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Abstract— In this paper, a Convolutional Neural Network (CNN) 
model is proposed to predict the in-vitro radiofrequency (RF)-
induced heating of complex-shaped passive implantable medical 
devices (PIMDs) under magnetic resonance imaging (MRI). The 
electromagnetic simulation meshes and incident electric field on 
the mesh grids are used as the input of the CNN model while the 
network output corresponds to the RF-induced 1-gram specific 
absorption rate (SAR). A convergence analysis is performed to 
understand the effectiveness of the method. A discussion on 
selecting the training dataset size is presented using a Principal 
Component Analysis (PCA) algorithm. Results demonstrate the 
robustness of the CNN model for the prediction of RF-induced 
heating from complex-shaped PIMDs under MR exposure. 
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I. INTRODUCTION 
OMPLEX-SHAPED passive implantable medical 
devices (PIMDs) are widely used in clinical treatments 

to support damaged biological tissues or structures [1]. 
However, PIMDs with metallic materials can lead to potential 
safety hazards when patients with PIMDs undergo magnetic 
resonance imaging (MRI) procedures [2]. Radiofrequency 
(RF)-induced heating is one of the major concerns. The 
concentrated radio frequency (RF) energy arising from the 
interactions between PIMDs and MRI RF electromagnetic 
(EM) fields will cause the temperature to rise and may burn 
human tissue [3]. Accordingly, RF-induced heating of PIMDs 
should be thoroughly evaluated to ensure patient safety [4]-[6].  

The MRI RF exposure for PIMDs is usually assessed 
following the ASTM standard F2182-19e2 [7]. This assessment 
requires costly measurements or numerical simulations and 
takes a relatively long time [8]-[11]. Therefore, fast estimation 
of MRI RF exposure would be most beneficial to assessing the 
potential risks for patients with PIMDs.  

Artificial Neural Networks (ANN) is one of the emerging 
techniques used in RF and microwave design [12]. It has been 
applied in a variety of applications, such as transmission line 
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and waveguide modeling [13]-[15], and impedance matching 
[16]. Preliminary studies have demonstrated the potential of 
using a simple feed-forward ANN to predict the MRI RF-
induced heating for simple shaped PIMDs which can be 
described by a set of geometrical parameters, such as the plate 
length, the plate width, and the number of screws [17]-[19]. 
However, practical PIMDs can have very complex structures 
and may be difficult to describe using a specific set of 
parameters. Therefore, the MRI RF-induced heating of PIMDs 
with complex shapes cannot be predicted accurately using 
existing methods [20]-[21] .  

Although complex-shaped PIMDs cannot be accurately 
described by a set of geometrical parameters, they can be well 
described using the computational meshes available in 
electromagnetic simulations [22]. However, this study assumed 
the uniform incident field so that the complex incident fields 
distribution on the device heating was not included in the study. 
Since the RF-induced heating is related both to the device (now 
represented by the simulation meshes) and to the incident field 
on the device, in this study, we propose to use the 
electromagnetic simulation meshes and the incident fields on 
the mesh grid as the inputs to develop a convolution neural 
network (CNN) model to predict the MRI RF exposure for 
complex-shaped PIMDs. Once the prediction CNN model is 
developed, to predict the RF-induced heating, one only needs 
to generate the electromagnetic simulation meshes and the 
incident field as the inputs to the CNN  model for RF-induced 
heating evaluation. That is, instead of running electromagnetic 
simulations (requiring hours for each configuration),  one can 
obtain the RF-induced heating for various new configurations 
within seconds using this surrogate model.  

Four tibia systems are used for the CNN model development 
to demonstrate this approach. Over 1400 Computer-aided 
design (CAD) models of different configurations are developed 
based on the description from [23]. In-vitro EM simulations are 
performed to obtain the 1g SARs (corresponding to the RF-
induced heating) for all these configurations. The combined 
meshes and the incident electric fields are used as the input for 
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the CNN model, and the peak value of 1-gram spatial-averaged 
Specific Absorption Rate (SAR) extracted from the simulations 
are used as the outputs of the CNN model. During the CNN 
model development, the network convergence and the 
correlations between predicted and true 1g SARs are 
continuously monitored. Error metrics such as mean absolute 
error (MAE) and Mean Absolute Percentage Error (MAPE) are 
used to ensure the convergence (MAPE less than 5%) of the 
CNN model. The strategy for choosing an optimum size for the 
training dataset is also addressed and discussed with the 
assistance of Principal Component Analysis (PCA).  

