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Abstract— In this paper, a Convolutional Neural Network (CNN)
model is proposed to predict the in-vitro radiofrequency (RF)-
induced heating of complex-shaped passive implantable medical
devices (PIMDs) under magnetic resonance imaging (MRI). The
electromagnetic simulation meshes and incident electric field on
the mesh grids are used as the input of the CNN model while the
network output corresponds to the RF-induced 1-gram specific
absorption rate (SAR). A convergence analysis is performed to
understand the effectiveness of the method. A discussion on
selecting the training dataset size is presented using a Principal
Component Analysis (PCA) algorithm. Results demonstrate the
robustness of the CNN model for the prediction of RF-induced
heating from complex-shaped PIMDs under MR exposure.
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[. INTRODUCTION

OMPLEX-SHAPED passive implantable medical
devices (PIMDs) are widely used in clinical treatments
to support damaged biological tissues or structures [1].
However, PIMDs with metallic materials can lead to potential
safety hazards when patients with PIMDs undergo magnetic
resonance imaging (MRI) procedures [2]. Radiofrequency
(RF)-induced heating is one of the major concerns. The
concentrated radio frequency (RF) energy arising from the
interactions between PIMDs and MRI RF electromagnetic
(EM) fields will cause the temperature to rise and may burn
human tissue [3]. Accordingly, RF-induced heating of PIMDs
should be thoroughly evaluated to ensure patient safety [4]-[6].
The MRI RF exposure for PIMDs is usually assessed
following the ASTM standard F2182-19¢2 [7]. This assessment
requires costly measurements or numerical simulations and
takes a relatively long time [8]-[11]. Therefore, fast estimation
of MRI RF exposure would be most beneficial to assessing the
potential risks for patients with PIMDs.
Artificial Neural Networks (ANN) is one of the emerging
techniques used in RF and microwave design [12]. It has been
applied in a variety of applications, such as transmission line
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and waveguide modeling [13]-[15], and impedance matching
[16]. Preliminary studies have demonstrated the potential of
using a simple feed-forward ANN to predict the MRI RF-
induced heating for simple shaped PIMDs which can be
described by a set of geometrical parameters, such as the plate
length, the plate width, and the number of screws [17]-[19].
However, practical PIMDs can have very complex structures
and may be difficult to describe using a specific set of
parameters. Therefore, the MRI RF-induced heating of PIMDs
with complex shapes cannot be predicted accurately using
existing methods [20]-[21] .

Although complex-shaped PIMDs cannot be accurately
described by a set of geometrical parameters, they can be well
described using the computational meshes available in
electromagnetic simulations [22]. However, this study assumed
the uniform incident field so that the complex incident fields
distribution on the device heating was not included in the study.
Since the RF-induced heating is related both to the device (now
represented by the simulation meshes) and to the incident field
on the device, in this study, we propose to use the
electromagnetic simulation meshes and the incident fields on
the mesh grid as the inputs to develop a convolution neural
network (CNN) model to predict the MRI RF exposure for
complex-shaped PIMDs. Once the prediction CNN model is
developed, to predict the RF-induced heating, one only needs
to generate the electromagnetic simulation meshes and the
incident field as the inputs to the CNN model for RF-induced
heating evaluation. That is, instead of running electromagnetic
simulations (requiring hours for each configuration), one can
obtain the RF-induced heating for various new configurations
within seconds using this surrogate model.

Four tibia systems are used for the CNN model development
to demonstrate this approach. Over 1400 Computer-aided
design (CAD) models of different configurations are developed
based on the description from [23]. In-vitro EM simulations are
performed to obtain the 1g SARs (corresponding to the RF-
induced heating) for all these configurations. The combined
meshes and the incident electric fields are used as the input for
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the CNN model, and the peak value of 1-gram spatial-averaged
Specific Absorption Rate (SAR) extracted from the simulations
are used as the outputs of the CNN model. During the CNN
model development, the network convergence and the
correlations between predicted and true 1g SARs are
continuously monitored. Error metrics such as mean absolute
error (MAE) and Mean Absolute Percentage Error (MAPE) are
used to ensure the convergence (MAPE less than 5%) of the
CNN model. The strategy for choosing an optimum size for the
training dataset is also addressed and discussed with the
assistance of Principal Component Analysis (PCA).

