introduced in [11]. For the windowed solutions we assume
that the windows in the spectral domain are specified in advance. The aim here is
to first show that there is a common framework that can be used to express the
solution of the single and multiple data sets problems, for both scalar and windowed
formulations. Moreover, we present, as needed, the framework using the generalized
singular value decomposition [40], noting that the results simplify for the SVD as
is relevant for standard Tikhonov regularization with L = I [20].

2.1. The single parameter single data set problem. Under the full column
rank assumption for the augmented matrix that defines the normal equations,
null(A) \ null(L) = {0}, the normal equations solution of (2) is given by

x(↵) = (ATA+ ↵2LTL)
�1

ATd = A](↵)d, (3)

where A](↵) is called the generalized inverse matrix [23]. A compact represen-
tation for (3) is obtained using the generalized singular value decomposition [40].

Definition 2.1 (The Generalized Singular Value Decomposition (GSVD)). For real
matrices A and L of size m⇥n and q⇥n, respectively, and assuming the full column
rank condition, the mutual factorizations

A = U�XT, and L = V⇤XT, (4)

exist [3]. Here U is an m⇥m orthogonal matrix, V is a q⇥q orthogonal matrix, and
X is an n⇥ n non-singular matrix. ⇤ is a q⇥ n matrix with non-negative diagonal
elements in decreasing order on the principal diagonal ⇤jj , 1  j  min(q, n) = q⇤,
and the only elements of the m⇥ n matrix � that are possibly non-zero are

0  �(1,k+1)  �(2,k+2)  . . .  �(min (m,n),k+min (m,n))  1, k = (n�m)+.

Here (x)+ is defined to be x for x > 0 and 0, otherwise.

Equipped with the mutual factorizations in (4), introducing Y as the inverse of
XT, and setting d̂ = UTd, we obtain

x(↵) = Y
�
�T�+ ↵2⇤T⇤

��1
�Td̂. (5)

But now, with the identity �T = �T��†, where A† for a matrix A is the

pseudoinverse of A [20] and defining �(↵) =
�
�T�+ ↵2⇤T⇤

��1
�T�, provides

the filter matrix representation of (5)

x(↵) = Y�(↵)�†UTd, (6)
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which also defines A](↵) = Y�(↵)�†UT.
Examining the entries in the diagonal matrix �(↵), we have

�jj =

8
>><

>>:

0 j = 1 : ` (�j = 0)
�2j

�2j+↵2�2
j

j = `+ 1 : q⇤

1 j = q⇤ + 1 : n.

(7)

Here �j and �j are defined as follows. Let � =
p
diag(�T�), (for the element-

wise square root), then �j = �(k+1,k+j), j = 1 : q⇤, and we have defined �j = 0,

j = 1 : ` < n. Likewise, set � =
p
diag(⇤T⇤), �j = ⇤jj , j = 1 : q⇤. Then,

�j = �j/�j , j = 1 : q⇤ are the generalized singular values. Notice �j = 0 for �j = 0,
and due to the opposite ordering of the �j and �j , the �j are increasing, which
is contrary to the standard ordering of the singular values when using the SVD
of A. In the following discussion we assume throughout that m � n, and that L

has full rank q⇤. Therefore �j = �jj and �jj =
�2
j

�2
j+↵2 , j = 1 : n is increasing,

with potentially �jj = 0 if �j = �j = 0 for j = 1 : ` < n, corresponding also to
(�(↵)�†UTd)j = 0. Note that according to (7) �jj = 1, j > q⇤.

2.2. Spectral windowing for the single data set problem. A more general
approach to regularization replaces the scalar regularization parameter by a vector
↵ = [↵1, . . . ,↵P ]

T in which ↵p is the regularization parameter for a pth solution ob-
tained with respect to a pth spectral window. These windows are defined, following
the approach in [10], using non-negative weights which satisfy

PX

p=1

w(p)
j = 1, j = 1 : n.

We use the index set for a given window win(p) which is the set of j such that

w(p)
j 6= 0. The selection of the windows is predefined and is described in Section 4.1.

The diagonal matrices W(p) = diag
�
w(p)

�
, satisfying

PP
p=1 W

(p) = In, introduced
into (6) yield the windowed solution which is the sum over all P windows

xwin(↵) =
PX

p=1

Y(W(p))1/2�(↵p)(W
(p))1/2�†UTd = Y�win(↵)�†UTd. (8)

This defines the symmetric windowed filter matrix and windowed generalized
inverse

�win(↵) =
PX

p=1

(W(p))1/2�(↵p)(W
(p))1/2 =

PX

p=1

�win(p)(↵p) (9)

A]
win(↵) = Y�win(↵)�†UT. (10)

Furthermore, we may also write the solution as a sum over solutions for each
window

xwin(↵) =
PX

p=1

Y�win(p)(↵p)�
†UTd =

PX

p=1

A]
win(p)

(↵p)d =
PX

p=1

x(p)(↵p).

Defining

x(p)(↵p) = Y�(↵p)�
†W(p)d̂,
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we notice that x(p)(↵p) depends only on d̂j for j in win(p) when the windows are

non-overlapping, w(p)
j = 1 for j 2 win(p) and zero otherwise.

2.3. Multiple data sets. Suppose now that we have a collection of data sets
{d(r)}Rr=1 where, for each data set

d(r) ⇡ A(r)x(r), (11)

analogously to (1), A(r) 2 Rmr⇥nr with mr � nr, d(r) = b(r) + ⌘(r), with ⌘(r) be-

ing a realization of a random vector and b(r) = A(r)x(r)
true. For given regularization

parameters ↵(r) and penalty matrices L(r) of dimension qr ⇥ nr, Tikhonov regu-
larization can be performed to produce regularized solutions x(↵(r)) that minimize

the Tikhonov functionals, kA(r)x � d(r)k22 +
�
↵(r)

�2 kL(r)xk22, which is equivalent
to solving (2) but for each system independently.

2.3.1. Scalar parameter for multiple data sets. Suppose each of the systems are
similar under some assumptions to be defined as needed, then it may be reasonable
to replace ↵(r) by a common scalar ↵ and seek to find a suitable ↵ for all data sets
which can then be used to find solutions for other data sets with similar properties.
In this framework we consider the determination of

ex(↵) = argmin
x2RN

n
keAex� edk22 + ↵2keLexk22

o
, (12)

for given scalar ↵, and where we define N =
PR

r=1 nr. Here, with the notation

introduced in Section 1.1, ex and ed are the vectors formed by vertically concatenating
{ex}Rr=1 and {d(r)}Rr=1, respectively, and matrices eA and eL are the block diagonal
matrices generated from A(r) and L(r). The advantage of regularizing via (12) is
that we only have to select one parameter, ↵, instead of R parameters (one for each
data set). The disadvantage is that we now have to solve a far larger system of
equations, and therefore it will be necessary to identify what it means to be similar.

First, we observe that we can immediately write down the solution of (12) using
the framework in Section 2.1, yielding the solution equivalent to (3) for the large
system of equations

ex(↵) = (eAT eA+ ↵2eLTeL)
�1 eATed = eA](↵)ed. (13)

This is a completely separable block diagonal solution, common only through ↵.
As for the single data set case, it is convenient to introduce the assumption that
there is a GSVD for each system, as given in Assumption 2.2.

Assumption 2.2 ( GSVD for matrix pair A(r), L(r) ). We assume that there exist

matrices �(r) 2 Rmr⇥nr and ⇤(r) 2 Rqr⇥nr such that A(r) = U(r)�(r)(X(r))
T
and

L(r) = V(r)⇤(r)(X(r))
T
for r = 1 : R, where U(r)

and V(r)
are orthogonal , X(r)

is

invertible and null(A(r)) \ null(L(r)) = {0}.

So far this imposes no similarity between systems but allows the solution to be
written in the filtered form, equivalent to (6),

ex(↵) = eY e�(↵) e�† eUTed = eA](↵)ed. (14)

Note this also defines eA](↵) = eY e�(↵) e�† eUT. Again the notation from Sec-
tion 1.1 is applied. This extends the result in [11, Eq. 3.14] to the case when �
need not be invertible. Strictly speaking we do not need to use the GSVD for these
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solutions, but it is the use of the spectral information provided by the GSVD, or
SVD when the operator L is replaced by the identity, that facilitates in the context
of our analysis the definition of a windowed solution dependent on the generalized
singular values, respectively singular values if L = I. We observe that e� is sym-
metric block diagonal with diagonal blocks. We reiterate that (13) and (14) are no
more than (3) and (6), respectively, simply applied for the large system of equations
with no assumptions about any common system information.

2.3.2. Windowing for multiple data sets. Having provided the spectral windowing
for the single data set, it is now immediate that we could apply windowing to

each of the r data sets. Let ↵(r) = [↵(r)
1 ,↵(r)

2 , . . . ,↵(r)
Pr

] be the Pr regularization
parameters used for windowed regularization applied to the rth system described
by (11). Then, as in (8), the independently constructed regularized solutions yield
the filter representation for each solution

x(r)
win(↵

(r)) = Y(r)�(r)
win(↵

(r))(�(r))
†
(U(r))

T
d(r).

Here �(r)
win incorporates the independent window weighting matrices as in (9)

and is again symmetric. As in (10) we could define the appropriate generalized
inverse matrices for each system. If each system has its own set of windows, there
are a total of

PR
r=1 Pr regularization parameters. Instead we introduce additional

assumptions.

