

Carbon nanotube (CNT) reinforced cementitious composites using carboxymethyl cellulose (CMC) treatment for enhanced dispersion, mechanical, and piezoresistive properties

Leonard Chia ^{a,b}, Ying Huang ^a, Wenjie Xia ^a, Pan Lu ^b, and Dawei Zhang ^{a*}

^a Department of Civil, Construction and Environmental Engineering, North Dakota State University, USA 58108

^b *Upper Great Plains Transportation Institute, North Dakota State University, USA 58108*

*Corresponding author: North Dakota State University, CIE204, 1340 Administration Ave., Fargo, ND 58108.

USA, Email: dawei.zhang.1@ndsu.edu; Phone: 701-799-8358; ORCID number: 0000-0002-0277-6342

Abstract

Controlling CNT dispersion has been the key challenge for CNT nanocomposites. This study investigated the dispersion, mechanical and piezoresistive properties of CNT reinforced cementitious composites using carboxymethyl cellulose (CMC) treatment by comparing with three other existing mixing methods, including direct mixing, surface treatments using octenyl succinic anhydride (OSA) modified tapioca starch as a polymeric additive, and sodium dodecylbenzene sulfonate (NaDDBS) as a surfactant. The experimental results first indicated that the CMC treatment was categorized as a noncovalent functionalization and showed effectiveness in improving CNT dispersion, compressive strength, modulus of elasticity, Poisson ratio, and piezoresistive sensitivity of CNT reinforced cementitious composites.

Keywords: carbon nanotubes, cementitious composites, carboxymethyl cellulose, noncovalent functionalization, dispersion, mechanical properties, piezoresistive sensitivity

1. Introduction

Cement-based materials such as concrete are widely used in the construction of various civil structures, e.g. high-rise buildings, bridges, piles, etc. [1]–[3]. Conventionally, to improve both mechanical and electrical behaviors of the cement-based materials, carbon filaments and carbon fibers have been added as fillers in the cement to form cementitious composites [4], [5]. Although those carbon microfibers are capable of enhancing energy absorption and ductility of the cementitious composite through bridging the existing microcracks, they do not prevent crack initiation [6]. The attempt to constrain crack initiation has resulted in a new reinforcement through the addition of nanosized fibers within cement-based materials. Nanofibers improve not only strain capacity of cementitious matrix at the early age, but also the fracture properties of cementitious matrix by delaying crack initiation at the nanoscale level [7], [8].

28 Among all the nanofibers, carbon nanotube (CNT) possesses extremely high strength and stiffness [9]. The
29 excellent mechanical properties of CNT manifest immense potential to be used as reinforcements in cement-based
30 materials. Previous research showed that CNT reinforced cementitious materials exhibit remarkably higher flexural,
31 tensile, and compressive strength than plain cement mortar in general [10]–[13]. However, the improvements of the
32 mechanical properties of CNT reinforced cementitious materials vary significantly from around 10% to 85% as
33 reported in the literature [14]–[16]. Several contributors to such variations of the improvements have been identified,
34 including CNT dosage [17], dispersion, and geometries [18]. Among these factors, CNT dispersion or mixing
35 procedure is of critical importance for the consistency of mechanical properties of any CNT reinforced composites.

36 Due to the extraordinary high aspect ratio of CNT (typically higher than 1,000 and reaching as high as
37 2,500,000), CNTs have strong intermolecular attractions to agglomerate or entangle with each other in the form of
38 CNT clusters [19]. CNT clusters deteriorate the mechanical properties of CNT reinforced cementitious composites by
39 inducing stress concentration and other detrimental impacts as defects or imperfections. Severe CNT agglomeration
40 with a large amount of CNT clusters is an indication of non-uniform CNT dispersion [20]. It is widely believed that
41 conventional dispersion methods using manual mixing or a standard mixer cannot guarantee a homogeneous CNT
42 dispersion in the cement mortar [18], [21]. Therefore, dispersing CNTs uniformly in cementitious materials has always
43 been a challenge. Since the advantageous properties of CNTs cannot be fully harnessed without good dispersion, the
44 differences of mechanical properties obtained by the CNT reinforced cementitious composites in the literature may
45 be induced by the different CNT dispersions.

46 Various dispersion techniques have been developed to achieve more uniform and stable CNT aqueous
47 dispersion, such as sonication and CNT functionalization [21]. CNT dispersion by sonication have been found to be
48 reversible over time due to the CNT re-agglomeration. CNT functionalization using chemical or physical admixtures
49 are expected to maintain a consistent dispersion stability [22]. However, compared to chemical or covalent
50 functionalization, physical or noncovalent functionalization is generally regarded as the more favorable method, given
51 that it was found to provide a decent aqueous dispersion of CNTs as well as preserve the original chemical structure
52 of the carbon system [23]–[25]. Surfactants such as sodium dodecylbenzene sulfonate (NaDDBS) and sodium dodecyl
53 sulfate (SDS) along with polymeric additives such as starch and chlorinated polypropylene (CPP) are the most
54 commonly used dispersion agents for noncovalent functionalization [26]–[27]. Noncovalent functionalization
55 improves CNT dispersion by reducing the surface tension of CNTs as a result of electrostatic and/or steric repulsions

56 between the surfactant molecules which are absorbed on the CNT surface [24]. Literature indicates that noncovalent
57 functionalization using surfactants or polymers have great potential to offer enhancement in mechanical and electrical
58 properties of CNT reinforced cementitious composites [29]. However, current prevailing surfactants and polymeric
59 additives have their own drawbacks. One major drawback of surfactants is the lack of connectivity of nanomaterials
60 within cementitious matrix due to blocking of surfactant molecules, which often affects the electrical properties of the
61 composite [30]. In addition, the interaction between CNTs and polymeric additives may cause energetically
62 unfavorable conformation of the polymers, resulting in excessive interfacial strain and low dispersion consistency
63 [23], [31].

64 Carboxymethyl cellulose (CMC) is a semi-synthetic derivative of cellulose produced by partial substitution
65 of the -2, -3, and -6 hydroxyl groups of cellulose by carboxymethyl groups [32], which serves as one of the most
66 popular admixtures in various industries. To date, a few previous studies found it is promising to use CMC as a
67 dispersion agent for the purpose of modifying aqueous dispersion of nanomaterials such as CNTs [32]. However, these
68 studies only focus on CNT dispersion characterizations or electrical properties of CNT reinforced cementitious
69 composites, related investigations on mechanical properties or dispersion mechanism have not been reported yet. In
70 addition, when proposing a new dispersion method or agent, most research studies only distinguish such a specific
71 method or agent over pristine CNTs without any modifications; there are rather limited studies comparing the
72 reinforcing efficiency of the proposed dispersion method with other well-established methods.

73 For the first time upon the authors' knowledge, this paper investigated the functionalization mechanism of
74 the CMC treatment as a CNT dispersion method. The effects of the CMC treatment on both mechanical and
75 piezoresistive properties of CNT reinforced cementitious composites were systematically compared with three other
76 well-established dispersion methods, surface treatment using one fashionable polymer, octenyl succinic anhydride
77 (OSA) modified tapioca starch, and one prevailing surfactant, NaDDBS, along with traditional direct mixing. Fourier
78 Transform Infrared (FTIR) analysis was conducted to categorize the functionalization mechanism of the CMC-based
79 dispersion method. The CNT dispersion characterization was directly revealed by visual observation and transmission
80 electron microscopy (TEM) analysis, and then quantitatively compared by zeta potential measurement. The mechanical
81 and piezoresistive properties of CNT reinforced cementitious composites including compressive strength, modulus of
82 elasticity, Poisson ratio, and piezoresistive sensitivity were evaluated by compression tests.

83 **2. Experimental Study**84 **2.1 Materials**

85 The CNTs used in this study were multi-walled CNTs (MWCNTs) supplied by SkySpring Nanomaterials,
 86 USA. It was reported that CNTs with large diameter and long length had superior reinforcing efficiency [18].
 87 Accordingly, this study selected the MWCNTs with relatively larger diameter and longer length. The supplier's
 88 specification shows that the MWCNT particulates had an outer diameter of 50-100nm with an inner diameter of 5-
 89 10nm and a length of 5-20 μ m. The detailed predetermined properties of the MWCNTs are present in Table 1.

