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ABSTRACT: We study the influence of a linear energy bias on a nonequilibrium excitation
on a chain of molecules coupled to local vibrations (a tilted Holstein model) using both a
random-walk rate kernel theory and a nonperturbative, massively parallelized adaptive-basis
algorithm. We uncover structured and discrete vibronic resonance behavior fundamentally
different from both linear response theory and homogeneous polaron dynamics. Remarkably,
resonance between the phonon energy ℏω and the bias δϵ occurs not only at integer but also
fractional ratios δϵ/(ℏω) = m/n, which effect long-range n-bond m-phonon tunneling. These
observations are reproduced in a model calculation of a recently demonstrated Cy3 system,
and the effect of dipole−dipole-type non-nearest-neighbor coupling and vibrationally relaxed
initial states is also considered. Potential applications range from molecular electronics to
optical lattices and artificial light harvesting via vibronic engineering of coherent quantum
transport.

The quantum dynamics of charge carriers and excitations
in molecular systems is of great significance to a variety of

research areas ranging from physics to material science,
chemistry, and biology. Molecular vibrational degrees of
freedom, which are quantized into phonons, can strongly
influence such dynamics.1 The Holstein model is a prototypical
model for such electron−phonon (vibronic) coupling and has
been widely applied to various systems including polymers,
molecular aggregates, and semiconductors.2−10 A further
crucial ingredient to such dynamics is an energy gradient or
“tilt” representing, for example, a voltage gradient in measure-
ments of charge mobility or a natural energy funnel.11−14 Such
biased vibronic systems exhibit various important coherent
electron−phonon transport effects which have recently
attracted much attention,15,16 such as “phonon-assisted
resonant tunneling” in inelastic tunneling experiments17−19

or the “Franck−Condon (FC) blockade” in quantum dot or
molecular tunneling experiments,20,21 as well as vibrational
enhancement of transport in antenna protein com-
plexes.5,13,22−24 On the other end, initial experimental evidence
of vibronic resonance may reach back to 197025 (though not
without controversy26). However, theoretical treatments of
these phenomena have used perturbative approaches12 to
calculate steady-state currents through one20 or two16 sites,
were limited to the linear-response regime27 or single-phonon
transitions,28 or considered equilibrium initial states.29

In this paper, we report striking higher-order f ractional and
long-range resonances that occur within the “forbidden” FC
blockaded regime when multiple sites are concatenated and
their full nonequilibrium dynamics calculated nonperturba-
tively. Previously, phononless long-range resonant tunneling

has been studied theoretically and experimentally in cold-gas
quantum simulators on tilted optical lattices,30−39 and such
setups have been employed to investigate a plethora of
phenomena such as quantum magnetism,30,33,38,39 quantum
dimer models,32 transport properties and dynamical phase
transition points,34,35,40 or the creation of anyons.41 We show
that vibronic coupling naturally realizes and generalizes such
resonant tunneling behavior.

■ MODEL
Figure 1a illustrates our setup: a chain of L linearly tilted
molecular sites which interact via nearest-neighbor coupling J
and couple linearly to local vibrations. These vibrational
degrees of freedom are represented by a single dominant
mode, assumed to be harmonic with frequency ω, and each
molecular site is coupled strongly to its own vibrational mode.
The coupling to the vibrations is quantified by the parameter g,

related to the Huang−Rhys parameter as = ( )S g 2
. A linear

tilt shifts the energy of each site j relative to site j − 1 by δϵ.
The resulting Hamiltonian is
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where |j⟩ is the excitonic state localized on site j (where ⟨i|j⟩ =
δij); njexc = |j⟩⟨j| is the number of excitons on this site
(restricted to 0 or 1); bj (bj†) is the bosonic annihilation
(creation) operators for phonons at site j; and ℏω(bj†bj + 1/2)
is the local harmonic vibrational Hamiltonian on site j. To
accommodate the strong vibronic coupling, we truncate the
vibrational Hilbert spaces at νmax = 127 phonons per mode,
following ref 42. We investigate the dynamics of a single
Franck−Condon (vertical) excitation from the vibrational and
electronic ground state, which is initially (time t = 0) localized
to the central site. In every calculation, boundary effects are
minimized by using a sufficiently large chain length L such that
the exciton population at the boundary is always less than 0.7%
(with the exception of Figure 4a,b, where the excitation is
placed at the rightmost edge for visualization purposes).
The model allows for multiple interpretations in different