The rest of this article is organized as follows. In Section II, 
CAD models of the tibia plate system are introduced, and in-
vitro simulations are performed on these systems. In Section III, 
the settings for the CNN model are elaborated. Section IV 
presents the results of the CNN model development and the 
network’s effectiveness for the RF-induced heating of various 
complex-shaped PIMDs.  Further discussion is provided in 
Section V, and  Section VI gives the overall conclusions.  

II. METHODOLOGY 

A. Development of CAD models 
CAD models are developed based on distal tibia plating 

systems that treat distal tibia bone fracture from a commercial 
PIMD manufacturer [23] designed to treat distal tibia bone 
fractures. Screws can be applied at various positions on the 
plate to provide stability and rigidity. The four types of tibia 
plating systems that were selected for computational modeling 
are the anterolateral, medial, anterior, and posterior systems. 
Illustrations of these devices are shown in Fig. 1.  CAD models 
of the plate systems are developed using SEMCAD X (14.8.1, 
SPEAG, Zurich, Switzerland). The front, side, and top views of 
the CAD models are shown in Fig. 2. Cortical screws are 
applied in the diaphysis (shaft) while cancellous screws are 
used in the epiphysis region for fixations.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 1. Four types of CAD models developed with the SEMCAD 
software package and illustration of the numbering of screw holes in 
the epiphysis region. 

As shown in Fig. 2, these plates have various shapes that 
cannot be easily described by a fixed set of geometrical 

parameters. For these plates, the overall lengths range from 62 
mm to 278 mm. Screws of different lengths, diameters, and 
numbers can be applied to the screw holes illustrated in the 
figure. For this application, screws with a diameter of 3.5 mm 
are used in the diaphysis, and screws with a diameter of 2.7 mm 
are used in the epiphysis region. For both screw diameters, the 
screws have three distinct lengths of 10 mm, 30 mm, and 60 
mm. In the diaphysis region, one screw should be applied to the 
center positioning hole and the other screws will be applied at 
either the top or the bottom screw hole. For the screw holes in 
the epiphysis region, the screw holes are numbered as 1,2,3, etc 
from top left to bottom right as shown in Fig. 2. The number of 
screws is randomly selected and placed into different holes for 
each configuration. The length of each screw is also randomly 
selected from the three possible lengths. Over 1400 
configurations are developed for all four tibia plate systems. 
The details of the configurations are shown in TABLE I. 

 

Fig. 2. Four types of plate CAD models developed with the 
SEMCAD software package and illustration of the numbering of screw 
holes in the epiphysis region. 

B. In-vitro Simulations 
In-vitro simulations are performed using the SEMCAD X, an 

EM simulation software package based on the finite-difference 
time-domain (FDTD) method for all four tibia plate systems. A 
generic birdcage coil, which consists of eight current sources 
on eight rungs of the coil and sixteen lumped elements in the 
top and bottom end rings, is used as the RF excitation in 
simulations [6][24]. The operating frequency of the coil is 64 
MHz which corresponds to the 1.5T MRI system.  

In the in-vitro simulations, the devices are placed inside the 
standard ASTM phantom [7].  The phantom is filled with gelled 
saline of 90 mm in depth with a relative permittivity of 80 and 
electrical conductivity of 0.47 S/m. The ASTM phantom shell 
is made of acrylic material with a relative permittivity of 𝜖𝜖𝑟𝑟 =
3.7 and electrical conductivity of σ = 0 S/m. All device centers 
are placed at the center location on the z-axis and the y-axis in 
the phantom as shown in Fig. 3. The device screws are oriented 
along the negative x-direction. The right edge of the device is 
20 mm from the sidewall of the ASTM phantom. The ASTM 
phantom trunk center is placed at the isocenter of the RF coil as 
shown in Fig. 3. This procedure is applied for all four different 
plates during the simulation setups.  

