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Low-dimensional excitonic materials have inspired much interest owing to their novel physical and
technological prospects. In particular, those with strong in-plane anisotropy are among the most intriguing
but short of general analyses. We establish the universal functional form of the anisotropic dispersion in the
small k limit for 2D dipolar excitonic systems. While the energy is linearly dispersed in the direction
parallel to the dipole in plane, the perpendicular direction is dispersionless up to linear order, which can be
explained by the quantum interference effect of the interaction among the constituents of 1D subsystems.
The anisotropic dispersion results in a E∼0.5 scaling of the system density of states and predicts unique
spectroscopic signatures including: (1) disorder-induced absorption linewidth, WðσÞ ∼ σ2.8, with σ the
disorder strength, (2) temperature dependent absorption linewidth, WðTÞ ∼ Tsþ1.5, with s the exponent of
the environment spectral density, and (3) the out-of-plane angular θ dependence of the peak splittings in
absorption spectra, ΔEðθÞ ∝ sin2 θ. These predictions are confirmed quantitatively with numerical
simulations of molecular thin films and tubules.

DOI: 10.1103/PhysRevLett.127.047402

Introduction.—The discovery of graphene heralded the
emergence of a plethora of novel two-dimensional (2D)
materials with wide ranging exotic properties that attract
interests of both fundamental physics and technological
prospects [1,2]. Apart from the inorganic 2D materials
[3–8], organic excitonic systems possess distinct advan-
tages with high tunability and low processing cost [9–16].
Generically speaking, these systems are particularly inter-
esting owing to the incommensurability essential to 2D
excitonic systems with anisotropic dipolar interactions is
nonexistent in their 1D counterparts where the signs of the
couplings are by construct homogeneous [17,18]. These
characteristics can be found not only in dipolar excitonic
materials, which is the main focus of this Letter, but also
other systems such as optical lattices of two-level atoms
[19], trapped ions [20], or Rydberg gas [21].
As the combination of the reduced dimensionality,

anisotropy, and long-range interactions leads to bur-
geoning active research, it also poses a challenge. In fact,
most of the existing theoretical analyses are restricted to
limiting cases such as nearest-neighbor (NN) or isotropic
r−3 couplings [22–25]. On the other hand, while computa-
tional studies are capable of revealing physical properties
within specific material systems [26,27], obtaining funda-
mental insights universally applicable remains difficult.
These results understandably have limited applicability,
and a general treatment of anisotropic 2D systems is
lacking.
In this Letter we aim at filling in this gap by providing a

scaling analysis of anisotropic 2D dipolar excitonic sys-
tems. Here, we focus on the long-range contribution to the

dipole coupling and derive scaling relations in the low
quasimomentum regime of the exciton dispersion. This
scaling regime reflects coarse-grained measures of the
transition dipole, consequently the resulting spectroscopic
signatures are universal regardless of atomistic details. We
further investigate the exciton density of states (DOS) at
low energy and examine its spectroscopic consequences
that can be readily tested experimentally. To corroborate the
universality of our predictions, we also compare with
realistic models of molecular films and tubules and find
quantitative agreement.
Continuum description of 2D excitonic systems.—We

consider a translationally invariant 2D lattice, as shown in
Fig. 1(a), where at each site  r ¼ rðcosϕr; sinϕr; 0Þ we
assign a dipole  μr ¼ μ0ðcos θμ cosϕμ; cos θμ sinϕμ; sin θμÞ.
The interaction between the origin and an arbitrary
site is given by Jð  rÞ ¼ ðμ20=r3Þ½1− 3sin2θμ cosðϕr −ϕμÞ�.
Applying the Bloch theorem, the energy dispersion relation
reads