90 The OSA modified tapioca starch copolymer with a substitution degree of 0.019 was selected as the polymeric
 91 additive since it has been reported that OSA modified tapioca starch was effective in dispersing several nanoparticles
 92 including CNTs in cementitious materials [33]–[35]. Commercially available OSA and native tapioca starches were
 93 purchased from Ingredion Inc, USA, which were used to synthesize the polymeric additive. The detailed synthesis
 94 procedures could be found in the literature [34]. The surfactant used in this study was NaDDBS
 95 ($\text{CH}_3(\text{CH}_2)_{11}\text{C}_6\text{H}_4\text{SO}_3\text{Na}$) obtained from Sigma-Aldrich Co., USA, which has found its vital applications of improving
 96 the CNT dispersion in polymeric and cementitious composites [36]–[38]. The sodium salt of CMC
 97 ($\text{CH}_3(\text{CH}_2)_{11}\text{C}_6\text{H}_4\text{SO}_3\text{Na}$) used in this study was also provided by Sigma-Aldrich Co., USA. The cementitious material
 98 as the composite matrix was Portland cement provided by Holcim, Inc., USA. Table 2 displays the major specific
 99 properties of the Portland cement, complying with the requirements of ASTM C150. The CNT concentration in all
 100 four different dispersion methods was selected to be 0.1% by weight of cement since a small amount of CNTs is
 101 sufficient for cementitious composites to attain satisfying mechanical and electrical properties improvements [30],
 102 [36], [39]–[41].

Parameter	Value
Type of CNT	Multi-walled
Outside diameter	50 – 100nm
Inside diameter	5 – 10nm
Length	5 – 20 μ m
Purity	> 95 wt %
Ash content	< 1.5 wt %
Specific surface area	> 60 m^2/g
Amorphous carbon content	< 3.0%
Bulk density	0.28 g/cm^3
True density	~2.1 g/cm^3

103 **Table 1.** Properties of the Carbon Nanotubes Used in this Study

Property	Value
Fineness, m/g	

Turbidimeter (min)	160
Air permeability (min)	280
Time of set	
Vicat (minutes)	
Initial (min)	45
Final (max)	375
Gilmore (minutes)	
Initial (min)	60
Final (max)	600
Air content (max)	12%
Autoclave expansion (max)	0.80%
Compressive strength (min)	
3 days, MPa	12
7 days, MPa	19

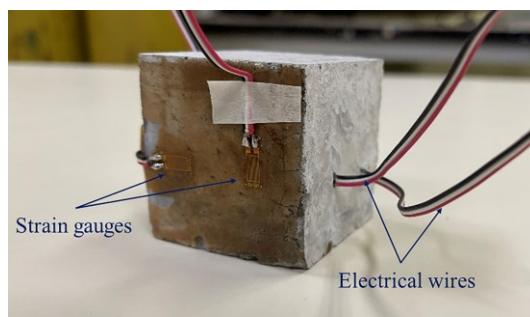
104 **Table 2.** Holcim Cement Physical Properties

105 2.2 *Dispersion methods*

106 In this study, four different dispersion methods were employed to disperse CNTs, including OSA modified
107 tapioca starch, NaDDBS, and CMC treatments, along with direct mixing method. Before mixing with cement mortar
108 paste, CNTs were first dispersed in water to promote dispersion. For the direct mixing, CNTs (0.4g) were gradually
109 added into 240 mL of deionized (DI) water while mixing with a magnetic stirrer for 15 minutes.

110 As for the OSA modified tapioca starch based dispersion method, a 10 g/L (1%) OSA modified tapioca starch
111 slurry was prepared in DI water based on previous studies [35], [42]. The starch slurry was first boiled and then cooled
112 to 50°C while constantly stirring and heated overnight to produce a gelatinous solution. Then, CNTs (0.4g) were
113 combined with 240 mL of starch slurry in multiple test tubes. To ensure a proper absorption of OSA modified tapioca
114 starch onto the surface of CNTs, the slurry was sonicated for 30 minutes and further mixed in a rotator for 72 hours at
115 a speed of 30 rpm.

116 For the preparation of NaDDBS functionalized CNTs, a critical micelle concentration of NaDDBS in water,
117 1.4×10^{-2} mol/L, was taken as the input surfactant concentration [22], [43]. The critical micelle concentration was
118 derived from the strong hydrophobic attraction between the solid surface and the tail group of the surfactant. Once the
119 NaDDBS is adsorbed onto the CNT surface, any additional surfactant molecules above the critical micelle
120 concentration are self-assembled into micelles of 1.4×10^{-2} mol/L [22]. Thus, 1.17g of NaDDBS was added in 200
121 mL of water yielding a weight percentage of around 0.48%. After NaDDBS aqueous solution was magnetically stirred
122 for 15 minutes, CNTs (0.4g) were added to the mixture followed by another 15-minute magnetic stirring. The same
123 ultrasonication and rotating mixing as mentioned above were performed as the last step. The mixing procedures of

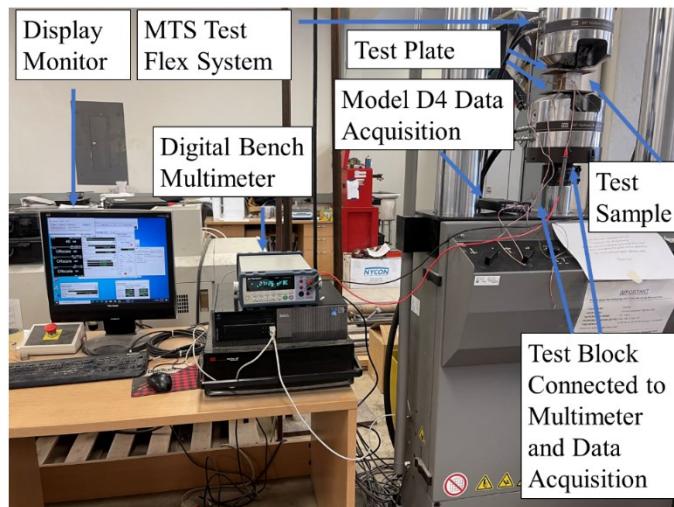

124 CMC were very similar to those of NaDDBS surfactant except that the CMC concentration was optimized at 0.5%
125 based on the literature [33].

126 *2.3 Dispersion characterizations*

127 FTIR analysis was used to analyze the elemental compositions of CNT reinforced cementitious materials
128 using different dispersion methods [44]. Pristine CNTs along with different dispersion agents were scanned using
129 NicoletTM iS50 FTIR Spectrometer at a spectral range of 4000-400 cm^{-1} and a resolution of 4 cm^{-1} . In addition, a
130 Colloidal Dynamics AcustoSizer II was used to obtain the zeta potential of CNTs with different dispersion methods
131 for quantitative comparisons. The testing conditions were controlled at a temperature of 25°C. Before taking any
132 measurements, all CNT suspensions were ultrasonicated for another 15 minutes. For each dispersion method, three
133 identical samples were prepared and assessed to ensure good reproducibility. TEM analysis was performed at the
134 Electron Microscopy Core of North Dakota State University.

135 *2.4 Preparation of CNT reinforced cementitious composites*

136 To prepare CNT reinforced cementitious composites, 400g of cement were added into the well-mixed CNT
137 suspensions. The water/cement ratio in this study was kept at a constant value of 0.6. Based on ASTM C109, the test
138 sample of the CNT reinforced cementitious composites was designed as cubic blocks with a side length of 50 mm as
139 shown in Figure 1. Two electrical wires with naked ends were placed and embedded approximately 20 mm apart from
140 the edge of each block to capture electrical responses. In addition, strain gauges were adhered onto the surfaces of the
141 samples to collect lateral and longitudinal strains of the cubic blocks for modulus of elasticity and Poisson ratio
142 measurements according to ASTM C469. All samples were made and prepared at room temperature ($22^\circ\text{C} \pm 2^\circ\text{C}$) and
143 cured in water for 7 days. The curing time of 7 days was selected based on the common practice of cement composites
144 samples used in field [44], [45]. For each dispersion method, six identical samples were made and tested. The test
145 matrix is displayed in Table 3.