Cortical screw holes

Cancellous screw holes

1  2  3

4  5  6  7



 

 
 

  
TABLE I 

TOTAL PLATE CONFIGURATIONS 

Plate type Plate length (mm) Screw length (mm) 

Screw position for 
diaphysis (shaft) 

region (screw  
diameter 3.5 mm) 

Screw position for 
epiphysis region 

(screw diameter 2.7 
mm)   

Anterolateral [66,91,117,142,168,19
3,218,244] 

[10,30,60] 

{[top hole, positioning 
hole], 

[mid hole, positioning 
hole]} 

{[1,2,4,5,9], 
[1,3,4,5,9], [1,4,5,8,9], 
[1,4,5,7,9], [1,4,5,8,9], 

[1,2,3,4,5,6,7,8,9]} 

Medial [103,128,154, 
179,204,230,278] 

{[2,3,5,6], [1,3,4,6], 
[1,2,4,5], [1,2,3,4,5,6]} 

Anterior [62,84,107,130] 
{[1,3,4,7], [1,2,3,4,7], 
[1,3,4,5,7], [1,3,4,6,7], 

[1,2,3,4,5,6,7]} 

Posterior [57,77,98,118] 
{[1,3,4,7], [1,2,3,4,7], 
[1,3,4,5,7], [1,3,4,6,7], 

[1,2,3,4,5,6,7]} 

 

  
(a) (b) 

Fig. 3.  Illustration of the device placement inside the ASTM 
phantom and the RF coil. (a) Device placement inside ASTM phantom, 
(b) Detailed illustration of the device placement. 

To ensure the convergence of EM simulations, the minimum 
FDTD simulation time should be at least 20 periods. Since these 
plates are made of metallic materials such as stainless steel or 
titanium, they are modeled as perfect electric conductors 
(PECs). The mesh step size is set to 10 mm in the ASTM 
phantom shell and to 5 mm in the gelled saline filling. To ensure 
all plate devices have the same mesh as the input of the CNN 
model, a large grid mask is applied to contain all the different 
configurations. The grid mask is 70 mm × 50 mm × 290 mm, 
and, devices of different configurations are placed inside this 
region.  In all simulations, the grid mask has a resolution of 0.8 
mm in the x, y, and z directions so that all fine features from the 
PIMDs can be accurately represented by the electromagnetic 
meshes. Overall, the global mesh has a size of 190 × 108 ×
511 = 10.48 M cells, as shown in Fig. 4.  This mesh is used in 
both the electromagnetic simulations and as the input for the 
CNN model. 

After all the simulations are completed, postprocessing is 
needed to obtain meshes, incident field distribution, and the RF-
induced heating data (in terms of peak 1gram spatial-averaged 
SAR) for each simulation. Due to the conductivity loss of the 

gel, the SAR distribution will be concentrated in the device 
region Consequently, only the mesh information inside the grid 
mask is extracted in preparing for the CNN training. The 
electromagnetic simulation mesh for each simulation is a 3-D 
matrix with 89×65×364 ≈ 2.1 million elements. Since there are 
two materials inside the grid mask, element  0 is used to 
represent gelled saline and element 1 is used to represent the 
devices. The mesh matrix for each simulation is defined as 
Mesh whose element is either 0 or 1. 

 
 

(a) (b) 
Fig. 4. Illustration of (a) the grid mask to enclose all devices, and (b) 
the mesh setup for all simulations. 

The incident electric fields in the grid mask are then extracted 
from the simulations. Since the z-directional electric field is the 
dominant component [4][5], the incident electric field is 
approximated as  

 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝑧̂𝑧  ∙  𝑬𝑬𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) (1) 
where Einc (𝑖𝑖. 𝑗𝑗, 𝑘𝑘)  is the total incident electric field at the 
discretized grid location ( 𝑖𝑖. 𝑗𝑗, 𝑘𝑘) , 𝒛𝒛  is the unit vector in z 
direction and 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖. 𝑗𝑗, 𝑘𝑘) is the z-component of the incident 
electric field. 