contexts: |j⟩ can represent the first excited state at the jth
molecule with electronic ground states on the remaining
molecules. However, |j⟩ can also stand for a charged state
arising from injecting an electron into the jth molecular site, or
for an atom placed at a certain position in an optical lattice,
lending the findings possible relevance in various situations
such as light harvesting, cold gas optical lattices, organic
semiconductors, or nonequilibrium molecular junctions.

■ NUMERICAL METHOD
To present a complete dynamical picture, we have developed
both a numerical algorithm and an analytical approach. Our
massively parallelized numerical method is based on
dynamically adapted effective basis sets, which can be grouped
to the expanding family of adaptive basis methods (cf., refs
43−52; see SI for details) but is technically most similar to a
repeated dynamic use of “limited functional spaces”53,54 (see
also refs 55 and 29), and which can be applied in principle to
arbitrary quantum dynamics problems. By exploiting Hilbert-
space localization of physically relevant states, the method
computes dynamics only in the most relevant subspace, which

is adaptively reconfigured to follow the evolving wave function.
The parallel nature of the linear-algebra problem is further
leveraged by optimizing the method to be run on graphics
processing units (GPUs), granting a substantial boost in
runtime efficiency over existing methods, while still allowing
treatment of both large local dimensions (up to νmax = 255) or
large chain lengths (up to L = 301) (see the Supporting
Information (SI) for further details). To verify several
important features of these numerical findings, we develop a
random walk model with transition probabilities obtained from
perturbation theory and evaluated using path integrals, as
described below.

■ RESONANCE-ENHANCED TRANSPORT AND
MULTIMODAL STATES

We first calculate the Holstein dynamics for a range of values
of the tilt parameter δϵ and two different (J-aggregate-like)

values of J. In Figure 2, the average position of the particle, X̅
≔ ∑j = 0

L−1 j ⟨njexc⟩, and its root-mean-square deviation (RMSD),

= [ ]
=

n j XRMSD
j

L

j
2

0

1
exc 2

are plotted as a function of the tilt parameter δϵ at different
times. Interestingly, the RMSD as a function of δϵ is highly
nonlinear, exhibiting strong spikes around integer and half-
integer values of δϵ/(ℏω). Additionally, smaller spikes appear
around δϵ/(ℏω) ∈ {1/3, 2/3, 4/3}. Between these values,
propagation is strongly suppressed, suggesting transport-
enhancing resonances are realized at certain values of δϵ.
Varying the remaining Hamiltonian parameters reveals that the
location of the maxima depends only on the ratio δϵ/(ℏω) (see
SI section 2). Note that the observed resonances for |δϵ| < ℏω
lie within the “forbidden” FC blockade regime.20

Figure 1. (a) Sketch of the system: On the central site, a Franck−
Condon (FC) excitation is induced, which tunnels to neighboring
sites with amplitude J and interacts with local phonons ℏω via
Holstein coupling g in the presence of a linear potential bias δϵ. (b)
Resonant transitions are possible between local eigenstates of the
excited PES. The FC excitation is a superposition of many different
local eigenstates, allowing for multiple resonant vibronic transitions to
both sides.