Assumption 2.3 (Windows and ↵). We assume

1. the number of windows Pr is the same for each system, i.e Pr = P for all

r = 1 : R and ↵(r) 2 RP
, r = 1 : R.

2. ↵(r) = ↵, r = 1 : R.

By the first statement of Assumption 2.3 there are RP parameters. Now as
for the scalar case, the solution of the problems defined for these concatenated
systems is equivalent to solving each independently. But the second statement
of Assumption 2.3 reduces the number of unknowns to P and introduces taking
advantage of multiple systems to find an optimal vector ↵. Note, this still does not
imply that the windows need to be the same. In summary we have the standard
filtered form for the concatenated solution, as in (8),

exwin(↵) = eY e�win(↵) e�† eUTed = eA]
win
ed, (15)

in which the diagonal weighting matrices are hidden within e�win, and eA]
win is defined

as in (10).

3. Parameter selection methods. An estimate of scalar ↵ can be found by
applying many di↵erent criteria for defining what it means for ↵ to be optimal, and
there are numerous descriptions in the literature [3, 23, 51]. Here, to find ↵ we
focus on the method of generalized cross validation (GCV), [52, 53] and the unbiased
predictive risk estimator (UPRE), [32, 51]. While both techniques are statistically
based, the GCV does not rely on any knowledge of the statistical distribution for
⌘, but for the UPRE we need to assume ⌃(r), the covariance matrix for the noise
in sample r, is available. For (2) these methods require the minimization of an
objective function that depends on the scalar ↵. We present the standard UPRE and
GCV functions to find ↵ for R = 1 and then derive the extensions of the UPRE and
GCV functions for the determination of the optimal ↵ for the windowed MD solution
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(15). The proofs of the main results are provided in Appendices A and B, and the
derivations which use the GSVD to simplify the terms that are used to calculate
the underlying functions to be minimized dependent on ↵ are given in Appendix C.

3.1. The unbiased predictive risk estimator. The UPRE method was developed
in 1973 by Mallows and considers the statistical relationship between the regular-
ized residual r(↵) = Ax(↵) � d, and the predictive error p(↵) = A(x(↵) � xtrue).
Assuming ⌃ = �2Im, the standard UPRE objective function for Tikhonov regular-
ization is given by

FUPRE(↵) =
1

m
kr(↵)k22 +

2�2

m
trace(A(↵))� �2 (16)

[51, p. 98] and the optimal ↵ is defined by

↵UPRE = argmin
↵>0

FUPRE(↵). (17)

In (16) A(↵) is the data resolution matrix

A(↵) = A
�
ATA+ ↵2LTL

��1
AT = AA](↵),

and FUPRE(↵) is an unbiased estimator of the expected value of the predictive risk,
1
mkp(↵)k22. The derivation of the UPRE function for the most general case with P
windows and R data sets follows the details for the derivation of (16) as given in
[51, p. 98], under the additional assumption on the data sets that ⌘(r), r = 1 : R,
are mutually independent. We collect the required assumptions in Assumption 3.1.

Assumption 3.1 (The Data Sets). For r = 1 : R, assume that b(r) = A(r)x(r)
,

d(r) = b(r)+⌘(r)
, and ⌘(r) ⇠ N (0(r),⌃(r)) with mutually independent ⌘(r)

. Equiv-

alently, ⌘(r)
follows a Gaussian distribution with mean 0 and symmetric positive

definite covariance matrix ⌃(r)
. The vectors b(r)

, d(r)
, and ⌘(r)

are of length mr

and x(r)
is of length nr.

Theorem 3.2 (UPRE function for multiple data sets and multiple windows). Under

Assumptions 2.3 and 3.1, and assuming that each A(r)
win(↵) = A(r)(A(r)

win)
]
, r = 1 :

R, is symmetric, then the UPRE function eFUPRE
win

(↵) for the data sets {d(r)}Rr=1 with

windows {{W(r,p)}Pp=1}Rr=1 is

eFUPRE
win

(↵) =
1

M

RX

r=1

mrF
(r)
UPRE
win

(↵), (18)

where

F (r)
UPRE
win

(↵) =
1

mr
kr(r)win(↵)k22 +

2

mr
trace(⌃(r)A(r)

win(↵))� 1

mr
trace(⌃(r)), (19)

and M =
PR

r=1 mr.

Proof. The proof is given in Appendix A.

In Theorem 3.2 there is no assumption made that the windows used are the same,
nor that the systems are of the same size, namely, we do not assume mr = m,
r = 1 : R. Moreover, the results are given in terms of the generalized inverse matrix
trace terms and the residuals for each system, without any use of the GSVD for the
matrix pairs A(r) and L(r).

It is immediate that (18) does not align with (16), in particular, each of the
functions for system r are more general than (16). To relate the two expressions we



LEARNING SPECTRAL REGULARIZATION PARAMETERS 849

assume either ⌃(r) = �2
rImr , where �2

r is the common variance in the noise, or that
the Gaussian noise is whitened by applying the whitening, or zero-phase component
analysis (ZCA) [5], transformation (⌃(r))�1/2 to (11) for each r.

Assumption 3.3 (Mutually Independent Whitened Data). We assume ⌃(r) =
�2
rImr , r = 1 : R. If the ZCA transform is applied to whiten the rth data set we

have �2
r = 1

Corollary 3.4 (UPRE for mutually independent data). Under Assumption 3.3

F (r)
UPRE
win

(↵) =
1

mr
kr(r)win(↵)k22 +

2

mr
�2
r trace(A

(r)
win↵))� �2

r .

Proof. This is immediate by using ⌃(r) = �2
rImr in (19).

Finally, if we have systems that are all of the same size, mr = m, the fraction
mr/M simplifies as 1/R and we obtain

eFUPRE
win

(↵) =
1

R

RX

r=1

F (r)
UPRE
win

(↵).

Remark 3.5 (Comment on symmetry for the data resolution matrices). It is clear
from the proof given in Appendix A that it is not necessary to assume symmetry
in order to evaluate the estimator, this is only needed to combine the two terms.
To be more general we obtained the first steps of the proof without the symmetry
requirement. Yet, we can also obtain symmetry without using a mutual spectral
decomposition for A and L. Indeed, returning to the normal equations form (3)
for the solution, without windowing, we can introduce the diagonal matrices W(p)

directly to define a pth solution dependent on W(p) and a scalar regularization
parameter ↵p,

x(p)(↵p) = (W(p))1/2(ATA+ ↵2
pL

TL)
�1

(W(p))1/2ATd = A]
p(↵p)d. (20)

The data resolution matrix associated with (20) is immediately symmetric, and
it reduces to the original windowed form for x(p)(↵p) when the GSVD is applied.
Still, the more general expression (20) facilitates an alternative direction for finding
multiple regularization parameters based on blocks of components in ATd, such
as using domain multisplitting [41, 42]. The expression is also relevant when it is
not feasible to find a mutual spectral decomposition but it is possible to implement
forward operations with matrices A and L. Noting that the proof of Theorem 3.2
does not make any assumptions about the use of the GSVD, we reiterate that
Theorem 3.2 provides a UPRE form that can be used more generally.

We now focus on the use of mutual spectral decompositions for A and L that
can be used to simplify the expressions used to estimate ↵ as the solution of (17)
applied for (18). The standard approach uses the GSVD (or the SVD when L = I)
that is also relevant for Kronecker product forms for A and L. Discrete Fourier or
cosine transforms (DCT) also provide a mutual decomposition that can be employed.
Here we give the results in terms of the GSVD, and will show how it can be used
in Section 4. The proofs of elementary algebraic results are given in Appendix C.
The relation of the DCT to the GSVD is given in Appendix D.
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For the single data set case with windowing, and introducing the diagonal matrix
 = I��, Theorems C.2 to C.3 immediately provide

krwin(↵)k22 =
q⇤X

j=1

 
PX

p=1

w(p)
j  jj(↵p)

!2

d̂2j +
mX

j=n+1

d̂2j ,

and

trace(Awin(↵)) = (n� q⇤) +
q⇤X

j=`+1

PX

p=1

w(p)
j �jj(↵p),

respectively. Hence, ignoring constant terms, and using the index (r, p) to indicate
data set r and window p, we can write

eFUPRE
win

(↵) =
1

M

RX

r=1

0

@
q⇤rX

j=1

 
PX

p=1

w(r,p)
j  (r)

jj (↵p)

!2 ⇣
d̂(r)j

⌘2

+2�2
r

q⇤rX

j=`+1

PX

p=1

w(r,p)
j �(r)

jj (↵p)

1

A .

(21)

Likewise, for non-overlapping windows using Lemmas C.2 and C.3, ignoring con-
stant terms we obtain a function for each window,

eF (p)
UPRE
win

(↵p) =
1

M

0

@
RX

r=1

X

j2win(r,p)

⇣
 (r)

jj (↵p)d̂
(r)
j

⌘2
+ 2�2

r

X

j2win(r,p)
�(r)

jj (↵p)

1

A . (22)

Finally, combining (21) and (22) we have the main result to estimate the win-
dowed regularization parameters using R measurements d(r) for unknown x(r),
r = 1 : R given the GSVD for the system A with penalty matrix L. In this
case mr = m, nr = n, q⇤r = q⇤, M = Rm, and we assume that the same windows
are used for each system.