Since the resultant SAR is mainly related to the scattered 
electric fields from the metallic implants, in this study, we only 
record the incident field on the metallic mesh for CNN data 
preparation. This is achieved by combineing the mesh 



 

 
 

information and the incident electric field information, element-
wise multiplications are performed between 𝑬𝑬𝑖𝑖𝑖𝑖𝑖𝑖  and Mesh. 
The multiplication result will retain the original 𝑬𝑬𝑖𝑖𝑖𝑖𝑖𝑖  value at 
the metallic implant region and will be 0 for the conductive gel 
region as described as: 

 
 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) × 𝑀𝑀𝑀𝑀𝑀𝑀ℎ(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) 

 = �𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑖𝑖, 𝑗𝑗, 𝑘𝑘),             𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

0,                        𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔 (2) 

This leads to a complex number at the device grid location. 
The magnitude of the  Emesh slices at several depths in the y-
direction are shown in Fig. 5.  

 
        (a)    (b)      (c)  (d)  (e) 

Fig. 5. Illustration of x-z slices of the E_mesh matrix at different y 
positions: (a) y = –1.56 mm, (b) y = –0.58 mm, (c) y = 0 mm, (d) y = 
0.78 mm and (e) y = 1.56 mm. 

 
        (a)    (b)      (c)  (d)  (e) 

Fig. 6. Illustration of x-z slices of the 1g SAR distributions at 
different y positions: (a) y = –1.56 mm, (b) y = –0.58 mm, (c) y = 0 
mm, (d) y = 0.78 mm and (e) y = 1.56 mm. 

Overall, more than 1,400 Emesh  matrices and the 
corresponding SAR1g values are extracted and form the dataset 
used for training and testing the CNN model. The SAR 
distributions corresponding to the slices in Fig. 5 are given in 
Fig. 6. To estimate the worst-case heating, only peak spatial 
averaged SAR (psSAR1g ) is required as the output for the CNN 
training. In most cases, the psSAR1g values are located near the 
tip of the screws or the edges of the plate.  

III. CONVOLUTIONAL NEURAL NETWORK MODEL 

A. Network Overview 
The sequential CNN model used in this study is derived from 
AlexNet [26]. The illustration of the network structure is shown 
in Fig. 7. The network consists of one input layer, two 
convolutional layers, two max-pooling layers, one flatten layer, 
two fully connected layers, and one output layer. Convolutional 

layers and max-pooling layers operate on 3-D data which will 
be flattened to a 1-D vector by flattening the layer and then 
going through the fully connected layers. 

B. Network Configurations 
To reduce the complexity of the CNN model, the input Emesh 
matrix is decimated by a factor of 2 in all three directions. The 
Emesh size is now reduced 45 × 33 × 182.  In addition, since 
the Emesh matrices cannot be directly used as the input to the 
CNN model, appropriate pre-processing is needed to convert it 
into a larger interleaved real-valued 3D matrice called  ERmesh. 
Each element in the  ERmesh is defined as 

 �ERmesh
(2 ∙ (𝑖𝑖 − 1) + 1, 𝑗𝑗, 𝑘𝑘) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(Emesh(𝑖𝑖, 𝑗𝑗, 𝑘𝑘))

ERmesh(2 ∙ 𝑖𝑖, 𝑗𝑗, 𝑘𝑘) = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(Emesh(𝑖𝑖, 𝑗𝑗, 𝑘𝑘))  (3) 

  
Fig. 7. Illustration of the CNN architecture used in the study. The 
CNN model consists of one input layer, two convolutional layers, two 
max-pooling layers, one flatten layer, two fully connected layers,  and 
one output layer. 

After this operation, the total size of ERmesh  is 90 × 33 × 
182.  In the two convolutional layers, different filters with a size 
of 6 × 2 are applied to extract the features of the input layers. 
Each filter will slide through each input layer and the output 
will be the dot-product of the filter kernel weights and the 
element values inside a small region covered by the filter. As a  
default, the filters slide along the input elements one by one 
both horizontally and vertically. To keep the integrity of the 
complex number information, the stride, which is the slide step 
size for filters, is set to two in the concatenated direction such 
that all 12 values cover six complex numbers. Both 
convolutional layers have 80 filters which will produce 80 
feature maps after convolution operations. Illustrations of some 
feature maps after the convolutional layers are shown in Fig. 8. 
As shown in the Fig. 8, geometrical information for a typical 
device is extracted. 