The rest of this article is organized as follows. In Section II,
CAD models of the tibia plate system are introduced, and in-
vitro simulations are performed on these systems. In Section III,
the settings for the CNN model are elaborated. Section IV
presents the results of the CNN model development and the
network’s effectiveness for the RF-induced heating of various
complex-shaped PIMDs. Further discussion is provided in
Section V, and Section VI gives the overall conclusions.

II. METHODOLOGY

A. Development of CAD models

CAD models are developed based on distal tibia plating
systems that treat distal tibia bone fracture from a commercial
PIMD manufacturer [23] designed to treat distal tibia bone
fractures. Screws can be applied at various positions on the
plate to provide stability and rigidity. The four types of tibia
plating systems that were selected for computational modeling
are the anterolateral, medial, anterior, and posterior systems.
Ilustrations of these devices are shown in Fig. 1. CAD models
of the plate systems are developed using SEMCAD X (14.8.1,
SPEAG, Zurich, Switzerland). The front, side, and top views of
the CAD models are shown in Fig. 2. Cortical screws are
applied in the diaphysis (shaft) while cancellous screws are
used in the epiphysis region for fixations.
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Fig. 1. Four types of CAD models developed with the SEMCAD
software package and illustration of the numbering of screw holes in
the epiphysis region.

As shown in Fig. 2, these plates have various shapes that
cannot be easily described by a fixed set of geometrical

parameters. For these plates, the overall lengths range from 62
mm to 278 mm. Screws of different lengths, diameters, and
numbers can be applied to the screw holes illustrated in the
figure. For this application, screws with a diameter of 3.5 mm
are used in the diaphysis, and screws with a diameter of 2.7 mm
are used in the epiphysis region. For both screw diameters, the
screws have three distinct lengths of 10 mm, 30 mm, and 60
mm. In the diaphysis region, one screw should be applied to the
center positioning hole and the other screws will be applied at
either the top or the bottom screw hole. For the screw holes in
the epiphysis region, the screw holes are numbered as 1,2,3, etc
from top left to bottom right as shown in Fig. 2. The number of
screws is randomly selected and placed into different holes for
each configuration. The length of each screw is also randomly
selected from the three possible lengths. Over 1400
configurations are developed for all four tibia plate systems.
The details of the configurations are shown in TABLE 1.

Cortical screw holes
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Fig. 2. Four types of plate CAD models developed with the

SEMCAD software package and illustration of the numbering of screw
holes in the epiphysis region.

B. In-vitro Simulations

In-vitro simulations are performed using the SEMCAD X, an
EM simulation software package based on the finite-difference
time-domain (FDTD) method for all four tibia plate systems. A
generic birdcage coil, which consists of eight current sources
on eight rungs of the coil and sixteen lumped elements in the
top and bottom end rings, is used as the RF excitation in
simulations [6][24]. The operating frequency of the coil is 64
MHz which corresponds to the 1.5T MRI system.

In the in-vitro simulations, the devices are placed inside the
standard ASTM phantom [7]. The phantom is filled with gelled
saline of 90 mm in depth with a relative permittivity of 80 and
electrical conductivity of 0.47 S/m. The ASTM phantom shell
is made of acrylic material with a relative permittivity of €, =
3.7 and electrical conductivity of 6 = 0 S/m. All device centers
are placed at the center location on the z-axis and the y-axis in
the phantom as shown in Fig. 3. The device screws are oriented
along the negative x-direction. The right edge of the device is
20 mm from the sidewall of the ASTM phantom. The ASTM
phantom trunk center is placed at the isocenter of the RF coil as
shown in Fig. 3. This procedure is applied for all four different
plates during the simulation setups.