Proposition 3.6. Under Assumptions 2.3 to 3.3, with now A(r) = A, L(r) = L
and ⌃ = ⌃(r) = �2Im, the windowed parameter vector ↵ for the UPRE function,

after removing the common factor 1/m is

↵UPRE = argmin
↵2RP

+

8
<

:
1

R

RX

r=1

0

@
q⇤X

j=1

 
PX

p=1

w(p)
j  jj(↵p)

!2 ⇣
d̂(r)j

⌘2
1

A

+2�2
q⇤X

j=`+1

PX

p=1

w(p)
j �jj(↵p)

9
=

; .

For non-overlapping windows ↵ can be found by minimizing for each scalar pa-

rameter ↵p independently using the frequency domain data d̂(r)
, r = 1 : R

↵p = argmin
↵>0

8
<

:
1

R

RX

r=1

0

@
X

j2win(p)

⇣
 jj(↵)d̂

(r)
j

⌘2
1

A+ 2�2
X

j2win(p)
�jj(↵)

9
=

; .
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3.2. Generalized cross validation. In contrast to the UPRE function, the GCV
function does not require knowledge of the covariance matrix ⌃. Yet, it is statis-
tically based, and is obtained by applying a leave-one-out analysis. It yields the
function

FGCV(↵) =
1
mkr(↵)k22�

1
m trace(Im �A(↵))

�2 =
1
mkr(↵)k22�

1� 1
m trace(A(↵))

�2 , (23)

for which we define

↵GCV = argmin
↵>0

FGCV(↵).

It is immediate that we can define ↵GCV for the concatenated systems, assuming
a leave-one-out-analysis applied for the system defined by eA, replacing m by M
and the residual and trace terms calculated for eA. On the other hand, it was
shown in [10] that the immediate application of (23) for the system described by
the single system with windowing is not consistent with the leave-one-out analysis.
Rather, deriving the GCV for the windowed system from first principles, assuming the
standard Tikhonov regularization with L = In, yields a new function [10, Theorem
3.2] which is more complex algebraically. Applying the same analysis from first
principles based on the Allen Press function, [19], for the generalized Tikhonov
form, we arrive at the following result which expands on [10, Theorem 3.2].

Theorem 3.7 (Windowed GCV Function for a single data set). Assume L has full

rank (row rank if q < n but column rank if q � n), �j > 0, j = 1 : q⇤, m � n, and
0 = �1 = · · · = �` < �`+1 · · ·  �n. The windowed GCV function for the generalized

Tikhonov regularization is given by

FGCV
win

(↵) =
1

m

0

@
mX

j=q⇤+1

 
1 +

 
PX

p=1

1� ⌫p
µp

!!2

d̂2j

+
q⇤X

j=1

 
1 +

 
PX

p=1

1� ⌫p
µp

!
�
 

PX

p=1

1

µp

�2
jw

(p)
j

�2
j + ↵2

p

!!2

d̂2j

1

A .

(24)

Here the number of windows is P , the weights on each window for generalized

singular value �j are given by w(p)
j , and µp and ⌫p are obtained from Lemma B.1

as

µp =
1

m

0

@m� n+ q⇤ �
q⇤X

j=1

�2
j

�2
j + ↵2

p

1

A and ⌫p =
1

m

0

@m� n+ q⇤ �
q⇤X

j=1

�2
jw

(p)
j

�2
j + ↵2

p

1

A .

Note that �jj = 1 for j > q⇤ and so some terms in the summation cancel when

q⇤ < n. The same applies for (�win(p)(↵p))jj , also with w(p)
j = 0.

In contrast to the analysis for the UPRE, the derivation and associated proof, as
given in Appendix B, for Theorem 3.7 relies explicitly on the availability of a mutual
spectral decomposition for A and L. In [10] the equivalent result relied on the use
of the SVD and made the assumption that all singular values are positive. The
result here explicitly permits �j = 0 = �j , and is su�ciently general that it applies
for the case when L is tall or wide. On the other hand, as noted in [10], (24) is a
complicated non-linear function of P variables, and it can be beneficial to consider
alternative approximations for finding a good GCV type estimator for ↵. There, it
is suggested that non-overlapping windows can be used to find a good initial point
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for optimization, in which case a GCV function for each window can be optimized
separately for scalar ↵p. Here we consider this approach, but also compare with
an estimator that is obtained by applying the standard GCV function in which the
residual and trace terms in the numerator and denominator are calculated directly.
Having provided Theorem 3.7 it is immediate, as already noted, that this estimator
is not a true GCV estimator for the windowed case.

First we note that in the scalar parameter case (23) generalizes to

eFGCV(↵) =
1
M ker(↵)k22⇣

1� 1
M trace

⇣
eA(↵)

⌘⌘2 (25)

for the MD case with M =
PR

r=1 mr. When using non-overlapping windows, from

(25) and eAwin(↵) = eAeA]
win we can select ↵p for p = 1 : P using the independent

functions

eF (p)
EstGCV
win

(↵p) =
1
M kber

(p)

win(↵p)k22⇣
1� 1

M trace
⇣
eAeA]

p

⌘⌘2 , (26)

with ber
(p)

win(↵p) = eUT eAex(p)(↵p)� fW(p) eUTed. Equation (26) can also be applied to a
single data set d 2 Rm and non-overlapping windows (the tilde notation is dropped
andM replaced bym). The use of (26) is analogous to [10, eq. 3.13] extended to the
MD environment; (26) is not a true GCV function, though minimization is easier than
minimizing (24). As with the derivations of the UPRE functions in section 3.1, (26)
can also be written in terms of the GSVD using the results in Appendix C. Finally,
we note, as with the UPRE, that having estimators for the scalar and windowed
parameter solutions immediately provides the estimators for the block systems of
equations for multiple data sets.

4. Numerical experiments. To evaluate the e↵ectiveness of the spectral window-
ing and scalar parameter selection methods described in Section 3, we present the
results for a single two dimensional test problem, with di↵erent noise levels and blur
width. Results for one dimensional problems are presented in [8]. For both prob-
lems the parameter(s) are found for a set of training data, and then validated using
a separate validation set. The results for the 1D problem, which serves as a proof
of concept for the methods and that use MRI data that is built into MATLAB®,
are detailed in [8]. More relevant are the results for the two-dimensional problem
which is described in detail here. This problem utilizes the images in fig. 1 of the
planet Mercury obtained by the MESSENGER space probeii. The signal-to-noise
ratio (SNR) is used as a measurement for noise content in the images and is given
by

SNR = 10 log10

✓
Psignal

Pnoise

◆
.

In the discrete setting, the average power P of a vector x of length n is de-
fined as 1

mkxk22. Using this definition for vectors b and ⌘, Psignal =
1
mkbk22 and

Pnoise =
1
mk⌘k22 and so the quotient in the logarithm is kbk22/k⌘k22. If b is a matrix

iiThe selected MESSENGER images are available to the public courtesy of NASA and JPL-
Caltech [38]. The identifiers of the images in fig. 1, starting from the top row and moving
left to right, are: PIA10173, PIA10174, PIA10177, PIA10942, PIA11246, PIA12042, PIA12068,
PIA12116, PIA14189, PIA15756, PIA18372, PIA19024, PIA19203, PIA19213, PIA19267.
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Figure 1. Selected images used for MESSENGER 2D test prob-
lem. Available courtesy of NASA/JPL-Caltech [38].

representing an image, in which case ⌘ is a realization of a random matrix, the
2�norm can be replaced by the Frobenius norm.

For a basis of comparison, parameters were also selected as minimizers of the
learning function

eFMSE
win

(↵) =
1

R
kexwin(↵)� exk22 =

1

R

RX

r=1

F (r)
MSE
win

(↵), (27)

where

F (r)
MSE
win

(↵) = kx(r)
win(↵)� x(r)k22. (28)

Note that this definition requires that the true solutions, {x(r)}Rr=1, are known,
as it finds the parameters to minimize the mean squared relative error (MSE) using
known data. Regularization parameters chosen as minimizers of (27) are optimal

in the sense of minimizing the MSE of the regularized solutions x(r)
win(↵); the use of

(27) was considered in [11]. One could also find minimizers ↵(r) of (28) for each
r = 1 : R, which would produce parameters that are optimal for their own data
set. In the results we use MSE to indicate results that are found using the learning
function (28).

In the experiments we use the spectral windows as described in Section 4.1 and
to evaluate the forward operators we use the Kronecker product 2D discrete cosine
transform (DCT). The relation of the 1D DCT to the GSVD is briefly described in
Section 4.2. The extension that relates the Kronecker product 2D DCT to the KP
GSVD follows similarly.

4.1. Spectral windows. In the experiments we use windowing following the ap-
proach in [10]. First we consider non-overlapping windows, W(p), for which the
components of their corresponding weight vectors w(p) satisfy

w(p)
j 2 {0, 1}, j = 1 : n, p = 1 : P. (29)
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The condition given by (29) means that for each j = 1 : n, there is exactly one

p 2 {1 : P} such that w(p)
j = 1.

Perhaps the simplest way of choosing the components of w(p) is to first choose
P + 1 partition values !(0) � . . . � !(P ) such that !(0) � s1 and sn > !(P ), then
for p = 1 : P , the non-zero components occur for those j for which sj is in the pth

window:

w(p)
j = 1, for !(p�1) � sj > !(p).