After each convolutional layer, a max-pooling layer is created 
by selecting the maximum value in a 2 × 2 area to reduce the 
size of the input layer while keeping the important features. The 
flatten layer converts all 2-D feature maps to a 1-D vector. 
Three flatten layers and fully connected layers have 350, 256, 
and 128 neurons respectively. The last layer (output layer) 
reduces to a single element which corresponds to the psSAR1g. 
During network training, back propagations are performed to 
update the weights in the entire system to minimize the error 
level between the true values and the CNN predicted values.  



 

 
 

 
Fig. 8. Illustration of the output 2-D feature maps after two 
convolutional layers and two max-pooling layers. 

C. Error/Convergence Analysis 
The architecture construction, network training, testing, and 

evaluation of the results are all implemented in Python with 
Keras [27]. For the loss function, the Mean Absolute Percentage 
Error (MAPE) is selected which is defined as follows: 
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100%

𝑛𝑛
∑ �𝐴𝐴𝑡𝑡−𝐹𝐹𝑡𝑡

𝐴𝐴𝑡𝑡
�𝑛𝑛

𝑡𝑡=1  (4) 

where At is the true value, Ft is the CNN predicted value,  and 
n is the number of data points. In addition, the Mean Absolute 
Error (MAE) is defined as: 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ |𝐴𝐴𝑡𝑡 − 𝐹𝐹𝑡𝑡|𝑛𝑛
𝑡𝑡=1  (5) 

The entire dataset is divided into a training dataset and a 
testing dataset, with 70% of the datasets randomly selected as 
training datasets and the remaining 30% considered as testing 
datasets. Within the training dataset, 20% are chosen as 
validation datasets, whose error metrics will be evaluated 
through training while the dataset itself will not be used in 
network training. The overall percentage allocation is 
56%:14%:30% for training, validation, and testing respectively.  

The Adam algorithm [28] is chosen as the optimizer of the 
network. Training epochs are set to 100, and batch size is set to 
32.  

IV. RESULTS 

A. Convergence and Correlation 
The total duration for 100 epochs of the CNN model training 

is around 15 minutes. The time consumption comparison 
between traditional EM simulation and the proposed technique 
is conducted and shown in TABLE II. The time needed to run 
1416 EM simulations is 873.2 hours. For the proposed CNN 
model, since 70% of the EM simulations are needed for data 
training, 611.2 hours are taken for running those simulations. 
The training of the CNN model takes 15 minutes and the 
prediction takes less than 1 second. Thus, the total time is saved 
by 30% by using the prosed model. During the network training 
process, MAPE is evaluated at every epoch.  

TABLE II 
TIME CONSUMPTION(UNIT: HOUR) 

 Data 
Preparation 

Model 
Training 

Data 
Prediction Total 

EM 
Simulation 873.2 / / 873.2 

Proposed 
Technique 611.2 0.25 <0.001 611.49 

The MAPE of the training datasets and the validation datasets 
is shown in Fig. 9. It can be seen that the error level decreases 

abruptly in the first ten epochs. After that, the error level 
fluctuates at the level of 5% while still decreasing slowly. Also, 
the validation MAPE is close to the training MAPE, which 
means that the network is robust to the new data, and that there 
is no overfit for the CNN model. 

Once the network training is finished, the psSAR1g, MAE, and 
MAPE values of the training dataset (including validation data), 
and of the testing dataset are tabulated in TABLE III. It shows 
that the averaged psSAR1g value for both training and testing 
datasets is around 200 W/kg, the MAE is less than 5 W/kg, and 
the MAPE is less than 3%. These errors are similar for both the 
training and validation datasets. 

The correlation coefficient between the predicted psSAR1g 
values and true psSAR1g values of the training and testing 
datasets are evaluated using the R2 score, which is defined as: 

 

 
Fig. 9. Illustration of the change of MAPE level during 100 epochs 
of network training for the training and validation datasets. 

TABLE III 
MEAN SAR, MAE, AND MAPE 

 Training Testing 
Averaged SAR value 

(W/kg) 203.90 196.82 

MAE (W/kg) 4.06 4.40 
MAPE 2.15% 2.46% 

 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑓𝑓𝑖𝑖)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑖𝑖

 (6) 

where yi is the true value, fi is the predicted value, and 𝑦𝑦� is the 
averaged true value. The plots of predicted values vs true values 
for both the training and testing datasets are shown in Fig. 10. 
Both the training and testing datasets have an R2 score of 0.99. 
It can be seen from the scatter plots that the majority of the data 
points are close to the y=x line on which the predicted value and 
true value are equal to each other. Only a few data points 
deviate from the y=x line. 