Figure 2. Excitonic RMSD and movement of the average exciton
position in a tilted Holstein chain for a series of tilt parameter values
δϵ after different times t: (a,c) perturbation theory (lines) and
numerics (dots) for weak hopping =J 1

10
with L = 9; (b,d)

numerical data for strong hopping J = −ℏω with L = 19. For all data:
g = 4ℏω (strong vibronic coupling).
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Furthermore, Figure 3 shows that the dynamics of the local
density in the tilted chains behaves completely differently than
in an untilted chain. For δϵ = 0, the exciton propagates into a
symmetric, peaked state that extends over a few lattice states,
as shown in Figure 3a (cf., ref 42). However, if δϵ is set to a
resonant value, the final state is no longer a single-peak state,
but exhibits multiple peaks and dips in its local exciton
distribution. Further numerical results (see SI section 3)
explicitly show that the density n sites off-center is maximized
when δϵ is a multiple of 1/nℏω.
This brings us to our main insight: When the parameters are

resonant as δϵ/(ℏω) = m/n where n and m are small integers,
then an excitation that is initially localized at site j will tunnel
to sites j ± n (and from there to sites j ± 2n, etc.). In other
words, the nearest-neighbor tunneling behavior of an unbiased
chain is replaced by phonon-mediated (vibronic) tunneling
over n sites, leading to spatially structured, multimodal states�
or effectively suppressing the tunneling if n is too large or

/( ) . This n-site tunneling is the origin of the RMSD
spikes seen in Figure 2. We note that though arbitrary integers
m and n fulfilling m/n = δϵ/(ℏω) will (in principle) produce
resonances, finite J will limit observable tunneling for large n.
Furthermore, large m decreases the number of resonant |ν′⟩
states in the uphill direction, limiting transport.
Remarkably, certain resonant shifts δϵ strongly promote

diffusivity, for example, =
2

in Figure 2. In the case of
strong vibronic coupling, propagation is then enhanced in both
the “uphill” and “downhill” direction�that is, the direction of
increasing (to the right) and decreasing potential (left),
respectively�even for iterated resonant tunneling processes (j
→ j ± 2 → j ± 4), which might be exploited experimentally to
engineer vibronically optimized transport.

■ THE RESONANCE MECHANISM
The observed resonant tunneling is due to matching energies
between vibronic states at different sites, as illustrated in Figure
1. Denoting the excited-state PES vibrational eigenstates as |ν′⟩
and those of the ground state PES as |ν⟩, we find that the
Franck−Condon |ν = 0⟩ state is a g-dependent superposition
of many different |ν′⟩ eigenstates, given by the coherent state

formula56 | = |
!

0 with = g . Then, if δϵ =

ℏω, every constituent |ν′⟩ state of a Franck−Condon state is
isoenergetic with the state |ν′ + 1⟩ at the downhill neighboring

site and |ν′ − 1⟩ at the uphill neighbor, opening up multiple
resonant transition pathways. More generally, for δϵ = m/nℏω,
the resonant transitions are mediated by m-phonon and n-fold
hopping matrix elements. Further, once the particle has
tunneled from a state |ν′⟩ at site j to |ν′ ± m⟩ at site j ± n,
the process can be successively repeated, tunneling to sites |ν′
± 2m⟩ at j ± 2n, etc. Interestingly, if the initial state is localized
to a single site, then the exciton dynamics are completely
independent of the sign of J. This can be understood by
considering the spatially localized state in the delocalized-
exciton eigenbasis, where it experiences at most a global phase
change under J −J (see SI section 4).
We can compare this behavior to the dynamics of a tilted

Bose−Hubbard chain in the Mott insulating phase |J ≪ |U|
with equal filling n0 at each site.30,33,37 When the tilt constant
δϵ is a simple fraction of the Hubbard interaction, δϵ = U/n, a
single boson can tunnel from any site in the downhill direction
by n sites to form a state that is isoenergetic with the initial
state.37,39 The resonant states can be mapped to dipoles and
can be used to construct effective spin or quantum dimer
models.30,32,39 The resonant tunneling we observe in the tilted
Holstein model is similar to that in tilted Bose-Hubbard
systems, but differs in some key aspects: (i) The multiple
excited |ν′⟩ states that constitute the Franck−Condon
excitation allow for tunneling in both the downhill and uphill
direction, whereas the Mott insulating state only allows for
downhill transitions. (ii) Our localized initial state induces
tunneling from a single site. (iii) Most importantly, the
equidistant spacing of the vibrational QHO levels means that a
repeated tunneling process is possible, since each tunneling
event is energetically equivalent to an iterated tunneling, giving
rise to the secondary resonance peaks in Figure 3c and Figure
4b. In contrast, in the Hubbard model, a doublon is bound to
the first resonant site.30