TABLEI

TOTAL PLATE CONFIGURATIONS

Screw position for
diaphysis (shaft)

Screw position for
epiphysis region

Plate type Plate length (mm)  Screw length (mm) region (screw (screw diameter 2.7
diameter 3.5 mm) mm)
{[1,2,4,5,9],
[66,91,117,142,168,19 [1,3,4,5,9], [1,4,5,8,9],
Anterolateral 3,218,244] [1,4,5,7,9], [1,4,5,8,9],
[1,2,3,4,5,6,7,8,9]}
Medial [103,128,154, {[top hole, positioning {[2,3,5,6], [1,3,4,6],
179,204,230,278] hole], [1,2,4,5],11,2,3,4,5,6]}
[10,30,60]
[mid hole, positioning {[1,3,4,7], [1,2,3,4,7],
Anterior [62,84,107,130] hole]} [1,3,4,5,7], [1,3,4,6,7],
[1.2,3,4,5,6,7]}
{[1,3,4,7], [1,2,3,4,7],
Posterior [57,77,98,118] [1,3,4,5,7], [1,3,4,6,7],
[1.2,3,4,5,6,7]}
gel, the SAR distribution will be concentrated in the device
region Consequently, only the mesh information inside the grid
mask is extracted in preparing for the CNN training. The
‘e —T electromagnetic simulation mesh for each simulation is a 3-D
o matrix with 89x65x364 ~ 2.1 million elements. Since there are
i : two materials inside the grid mask, element 0 is used to
1 | : Jh | represent gelled saline and element 1 is used to represent the
! 1 devices. The mesh matrix for each simulation is defined as
1

(a) (b)
Fig. 3.  Illustration of the device placement inside the ASTM
phantom and the RF coil. (a) Device placement inside ASTM phantom,
(b) Detailed illustration of the device placement.

To ensure the convergence of EM simulations, the minimum
FDTD simulation time should be at least 20 periods. Since these
plates are made of metallic materials such as stainless steel or
titanium, they are modeled as perfect electric conductors
(PECs). The mesh step size is set to 10 mm in the ASTM
phantom shell and to 5 mm in the gelled saline filling. To ensure
all plate devices have the same mesh as the input of the CNN
model, a large grid mask is applied to contain all the different
configurations. The grid mask is 70 mm X 50 mm X 290 mm,
and, devices of different configurations are placed inside this
region. In all simulations, the grid mask has a resolution of 0.8
mm in the x, y, and z directions so that all fine features from the
PIMDs can be accurately represented by the electromagnetic
meshes. Overall, the global mesh has a size of 190 X 108 X
511 = 10.48 M cells, as shown in Fig. 4. This mesh is used in
both the electromagnetic simulations and as the input for the
CNN model.

After all the simulations are completed, postprocessing is
needed to obtain meshes, incident field distribution, and the RF-
induced heating data (in terms of peak 1gram spatial-averaged
SAR) for each simulation. Due to the conductivity loss of the

Mesh whose element is either 0 or 1.

(a) (b)
Fig. 4. Tllustration of (a) the grid mask to enclose all devices, and (b)
the mesh setup for all simulations.

The incident electric fields in the grid mask are then extracted
from the simulations. Since the z-directional electric field is the
dominant component [4][5], the incident electric field is
approximated as

Eine,(L,j,k) =2 - Epnc(i,), k) (1)
where Ei.(i.], k) is the total incident electric field at the
discretized grid location (i.j, k), z is the unit vector in z
direction and Ey,,(i. ], k) is the z-component of the incident
electric field.