Eð  kÞ ¼ E0 þ
X
 n≠0

Jð  rnÞei  k·  rn ; ð1Þ

where  k is the quasimomentum of the corresponding wave
function. For isotropic NN-coupled square lattices, this
gives rise to the conventional cosine dispersion and a
constant DOS.
Taking the continuum limit of Eq. (1), which becomes exact

in the limit of r → ∞, and assuming a circular cutoff at r ¼ rc,
represented as the shaded region in Fig. 1(a), we obtain
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Ecð  kÞ ¼
1

a0

Z
d  rei  k·  rJð  rÞ

¼ μ20
a0

Z
∞

rc

dr
r2

Z
2π

0

dϕr · eikr cosðϕk−ϕrÞ

× ½1 − 3sin2θμcos2ðϕr − ϕμÞ�

¼ μ20
a0

½ð1 − 3sin2θμsin2ΔkÞI0ðkÞ

− 3sin2θμð1 − 2sin2ΔkÞI2ðkÞ� ð2Þ

where a0 is the unit cell area,  k ¼ kðcosϕk; sinϕk; 0Þ, and
Δk ¼ ϕμ − ϕk is the angle between vectors  k and  μ. Here rc
serves as an adjustable parameter on the order of πr2c ≈ a0. Its
specific value depends on the lattice configuration, dipole
orientation, and the form of excitonic coupling, Jð  rÞ, especially
in the short-range regime. In the last equation we integrate over
ϕr and obtain the closed form expressions of I0ðkÞ and I2ðkÞ
in terms of Bessel functions, as given in S1 of the Supplemental
Material (SM). Equation (2) can be used to numerically
calculate the continuum model exactly, see S3 of the SM.
We note that it is precisely the long-range nature of the

dipolar coupling that makes the continuum treatment
feasible, and thus one should focus on the small k regime
and the scaling properties therein. A series expansion of
Eq. (2) up to the order of k2 yields

Ecð  kÞ¼ Ē

�
ð2−3sin2θμÞþ½−2þ2sin2θμð2−sin2ΔkÞ� · jkrcj

þ
�
1

2
þ3sin2θμ

8
ð−3þ2sin2ΔkÞ

�
· jkrcj2

�

þOðk4Þ ð3Þ

where Ē ¼ ðπμ20=a0rcÞ. It can be shown that all odd-order
terms vanish except for the linear one, such that Eq. (3) is
accurate up to k3 compared to Eq. (2). Equation (3) is the
main result of the current contribution [28]. We shall focus
on discussing the implications of Eq. (3) for the in-plane
dipole configuration (θμ ¼ π=2) in the following.

Surprisingly, the leading term in Eq. (3) is linear. This
can be understood in terms of coherent summation of the
dipole vectors resulting in constructive interference in the
direction parallel to the dipole and destructive interference
in the perpendicular direction, elaborated in the next
section. We note that similar linear dispersion has been
recently reported in monolayer MoS2 and is attributed to a
different type of physics associated with the inter- and
intravalley exchange interactions [30–32]. The quadratic
term is similar to the standard dispersion of NN-coupled
models and serves as a background that is more isotropic in
comparison [33].
We note that the continuum model does not account for

the discrete contribution in Eq. (1), which is dominantly

short-ranged. As such, the continuum model is universal
and does not depend on the discrete lattice parameters such
as the primitive vectors of the underlying Bravais lattice or
other atomistic details. This is especially true for the linear
term since the leading correction from the short-range
contribution omitted here is k2 [34]. We confirm this by
comparing the numerically exact dispersion of two repre-
sentative square lattices with different ϕμ’s, shown in
Fig. 1(c), with that of Eq. (3), Fig. 1(d). The full dispersion
[Fig. 1(c), middle column] reflects the change of the dipole
lattice geometry but their low-k counterparts [Fig. 1(c),
right column] agree well with Eq. (3).
Quantum interference of constituent 1D strips.—A

simple physical understanding can be achieved by adopting
an intuitive approach to interpreting the Fourier sum
Eq. (1). Here the dispersion Eð  kÞ is obtained by first
decomposing a 2D lattice into an array of 1D strips along
the direction perpendicular to  k, then Fourier transforming
the coherent couplings between the strips along  k.
(1) Consider first the special case where  k is parallel to  μ,

i.e., Δk ¼ 0. Essentially this is equivalent to calculating the
coherent coupling between 1D strips of perpendicular
dipoles, a configuration illustrated by taking ϕμ ¼ π=2
in Fig. 1(b). In the continuum limit, the magnitude of the
coherent sum of such couplings is linearly proportional to
the length of the strips, and has a r−2 dependence on the
interstrip separation r [35]. As a result, the leading
contribution in the Fourier basis scales linear in k: EðkÞ ¼
2
R
dr cosðkrÞ · r−2 ¼ 2k ·

R
dðkrÞ cosðkrÞ · ðkrÞ−2 ∝ k.