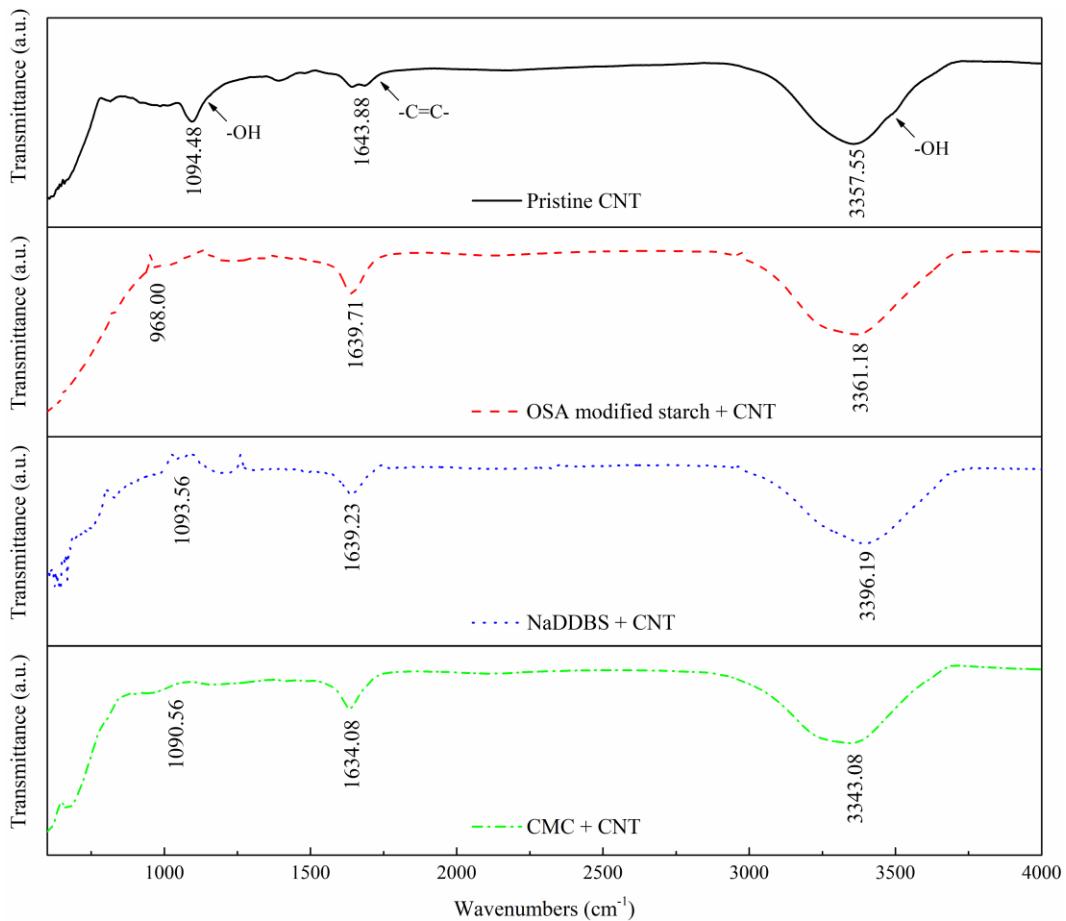
146

147 **Figure 1.** A test sample of CNT reinforced cementitious composites with electrical wires and strain gauges.

148 2.5 *Compression tests*

149 The mechanical and piezoresistive properties of CNT reinforced cementitious composites including
150 compressive strength, modulus of elasticity, Poisson ratio, and piezoresistive sensitivity were determined by
151 compression tests using MTS Flex Test® SE loading frame. The test sample were placed in the center of the lower
152 platen so that the axis of the sample coincided with the center line of upper platen and the sample was under uniaxial
153 compression. The displacement-controlled monotonic loading mode was adopted throughout the tests with a loading
154 rate of 0.02 mm/s. The real-time loading and displacement were automatically recorded by the loading machine, while
155 strain gauges and electrical wires collected strain and piezoresistive response by Model D4 Data Acquisition
156 Conditioner (Micro-Measurements, Vishay Precision Group) and Digital Bench Multimeter (BK 5492B, B&K
157 Precision, Inc., USA). Figure depicts the whole test configuration.

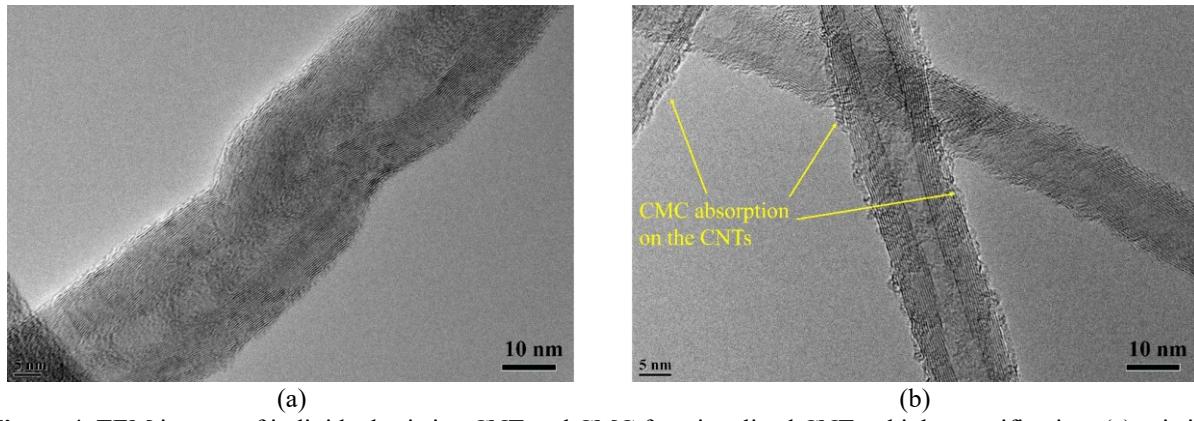
158
159


Figure 2. Test Configuration.

160 **3. Results and Discussion**

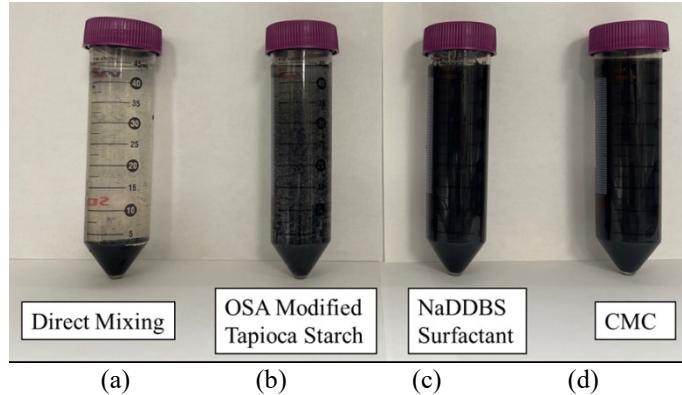
161 **3.1 CNT functionalization**

162 Although a few existing studies have reported the usage of CMCs for CNT functionalization, whether
163 covalent functionalization engages in the CMC method has not been determined or proved yet. FTIR analysis was
164 used in this study to categorize the functionalization mechanism of CMCs as well as differentiate the effectiveness
165 among different dispersion methods. Figure 3 illustrates the comparison of FTIR spectra among pristine CNTs and
166 CNTs with the three different dispersion agents. For pristine CNTs, the bands at 3357.55 cm^{-1} and 1094.48 cm^{-1} were
167 attributed to the presence of hydroxyl groups (-OH) on the surface of CNTs, which are assumed because of the aqueous
168 solution environment. The peaks at 1643.88 cm^{-1} corresponded to -C=C- stretching mode of the CNTs showing the