Here sj correspond to the generalized singular values, ordered in the opposite
order, decreasing rather than increasing. This is consistent with the standard or-
dering of the singular values when using the SVD of the matrix A. The partition
values !(0) � . . . � !(P ) used in the experiments are formed by taking P+1 linearly
or logarithmically equispaced samples of the interval [�1, �⇤

n], where �⇤
n is a largest

non-infinite generalized singular value of (A,L). Partition values can also be used to
generate overlapping windows. For example, cosine windows are defined in [10, Eq.
3.6-3.7] by using midpoints of each partition. Linearly and logarithmically spaced
cosine windows are used in the experiments as examples of overlapping windows.

4.2. The DCT. While the GSVD is useful for analyzing problems with a general
matrix A, for practical image deblurring problems with mr = nr it is more com-
putationally e�cient to use the 2D discrete cosine transform (DCT). Assuming that
reflexive boundary conditions are applied, primarily to reduce the potential for re-
flection that would arise with zero boundary conditions, then both A and L have
the same block structure and the DCT can be used to simultaneously diagonalize A
and L into a BTTB + BTHB + BHTB + BHHB matrix, with the “T” and “H”
standing for Toeplitz and Hankel, respectively, [24]. Theorem 4.1, for which a brief
proof is given in Appendix D, describes how a simultaneous diagonalization of these
matrices is related to their GSVD.

Theorem 4.1. GSVD for the DCT [8] Given the simultaneous diagonalization of

the n⇥ n symmetric matrices A = CT e�C and L = CT e⇤C where C is orthogonal

and null(A) \ null(L) = {0}, A and L can be expressed as A = U�XT
and

L = U⇤XT
, respectively, where U is orthogonal, X is invertible, �T�+⇤T⇤ = In,

0  �1,1  . . .  �n,n  1, and 1 � ⇤1,1 � . . . � ⇤n,n � 0.

Theorem 4.1 serves as a theoretical tool that bridges di↵erent matrix decom-
positions for the purpose of forming a greater variety of implementation options.
Specifically, this result assists in the e�cient implementation for the regularization
estimators, both UPRE and GCV, using the simplified expressions for the results in
Appendices A to C. While Theorem 4.1 applies to any simultaneous diagonalization
of symmetric matrices, the DCT has the advantage of avoiding complex operations
that would generally arise if using fast Fourier transforms, rather than the DCT.
Naturally, we could also impose zero boundary conditions or periodic boundary
conditions [24]. Our choice to use the DCT is not generally limiting but appropriate
for the given application.

4.3. Two-dimensional problems. The data sets for the 2D test problem consist
of images of size 256⇥ 256. A total of 16 images were used and split into training
and validation sets containing 8 images each. To obtain the 16 images from the
512⇥512 Mercury images in fig. 1, the first 8 images were chosen and two 256⇥256
subimages of each image were selected as the northwest and southeast corners.
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Another validation set of images, shown in fig. 2, was used that consisted of built-in
MATLAB® images.

Figure 2. The second validation set, consisting of built-in
MATLAB® images. From left to right starting in the top
row, the images are: rice.png, AT3 1m4 01.tif, circuit.tif,
cameraman.tif, liftingbody.png, westconcordorthophoto.png,
parkavenue.jpg, and llama.jpg.

A 256⇥ 256 point spread function was formed using a discretization of the zero
centered, circularly symmetric Gaussian kernel, k(x, y) = exp

�
�(x2 + y2)/(2⇠)

�
.

The parameter ⇠ controls the width of the Gaussian kernel. Choosing k(x, y) to
be circularly symmetric is for convenience; a Gaussian kernel with di↵erent width
parameters for the x and y directions can still be used to construct k(x, y) that is
doubly symmetric for diagonalization via the DCT [24]. In regards to the value of
⇠, values ⇠ = 4, 16, and 36 correspond to blurring that is referred to as “mild,”
“medium,” and “severe”, respectively, [17]. The corresponding k(x, y) were dis-
cretely convolved with each image as a means of blurring. SNR values of 10, 25 and
40 were used to construct mean zero independent Gaussian noise vectors that were
added to the blurred images to create the data. For one choice of the penalty matrix
L, we used the appropriately structured version of the discrete negative Laplacian
operator, which is an approximation of the continuous Laplacian operator [14, 30],
and which we denote by L = L2. For the second penalty matrix we used L = I.
The structure of A and L allows for simultaneous diagonalization using the DCT for
numerical e�ciency (see Section 4.2).

The learning methods were evaluated for both the scalar and spectral window-
ing cases using training data sets of sizes R = 1 to 8. The learned parameters
in each case were then used to construct regularized solutions for data from two
independent validation sets. For the windowed regularization we considered both
non-overlapping linear/logarithmic windows and overlapping linear/logarithmic co-
sine windows. The decision to use linear spacing for L = I and logarithmic spacing
for L = L2 is supported by how the ordered spectral components decay [8]. As in
[10], the windowed GCV function (24) was replaced by the P independent approxi-
mate GCV functions (26) for simplicity when considering non-overlapping windows.
Parameters were also obtained for the separable UPRE method given by (22). For
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the spectral windowing with overlapping windows, the minimizations were initial-
ized using the parameters obtained by the non-overlapping methods. Overall, in
terms of the choice to initialize the parameters for the overlapping windows with
parameters obtained from the separable case, we note that the windowed UPRE
and GCV methods corresponding to overlapping windows performed better when the
minimizations were initialized using the parameter obtained by the non-overlapping
methods. Results without this initialization are not given.

Considering first the scalar parameter MD case, the resulting parameters appear
to stabilize as the number of data sets is increased. Figure 3 demonstrates this
e↵ect and shows that the amount of stabilization appears to be connected to the
homogeneity of the training set. Sets constructed from fig. 1 are homogeneous in
the sense that they all contain images of the surface of Mercury. In contrast, fig. 2
consisted of entirely distinct images. By changing which sets are used for training
or validation influences the resulting parameters as R increases. The corresponding
relative errors of the regularized solutions are shown in fig. 4. While the box plots
in fig. 4(a) and fig. 4(b) simply look as if they are the same but reordered, the box
plots appear similar because the resulting parameters are approximately the same
(↵ ⇡ 0.2). These experiments suggest that it is su�cient to use only a small number
of images, relative to the total available, to obtain meaningful results. The use of
fig. 2 as a training set was only considered to produce fig. 3 and fig. 4; its use as a
validation set is retained through the remainder of the results.

1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

0.3

0.35

0.4
MSE
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GCV

(a) Parameters ↵ against R (Set 1)

1 2 3 4 5 6 7 8
0.2

0.21

0.22

0.23

0.24

0.25
MSE
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GCV

(b) Parameters ↵ against R (Set 3)

Figure 3. Figure 3(a) illustrates the change in scalar ↵ as the
number of data sets increases, here with Set 1 as the training set
and in fig. 3(b) with Set 3 (see fig. 4). Figure 3(a) is an example of
how scalar regularization parameters can stabilize as the number
of data sets in the MD methods increases. In contrast, fig. 3(b)
shows less stabilization with increasing R when the training set is
changed. For both plots, ⇠ = 16, L = L2, and an SNR of 25 was
used.

In regards to the spectral windowing, typically two windows were su�cient (cor-
responding to the use of just two parameters in the windowed estimators) to obtain
meaningful solutions. The observed benefit of using greater than two windows was
minor, an example of which is shown for the windowed UPRE method in fig. 5(a).
Another advantage of using two windows is that there is a greater computational
cost of finding more parameters than is necessary for meaningful regularized solu-
tions; this is especially true for overlapping windows where decoupling is not an
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(a) Relative errors (Set 1)
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Figure 4. Relative errors of regularized solutions obtained for
scalar ↵ from each MD method with R = 5 data sets. Here Set 1
and Set 2 were constructed from fig. 1, while Set 3 was constructed
from fig. 2. In fig. 4(a), Set 1 served as the training set and the
resulting parameters were used to construct solutions for the data
from Sets 2 and 3. Figure 4(b) shows results where training was
done using Set 3 instead and Sets 1 and 2 served as validation sets.
For both plots, ⇠ = 16, L = L2, and an SNR of 25 was used.

option. Extending the number of windows also has the e↵ect of reducing the influ-
ence of one or more parameters. For example, fig. 5(b) shows that one of the three
parameters obtained from the windowed UPRE method with three windows is more
variable and larger in magnitude than that other two parameters.
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(b) Parameters for P = 1 : 3

Figure 5. Parameters and corresponding relative errors from the
UPRE method as the number of windows is increased from one to
three. Figure 5(a) shows that there is little benefit in using an
increasing number of windows. Figure 5(b) shows that past two
windows, the new regularization parameters are more variable. For
both plots, logarithmically spaced windows were used with ⇠ = 4,
L = L2, and an SNR of 40.

The results presented in [10] also suggested that there is little to be gained when
using more than two windows, even when using the learning approach, method MSE,
to find the parameters. On the other hand, the presented framework is valid for
more windows, should there be situations in which the use of two windows seems
insu�cient based on numerical experiments. It should be noted also, that when
using the MD windowed MDPmethod, there is an additional tuning safety parameter,
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which is required and makes the presentation of results for the MDP method much
less interesting, see [8].
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Figure 6. Parameters and corresponding relative errors obtained
from using logarithmic vs logarithmic-cosine windows with the MSE,
UPRE, and GCV methods. In the case of the logarithmic (non-
overlapping) windows, the independent versions of the UPRE and
GCV functions were used, (22) and (26), respectively. For both win-
dow versions, ⇠ = 4, L = L2, and an SNR of 10 was used.