Since the resultant SAR is mainly related to the scattered
electric fields from the metallic implants, in this study, we only
record the incident field on the metallic mesh for CNN data
preparation. This is achieved by combineing the mesh



information and the incident electric field information, element-
wise multiplications are performed between E;,. and Mesh.
The multiplication result will retain the original E;,,. value at
the metallic implant region and will be 0 for the conductive gel
region as described as:

Emesn (i), k) = Einez (i, j, k) X Mesh(i, j, k)
_ {Eincz(i,j, k), implants @
0, phantom gel
This leads to a complex number at the device grid location.
The magnitude of the E,qqp, slices at several depths in the y-

direction are shown in Fig. 5.
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Fig. 5. Tllustration of x-z slices of the E_mesh matrix at different y
positions: (a) y =-1.56 mm, (b) y =-0.58 mm, (¢) y=0mm, (d)y =

0.78 mm and (e) y = 1.56 mm.
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Fig. 6. [Illustration of x-z slices of the 1g SAR distributions at
different y positions: (a) y =-1.56 mm, (b) y =—-0.58 mm, (c) y =0
mm, (d) y=0.78 mm and (e) y = 1.56 mm.

Overall, more than 1,400 E_.q, matrices and the
corresponding SAR, values are extracted and form the dataset
used for training and testing the CNN model. The SAR
distributions corresponding to the slices in Fig. 5 are given in
Fig. 6. To estimate the worst-case heating, only peak spatial
averaged SAR (psSAR|, ) is required as the output for the CNN
training. In most cases, the psSAR g values are located near the
tip of the screws or the edges of the plate.

IIT. CONVOLUTIONAL NEURAL NETWORK MODEL

A. Network Overview

The sequential CNN model used in this study is derived from
AlexNet [26]. The illustration of the network structure is shown
in Fig. 7. The network consists of one input layer, two
convolutional layers, two max-pooling layers, one flatten layer,
two fully connected layers, and one output layer. Convolutional

layers and max-pooling layers operate on 3-D data which will
be flattened to a 1-D vector by flattening the layer and then
going through the fully connected layers.

B. Network Configurations

To reduce the complexity of the CNN model, the input E ; csn
matrix is decimated by a factor of 2 in all three directions. The
Emesnh size is now reduced 45 X 33 X 182. In addition, since
the E,esp matrices cannot be directly used as the input to the
CNN model, appropriate pre-processing is needed to convert it
into a larger interleaved real-valued 3D matrice called Egpesh-
Each element in the Egpep 1S defined as

{ERmesh (2 ! (i - 1) + 1']" k) = Real(Emesh (i,j, k))

Ermesh (2 * i, ), k) = Imag(Epesn (i, ], k)
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Fig. 7. [Illustration of the CNN architecture used in the study. The

CNN model consists of one input layer, two convolutional layers, two

max-pooling layers, one flatten layer, two fully connected layers, and

one output layer.

After this operation, the total size of Egpesn 1S 90 X 33 X
182. In the two convolutional layers, different filters with a size
of 6 X 2 are applied to extract the features of the input layers.
Each filter will slide through each input layer and the output
will be the dot-product of the filter kernel weights and the
element values inside a small region covered by the filter. As a
default, the filters slide along the input elements one by one
both horizontally and vertically. To keep the integrity of the
complex number information, the stride, which is the slide step
size for filters, is set to two in the concatenated direction such
that all 12 wvalues cover six complex numbers. Both
convolutional layers have 80 filters which will produce 80
feature maps after convolution operations. [llustrations of some
feature maps after the convolutional layers are shown in Fig. 8.
As shown in the Fig. 8, geometrical information for a typical
device is extracted.

After each convolutional layer, a max-pooling layer is created
by selecting the maximum value in a 2 X 2 area to reduce the
size of the input layer while keeping the important features. The
flatten layer converts all 2-D feature maps to a 1-D vector.
Three flatten layers and fully connected layers have 350, 256,
and 128 neurons respectively. The last layer (output layer)
reduces to a single element which corresponds to the psSAR .
During network training, back propagations are performed to
update the weights in the entire system to minimize the error
level between the true values and the CNN predicted values.
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Fig. 8. [Illustration of the output 2-D feature maps after two

convolutional layers and two max-pooling layers.