■ RANDOM-WALK RATE KERNEL MODEL
To further support our findings, we verify the numerical results
using an analytic approach based on hopping-rate kernels,
which does not invoke the Markov approximation as in
previous studies57,58 and therefore belongs to the growing
number of non-Markovian methods for open quantum systems
(e.g., the transfer tensor method59). The resulting kinetics is
equivalent to a continuous-time random walk, that is, a
generalization of Poisson kinetics on networks.60,61

Figure 3. Spatial exciton distribution over time with J = −ℏω (as shown in Figure 2b,d) for the (a) homogeneous (δϵ = 0), (b) third-order resonant
(δϵ = 1/3ℏω), and (c) second-order resonant (δϵ = 1/2ℏω) cases. The insets show the exciton distribution at the final time =t 8 2 . In the second-
and third-order resonant tilted cases, the exciton does not simply propagate outward from a central peak into smooth tails, but instead excitonic
density peaks form at the resonant sites, located n sites from the initial site for δϵ = 1/nℏω.
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The basis of the approach is to first consider a dimer, L = 2,
and separate the total Hamiltonian H (eq 1) into the hopping
operator T = J(|0⟩⟨1| + |1⟩⟨0|) and H0 ≔ H − T. Then the
initial state is taken to be localized to |0⟩ and the time-
dependent transition probability is calculated as q(t, δϵ) ≔ ⟨1|
U(1)(t)|0⟩ using the first-order propagator U(1)(t). After tracing
out the phononic degrees of freedom and evaluating the
propagators using path integrals, we obtain

=

+ [ ]

lmo
no

|}o~o

q t
J

S

iS i

( , ) d d exp 2 (e 1)

2 sin( ) sin( ) ( )

t t
i

2

0
1

0
2

( )

1 2 1 2

1 2

(2)

where = ( )S g 2
is the Huang−Rhys factor. These transition

probabilities are extended to a chain of length L > 2 by
applying the dimer transition probability on each bond.
To explain the vibronic resonance, we examine the

properties of q(t, δϵ) in eq 2. Define F(τ1, τ2) as the integrand
of q(t, δϵ) for δϵ = 0. Then F(τ1, τ2) is periodic in both
arguments with a period =T 2 . Now, for general , we
can write the transition probability in eq 2 as the 2D Fourier

transform of χ[0,t]2F(τ1, τ2) evaluated at ( ), , where χ[0,t]2

is the two-dimensional boxcar function on τ1, τ2. In the
absence of χ[0,t]2, the transfer probability q(t, δϵ) would vanish
unless the Fourier frequency matches the periodicity of F:

= =m
T

m m2
for 0

This is the first-order vibronic resonance condition and
demonstrates how the resonance peaks arise. When taking
into account χ[0,t]2, which acts as a 2D convolution in frequency
space, and using the Dirac comb structure of F̂, we find that

|
( )( )

( )
q t c

t m

m
( , ) 2

1 cos
m m 2

(3)

where cm is the Fourier coefficient of F at ω1 = −ω2 = mω.
Equation 3 determines the structure of a resonance peak at δϵ
= mℏω and shows the oscillatory structure of the transient
side-peaks around the main resonance peaks. Furthermore, one
can easily see from a Taylor expansion of the cosine that the
main peaks at δϵ = mℏω become sharper and taller with ∼t2.
Both the oscillatory side-peaks and the quadratic growth of the
main peaks are confirmed in Figure 2a).
Physically, the first-order perturbation describes the