  
(a) (b) 

Fig. 10 Illustration of correlations between predicted values and true 
values of (a) training dataset and (b) testing dataset. 



 

 
 

B. Error Distribution  
Firstly, the distribution of the peak SAR values for both 

datasets are investigated and the histograms of distribution are 
shown in Fig. 11. It can be obtained from the figure that, the 
peak SAR values of the plate devices are concentrated with the 
range of [90W/kg, 300W/kg] while the range of [150W/kg, 200 
W/kg] has the largest number of occurrences. There are also no 
outliers for peak SAR values.  

Histograms of MAE for the training dataset and the testing 
dataset are shown in Fig. 12. From the figure, the majority of 
the training and testing data has an MAE value of less than 10 
W/kg. The maximum MAE value for the training dataset is 
50.04 W/kg, and the maximum MAE value for the testing 
dataset is 29.03 W/kg. 

Histograms of MAPE for the training and testing datasets are 
shown in Fig. 13. It can be observed that the majority of data 
has a MAPE level of less than 5%. The maximum MAPE of the 
training dataset is 31%, and the maximum MAPE of the testing 
data is 17.77%. All these observations demonstrate the 
effectiveness of this method. 

  
(a) (b) 

Fig. 11.  Illustration of psSAR1g distribution for (a) the training 
dataset, and (b) the testing dataset 

  
(a) (b) 

Fig. 12.  Illustration of MAE distribution for (a) the training dataset, 
and (b) the testing dataset 

  
(a) (b) 

Fig. 13. Illustration of MAPE distribution for (a) training dataset and 
(b) testing dataset. 

V. DISCUSSION 

A. Training Data Selection 
From the results given in the previous section, the CNN model 

can achieve good convergence when it is used to predict the RF-
induced heating from PIMDs. The predicted psSAR1g and true 
psSAR1g  have a good correlation coefficient of R2=0.99.  

In the previous training scenarios, 70% of the total datasets is 
used to form the training datasets.  However, obtaining 70% of 
all configurations for the training dataset development requires 
extensive electromagnetic simulations for almost one month, 
even with GPU acceleration.  Therefore, it is necessary to 
determine the least possible amount of training datasets that can 
be used and still achieve a good prediction.  

To perform this study, 20% of the whole datasets are 
randomly selected as testing data. The CNN models are then 
trained using 10% to 80% (with an increment of 10%) of the 
datasets randomly selected from the original datasets. The 
validation dataset is always 20% of the randomly selected 
training set. The CNN models are trained 50 times in each 
study. 

TABLE IV shows the correlation coefficient R2, MAE, and 
MAPE values with different sizes of the training datasets. Also, 
the maximum errors appeared among 50 trainings are evaluated 
and shown. It can be seen that when the training datasets are 
less than 20% of the total datasets,  errors are relatively large, 
and the R2 score is low. However, these parameters are 
drastically improved when the training dataset size reaches 30% 
of the total datasets. However, there are no significant 
improvements when one further increases the size of the 
training datasets. The maximum error has the similar trend 
which the error level decreases significantly from 30% of the 
dataset and keep stable. Based on this study, it appears that only 
30% of the original datasets can be used and still develop a 
CNN model with accurate psSAR1g predictions for the tibia plate 
systems. Noted that, although the max error level is significant, 
it is a singular value from one data prediction from one of fifty 
trainings, which means that the maximum error is expected to 
be lower. 

B. Error Threshold Indicated by Principal Component 
Analysis (PCA) 

The results in the previous section indicate that it is feasible 
to use a small subset of datasets to develop a satisfactory CNN 
model to predict RF-induced heating for tibia plate systems. It 
is also observed once the size of the datasets exceeded a certain  
number, there is no additional improvement in terms of the 
CNN model accuracy. Therefore, the objective here is to 
perform the principal component analysis (PCA) on the input 
dataset [29]. The PCA algorithm extracts the Principal 
Components (PCs), and the variance for each PC which 
represents the significance of the PCs to represent the whole 
data. 