C. Error/Convergence Analysis

The architecture construction, network training, testing, and
evaluation of the results are all implemented in Python with
Keras [27]. For the loss function, the Mean Absolute Percentage

Error (MAPE) is selected which is defined as follows:
MAPE — 100% n Ar—Fy
At

n

“

where A; is the true value, F; is the CNN predicted value, and
n is the number of data points. In addition, the Mean Absolute
Error (MAE) is defined as:
MAE = -3, |A, = Fyl (5)
The entire dataset is divided into a training dataset and a
testing dataset, with 70% of the datasets randomly selected as
training datasets and the remaining 30% considered as testing
datasets. Within the training dataset, 20% are chosen as
validation datasets, whose error metrics will be evaluated
through training while the dataset itself will not be used in
network training. The overall percentage allocation is
56%:14%:30% for training, validation, and testing respectively.
The Adam algorithm [28] is chosen as the optimizer of the
network. Training epochs are set to 100, and batch size is set to
32.

IV. RESULTS

A. Convergence and Correlation

The total duration for 100 epochs of the CNN model training
is around 15 minutes. The time consumption comparison
between traditional EM simulation and the proposed technique
is conducted and shown in TABLE II. The time needed to run
1416 EM simulations is 873.2 hours. For the proposed CNN
model, since 70% of the EM simulations are needed for data
training, 611.2 hours are taken for running those simulations.
The training of the CNN model takes 15 minutes and the
prediction takes less than 1 second. Thus, the total time is saved
by 30% by using the prosed model. During the network training
process, MAPE is evaluated at every epoch.

TABLE II
TIME CONSUMPTION(UNIT: HOUR)

Data Model Data Total
Preparation ~ Training  Prediction
EM 873.2 / / 873.2
Simulation
Proposed 6112 0.25 <0.001 61149
Technique

The MAPE of the training datasets and the validation datasets
is shown in Fig. 9. It can be seen that the error level decreases

abruptly in the first ten epochs. After that, the error level
fluctuates at the level of 5% while still decreasing slowly. Also,
the validation MAPE is close to the training MAPE, which
means that the network is robust to the new data, and that there
is no overfit for the CNN model.

Once the network training is finished, the psSAR s, MAE, and
MAPE values of the training dataset (including validation data),
and of the testing dataset are tabulated in TABLE III. It shows
that the averaged psSAR;; value for both training and testing
datasets is around 200 W/kg, the MAE is less than 5 W/kg, and
the MAPE is less than 3%. These errors are similar for both the
training and validation datasets.

The correlation coefficient between the predicted psSARig
values and true psSARiz values of the training and testing
datasets are evaluated using the R2 score, which is defined as:

35%
= Training Dataset
30% —— Validation Dataset

25%

W 20%
4
= 15% 1
10%
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0% | 1 [ I
0 20 40 60 80 100
Epochs

Fig. 9. [Illustration of the change of MAPE level during 100 epochs
of network training for the training and validation datasets.

TABLE III
MEAN SAR, MAE, AND MAPE

Training Testing
Averaged SAR value
(Wke) 203.90 196.82
MAE (W/kg) 4.06 4.40
MAPE 2.15% 2.46%
ii—f)?
RZ =1 —&iTJi 6
Lii=9)? ©)

where y; is the true value, f; is the predicted value, and ¥ is the
averaged true value. The plots of predicted values vs true values
for both the training and testing datasets are shown in Fig. 10.
Both the training and testing datasets have an R2 score of 0.99.
It can be seen from the scatter plots that the majority of the data
points are close to the y=x line on which the predicted value and
true value are equal to each other. Only a few data points

deviate from the y=x line.
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300

300
® R2=0.99 ® R2=0.99
2250 2250
s s
§ 200+ S 200
S &
21507 > 150
T Z
s g
¢ 100 3 100
50 . | , | |
50 100 150 200 250 300 5050 100 150 200 250 300
psSAR1g Train (W/kg) psSAR1g Test (W/kg)
(@) (b)
Fig. 10 Illustration of correlations between predicted values and true

values of (a) training dataset and (b) testing dataset.