transition between adjacent sites, which differ in energy by
δϵ. In accord with energy conservation, the transition is allowed
if the vibrational energy difference mℏω matches the tilt
energy, mℏω = δϵ. More generally, to capture long-range
tunneling over n bonds, an nth order perturbative expansion
would be required, leading to the generalized fractional
resonance condition mℏω = nδϵ.
In Figure 2a,c, we compare the perturbative dynamics to the

numerical results for =J 1
10

, which shows excellent
agreement between the results. Both methods show first-order
tunneling spikes around integer multiples of ℏω. The weak J
suppresses higher-order tunneling events and the associated
spikes at rational fractions m/nℏω (though transient side-peaks
appear, predicted by eq 3). A small but persistent second-order
tunneling effect is observable only in the full numerical
calculations (see SI section 5). For δϵ ≲ 0.1ℏω, we observe
linear response behavior for short times (SI section 6).

Figure 4. Resonant tunneling with parameters corresponding to the
DNA-scaffolded Cy3 system demonstrated by Hart et al.62 (a,b) The
local exciton distribution 180 fs after initial excitation for two resonant
energy gradients, with vertical lines as visual aids for the resonance
interval, and shadows indicating the distribution over the preceding
30 fs. (c) The time evolution of the local exciton density for a 3-bond
resonant tilt. Edges of resonance-induced high density are marked by
arrows. (d) Center-of-mass position for a range of tilts (cf., Figure
2c,d) with simple rationals δϵ = m/nℏω up to n = 4 marked by vertical
lines. n = 5 resonances are also partially discernible. The initial state is
a Franck−Condon excitation from the center site [c,d] (or the last
site [a,b] for clarity). Parts of the chain not shown in panels a−c for
clarity. ℏω = 1150 cm−1; J = 0.55ℏω = 632.5 cm−1; g = 0.71ℏω (S =
0.50); L = 35 in a), b), L = 61 in c), d), except for L = 75 where δϵ/
(ℏω) ∈ {0, 0.0125}.
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■ APPLICATION TO ENGINEERED CY3 SYSTEM
The analysis so far has clearly demonstrated our mechanism
for an abstract Holstein model. To investigate its impact in
realistic systems, we choose an oligomeric extension of the
recently demonstrated DNA-scaffolded tunable Cy3 dyes62,63

as a model system and numerically calculate the dynamics
using the adjacent-dimer (0-nt) parameters for each nearest-
neighbor interaction: ℏω = 1150 cm−1, J = 0.55ℏω = 632.5
cm−1 (H-aggregate coupling), and g = 0.71ℏω (S = 0.50).
Since the polaronic trapping is much weaker for this smaller
Huang−Rhys factor S, the chain length is increased to L = 61
to eliminate boundary effects while νmax is decreased to 15. The
results of these calculations can be seen in Figure 4. We see the
same resonance features at simple rational fractions δϵ = m/
nℏω, including more long-ranged (higher n) resonances
enabled by the greater chain length. The features are clearly
visible albeit less distinct than in Figure 2, as is to be expected
due to the decreased dominance of the vibronic dynamics over
the excitonic dynamics. This also causes Bloch64 (or Wannier−
Stark65−67) localization to arise, which is the reason behind the
momentary decrease in transport as δϵ increases beyond

3
.

These results provide a proof-of-principle for a typical and
realistic parameter regime, but we note that our model assumes
fully coherent transport and does not include disorder,
temperature, additional phonon modes or a dissipative bath,
which we discuss below. Furthermore, practical aspects of the
implementation of said model system would also need to be
considered: If the energy gradient in our model is given by an
electric field, then it may distort the HOMO−LUMO gaps or
vibrational modes in unexpected ways. Alternatively, it may be
achieved via chemical engineering, possibly by substitution of
Cy3 with Cy5, etc. Moreover, the localized initial state may be
difficult to attain via optical excitation (localized excitation via
an excitation donor may be a possible alternative), but we note
that the proposed resonance mechanism is not fundamentally
dependent on a fully localized initial state and should carry
over to partially delocalized states.