FIG. 1. (a) A 2D square lattice of in-plane dipoles. (b) Two
parallel chains of dipoles. (c) Left to right: square lattices with
different dipole orientations (ϕμ ¼ 0, π=8), their 2D dispersion
contours (k ≤ ðπ=aÞ), and those zoomed in (k ≤ ðπ=10aÞ). The
dashed lines indicate the (reciprocal) lattice vectors.
(d) Dispersion of the continuum model predicted by Eq. (3)
with k ≤ ðπ=10rcÞ and rc ¼ a.
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(2) The other extreme case is Δk ¼ π=2, where  k ·  μ ¼ 0
and illustrated by taking ϕμ ¼ 0 in Fig. 1(b). In stark
contrast, successive cancellation of aligned dipoles leads to
vanishing dipole strength of the 1D strips and, thus,
vanishing interstrip couplings [35,36]. Consequently, the
dispersion is flat to linear order in k.
(3) Generally speaking, for an arbitrary angle Δk there is

constructive interference between the perpendicular com-
ponents and destructive interference between the parallel
ones. This leads to the j  kj · cos2Δk term in Eq. (3), with
derivation detailed in S2B of the SM.
We emphasize that such effects disappear in the inco-

herent, classical limit, such as those studied in the literature
of Förster energy transfer, where dipole summation is on
the intensity level instead of the amplitude level and system
anisotropy manifests only in terms of multiplicative pre-
factors with the same scaling [35,37].
Universal scaling of density of states.—In order to

connect from the universally scaled exciton dispersion to
many of the spectroscopic features discussed below we
need to ascertain the DOS near the bright state, particularly
its scaling information when the bright state is at the band
edge, i.e., min ½Eð  kÞ� ¼ Eð0Þ [38]. We note that the DOS of
an isotropically quadratic dispersion, e.g., that of a 2D NN-
coupled lattice, has a constant scaling (E0). Also, the DOS
of a 2D isotropically linear dispersion scales linearly (E1).
Consequently, the anisotropic dispersion predicted by
Eq. (2) leads to a DOS whose scaling is bounded by these
two extrema. In fact we find that Eq. (2) leads a E∼0.5

scaling of the DOS, as shown in Fig. 2(a) where the power-
law fit agrees quantitatively up to E − Eðk ¼ 0Þ ≈ 0.5Ē.
An approximate derivation of E∼0.5 from the anisotropic
dispersion is provided in S4 in the SM. In Fig. 2(b) we
show the fitted power-law exponent to the numerically
calculated DOS of a dipole square lattice as a function of
ϕμ. The deviation from 0.5 in the ϕμ < 30° regime is

attributed to short-ranged discrete lattice contributions that
dominate the large k regime in the dispersion, whose
energy overlaps with the small k regime when ϕμ is
smaller. For ϕμ > 30° the exponent converges to 0.5 [39].
Spectroscopic signatures I: Disorder and temperature

scalings of absorption linewidth.—For typical 2D excitonic
systems, observables in the optical regime (k−1 ≥ 100 nm)
retrieving information are well described by the low k
dispersion Eq. (3) and the corresponding E0.5 scaling DOS.
We explore a few such observables in the following
sections.
The influence of static disorder and thermal noise on the

line shape of excitonic systems in the condensed phase can
be cast in terms of the DOS close to the bright states in the
perturbative regime [9,18,22,41]. Specifically, it can be
shown analytically that a DOSðEÞ ∝ E0.5 scaling leads to a
disorder-induced absorption width WðσÞ ∝ σ3 using the
coherent potential approximation (CPA) [17,42,43]. In
Fig. 3(a) we confirm the scaling by numerically computing
the disorder-induced spectral width as a function of the
strength of Gaussian uncorrelated site disorder [22,44]. In
both the weak (fully delocalized, motionally narrowed [45])
and the strong disorder (fully localized) regimes the width
scales linearly, while in the intermediate regime we find
WðσÞ ∝ σ2.8. By numerically solving the self-consistent

FIG. 3. Disorder- and thermally-induced absorption linewidths.
(a) Absorption linewidth as a function of site disorder strength for
a ϕμ ¼ π=4 square lattice with 1600 sites. The solid and dashed
lines indicate the strong and the weak disorder limits and the
dotted line is a σ2.8 fit to the intermediate regime. (b) Absorption
linewidth as a function of temperature of the same system as in
(a) coupled to a cubic super-Ohmic bath (dots) and its power-law
fitting (line). (c) Power-law exponents of disorder (squares) and
thermally (circles) induced absorption linewidths as functions of
ϕμ for square lattices. The horizontal lines indicate theoretically
predicted σ3 (dotted) and T4.5 (dashed) scalings.