B. Error Distribution

Firstly, the distribution of the peak SAR values for both
datasets are investigated and the histograms of distribution are
shown in Fig. 11. It can be obtained from the figure that, the
peak SAR values of the plate devices are concentrated with the
range of [90W/kg, 300W/kg] while the range of [150W/kg, 200
W/kg] has the largest number of occurrences. There are also no
outliers for peak SAR values.

Histograms of MAE for the training dataset and the testing
dataset are shown in Fig. 12. From the figure, the majority of
the training and testing data has an MAE value of less than 10
W/kg. The maximum MAE value for the training dataset is
50.04 W/kg, and the maximum MAE value for the testing
dataset is 29.03 W/kg.

Histograms of MAPE for the training and testing datasets are
shown in Fig. 13. It can be observed that the majority of data
has a MAPE level of less than 5%. The maximum MAPE of the
training dataset is 31%, and the maximum MAPE of the testing
data is 17.77%. All these observations demonstrate the

effectiveness of this method.
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Fig. 11.  Illustration of psSARig distribution for (a) the training
dataset, and (b) the testing dataset
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Fig. 12.  Tllustration of MAE distribution for (a) the training dataset,
and (b) the testing dataset
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Fig. 13. Illustration of MAPE distribution for (a) training dataset and

(b) testing dataset.

V. DISCUSSION

A. Training Data Selection

From the results given in the previous section, the CNN model
can achieve good convergence when it is used to predict the RF-
induced heating from PIMDs. The predicted psSARi, and true
psSAR|; have a good correlation coefficient of R?=0.99.

In the previous training scenarios, 70% of the total datasets is
used to form the training datasets. However, obtaining 70% of
all configurations for the training dataset development requires
extensive electromagnetic simulations for almost one month,
even with GPU acceleration. Therefore, it is necessary to
determine the least possible amount of training datasets that can
be used and still achieve a good prediction.

To perform this study, 20% of the whole datasets are
randomly selected as testing data. The CNN models are then
trained using 10% to 80% (with an increment of 10%) of the
datasets randomly selected from the original datasets. The
validation dataset is always 20% of the randomly selected
training set. The CNN models are trained 50 times in each
study.

TABLE IV shows the correlation coefficient R?, MAE, and
MAPE values with different sizes of the training datasets. Also,
the maximum errors appeared among 50 trainings are evaluated
and shown. It can be seen that when the training datasets are
less than 20% of the total datasets, errors are relatively large,
and the R? score is low. However, these parameters are
drastically improved when the training dataset size reaches 30%
of the total datasets. However, there are no significant
improvements when one further increases the size of the
training datasets. The maximum error has the similar trend
which the error level decreases significantly from 30% of the
dataset and keep stable. Based on this study, it appears that only
30% of the original datasets can be used and still develop a
CNN model with accurate psSAR1g predictions for the tibia plate
systems. Noted that, although the max error level is significant,
it is a singular value from one data prediction from one of fifty
trainings, which means that the maximum error is expected to
be lower.

B. Error Threshold Indicated by Principal Component
Analysis (PCA)

The results in the previous section indicate that it is feasible
to use a small subset of datasets to develop a satisfactory CNN
model to predict RF-induced heating for tibia plate systems. It
is also observed once the size of the datasets exceeded a certain
number, there is no additional improvement in terms of the
CNN model accuracy. Therefore, the objective here is to
perform the principal component analysis (PCA) on the input
dataset [29]. The PCA algorithm extracts the Principal
Components (PCs), and the variance for each PC which
represents the significance of the PCs to represent the whole
data.

An E .sp With a size of 45 X 33 X 182 is reshaped into 1-D
complex vectors with a length of 270,270 for over 1400 plate
configurations. Then, the PCA is performed on the matrix
reshaped at 270,270 X 1416. Such a PCA takes about 20



minutes to perform. Once the PCA is finished, the PCs are
extracted and are ranked based on the variance of each PC.
Fig. 14 shows the PCs distributions of the 1%, 11%, 215, 31,
and 41 largest variances after the PCA. These 2-D distributions
correspond to the center plane in the original simulation grids.
As seen in the figure, the largest component has large values

along the vertical direction. As the variance becomes smaller,
larger values are along the horizontal direction. This
observation further confirms that the components along the
vertical direction would contribute significantly toward the RF-
induced heating for these PIMDs.