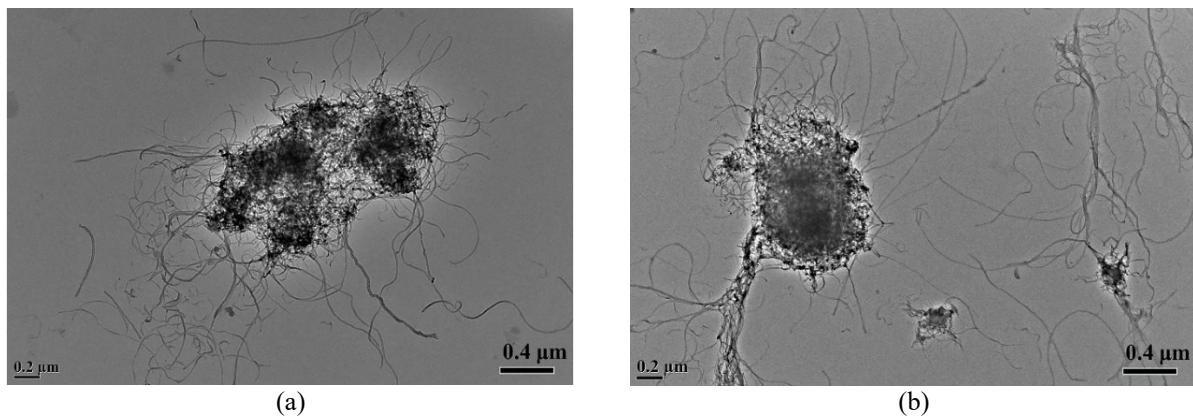

169 carbon system. The FTIR spectrum of pristine CNTs was consistent with the previous studies [45], [46]. By comparing
 170 the FTIR spectra between pristine CNTs and CNTs with the three different dispersion agents, it was noted that all the
 171 FTIR spectra exhibited similar peak locations. There was no new bond or functional group being formed after CNT
 172 functionalization, and no obvious difference was found among the three functionalized CNTs. Since OSA modified
 173 tapioca starch and NaDDBS are two well-defined noncovalent CNT functionalization methods without any chemical
 174 composition changes, it was verified that the CMC treatment method also fell into the category of physical or
 175 noncovalent functionalization which was expected to modify the CNT dispersion.

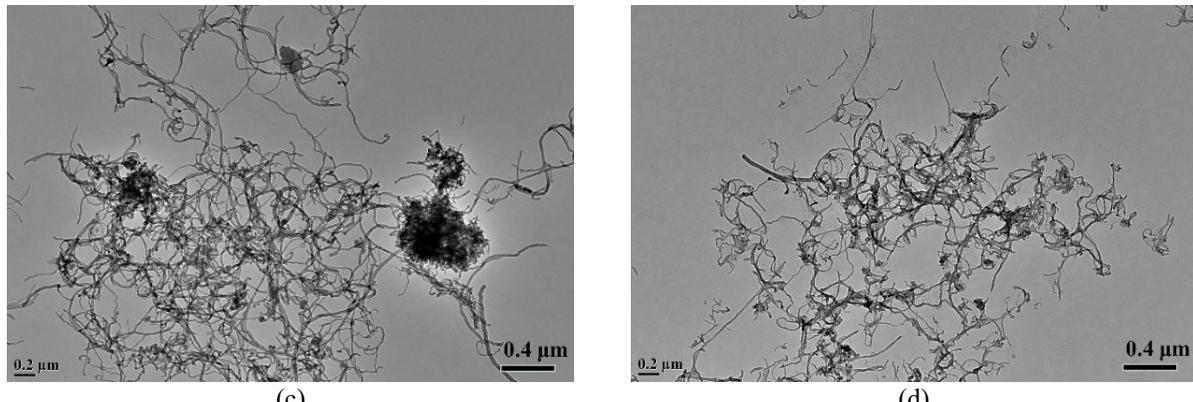
176
 177 **Figure 3.** Comparison of FTIR spectra among pristine CNTs and CNTs with the three different dispersion agents.

178 The functionalization mechanism of CMC surface treatment method was further revealed by TEM analysis.
 179 Figure 4(a-b) show the TEM images of individual pristine CNT and CMC functionalized CNT at high magnification.
 180 Figure 4(a) shows that the pristine CNT had a smooth and plain sidewall. For the CMC functionalized CNT as shown
 181 in Figure 4(b), the boundary of the CMC functionalized CNT was rough and jagged with a thin amorphous layer
 182 surrounding the outside wall of the CNT, which was believed to result from CMC absorption on the CNT. Since the

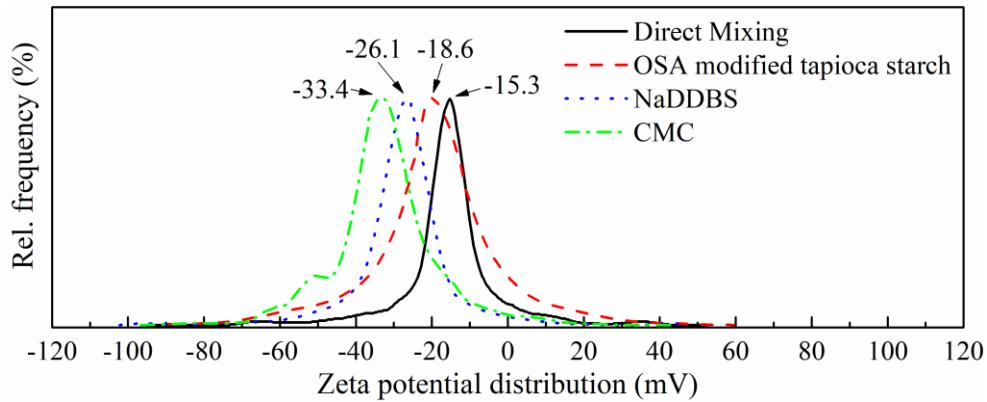

183 mechanism of noncovalent CNT functionalization is to reduce the intensive intermolecular attractions of CNTs by
184 attaching or absorbing on the surface of CNTs, it was confirmed that CMC surface treatment was another physical or
185 noncovalent method to functionalize CNTs for CNT dispersion modification.

186 **Figure 4.** TEM images of individual pristine CNT and CMC functionalized CNT at high magnification: (a) pristine
187 CNT; (b) CMC functionalized CNT.

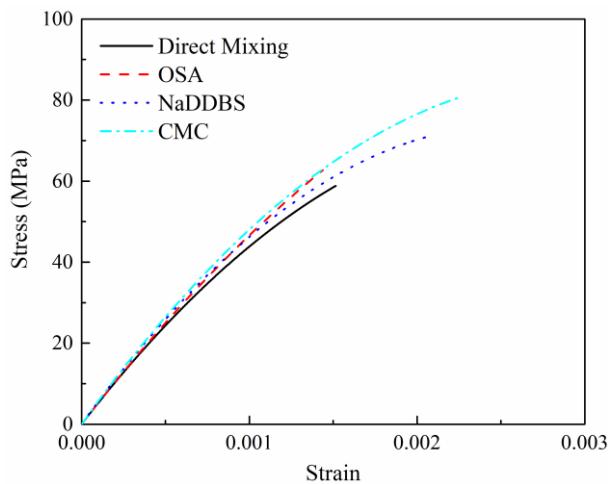

188 3.2 *CNT dispersion*


189 The dispersion characterization of CNT aqueous solutions was directly revealed by visual observation and
190 TEM analysis. Figure (a-d) present the visual observations of CNTs with different dispersion methods after 30 minutes.
191 From Figure 5(a) for pristine CNTs with direct mixing method, almost all the CNTs settled at the bottom of the test
192 tube causing sever sedimentation. Without any functionalization, CNTs remained the instinct nature to agglomerate
193 into large CNT clusters with higher density than water, indicating a typical non-uniform dispersion. According to
194 Figure 5(b) for OSA modified tapioca starch functionalized CNTs, a large number of small CNT 'particles' were
195 observed all over the solution without significant sedimentation. It was believed that CNT cluster sizes and the degree
196 of agglomeration were reduced since the density of quite a lot of CNT 'particles' were similar to that of water, implying
197 improved CNT dispersion. For NaDDBS and CMC functionalized CNTs as shown in Figure 5(c-d), there were no
198 individual CNT 'particles' detected in the solution. The CNT aqueous solution turned completely dark reflecting a
199 relatively uniform CNT dispersion.