The use of overlapping or non-overlapping windows influences the degree of in-
terdependence between the two parameters. Figure 6 presents the results of using
overlapping and non-overlapping logarithmic windows with L = L2. When using
non-overlapping windows, the ranges of both parameters are smaller than those for
non-overlapping windows. For overlapping windows, the behavior of ↵1 exhibited
in fig. 6 shows the parameters grouping near 10. The grouping behavior can be
explained by the choice of an upper bound during the minimization process; in the
case of fig. 6, the upper bound was chosen near 10. The calculated gradients of the
FMSE
win

(↵), FUPRE
win

(↵), and FGCV
win

(↵) are too small to resolve a minimum in the direction

of ↵2 and thus the minimization process determines the minimizers near the spec-
ified boundary. However, using overlapping windows also increased the magnitude
of ↵2, most significantly in the case of the GCV method.

In regards to the MD windowed methods, which select P parameters using R
data sets, the parameters converge as R increases. Table 1 details the mean per-
cent relative errors of solutions obtain using parameters from each MD windowed
method, where one and two (both overlapping and non-overlapping) windows were
used. Even for the limited number of training sets (2 through 8), the errors decrease
as R increases. For most numerical configurations tested, the use of overlapping vs
non-overlapping windows provides minor benefit with regards to the relative errors
of the regularized solutions.

It is interesting to note that the average relative errors of solutions obtained for
parameters applied to the second validation set (fig. 2) were less than those of either
the training or first validation set. The superior (reduced) errors calculated for the
second validation set are consistent throughout most numerical configurations. Ad-
ditionally, the relative errors for the second validation set show greater variability
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Table 1. Averaged percent relative errors of the MD windowed
regularized solutions for ⇠ = 36 and an SNR of 10 with one win-
dow, two linearly spaced windows and two linearly spaced cosine
windows with the identity penalty matrix. The result with least
error for given R, method, and validation set is highlighted in bold
face.

R Win
Training Validation 1 Validation 2

MSE UPRE GCV MSE UPRE GCV MSE UPRE GCV

2

None 21.32 25.83 25.87 23.76 27.58 27.62 17.57 23.27 23.32

Lin 19.64 19.54 19.54 22.85 22.67 22.67 14.94 14.88 14.89

LinCos 19.54 19.93 19.94 22.83 23.38 23.39 14.78 15.10 15.11

4

None 21.29 26.09 26.12 23.71 27.82 27.86 17.58 23.57 23.62

Lin 19.44 19.53 19.55 22.39 22.36 22.37 14.93 15.16 15.17

LinCos 19.32 19.33 19.94 22.32 22.29 23.39 14.75 14.79 15.11

6

None 21.29 26.03 26.07 23.71 27.77 27.81 17.58 23.51 23.56

Lin 19.44 19.49 19.50 22.41 22.36 22.37 14.91 15.05 15.07

LinCos 19.32 19.32 19.94 22.34 22.34 23.39 14.73 14.72 15.11

8

None 21.29 26.02 26.06 23.71 27.76 27.80 17.57 23.50 23.55

Lin 19.44 19.48 19.49 22.41 22.36 22.37 14.90 15.04 15.06

LinCos 19.32 19.32 19.94 22.34 22.34 23.39 14.72 14.72 15.11

than those for either the training, or first validation, set. Furthermore, the relative
errors are indeed least in each case when training is performed using known data,
namely with the MSE, but the results with both UPRE and GCV learning methods
are not significantly larger when using windowed regularization. This demonstrates
that windowed regularization parameters can be learned from training data without
knowledge of the true solutions. The results obtained using UPRE are in most cases
slightly improved as compared to those using GCV, and hence UPRE would be pre-
ferred if information about the noise in the data is available. Finally, to illustrate
the performance of the approach, fig. 7 presents two examples of images from the
second validation set that have di↵ering relative errors.

5. Conclusions. We have shown that the UPRE and GCV methods can be extended
to accommodate regularization parameter estimation using multiple data sets and
for both single and windowed regularization parameters, for generalized Tikhonov
regularization. The UPRE is a representative estimator that assumes the knowledge
of the variance of mean zero Gaussian noise in the data, while no additional as-
sumptions are required for the GCV estimator. The most general forms of functions
associated with these methods are given in Theorem 3.2 and Theorem 3.7. While
the corresponding function for the MD windowed UPRE can be written as an aver-
age of the individual functions associated with each data set, this is not possible for
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Figure 7. Two samples from the second validation set, with ⇠ =
36, an SNR of 25, two log cosine windows and the Laplacian penalty
matrix. From left to right for each sample are the true solution,
the blurred image, the blurred image after noise was added, the
regularized solution obtained using the MD windowed UPREmethod
with R = 8 (the entire training set), and the regularized solutions
using parameters that are optimal for the individual image. The
MD windowed UPRE solutions have relative errors of 8.55% and
14.81% for the top and bottom samples, respectively, while the
optimal solutions have relative errors of 8.04% and 14.80%.

the MD windowed GCV. Moreover, the GCV estimator for windowed regularization
parameters when derived from first principles is more complex, and unlike the UPRE
case, does not yield a separable form when non-overlapping windows are applied.
Still, neither of these MD windowed methods require knowledge of true solutions
unlike the learning approach defined by (27). The presented numerical experiments
for 2D signal restoration demonstrate that the MD windowed methods can perform
competitively with the learning approach that requires knowledge of true signals for
training from data. Further, it is also demonstrated that the parameters obtained
from a specific training set of validation images can also be used for a set of dif-
ferent testing images, provided that the general noise characteristics are the same.
Varying the noise characteristics of the training and/or validation sets could be an
interesting approach for future investigation.

We note that the approach discussed here will extend immediately for any es-
timator which relies only on an approximation for the regularized residual and
the trace of the data resolution matrix, as is the case for UPRE, provided that
the derivation from first principles still leads to an equivalent formulation for the
function that should be minimized. The general idea can be modified to address
estimators requiring other terms, such as an augmented regularized residual used
for the �2 estimator described in [33, 34], and as already given in [8] for the MDP
method. Although the implementation is presented for the case in which there is
a known mutual decomposition of the model and penalty matrices (A and L) the
approach can be extended for any iterative method which yields suitable estimates,
e.g. [13, 43, 49, 50]. In particular, the assumption of a mutual diagonalization is
only a simplifying assumption that is useful computationally for the UPRE method.
Consequently, the approach here can also be used with other Kronecker product
representations for the model and penalty matrices, or for Krylov methods that can
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be used to provide a spectral representation of the two operators. Such extensions
would be a topic for future research, as would a true multi penalty regularization
using multiple data sets for learning parameters to meet conditions for UPRE. We
conclude that the results are particularly helpful in demonstrating that UPRE of-
fers a major advantage, as compared to GCV; the derivation from first principles
yields a standard UPRE function, whereas the GCV does not. This suggests that UPRE
will be of more general use in conjunction with iterative solvers replacing the direct
solves, which is not the case for the GCV formulation. Moreover, UPRE is immediately
separable for non-overlapping windows but GCV is not.

Acknowledgments. We would like to thank the referees for their review of the first
version of this paper. Their observations lead to our new results for the generalized
cross validation form for spectral windows with multiple data sets.

Appendix A. The unbiased predictive risk estimator for windowed
Tikhonov. We briefly describe the derivation of the UPRE in the context of learn-
ing regularization parameters from multiple data sets and using spectral windowing.
This mimics the derivation in [51, p. 98] but in all cases assumes that the matrices
and vectors are for multiple data sets and that regularization parameters are defined
with respect to spectral windows. For ease of notation we drop the eA notation, and
we drop the dependence on ↵ in all terms. Also we assume that the noise in the
measured data is independent so that the covariance matrix for the noise, ⌃, is
diagonal, where ⌘ ⇠ N (0,⌃). We now proceed to obtain the proof of Theorem 3.2
from first principles.

Proof. Using x(↵) = A]
wind we have

r(↵) = (AA]
win � IM )d = (AA]

win � IM )b+ (AA]
win � IM )⌘ and

p(↵) = (AA]
win � IM )b+AA]

win⌘.

Here IM is defined consistently for the size of the problem, M =
PR

r=1 mr. In

both cases we have a linear combination between f = (AA]
win � IM )b which is

deterministic and a noise term B⌘, where B = AA]
win or B = (AA]

win � IM ). Now
by the Trace Lemma [51, Lemma 7.2] we have

E(kf +B⌘k22) = E(kfk22) + trace(BTB⌃). (30)

Here E(a) denotes the expectation of a. Thus, applying (30) twice we have

E(kr(↵)k22) = E(kfk22) + trace((AA]
win)

T
AA]

win⌃)

+ trace(⌃)� trace(AA]
win⌃)� trace((AA]

win)
T
⌃) and

E(kp(↵)k22) = E(kfk22) + trace((AA]
win)

T
AA]

win⌃).

Immediately, approximating E(kr(↵)k22) by kr(↵)k22 as in the single parameter
derivation, and assuming that AA]

win is symmetric, yields the estimator

E(
1

M
kp(↵)k22) ⇡

1

M

⇣
kr(↵)k22 � trace(⌃) + 2 trace(AA]

win⌃)
⌘
. (31)
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For multiple data sets the system matrices are block diagonal and the systems
decouple. Hence kr(↵)k22 =

PR
r=1 kr(r)(↵)k22 and

trace(AA]
win⌃) =

RX

r=1

trace(A(r)(A(r)
win)

]⌃r).