FIG. 2. (a) The DOS from numerically evaluating Eq. (2)
(circles), that of a ϕμ ¼ π=4 square lattice (squares), and a E0.50

power-law fit (line). (b) Power-law exponents fitted for the low-
energy DOS of square lattices with varying ϕμ. Only cases with
the bright (k ¼ 0) state close to band edge are included [40]. The
dashed line indicates the theoretical value 0.5.
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equation of CPAwith the dispersion Eq. (3) we also obtain
a scaling of σ2.74 in agreement with both the analytic CPA
(σ3) and the exact (σ2.8) results, detailed in S5 of the SM.
In addition to the disorder-induced absorption width, the

E0.5 scaling of the DOS also manifests in the temperature
dependent spectral line shape, a thermal noise-induced
effect [46]. Utilizing the standard line shape theory, Heijs
et al. [9] quantitatively explained the power-law temper-
ature dependence of the absorption width of linear pseu-
doisocyanine (PIC) dye aggregates [47,48]. Recently,
basing on the same level of theory, we extended the
analysis to temperature-dependent peak shift as a new
means to characterize excitonic molecular solids [18].
Under the fast bath assumption, i.e., the bath relaxation
time is faster than the inverse temperature, one arrives at
power-law T-dependence for the linewidth:

WðTÞ ¼
Z
E0
DOSðE0Þ · JðBÞðjE0 − Eð0ÞjÞ · n̄½E0 − Eð0Þ; T�

¼ Wð0Þ þ CW · Tdsþsþ1 ð4Þ
where CW is a constant and n̄ðE; TÞ ¼ ð1 − e−E=TÞ−1 is the
Bose-Eistein distribution. ds and s are the power-law
exponents of the system DOS and the bath spectral density
JðBÞðωÞ, respectively. For a cubic super-Ohmic bath,
JðBÞðωÞ ∝ ωs with s ¼ 3, we predict a T4.5 dependence
for 2D systems. In Fig. 3(b) we show the T-dependent
linewidth of the ϕμ ¼ π=4 square lattice. Both the disorder
and the thermally induced absorption widths are in good
agreements with their theoretically predicted counterparts,
shown in Fig. 3(c) as well as in Fig. S7.
Spectroscopic signatures II: Absorption peak

splittings.—The dispersion relation can be probed by scat-
tering experiments such as the electron energy-loss spec-
troscopy that has become readily available for excitonic
systems [49,50], and more recently using twisted light with
designated orbital angular momenta exciton dispersions in
the optical regime have also been experimentally measured
[32]. On the other hand, a direct application of Eq. (3)
predicts the energy gap spanned by the asymmetric line
shape of a transient absorption spectrum [51]. This gap
measures the energy difference between the transition from
the ground state to the one-particle bright state and that from
the one-particle bright state to the two-particle bright state.
Taking the usual assumption that the two-particle bright

state isdominatedbythestate j  kbi ⊗ j2  kbi, thedirectproduct
of the one-particle bright state and the one-particle state of
double quasimomentum [52,53], with the bright state wave
vector  kb ¼ kbð− sinϕμ; cosϕμÞ, i.e., perpendicular to the
transitiondipolemoment. Ignoring two-exciton interactions,
the splitting between the two peaks is

Eð2  kbÞ − Eð  kbÞ ≈ −2þ 2sin2θμ · ðkbrcÞ ð5Þ

obtained by truncating Eq. (3) to the linear order.