200 **Figure 5.** Visual observation of CNTs with different dispersion methods: (a) direct mixing; (b) OSA modified
201 tapioca starch; (c) NaDDBS; (d) CMC functionalization.


202 Figure 6(a-d) show the typical TEM images of CNTs with different dispersion methods. It was clear in Figure
203 6(a) that after direct mixing, CNTs primely stayed in the form of a sizable CNT cluster, and only a small proportion
204 of CNTs was observed outside the cluster. Compared to direct mixing, the CNT agglomeration was not remarkably
205 modified with OSA modified tapioca starch dispersion method as shown in Figure 6(b), even though a few undersized
206 CNT clusters were found beside a giant cluster. The dispersion energy of OSA modified tapioca starch was not
207 sufficient to overcome the strong interaction among the CNTs. From Figure 6(c) for NaDDBS functionalized CNTs,
208 although small-sized CNT clusters still persisted, the majority of the CNTs were well dispersed suggesting a
209 considerably improved dispersion. For CMC functionalized CNTs in Figure 6(d), the visible CNTs were
210 homogeneously dispersed and free of any clusters.

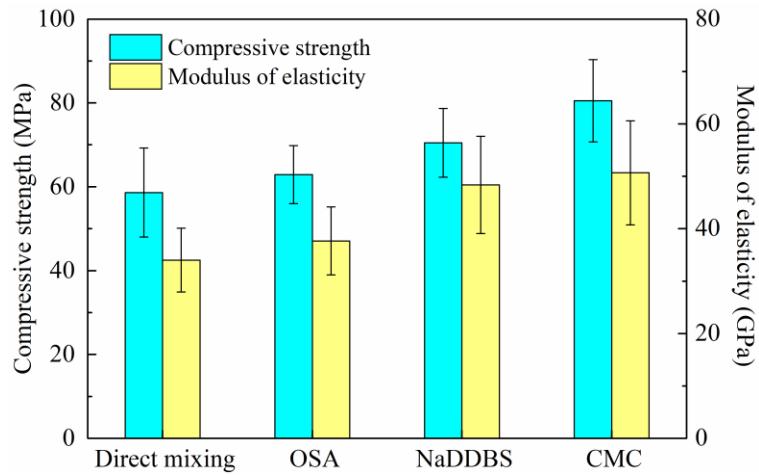
211 **Figure 6.** Typical TEM images of CNTs with different dispersion methods: (a) direct mixing; (b) OSA modified
 212 tapioca starch; (c) NaDDBS; (d) CMC functionalization.


213 Zeta potential is an important indicator of the stability and dispersion of colloidal suspensions. By knowing
 214 the magnitude of the net surface potential (either positive or negative), the aggregation behavior of the colloidal
 215 particles could be predicted and reflected. Thus, in this study, zeta potential measurement was used to quantitatively
 216 compare the CNT dispersion. Figure 7 illustrates the standardized zeta potential distributions as well as the zeta
 217 potential values with different dispersion methods. As shown in Figure 7, all the curves shared a pattern of normal
 218 distribution, and zeta potential values were obtained from the peaks of the curves. A high magnitude (absolute value)
 219 of zeta potential originates from high surface charge on CNTs with considerable electrostatic repulsion which prevents
 220 CNTs from agglomeration, otherwise CNTs with a low surface charge tend to agglomerate and entangle due to
 221 insufficient repulsion to overcome the strong van del Waals forces. The higher the zeta potential value, the more stable
 222 and uniform suspension dispersion. In general, colloidal suspensions with zeta potential above ± 30 mV is considered
 223 as stably and uniformly dispersed [47]. According to Figure 7, CMC functionalized CNTs produced a zeta potential
 224 value of 33.4 mV suggesting a good CNT dispersion. Although the zeta potential values of the rest dispersion methods
 225 were all below the critical threshold, NaDDBS functionalized CNTs attained a moderately smaller zeta potential of
 226 26.1 mV, while the zeta potential values of CNTs with direct mixing and OSA modified tapioca starch were
 227 tremendously lower. Based on all the CNT dispersion characterizations above, it was evident that among all the
 228 dispersion methods included in the study, the CMC surface treatment method achieved the best effectiveness in CNT
 229 dispersion modification, implying great potentiality of pursuing advanced mechanical and electrical properties of CNT
 230 reinforced cementitious composites.

231 **Figure 7.** Zeta potential distributions.

232 3.3 *Mechanical properties*

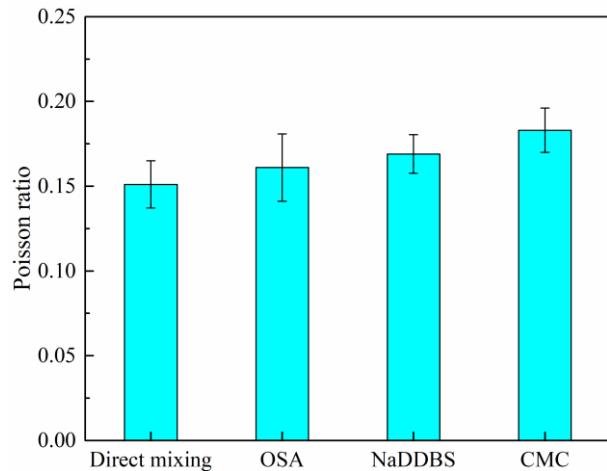
233 Figure 8 shows the typical compressive stress-strain curves of CNT reinforced cementitious composites using
 234 various dispersion methods. Initially, all the stress-strain curves exhibited an approximate linear pattern, indicating
 235 the elastic range. Within the elastic range (40% of the failure strain based on ASTM C469), the stress was nearly
 236 proportional to the strain, and the slope or proportion between the stress and the strain was used to estimate modulus
 237 of elasticity of the composites. After the elastic range, the curves entered the non-linear portion, and the composites
 238 began to show plastic behavior until reaching the maximum stress which is defined as the compressive strength.



240 **Figure 8.** Compressive stress-strain curves.

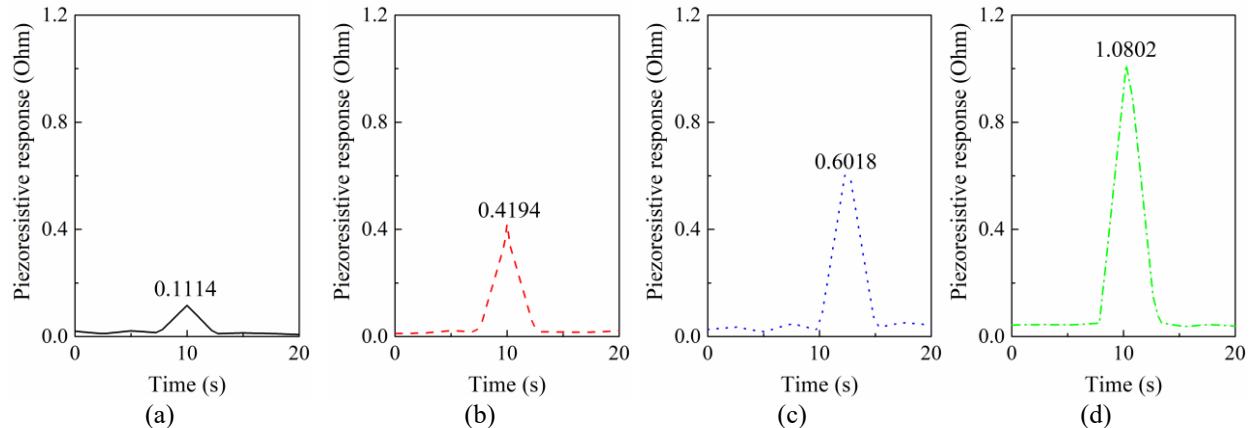
241 Figure 9 summarizes the compressive strength and modulus of elasticity of CNT reinforced cementitious
 242 composites using various dispersion methods. From Figure 9, the CNT reinforced cementitious composites by direct
 243 mixing had a compressive strength of 58.62 MPa and a modulus of elasticity of 34.01 GPa, whereas neither of the two
 244 parameters with OSA modified tapioca starch significantly differed from those with direct mixing method producing
 245

246 a compressive strength of 62.91 MPa and a modulus of elasticity of 37.67 GPa. CNT reinforced cementitious
247 composites mixed by NaDDBS and CMC dispersion method, however, acquired 20.2% and 37.3% improvements in
248 compressive strength reaching 70.45 MPa and 80.51 MPa, as well as 42.2% and 49.0% in modulus of elasticity
249 reaching 48.35 GPa and 50.66 GPa, respectively.