Therefore,

E(
1

M
kp(↵)k22) ⇡

1

M

RX

r=1

⇣
kr(r)(↵)k22 � trace(⌃r) + 2 trace(A(r)(A(r)

win)
]⌃r)

⌘

=
1

M

RX

r=1

mrF
(r)
UPRE(↵),

where the last equality results by applying (31) for each system r. As a consequence
we have the proof of the estimator given in Theorem 3.2 under the assumption that
AA]

win is symmetric

E(
1

M
kp(↵)k22) ⇡

1

M

RX

r=1

⇣
kr(r)(↵)k22 � trace(⌃r) + 2 trace(A(r)(A(r)

win)
]⌃r)

⌘
.

When we have the GSVD for each system it is immediate, with or without
windowing, that

AA]
win = U

PX

p=1

⇣
W (p))1/2�(�T�+ ↵2

p⇤
T⇤)

�1
�T(W (p))1/2

⌘
UT, (32)

is symmetric for each block and/or window.

Appendix B. Generalized cross validation for windowed Tikhonov. We
now consider the direct derivation from first principles for the generalized Tikhonov
regularized problem. Following the approach in [10], and using (5), we consider the
solution using the spectral domain coe�cients

y = XTx(↵) = �(↵)�†d̂,

which corresponds to the solution of the normal equations

(�T�+ ↵2⇤T⇤)y =�Td̂,

for the regularized problem

k�y � d̂k22 + ↵2k⇤yk22.

As in [10, 19], we introduce C as the unitary matrix which diagonalizes the
circulants and consider the new system Gy ⇡ Cd̂, where G = C� is of size m⇥n.
For this new system y solves

(GTG+ ↵2⇤T⇤)y = GTCd̂,

and the corresponding windowed solution is given by

ywin =
PX

p=1

(GTG+ ↵2
p⇤

T⇤)
�1

W(p)GTCd̂. (33)
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Following [10] but consistent with our notation introduced in (3) applied for the
solution in the spectral domain we introduce the data resolution matrices

G(↵p) = G(GTG+ ↵2
p⇤

T⇤)
�1

GT = GG](↵p) and

Gwin(p)(↵p) = G(GTG+ ↵2
p⇤

T⇤)
�1

W(p)GT = GG]
win(p)(↵p).

In the derivation we will need the diagonal entries related to these resolution
matrices.

Lemma B.1 (Diagonal entries of resolution matrices). The diagonal entries of the

matrices Im �GG](↵p) and Im �GG]
win(p)(↵p) denoted by µ(p)

and ⌫(p) are given

by

µ(p) =
1

m

0

@m� n+
nX

j=1

(1� �jj(↵p))

1

A and

⌫(p) =
1

m

0

@m� n+
nX

j=1

(1� (�win(p))jj(↵p))

1

A .

Proof. We substitute back in for G and note that the filter matrices are of sizes
n⇥ n

GG](↵p) = C�(�T�+ ↵2
p⇤

T⇤)
�1
�TC⇤ = C

2

4 �(↵p) 0

0 0

3

5C⇤.

Also

Im �GG](↵p) = C

0

@Im �

2

4 �(↵p) 0

0 0

3

5

1

AC⇤ = C

2

4 In ��(↵p) 0

0 Im�n

3

5C⇤,

is circulant since the inner part of this product is diagonal. Therefore, its diagonal
entries are equal and we can write diag(Im �GG](↵p)) = µ(p)Im. Further, since C
is unitary

trace(Im �GG](↵p)) =
nX

j=1

(1� �jj(↵p)) + (m� n), (34)

and

µ(p) =
1

m

0

@m� n+
nX

j=1

(1� �jj(↵p))

1

A .

The result for the diagonal entries of Gwin(p)(↵p) follows similarly.

Equipped with this result, we now proceed with the proof of Theorem 3.7.

Proof. To obtain FGCV(↵) relies on deriving the Allen PRESS estimates [19]

F (↵) =
1

m

mX

k=1

⇣
(Cd̂)k � (Gy(k)

win)k
⌘2

,

where y(k)
win is the solution of (33) with the kth equation removed and (a)k indicates

the kth component of a vector a. To find y(k)
win, we remove row k from matrix G

when forming (33). As in [10] this is accomplished using multiplication by matrix
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Ek = Im � ekeTk . But now, from the form of G we obtain EkG = EkC� =
(Im � ekeTk )C�. But eTkC = cTk is the kth row of C. Because C is unitary this
gives GTET

kEkG =�T���TckcTk�. Therefore,

GTET
kEkG+ ↵2

p⇤
T⇤ =�T�+ ↵2

p⇤
T⇤��Tckc

T
k� = H(↵p)� hkh

T
k ,

which defines diagonal matrix H(↵p) and hk = �Tck = �TC⇤ek. This is a rank
one update for the matrix H(↵p) and the Sherman-Morrison formula [20, Equation
2.1.5] gives

(H(↵p)� hkh
T
k )

�1
= H(↵p)

�1 +
1

�k
H(↵p)

�1hkh
T
kH(↵p)

�1,

where �k = 1 � hT
kH(↵p)

�1hk = µ(p) is independent of k as already shown in

Lemma B.1. Now (Gy(k)
win)k is a sum over the p windows of terms that involve

eTkC�(H(↵p)� hkh
T
k )

�1
= hT

k

✓
H(↵p)

�1 +
1

µ(p)
H(↵p)

�1hkh
T
kH(↵p)

�1
◆

=

✓
1 +

1

µ(p)
hT
kH(↵p)

�1hk

◆
hT
kH(↵p)

�1 =
hT
kH(↵p)

�1

µ(p)

=
hT
k

µ(p)
(�T�+ ↵2

p⇤
T⇤)

�1
.

Therefore,

(Gy(k)
win)k = eTk

PX

p=1

1

µ(p)
C�(�T�+ ↵2

p⇤
T⇤)

�1
W(p)�TC⇤EkCd̂,

= eTkC

0

@
PX

p=1

1

µ(p)

2

4 �win(p)(↵p) 0

0 0

3

5� 1� ⌫(p)

µ(p)
Im

1

A d̂,

and

(Cd̂)k � (Gy(k)
win)k = eT

kC

0

@Im �

0

@
PX

p=1

1

µ(p)

2

4 �win(p)(↵p) 0

0 0

3

5+
1� ⌫(p)

µ(p)
Im

1

A

1

A d̂.

Finally,

F (↵) =
1

m

������

0

@Im �

0

@
PX

p=1

1

µ(p)

2

4 �win(p)(↵p) 0

0 0

3

5+
1� ⌫(p)

µ(p)
Im

1

A

1

A d̂

������

2

=
1

m

0

@
mX

j=q⇤+1

 
1 +

 
PX

p=1

1� ⌫(p)

µ(p)

!!2

d̂2j

+
q⇤X

j=1

 
1 +

 
PX

p=1

1� ⌫(p)

µ(p)

!
�
 

PX

p=1

1

µ(p)

�2
jw

(p)
j

�2
j + ↵2

p

!!2

d̂2j

1

A .

We note that this result is consistent with the derivation using the standard form
when q⇤ = q < n [8] and with the result in [10, Theorem 3.2], when applied for the
standard Tikhonov regularization.
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Appendix C. Algebraic results. Derivations for the terms needed to evaluate
the regularization functions are provided. It is immediate that the common feature
of the standard methods (16) and (23), and their extensions, is the need to evaluate
krk22 and trace(A(↵)). We present the results for the windowed formulations, first
focusing on the residual and then the trace, and in all cases assuming m � n. The
results rely on the structure of the filter matrix�win. First we introduce = In��,
with entries

 jj =

8
>><

>>:

1 j = 1 : ` (�j = 0)
↵2�2

j

�2j+↵2�2
j

j = `+ 1 : q⇤

0 j = q⇤ : n (�j = 0).

(35)

Lemma C.1 (Components of windowed data resolution matrix).

Im �AA]
win = U

0

@

2

4
PP

p=1 W
(p) (↵p) 0

0 Im�n

3

5

1

AUT. (36)

Proof. Using the GSVD and (32)

Im �AA]
win = Im �U

 
PX

p=1

W(p)�(�T�+ ↵2
p⇤

T⇤)
�1
�T

!
UT

= Im �U

0

@

2

4
PP

p=1 �win(p) 0

0 0

3

5

1

AUT.

But now examining the components we have

1�
PX

p=1

w(p)
j

�2j
�2j + ↵2

p�
2
j

=

8
>><

>>:

1 j = 1 : `
PP

p=1 w
(p)
j

↵2
p�

2
j

�2j+↵2
p�

2
j

j = `+ 1 : q⇤

0 j = q⇤ : n.

(37)

Therefore, the weighted filter matrix in (36) follows by comparing (37) with (35)
and by noting in addition that the entries are 1 for j = n+ 1 : m.

Lemma C.1 also applies for the complex spectral decomposition replacing UT by
U⇤ for unitary U and with entries �2j and �2

j replaced by |�j |2 and |�j |2, respectively.
The next results follow immediately from Lemma C.1 and are given with minimal
verification or without proof.

Lemma C.2 (Norm of windowed residual). For the windowed residual given by

rwin(↵) = Axwin(↵)� d,

krwin(↵)k22 =
q⇤X

j=1

 
PX

p=1

w(p)
j  jj(↵p)d̂j

!2

+
mX

j=n+1

d̂2j .