TABLEIV
R2, MAE, AND MAPE ON DIFFERENT TRAINING DATASET SIZE

Training Dataset

Testing Dataset

Training Training
data (%) data MAE MAPE ) Max MAE MAPE , Max
amount (W/kg) (%) R Error (W/kg) %) R Error

(W/kg) (W/kg)

10% 142 11.52 5.94 091 66.4 14.64 8.19 0.88 72.6
20% 283 11.33 5.66 0.93 66.3 12.43 6.80 0.92 73.7
30% 425 443 231 0.98 55.7 5.78 330 0.97 59.0
40% 566 5.61 2.88 0.98 61.0 6.26 352 0.98 53.7
50% 708 498 257 0.98 60.0 5.70 3.19 0.98 475
60% 805 435 223 0.98 54.6 4.89 2.70 0.98 472
70% 991 4.94 251 0.98 50.9 5.18 2.84 0.98 42.0
80% 1133 4.87 242 0.98 56.4 5.10 2.73 0.98 458

10 20 30 40 10 20 30 40

10 20 30 40 10 20 30 40

10 20 30 40

Fig. 14.  Illustrations of the PCs at the center of the 1st, 11th, 21st,
31st, and 41st largest variance.

One potential criterion for selecting the size of the datasets
can be performed through cumulative variance analysis. The
ratio between the cumulative sum of the first » PCs’ variances
and the sum of all variances, defined as the Cumulative
Explained Variance (CEV) is shown in Fig. 15. As seen in the
figure below, one can represent the original datasets with the
largest 400 PCs. Consequently, if only 400 datasets are
selected, it is possible to train the CNN model with good
accuracy with such a subset of the training datasets.
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Fig. 15.  (a) Illustration of cumulative explained variances for 1416
PCs, and (b) Comparison between CNN prediction error and PCA
threshold.

The 1-CEV(n) indicates the percentage of the total energy that

is not included in the datasets for the CNN model development,
which is defined as follows:
1-CEV(n) =1-

cumsum(a) _ S0

S (7
where g; is the variance of ith PC. This would be the lowest
level that a CNN model can achieve. Fig. 15 (b) shows the 1—
CEV(n) and the CNN prediction error as the training datasets
increase. As the size of the training dataset increases, both the
1-CEV(n) and the MAPE of the CNN model decrease.
However, as expected, the MAPE would be still higher than the
1-CEV(n). For the RF-induced heating for the tibia plates used
in this study, based on the 1-CEV(n), it appears that the size of
400 datasets is a good indication that all energy that has been
included in the training sets. However, the error levels from the
CNN model are still slightly higher than the I-CEV(n).

Based on previous results, |-CEV(n) can be used as a
reference for choosing the appropriate training dataset size. The
percentage error calculated from the PCA can be considered as
the lower limit of the prediction error from the CNN model. For
example, to achieve a MAPE level of 10%, the training dataset
must contain at least 100 datasets, as 100 PCs will produce a
10% error level. Overall, the PCA can be used as an assistant
tool to estimate the required size of the training datasets.

sum(o)

VI. CONCLUSIONS

In this paper, a CNN model is proposed for the prediction of
RF-induced heating of complex-shaped PIMDs. In-vitro EM
simulations are performed with 1416 tibia plate configurations
with different geometrical variations. After that, the 3-D device
mesh information is combined with the local incident electric
field information and used as the input of the CNN model. Good
convergence was achieved and an over 0.99 correlation
coefficient for both training and testing datasets was obtained,
indicating the accuracy of the CNN model. The PCA on the
input data can be used as a potential criterion for selecting an



appropriate dataset for network training. Overall, it was
demonstrated that the mesh-based CNN model can be used for
quick access to the RF-induced heating for complex-shaped
PIMDs under MRI.
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