250 The variation of the compressive strength and modulus of elasticity with different dispersion methods could
251 be interpreted by the variation of CNT dispersion. Among the three dispersion methods, CMC treatment method was
252 shown to be the most effective dispersion method followed by NaDDBS and OSA modified tapioca starch method,
253 while direct mixing as the last. A uniformly dispersed CNTs conceivably provided a massive surface area for the
254 precipitation of the cement hydrates, which contributed to the formation of denser cementitious materials with high
255 stiffness and therefore improved such mechanical properties of CNT reinforced cementitious composites [48].
256 Moreover, the CNT clusters as the indicator of non-uniform dispersion, had the same detrimental effect as defects and
257 imperfections causing stress concentration and reduction in bond between CNTs and surrounding cement [49], [50].

258
259 **Figure 9.** Comparison of compressive strength and modulus of elasticity with different dispersion methods.

260 Poisson ratio also plays a crucial role in the mechanical properties of cementitious materials. The Poisson
261 coefficient was calculated from the ratio between the longitudinal strain in the loading direction and the lateral strain
262 of the test sample. Figure 10 displays the Poisson ratio of CNT reinforced cementitious composites with different
263 dispersion methods. For direct mixing method, the Poisson coefficient was estimated to be 0.151, which was consistent
264 with previous research [51]. For OSA modified tapioca starch and NaDDBS functionalization, the Poisson ratios
265 increased to 0.161 and 0.169 with the increments of 6.6% and 11.8% respectively. For CMC treatment method, a
266 notable (21.2%) improvement was obtained producing the Poisson ratio of 0.183. The difference in Poisson ratio of


267 CNT reinforced cementitious composites with different dispersion methods could be attributed to the same mechanism
268 as the earlier discussion of compressive strength and modulus of elasticity. Better CNT dispersion contributed to the
269 improvements of loading capacity and deformability of CNT reinforced cementitious composites, while CMC
270 functionalization method was able to achieve more desirable mechanical properties.

271
272 **Figure 10.** Comparison of Poisson ratio with different dispersion methods.

273 3.4 *Piezoresistive properties*

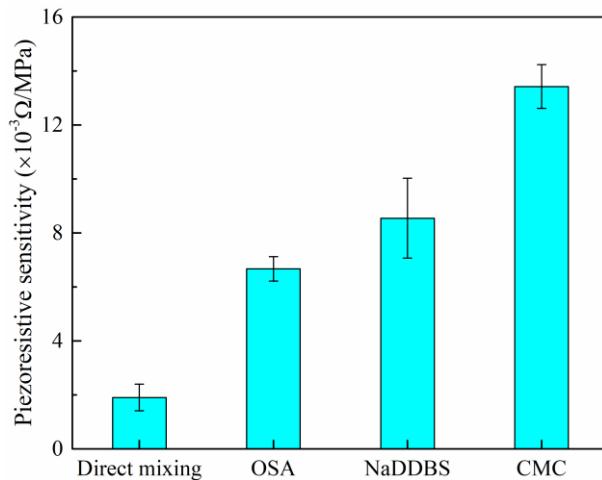
274 One of the major applications of CNT reinforced cementitious materials is smart concrete with self-sensing
275 ability. CNTs with outstanding electrical properties are promising to provide cementitious materials with
276 piezoelectricity with which the stress or strain of concrete structures could be measured and monitored by their
277 electrical parameters such as electrical resistance, capacitance or impedance [33], [34]. In this study, the piezoresistive
278 response was the change in the electrical resistance of CNT reinforced cementitious composites as an indication of
279 compressive stress. Figure 11(a-d) presents the typical piezoresistive responses of CNT reinforced cementitious
280 composites with different dispersion methods throughout the compression period. It was obvious that the
281 piezoresistive response of CNT reinforced cementitious composites by direct mixing was rather limited, with the
282 electrical resistance change of only 0.1114 Ohm. Considerable improvements were seen for cementitious composites
283 with CNT functionalization, with the piezoresistive responses of OSA modified tapioca starch, NaDDBS, and CMC
284 functionalization reaching 0.4194 Ohm, 0.6018 Ohm, and 1.0802 Ohm, respectively.

285 **Figure 11.** Piezoresistive responses of CNT reinforced cementitious composites with different dispersion methods:

286 (a) direct mixing; (b) OSA modified tapioca starch; (c) NaDDBS; (d) CMC functionalization.

287 Since different cementitious composites experienced different stress during the compression, in order to fairly

288 evaluate the piezoresistive properties among different dispersion methods, the piezoresistive sensitivity (S) was
289 specified as the relative electrical resistance change with the change of stress [30], [52]:


$$290 S = \frac{\Delta R}{\Delta \sigma} = \frac{R - R_0}{\sigma - \sigma_0} \quad (1)$$

291 In this study, R_0 and σ_0 were both zero before the composites being compressed, while R_p and σ_p were the peak
electrical resistance and peak stress (compressive strength). Thus Equation 1 was expressed as:

$$292 S = \frac{R_p}{\sigma_p} \quad (2)$$

293 A higher piezoresistive sensitivity indicates a larger electrical resistance change with unit change of stress
294 indicating better piezoresistive properties for more attractive sensing applications in the field. Figure 12 shows the
295 piezoresistive sensitivities of CNT reinforced cementitious composites with different dispersion methods. The
296 piezoresistive sensitivity of CNT reinforced cementitious composites with direct mixing was rather low with merely
297 $1.901 \times 10^{-3} \Omega/\text{MPa}$. It was found in the previous sections that directly mixed CNTs usually did not provide a uniform
298 CNT dispersion. Since a sound piezoelectricity requires a uniform dispersion of CNTs within the composite matrix so
299 that the CNTs could build up a continuous and extensive conductive network [53], agglomerated CNTs by direct
300 mixing failed to provide a robust conductive network for an acceptable piezoresistive property. For OSA modified
301 tapioca starch and NaDDBS dispersion methods, the piezoresistive sensitivities increased significantly reaching $6.667 \times 10^{-3} \Omega/\text{MPa}$ and $8.542 \times 10^{-3} \Omega/\text{MPa}$, respectively. It was highlighted that CNT reinforced cementitious composites
302 with CMC treatment method achieved a significantly higher piezoresistive sensitivity of $13.423 \times 10^{-3} \Omega/\text{MPa}$.

303 Compared to the other three dispersion methods, it was 101.3% and 57.1% improvements as those of OSA modified
304 tapioca starch and NaDDBS methods respectively, besides more than 7 times as that of direct mixing.

305
306 **Figure 12.** Comparison of Piezoresistive sensitivity with different dispersion methods.
307 As discussed previously, there was no doubt that the well-dispersed CNTs promoted piezoresistive properties
308 of CNT reinforced cementitious composites. It is also worth highlighting that CNTs functionalized with carboxyl
309 group (OSA modified tapioca starch, NaDDBS, and CMC) and hydroxyl group (CMC method only) have distinct
310 physical properties and are more hydrophilic in comparison with non-functionalized CNTs (direct mixing method)
311 [34], [54], [55]. Such functionalized CNTs are more prone to develop strong chemical bond with the surrounding
312 cement matrix. In addition to better CNT dispersion, the superior mechanical and piezoresistive properties of CNT
313 reinforced cementitious composites with CMC treatment method could also be interpreted by the distinctive functional
314 groups of the CMC.