For non-overlapping windows with w(p)
j = 1 for j 2 win(p)

krwin(↵)k22 =
PX

p=1

X

j2win(p)

⇣
 jj(↵p)d̂j

⌘2
+

mX

j=n+1

d̂2j =
PX

p=1

kr̂(p)win(↵p)k22 +
mX

j=n+1

d̂2j ,

using the definition for the windowed residual based on the spectral domain given by

r̂(p)win(↵p) = UTAx(p)(↵p)�W(p)UTd .
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Proof. The general result is immediate. For the non-overlapping case using the
definition for the spectral residual with the definition for the windowed solution we
have

kr̂(p)win(↵p)k2 = kUTAx(p)(↵p)�W(p)UTdk22

= k(��(↵p)�
† � Im)W(p)d̂k2 =

X

j2win(p)

⇣
 jj(↵p)d̂j

⌘2
,

and the result holds.

Lemma C.3 (Windowed Trace).

trace(AA]
win) = (n� q⇤) +

q⇤X

j=`+1

PX

p=1

w(p)
j �jj(↵p).

For non-overlapping windows

trace(AA]
win) = (n� q⇤) +

PX

p=1

X

j2win(p)
�jj(↵p).

Appendix D. The GSVD and the DCT. We outline the proof of Theorem 4.1.

Proof. We begin by setting CT e�C = U�ZT and rearranging terms to obtain
� = UTCT e�CZ�T. Doing the same for e⇤, and using �T�+⇤T⇤ = In, we have

Z�1CT e�T e�CZ�T + Z�1CT e⇤T e⇤CZ�T = In,

from which we have

e�T e�+ e⇤T e⇤ = CZZTCT.

Since null(A) \ null(L) = {0}, the matrix on the left is diagonal with positive

entries. Thus, we can form the (positive) square root S =
p
e�T e�+ e⇤T e⇤ which is

also diagonal with positive entries. Using S we can write S2 = SST = CZZTCT,
which implies that we can set Z = CTS; S is invertible but not necessarily orthogo-
nal, so Z is only invertible. Using the transpose ZT = SC and inverse S�1, we can
then write

A = CT e�S�1SC = CT e�S�1ZT and L = CT e⇤S�1SC = CT e⇤S�1ZT.

The last step is to reorder the elements of e�S�1 and e⇤S�1; fortunately they have
the opposite order regardless of the order of the elements of e� and e⇤. Therefore
we can use a permutation matrix P so that � = PT e�S�1P and ⇤ = PT e⇤S�1P
have the desired ordering. Since permutation matrices are orthogonal, we finally
obtain the GSVD:

A = CT e�S�1ZT = CTPPT e�S�1PPTZT = U�XT,

L = CT e⇤S�1ZT = CTPPT e⇤S�1PPTZT = U⇤XT,

where U = CTP is orthogonal and X = ZP is invertible. Now it follows that
�T�+⇤T⇤ = In because

�T�+⇤T⇤ = PTS�T e�T e�S�1P+PTS�T e⇤T e⇤S�1P

= PTS�T
⇣
e�T e�+ e⇤T e⇤

⌘
S�1P
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= PT
�
S2
��1

⇣
e�T e�+ e⇤T e⇤

⌘
P

= PT
⇣
e�T e�+ e⇤T e⇤

⌘�1 ⇣ e�T e�+ e⇤T e⇤
⌘
P = In.

The condition null(A) \ null(L) = {0} in Theorem 4.1 is necessary for the
property �T� + ⇤T⇤ = In. While this identity is not used explicitly in any of
the derivations used for finding the UPRE and GCV functions, it is standard that the
mutual GSVD decomposition is obtained with this condition imposed when it is
calculated using the CS decomposition, and it is therefore relevant to show that the
condition still holds for the given DCT case [3, 20]. As an alternative, we could require

that �T�+⇤T⇤ = eIn where eIn is a modified identity matrix that has some zero
diagonal elements. This generalization, as well as a conversion involving Kronecker
products, is described in [8, Chapter 2]. Furthermore, equipped with Theorem 4.1,
it is clear that the simplifications for the parameter selection methods using the
GSVD can be rewritten in terms of the DCT simultaneous decomposition, which
is particularly relevant for the e�cient solution of two-dimensional problems. A
similar approach can be used to convert the Kronecker product DCT for 2D problems
to a GSVD.
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[14] L. Debnath and P. Mikusiński, Introduction to Hilbert Spaces with Applications, 3rd edition,
Elsevier, 2005.

[15] E. De Vito, L. Rosasco, A. Caponnetto, U. Giovannini and F. Odone, Learning from examples
as an inverse problem, J. Mach. Learn. Res., 6 (2005), 883-904.

[16] G. R. Easley, D. Labate and V. M. Patel, Directional multiscale processing of images using
wavelets with composite dilations, J. Math. Imag. Vis., 48 (2014), 13-34.

http://www.ams.org/mathscinet-getitem?mr=MR4321425&return=pdf
http://dx.doi.org/10.1088/1361-6420/ac245d
http://dx.doi.org/10.1088/1361-6420/ac245d
http://www.ams.org/mathscinet-getitem?mr=MR3963505&return=pdf
http://dx.doi.org/10.1017/S0962492919000059
http://dx.doi.org/10.1017/S0962492919000059
http://www.ams.org/mathscinet-getitem?mr=MR3285819&return=pdf
http://dx.doi.org/10.1016/B978-0-12-385048-5.00001-X
http://www.ams.org/mathscinet-getitem?mr=MR1929288&return=pdf
http://dx.doi.org/10.1088/0266-5611/18/4/314
http://dx.doi.org/10.1088/0266-5611/18/4/314
http://dx.doi.org/10.1016/S0042-6989(97)00121-1
http://dx.doi.org/10.1016/S0042-6989(97)00121-1
http://dx.doi.org/10.1126/science.aau0323
http://dx.doi.org/10.1126/science.aau0323
http://www.ams.org/mathscinet-getitem?mr=MR1974554&return=pdf
http://dx.doi.org/10.1007/s00211-002-0435-8
http://dx.doi.org/10.1007/s00211-002-0435-8
http://www.ams.org/mathscinet-getitem?mr=MR2862007&return=pdf
http://dx.doi.org/10.1137/100812938
http://www.ams.org/mathscinet-getitem?mr=MR2862009&return=pdf
http://dx.doi.org/10.1137/100809787
http://www.ams.org/mathscinet-getitem?mr=MR3672233&return=pdf
http://dx.doi.org/10.1088/1361-6420/33/7/074004
http://www.ams.org/mathscinet-getitem?mr=MR3338003&return=pdf
http://dx.doi.org/10.1137/130945363
http://dx.doi.org/10.1137/130945363
http://www.ams.org/mathscinet-getitem?mr=MR2455664&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2249842&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3147606&return=pdf
http://dx.doi.org/10.1007/s10851-012-0385-4
http://dx.doi.org/10.1007/s10851-012-0385-4


868 MICHAEL. J. BYRNE AND ROSEMARY A. RENAUT

[17] S. Gazzola, P. C. Hansen and J. G. Nagy, IR Tools: A MATLAB package for iterative
regularization methods and large-scale problems, Numerical Algorithms, 81 (2019), 773-811.

[18] S. Gazzola and P. Novati, Multi-parameter Arnoldi-Tikhonov methods, Elect. Trans. Num.
Anal., 40 (2013), 452-475.

[19] G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing
a good ridge parameter, Technometrics, 21 (1979), 215-223.

[20] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th edition, Johns Hopkins Studies
in the Mathematical Sciences, Johns Hopkins University Press, Maryland, 2013.

[21] E. Haber and L. Tenorio, Learning regularization functionals-a supervised training approach,
Inverse Problems, 19 (2013), 611-626.

[22] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review ,
34 (1992), 561-580.

[23] P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Society for Industrial and
Applied Mathematics, Philadelphia, 1998.

[24] P. C. Hansen, J. G. Nagy and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and
Filtering, Fundamentals of Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, 2006.

[25] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete
ill-posed problems, SIAM J. Sci. Comput., 14 (1993), 1487-1503.

[26] G. Holler and K. Kunisch, Learning nonlocal regularization operators, Math. Control Relat.
Fields, 12 (2022), 81-114.

[27] G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning
with Applications in R, Springer Texts in Statistics, 103. Springer, New York, 2013.

[28] M. Kalke and S. Siltanen, Adaptive frequency-domain regularization for sparse-data tomog-
raphy, Inv. Prob. Sci. Eng., 21 (2013), 1099-1124.

[29] K. Kunisch and T. Pock, A bilevel optimization approach for parameter learning in variational
models, SIAM J. Imaging Sciences, 6 (2013), 938-983.

[30] R. J. LeVeque, Finite Di↵erence Methods for Ordinary and Partial Di↵erential Equations:
Steady-State and Time-Dependent Problems, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2007.

[31] S. Lu and S. V. Pereverzev, Multi-parameter regularization and its numerical realization,
Numerische Mathematik , 118 (2011), 1-31.

[32] C. L. Mallows, Some comments on cp, Technometrics, 15 (1973), 661-675.
[33] J. L. Mead, Parameter estimation: A new approach to weighting a priori information, J. Inv.

Ill-posed Prob., 16 (2008), 175-193.
[34] J. L. Mead and R. A. Renaut, A Newton root-finding algorithm for estimating the regular-

ization parameter for solving ill-conditioned least squares problems, Inverse Problems, 25
(2009), 025002, 19 pp.

[35] K. Modarresi and G. Golub, Multi-level approach to numerical solution of inverse problems,
CSC 2007: SIAM Workshop on Combinatorial Scientific Computing, IEEE Computer Soci-
ety, (2007).