Similar techniques can also be applied to tubular
systems, where a common example is self-assembling
amphiphilic dye molecules in solution [54,55]. In this case
the system eigenstates can be labeled by ðkk; k⊥Þ denoting
the quasimomenta along the axial and the circumferential
directions, respectively [55]. The selection rule dictates that
bright states are those of ðkk; k⊥Þ ¼ ð0; 0Þ and ð0;�1Þ. By
analogy to the 2D planar system, the energy splitting
between the two bright states to the linear order of k⊥ ·
rc can be written as

Eð0;�1Þ − Eð0; 0Þ ¼ 2πμ20
ra0

sin2β; ð6Þ

where r is the tube radius and β is the angle between the in-
plane transition dipole and the tube axis, see inset of Fig. 4.
The detailed derivation and discussion of Eq. (6) is
provided in S8 and S9 of the SM. As predicted by
Eq. (6), the gap is positive for all configurations with in-
plane transition dipoles, i.e., the perpendicularly polarized
peak is always higher in energy than the parallel one. We
note that similar results for the energy gap and scaling
exponents have been reported from numerical simulations
of tubular systems [17,56]. The agreement between the 2D
and tubular results is achieved only in the large radius limit,
as tubular systems exhibit a 1D to 2D transition with
increasing radius (see S9 and S11) [54]. Thus, building on
the anisotropic dispersion relation, we provide a systematic
explanation of the numerical results in both 2D and tubular
structures.

FIG. 4. (a) The transient absorption gap of 2D molecular films
and (b) the energy splitting between the perpendicular and the
parallel-polarized absorption peaks of molecular tubules, com-
pared to the theoretical predictions Eqs. (5) and (6), respectively.
The structure of the C8S3 dye molecule is shown in (a) and the
arrow indicates the transition dipole direction of its lowest excited
state. Here rc ¼ 5 Å and kb ¼ 2 × 10−4 Å−1, corresponding to
peak absorption at 500 nm. Schematics of planar and tubular
aggregates with their structural parameters (lattice offset l for
planes and helical pitch angle β for tubes). We compare three
different models of the excitonic coupling between two
C8S3 molecules: simple dipole, extended dipole, and transition
atomic charges. These models and the construction of planar and
tubular lattices are detailed in S6 and S7 of the SM.
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Application to excitonic molecular films and tubules.—
To corroborate our theoretical results and analysis includ-
ing Eqs. (5) and (6), we compare with the numerically
evaluated exciton dispersions and the spectroscopic observ-
ables of model molecular films and tubules consisting of
C8S3 dyes [18,57]. The superstructures of the model
aggregates studied include planar brick wall and helically
symmetric tubular lattices with varying structural param-
eters, see the insets of Figs. 4(a) and 4(b) and S7 of the SM.
We further model the coupling matrix element Jð  rnÞ with
increasing spatial resolution on the molecular transition
dipole distribution: from simple dipole and extended dipole
to transition charges, as detailed in S6 of the SM. As these
methods differ only in the short range, we predict that the
scaling properties in the small k regime discussed above
hold true for numerical results calculated from any of them.
The quantitative agreements observed in Figs. 4(a) and 4(b)
put Eq. (3) to a good test. Additional examination of the
power-law exponents of the DOS and T-dependent line-
width of these systems also shows excellent agreement with
those predicted by the continuum model, as discussed in
S10 of SM, further substantiating the universality and
applicability of the present theory [58].
Conclusion.—By taking the continuum limit of 2D

excitonic systems, we obtained an analytical expression
of the anisotropic dispersions in the small k regime where
the continuum description is justified. We conclude that in
this limit the exciton band scales linearly in the direction of
the transition dipole and is dispersionless to linear order in
the perpendicular direction, a result that can be understood
by the quantum interference effects of interacting dipoles in
1D subsystems. Combining these features leads to the
prediction of the E∼0.5 scaling of the 2D DOS near the
bottom of the band and the explanation of a power-law
disorder strength [WðσÞ ∝ σ2.8] and temperature
[WðTÞ ∝ Tsþ1.5] dependence of absorption linewidths,
where s is the characteristic scaling exponent of the bath
degrees of freedom. Expressions with sin2 θμ dependence
for the energy splitting observable in transient absorption
experiment for planar 2D systems and the energy gap
between the two bright states of tubular systems are derived
based on the anisotropic dispersion relation and can be
directly applied to analyzing a large class of molecular
systems. Our results are universal for 2D dipolar systems
and provide a firm theoretical ground for understanding the
photophysics of low-dimensional excitonic systems.

This work is supported by the NSF (CHE 1800301 and
CHE 1836913).
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