315 4. Conclusions

316 This study systematically investigated the dispersion, mechanical, and piezoresistive properties of CNT
317 reinforced cementitious composites using the CMC dispersion method compared to traditional direct mixing,
318 noncovalent functionalization using OSA modified tapioca starch as a polymeric additive, and NaDDBS as a well-
319 established surfactant. It was shown by FTIR and TEM analyses that the CMC treatment method on CNTs was a
320 physical or noncovalent surfactant as OSA modified tapioca starch and NaDDBS. TEM analysis and zeta potential
321 measurement further indicated that the CMC treatment method was more effective in CNT dispersion modification,
322 followed by NaDDBS and OSA modified tapioca starch methods, while direct mixing as the last. For the mechanical
323 properties, the compressive strength, modulus of elasticity, and Poisson ratio of CNT reinforced cementitious

324 composites with CMC dispersion method attained significant improvements, compared to the direct mixing method.
325 The corresponding improvements of OSA modified tapioca starch and NaDDBS dispersion methods were less
326 remarkable than CMC method. Regarding piezoresistive properties, the CNT reinforced cementitious composites with
327 CMC treatment method have shown superior piezoresistive sensitivity over the other three dispersion methods, which
328 could be interpreted by the more uniformly dispersed CMC functionalized CNTs and the functional groups (carboxyl
329 and hydroxyl groups) of the CMC. These investigations may assist the related industries for more consistent field
330 applications of the CNT reinforced cementitious composites. Further field applications of the CNT reinforced
331 cementitious composites using the CMC treatment method can be the potential future work of this study.

332 **CRediT authorship contribution statement**

333 **Leonard Chia:** Data curation, Formal analysis, Investigation, Writing - original draft. **Ying Huang:** Project
334 administration, Methodology, Funding acquisition, Supervision, Writing - review & editing. **Wenjie Xia:** Supervision,
335 Writing - review & editing. **Pan Lu:** Funding acquisition, Supervision, Writing - review & editing. **Dawei Zhang:**
336 Methodology, Formal analysis, Investigation, Writing - review & editing.

337 **Declaration of interest**

338 The authors declare that they have no known competing financial interests or personal relationships that
339 could have appeared to influence the work reported in this paper.

340 **Acknowledgements**

341 This work was supported the National Science Foundation under Grant No. CMMI-1750316. The findings
342 and opinions expressed in this article are those of the authors only and do not necessarily reflect the views of the
343 sponsors. W.X. acknowledged the support from College of Engineering and Department of Civil, Construction and
344 Environmental Engineering at NDSU through the start-up grant.

345 **Reference**

346 [1] T. Simões, C. Octávio, J. Valença, H. Costa, D. Dias-da-Costa, and E. Júlio, “Influence of concrete strength and
347 steel fibre geometry on the fibre/matrix interface,” *Composites Part B: Engineering*, vol. 122, pp. 156–164,
348 2017.

349 [2] Y.-S. Tai, S. El-Tawil, and T.-H. Chung, “Performance of deformed steel fibers embedded in ultra-high
350 performance concrete subjected to various pullout rates,” *Cement and Concrete Research*, vol. 89, pp. 1–13,
351 2016.

352 [3] Q. Song *et al.*, “Steel fibre content and interconnection induced electrochemical corrosion of Ultra-High
353 Performance Fibre Reinforced Concrete (UHPFRC),” *Cement and Concrete Composites*, vol. 94, pp. 191–200,
354 2018.

355 [4] D. Chung, “Comparison of submicron-diameter carbon filaments and conventional carbon fibers as fillers in
356 composite materials,” *Carbon*, vol. 39, no. 8, pp. 1119–1125, 2001.

357 [5] X. Fu and D. Chung, “Submicron-diameter-carbon filament cement-matrix composites,” *CARBON-
358 AMERICAN CARBON COMMITTEE-*, vol. 36, pp. 459–462, 1998.

359 [6] G. Camps, A. Turatsinze, A. Sellier, G. Escadeillas, and X. Bourbon, “Steel-fibre-reinforcement and hydration
360 coupled effects on concrete tensile behaviour,” *Engineering Fracture Mechanics*, vol. 75, no. 18, pp. 5207–
361 5216, 2008.

362 [7] Z. S. Mexasa, M. S. Konsta-Gdoutos, S. Shah, and others, “Crack free concrete made with nanofiber
363 reinforcement,” Northwestern University (Evanston, Ill.). Infrastructure Technology Institute, 2011.

364 [8] L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, and T. Sato, “Cement and concrete nanoscience and
365 nanotechnology,” *Materials*, vol. 3, no. 2, pp. 918–942, 2010.

366 [9] J. Makar, J. Margeson, and J. Luh, “Carbon nanotube/cement composites-early results and potential
367 applications,” in *Proceedings of the 3rd international conference on construction materials: performance,
368 innovations and structural implications*, 2005, pp. 1–10.

369 [10] L. Zheng *et al.*, “Ultralong single-wall carbon nanotubes,” *Nature materials*, vol. 3, no. 10, pp. 673–676, 2004.

370 [11] M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes
371 and their mechanical properties,” *Physical review letters*, vol. 84, no. 24, p. 5552, 2000.

372 [12] J.-P. Salvetat *et al.*, “Mechanical properties of carbon nanotubes,” *Applied Physics A*, vol. 69, no. 3, pp. 255–
373 260, 1999.

374 [13] Da. Walters *et al.*, “Elastic strain of freely suspended single-wall carbon nanotube ropes,” *Applied Physics
375 Letters*, vol. 74, no. 25, pp. 3803–3805, 1999.

376 [14] P.-W. Chen and D. Chung, “Concrete reinforced with up to 0.2 vol% of short carbon fibres,” *Composites*, vol.
377 24, no. 1, pp. 33–52, 1993.

378 [15] H. Li, H. Xiao, J. Yuan, and J. Ou, “Microstructure of cement mortar with nano-particles,” *Composites part B:
379 engineering*, vol. 35, no. 2, pp. 185–189, 2004.

380 [16] A. Cwirzen, K. Habermehl-Cwirzen, and V. Penttala, “Surface decoration of carbon nanotubes and mechanical
381 properties of cement/carbon nanotube composites,” *Advances in cement research*, vol. 20, no. 2, pp. 65–73,
382 2008.

383 [17] M. Lelusz, “Carbon nanotubes influence on the compressive strength of cement composites,” *Czasopismo
384 Techniczne*, 2015.

385 [18] D. Zhang, Y. Huang, and L. Chia, “Effects of carbon nanotube (CNT) geometries on the dispersion
386 characterizations and adhesion properties of CNT reinforced epoxy composites,” *Composite Structures*, vol.
387 296, p. 115942, 2022.

388 [19] D. Zhang, Y. Huang, and Y. Wang, “Bonding performances of epoxy coatings reinforced by carbon nanotubes
389 (CNTs) on mild steel substrate with different surface roughness,” *Composites Part A: Applied Science and
390 Manufacturing*, vol. 147, p. 106479, 2021.

391 [20] D. Zhang and Y. Huang, “The bonding performances of carbon nanotube (CNT)-reinforced epoxy adhesively
392 bonded joints on steel substrates,” *Progress in Organic Coatings*, vol. 159, p. 106407, 2021.

393 [21] S. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical
394 properties of carbon nanotube and nanofiber reinforced cementitious composites,” *Journal of Nanomaterials*,
395 vol. 2013, 2013.

396 [22] O. Mendoza, G. Sierra, and J. I. Tobon, “Influence of super plasticizer and Ca(OH)2 on the stability of
397 functionalized multi-walled carbon nanotubes dispersions for cement composites applications,” *Construction
398 and Building Materials*, vol. 47, pp. 771–778, 2013.

399 [23] L. Vaisman, H. D. Wagner, and G. Marom, “The role of surfactants in dispersion of carbon nanotubes,”
400 *Advances in colloid and interface science*, vol. 128, pp. 37–46, 2006.

401 [24] C.-Y. Hu, Y.-J. Xu, S.-W. Duo, R.-F. Zhang, and M.-S. Li, “Non-covalent functionalization of carbon nanotubes
402 with surfactants and polymers,” *Journal of the Chinese Chemical Society*, vol. 56, no. 2, pp. 234–239, 2009.

403 [25] J. Rausch, R.-C. Zhuang, and E. Mäder, “Surfactant assisted dispersion of functionalized multi-walled carbon
404 nanotubes in aqueous media,” *Composites Part A: Applied Science and Manufacturing*, vol. 41, no. 9, pp. 1038–
405 1046, 2010.