[36] K. Modarresi and G. Golub, Using multiple generalized cross-validation as a method for vary-
ing smoothing e↵ects, CSC 2007: SIAM Workshop on Combinatorial Scientific Computing,
SIAM, IEEE Computer Society, (2007).

[37] V. A. Morozov, On the solution of functional equations by the method of regularization,
Soviet Mathematics Doklady, 7 (1966), 414-417.

[38] NASA and JPL-Caltech, Photojournal: Mercury, (2016), Available from: https://

photojournal.jpl.nasa.gov/targetFamily/Mercury.
[39] M. K. Ng, R. H. Chan and W.-C. Tang, A fast algorithm for deblurring models with Neumann

boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851-866.
[40] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM

J. Num. Anal., 18 (1981), 398-405.
[41] R. A. Renaut, A parallel multisplitting solution of the least squares problem, Num. Lin. Alg.

with Appl , 5 (1998), 11-31.
[42] R. A. Renaut, Y. Lin and H. Guo, Multisplitting for regularized least squares with Krylov

subspace recycling, Num. Lin. Alg. with Appl., 19 (2012), 655-676.
[43] R. A. Renaut, S. Vatankhah and V. E. Ardestani, Hybrid and iteratively reweighted regular-

ization by unbiased predictive risk and weighted GCV for projected systems, SIAM J. Sci.
Comput., 39 (2017), B221-B243.

http://www.ams.org/mathscinet-getitem?mr=MR3961378&return=pdf
http://dx.doi.org/10.1007/s11075-018-0570-7
http://dx.doi.org/10.1007/s11075-018-0570-7
http://www.ams.org/mathscinet-getitem?mr=MR3151737&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR533250&return=pdf
http://dx.doi.org/10.1080/00401706.1979.10489751
http://dx.doi.org/10.1080/00401706.1979.10489751
http://www.ams.org/mathscinet-getitem?mr=MR3024913&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1984880&return=pdf
http://dx.doi.org/10.1088/0266-5611/19/3/309
http://www.ams.org/mathscinet-getitem?mr=MR1193012&return=pdf
http://dx.doi.org/10.1137/1034115
http://www.ams.org/mathscinet-getitem?mr=MR1486577&return=pdf
http://dx.doi.org/10.1137/1.9780898719697
http://www.ams.org/mathscinet-getitem?mr=MR2271138&return=pdf
http://dx.doi.org/10.1137/1.9780898718874
http://dx.doi.org/10.1137/1.9780898718874
http://www.ams.org/mathscinet-getitem?mr=MR1241596&return=pdf
http://dx.doi.org/10.1137/0914086
http://dx.doi.org/10.1137/0914086
http://www.ams.org/mathscinet-getitem?mr=MR4369059&return=pdf
http://dx.doi.org/10.3934/mcrf.2021003
http://www.ams.org/mathscinet-getitem?mr=MR3100153&return=pdf
http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1007/978-1-4614-7138-7
http://dx.doi.org/10.1080/17415977.2012.738678
http://dx.doi.org/10.1080/17415977.2012.738678
http://www.ams.org/mathscinet-getitem?mr=MR3055238&return=pdf
http://dx.doi.org/10.1137/120882706
http://dx.doi.org/10.1137/120882706
http://www.ams.org/mathscinet-getitem?mr=MR2378550&return=pdf
http://dx.doi.org/10.1137/1.9780898717839
http://dx.doi.org/10.1137/1.9780898717839
http://www.ams.org/mathscinet-getitem?mr=MR2793900&return=pdf
http://dx.doi.org/10.1007/s00211-010-0318-3
http://www.ams.org/mathscinet-getitem?mr=MR2476405&return=pdf
http://dx.doi.org/10.1088/0266-5611/25/2/025002
http://dx.doi.org/10.1088/0266-5611/25/2/025002
http://www.ams.org/mathscinet-getitem?mr=MR0208819&return=pdf
https://photojournal.jpl.nasa.gov/targetFamily/Mercury
https://photojournal.jpl.nasa.gov/targetFamily/Mercury
http://www.ams.org/mathscinet-getitem?mr=MR1718798&return=pdf
http://dx.doi.org/10.1137/S1064827598341384
http://dx.doi.org/10.1137/S1064827598341384
http://www.ams.org/mathscinet-getitem?mr=MR615522&return=pdf
http://dx.doi.org/10.1137/0718026
http://www.ams.org/mathscinet-getitem?mr=MR1618781&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2951248&return=pdf
http://dx.doi.org/10.1002/nla.797
http://dx.doi.org/10.1002/nla.797
http://www.ams.org/mathscinet-getitem?mr=MR3621270&return=pdf
http://dx.doi.org/10.1137/15M1037925
http://dx.doi.org/10.1137/15M1037925


LEARNING SPECTRAL REGULARIZATION PARAMETERS 869

[44] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, Machine learning in medicine: A practical
introduction, BMC Medical Research Methodology, 19 (2019).

[45] I. M. Stephanakis and S. Kollias, Generalized-cross-validation estimation of the regularization
parameters of the subbands in wavelet domain regularized image restoration, Conference
Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat.
No.98CH36284), 2 (1998), 938-940.

[46] G. Strang, The discrete cosine transform, SIAM Review , 41 (1999), 135-147.
[47] V. Taroudaki and D. P. O’Leary, Near-optimal spectral filtering and error estimation for

solving ill-posed problems, SIAM J. Sci. Comput., 37 (2015), A2947-A2968.
[48] A. N. Tikhonov, Regularization of incorrectly posed problems, Soviet Mathematics Doklady,

4 (1963), 1624-1627.
[49] S. Vatankhah, R. A. Renaut and V. E. Ardestani, A fast algorithm for regularized focused

3-D inversion of gravity data using the randomized SVD, Geophysics, 83 (2018), G25-G34.
[50] S. Vatankhah, R. A Renaut and V. E Ardestani, Total variation regularization of the 3-d

gravity inverse problem using a randomized generalized singular value decomposition, Geophy.
J. Inter., 213 (2018), 695-705.

[51] C. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics,
23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.

[52] G. Wahba, Practical approximate solutions to linear operator equations when the data are
noisy, SIAM J. Num. Anal., 14 (1977), 651-667.

[53] G. Wahba, Spline Models for Observational Data, CBMS-NSF Regional Conference Series in
Applied Mathematics, 59. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1990.

[54] Z. Wang, Multi-parameter Tikhonov regularization and model function approach to the
damped Morozov principle for choosing regularization parameters, J. Comp. Appl. Math.,
236 (2012), 1815-1832.

[55] S. N. Wood, Modelling and smoothing parameter estimation with multiple quadratic penalties,
J. Royal Statistical Society: Series B , 62 (2002), 413-428.

[56] J. M. Zobitz, T. Quaife and N. K. Nichols, E�cient hyper-parameter determination for reg-
ularised linear BRDF parameter retrieval, Int. J. Remote Sensing , 41 (2020), 1437-1457.

Received December 2021; revised February 2023; early access March 2023.

http://dx.doi.org/10.1186/s12874-019-0681-4
http://dx.doi.org/10.1186/s12874-019-0681-4
http://dx.doi.org/10.1109/ACSSC.1998.751400
http://dx.doi.org/10.1109/ACSSC.1998.751400
http://www.ams.org/mathscinet-getitem?mr=MR1669796&return=pdf
http://dx.doi.org/10.1137/S0036144598336745
http://www.ams.org/mathscinet-getitem?mr=MR3435091&return=pdf
http://dx.doi.org/10.1137/15M1019581
http://dx.doi.org/10.1137/15M1019581
http://dx.doi.org/10.1093/gji/ggy014
http://dx.doi.org/10.1093/gji/ggy014
http://www.ams.org/mathscinet-getitem?mr=MR1928831&return=pdf
http://dx.doi.org/10.1137/1.9780898717570
http://www.ams.org/mathscinet-getitem?mr=MR471299&return=pdf
http://dx.doi.org/10.1137/0714044
http://dx.doi.org/10.1137/0714044
http://www.ams.org/mathscinet-getitem?mr=MR1045442&return=pdf
http://dx.doi.org/10.1137/1.9781611970128
http://www.ams.org/mathscinet-getitem?mr=MR2863517&return=pdf
http://dx.doi.org/10.1016/j.cam.2011.10.014
http://dx.doi.org/10.1016/j.cam.2011.10.014
http://www.ams.org/mathscinet-getitem?mr=MR1749600&return=pdf
http://dx.doi.org/10.1111/1467-9868.00240
http://dx.doi.org/10.1080/01431161.2019.1667552
http://dx.doi.org/10.1080/01431161.2019.1667552

	1. Introduction
	1.1. Summary of notation

	2. Regularized solutions for single and multiple data sets
	2.1. The single parameter single data set problem
	2.2. Spectral windowing for the single data set problem
	2.3. Multiple data sets

	3. Parameter selection methods
	3.1. The unbiased predictive risk estimator
	3.2. Generalized cross validation

	4. Numerical experiments
	4.1. Spectral windows
	4.2. The DCT
	4.3. Two-dimensional problems

	5. Conclusions
	Acknowledgments
	Appendix A. The unbiased predictive risk estimator for windowed Tikhonov
	Appendix B. Generalized cross validation for windowed Tikhonov
	Appendix C. Algebraic results
	Appendix D. The GSVD and the DCT
	REFERENCES