■ THE EFFECTS OF DISORDER, NOISE, RELAXATION,
AND LONG-RANGE COUPLING

The typically large phonon energies of vibronically active
modes mean that even at room temperature, the probability of
finding the initial state (pre-excitation) in anything but the
vibrational ground state is negligible ( <e 0.5%k T/ B for ℏω
= 1150 cm−1), and therefore nonzero temperatures alone
would leave the results virtually unchanged. Meanwhile, we can
expect static disorder to broaden the regular spatial structure of
the tunneling peaks; however, this is not necessarily
detrimental for the overall mobility, as disordered site energies
may coincide with phonon energies, even over longer
distances, as we show. Finally, further bath modes or “noise”
may have the largest impact, as it is easy to see that including a
second, equally strongly coupled mode would double the
number of resonant peaks, and thus a large number of strongly
coupled vibrational modes would smear out the entire signal.
However, we note two points: First, even though this situation
would broaden the resonance signatures, it does not necessarily
suppress the overall resonant mobility, and second, many
molecular systems have few or a single strongly coupled
dominant vibrational mode prevailing over the other modes
(ostensibly the case for the Cy3−DNA system). Apart from

coupling the exciton to further modes, the vibrational mode may
also be damped by further modes. Though a full treatment of
this damped-vibration setup is beyond the scope of our pure-
state method, we investigate approximations of such a situation
in the SI section 7, where we find vibrationally relaxed initial
states may increase the “downhill” directionality at the expense
of overall mobility. More in-depth analyses of the effect of such
dissipative terms would be the topic of further research.68

Furthermore, lifting the restriction of purely nearest-
neighbor coupling is an important extension for realistic,
dipole−dipole-coupled systems. As the crucial ingredient to
our mechanism is the energetic resonance between different
vibronic states, including longer-range interaction is no
detriment to the resonant tunneling. In the SI section 8 we
present numerical data for a version of the Cy3 model
calculations that include next-to-nearest-neighbor coupling, in
which the resonance peaks are in fact found to be slightly
sharper than with purely nearest-neighbor coupling.

■ CONCLUSION AND OUTLOOK
We have uncovered resonance-dependent transport behavior
in tilted vibronic chains. Tunneling over n bonds is allowed for
δϵ/(ℏω) = m/n, corresponding to m-phonon and nth order
tunneling transitions. To study this problem, we have
developed both an analytical and a numerical method. We
also considered robustness against temperature, disorder, and
dissipation and provided an outlook on the effect of non-
nearest-neighbor coupling and vibrationally relaxed states.
This generalizes the resonant tunneling found in Mott

insulators on tilted Bose−Hubbard chains,30,33,37 as long-
range, repeated hopping in both directions is naturally
obtained. Vibronic coherence has also emerged as an active
mechanism in light-harvesting systems, molecular semi-
conductors, and molecular electronics. Our discovery of
long-range tunneling resonances have an important bearing
on the “phonon antenna” mechanism,69,70 a new type of
environment-assisted quantum transport.71 Prospective tech-
nological applications are to exploit the bias-dependent
resonance peaks for optimization or selective switching of
quantum transport, or to enable nanoscale sensing of structural
parameters, for example, as an extension of inelastic electron
tunneling spectroscopy (cf., ref 72). Future efforts will aim at
extensions from the chain configuration to thin films,
nanotubes, and quantum networks, and determine the
influence of coupling to further bath modes (cf., ref 73).
Calculations of noisy driven energy transfer in a dimer suggest
that such behavior is indeed robust.24 Furthermore, we expect
this behavior can be realized in quantum simulators using tilted
optical lattices74−76 or superconducting qubits.77−79
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(78) Potocňik, A.; Bargerbos, A.; Schröder, F. A. Y. N.; Khan, S. A.;
Collodo, M. C.; Gasparinetti, S.; Salathé, Y.; Creatore, C.; Eichler, C.;
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