406 [26] H. Wang, “Dispersing carbon nanotubes using surfactants,” *Current Opinion in Colloid & Interface Science*,
407 vol. 14, no. 5, pp. 364–371, 2009.

408 [27] M. S. Konsta-Gdoutos, Z. S. Metaxa, and S. P. Shah, “Highly dispersed carbon nanotube reinforced cement
409 based materials,” *Cement and Concrete Research*, vol. 40, no. 7, pp. 1052–1059, 2010.

410 [28] B. Wang, Y. Han, and S. Liu, “Effect of highly dispersed carbon nanotubes on the flexural toughness of cement-
411 based composites,” *Construction and Building Materials*, vol. 46, pp. 8–12, 2013.

412 [29] R. Blake *et al.*, “A generic organometallic approach toward ultra-strong carbon nanotube polymer composites,”
413 *Journal of the American Chemical Society*, vol. 126, no. 33, pp. 10226–10227, 2004.

414 [30] X. Yu and E. Kwon, “A carbon nanotube/cement composite with piezoresistive properties,” *Smart Materials
415 and Structures*, vol. 18, no. 5, p. 055010, 2009.

416 [31] B. Abreu, A. S. Pires, A. Guimarães, R. M. Fernandes, I. S. Oliveira, and E. F. Marques, “Polymer/surfactant
417 mixtures as dispersants and non-covalent functionalization agents of multiwalled carbon nanotubes: Synergism,
418 morphological characterization and molecular picture,” *Journal of Molecular Liquids*, vol. 347, p. 118338, 2022.

419 [32] D. Han, L. Yan, W. Chen, and W. Li, “Preparation of chitosan/graphene oxide composite film with enhanced
420 mechanical strength in the wet state,” *Carbohydrate Polymers*, vol. 83, no. 2, pp. 653–658, 2011.

421 [33] L. Chia, Y. Huang, P. Lu, and A. N. Bezbaruah, “Surface modification of carbon nanotubes using
422 carboxymethyl cellulose for enhanced stress sensing in smart cementitious composites,” *IEEE Sensors Journal*,
423 vol. 21, no. 13, pp. 15218–15229, 2021.

424 [34] L. Chia *et al.*, “Surface Treatment of Carbon Nanotubes Using Modified Tapioca Starch for Improved Force
425 Detection Consistency in Smart Cementitious Materials,” *Sensors*, vol. 20, no. 14, p. 3985, 2020.

426 [35] U. S. Rashid, S. Simsek, S. R. Kanel, and A. N. Bezbaruah, “Modified tapioca starch for iron nanoparticle
427 dispersion in aqueous media: potential uses for environmental remediation,” *SN Applied Sciences*, vol. 1, no.
428 11, p. 1379, 2019.

429 [36] B. Han, X. Yu, E. Kwon, and J. Ou, “Effects of CNT concentration level and water/cement ratio on the
430 piezoresistivity of CNT/cement composites,” *Journal of Composite Materials*, vol. 46, no. 1, pp. 19–25, 2012.

431 [37] B. Han, X. Yu, and J. Ou, “Dispersion of carbon nanotubes in cement-based composites and its influence on
432 the piezoresistivities of composites,” in *Smart Materials, Adaptive Structures and Intelligent Systems*, 2009, vol.
433 48975, pp. 57–62.

434 [38] J. Luo, Z. Duan, and H. Li, “The influence of surfactants on the processing of multi-walled carbon nanotubes
435 in reinforced cement matrix composites,” *physica status solidi (a)*, vol. 206, no. 12, pp. 2783–2790, 2009.

436 [39] O. A. M. Reales and R. D. Toledo Filho, "A review on the chemical, mechanical and microstructural
437 characterization of carbon nanotubes-cement based composites," *Construction and Building Materials*, vol. 154,
438 pp. 697–710, 2017.

439 [40] J. Rausch and E. Mäder, "Health monitoring in continuous glass fibre reinforced thermoplastics: Manufacturing
440 and application of interphase sensors based on carbon nanotubes," *Composites Science and Technology*, vol.
441 70, no. 11, pp. 1589–1596, 2010.

442 [41] M. S. Konsta-Gdoutos and C. A. Aza, "Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious
443 composites for real time damage assessment in smart structures," *Cement and Concrete Composites*, vol. 53,
444 pp. 162–169, 2014.

445 [42] S. Krajangpan, H. Kalita, B. J. Chisholm, and A. N. Bezbaruah, "Iron nanoparticles coated with amphiphilic
446 polysiloxane graft copolymers: dispersibility and contaminant treatability," *Environmental science &*
447 *technology*, vol. 46, no. 18, pp. 10130–10136, 2012.

448 [43] N. Grossiord, J. Loos, O. Regev, and C. E. Koning, "Toolbox for dispersing carbon nanotubes into polymers to
449 get conductive nanocomposites," *Chemistry of materials*, vol. 18, no. 5, pp. 1089–1099, 2006.

450 [44] I. S. Del Bosque, S. Martínez-Ramírez, M. Martín-Pastor, and M. T. Blanco-Varela, "Effect of temperature on
451 C–S–H gel nanostructure in white cement," *Materials and structures*, vol. 47, no. 11, pp. 1867–1878, 2014.

452 [45] C. E. Pizzutto, J. Suave, J. Bertholdi, S. H. Pezzin, L. A. F. Coelho, and S. C. Amico, "Study of epoxy/CNT
453 nanocomposites prepared via dispersion in the hardener," *Materials Research*, vol. 14, pp. 256–263, 2011.

454 [46] P.-C. Ma, S.-Y. Mo, B.-Z. Tang, and J.-K. Kim, "Dispersion, interfacial interaction and re-agglomeration of
455 functionalized carbon nanotubes in epoxy composites," *Carbon*, vol. 48, no. 6, pp. 1824–1834, 2010.

456 [47] M. R. Kumar, U. Bakowsky, and C. Lehr, "Preparation and characterization of cationic PLGA nanospheres as
457 DNA carriers," *Biomaterials*, vol. 25, no. 10, pp. 1771–1777, 2004.

458 [48] M. Jung, Y. Lee, S.-G. Hong, and J. Moon, "Carbon nanotubes (CNTs) in ultra-high performance concrete
459 (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness
460 (SE)," *Cement and Concrete Research*, vol. 131, p. 106017, 2020.

461 [49] E. Gao, W. Lu, and Z. Xu, "Strength loss of carbon nanotube fibers explained in a three-level hierarchical
462 model," *Carbon*, vol. 138, pp. 134–142, 2018.

463 [50] G.-D. Zhan, J. D. Kuntz, J. E. Garay, and A. K. Mukherjee, “Electrical properties of nanoceramics reinforced
464 with ropes of single-walled carbon nanotubes,” *Applied Physics Letters*, vol. 83, no. 6, pp. 1228–1230, 2003.

465 [51] Q. Ma, R. Guo, Z. Zhao, Z. Lin, and K. He, “Mechanical properties of concrete at high temperature—A review,”
466 *Construction and Building Materials*, vol. 93, pp. 371–383, 2015.

467 [52] H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng, and L. Li, “Ultrahigh-sensitivity piezoresistive pressure sensors for
468 detection of tiny pressure,” *ACS applied materials & interfaces*, vol. 10, no. 24, pp. 20826–20834, 2018.

469 [53] F. Teng *et al.*, “Piezoresistive/piezoelectric intrinsic sensing properties of carbon nanotube cement-based smart
470 composite and its electromechanical sensing mechanisms: A review,” *Nanotechnology Reviews*, vol. 10, no. 1,
471 pp. 1873–1894, 2021.

472 [54] M. Mardani, S. H. H. Lavassani, M. Adresi, and A. Rashidi, “Piezoresistivity and mechanical properties of self-
473 sensing CNT cementitious nanocomposites: Optimizing the effects of CNT dispersion and surfactants,”
474 *Construction and Building Materials*, vol. 349, p. 128127, 2022.

475 [55] L. Silvestro and P. J. P. Gleize, “Effect of carbon nanotubes on compressive, flexural and tensile strengths of
476 Portland cement-based materials: A systematic literature review,” *Construction and Building Materials*, vol.
477 264, p. 120237, 2020.

478