An Emesh with a size of 45 × 33 × 182 is reshaped into 1-D 
complex vectors with a length of 270,270 for over 1400 plate 
configurations. Then, the PCA is performed on the matrix 
reshaped at 270,270 ×  1416.  Such a PCA takes about 20 



 

 
 

minutes to perform. Once the PCA is finished, the  PCs are 
extracted and are ranked based on the variance of each PC.  

Fig. 14 shows the PCs distributions of the 1st, 11th, 21st, 31st, 
and 41st largest variances after the PCA. These 2-D distributions 
correspond to the center plane in the original simulation grids. 
As seen in the figure, the largest component has large values 

along the vertical direction. As the variance becomes smaller, 
larger values are along the horizontal direction. This 
observation further confirms that the components along the 
vertical direction would contribute significantly toward the RF-
induced heating for these PIMDs.  

 
TABLE IV 

R2, MAE, AND MAPE ON DIFFERENT TRAINING DATASET SIZE 

Training 
data (%) 

Training 
data 

amount 

Training Dataset Testing Dataset 

MAE 
(W/kg) 

MAPE 
(%) R2 

Max 
Error 

(W/kg) 

MAE 
(W/kg) 

MAPE 
(%) R2 

Max 
Error 

(W/kg) 
10% 142 11.52 5.94 0.91 66.4 14.64 8.19 0.88 72.6 
20% 283 11.33 5.66 0.93 66.3 12.43 6.80 0.92 73.7 
30% 425 4.43 2.31 0.98 55.7 5.78 3.30 0.97 59.0 
40% 566 5.61 2.88 0.98 61.0 6.26 3.52 0.98 53.7 
50% 708 4.98 2.57 0.98 60.0 5.70 3.19 0.98 47.5 
60% 805 4.35 2.23 0.98 54.6 4.89 2.70 0.98 47.2 
70% 991 4.94 2.51 0.98 50.9 5.18 2.84 0.98 42.0 
80% 1133 4.87 2.42 0.98 56.4 5.10 2.73 0.98 45.8 

 

 
Fig. 14.  Illustrations of the PCs at the center of the 1st, 11th, 21st, 
31st, and 41st largest variance. 

One potential criterion for selecting the size of the datasets 
can be performed through cumulative variance analysis. The 
ratio between the cumulative sum of the first n PCs’ variances 
and the sum of all variances, defined as the Cumulative 
Explained Variance (CEV) is shown in Fig. 15. As seen in the 
figure below, one can represent the original datasets with the 
largest 400 PCs. Consequently, if only 400 datasets are 
selected, it is possible to train the CNN model with good 
accuracy with such a subset of the training datasets. 

  
(a) (b) 

Fig. 15.  (a) Illustration of cumulative explained variances for 1416 
PCs, and (b) Comparison between CNN prediction error and PCA 
threshold. 

The 1-CEV(n) indicates the percentage of the total energy that 

is not included in the datasets for the CNN model development, 
which is defined as follows: 

 1 − 𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛) = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝜎𝜎)
𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎)

= 1 − ∑ 𝜎𝜎𝑖𝑖
𝑛𝑛
𝑖𝑖=1

∑ 𝜎𝜎𝑖𝑖𝑁𝑁
𝑖𝑖=1

 (7) 

where 𝜎𝜎𝑖𝑖 is the variance of ith PC. This would be the lowest 
level that a CNN model can achieve. Fig. 15 (b) shows the 1–
CEV(n) and the CNN prediction error as the training datasets 
increase. As the size of the training dataset increases, both the 
1–CEV(n) and the MAPE of the CNN model decrease. 
However, as expected, the MAPE would be still higher than the 
1–CEV(n). For the RF-induced heating for the tibia plates used 
in this study, based on the 1–CEV(n), it appears that the size of 
400 datasets is a good indication that all energy that has been 
included in the training sets. However, the error levels from the 
CNN model are still slightly higher than the 1–CEV(n). 

Based on previous results, 1–CEV(n) can be used as a 
reference for choosing the appropriate training dataset size. The 
percentage error calculated from the PCA can be considered as 
the lower limit of the prediction error from the CNN model. For 
example, to achieve a MAPE level of 10%, the training dataset 
must contain at least 100 datasets, as 100 PCs will produce a 
10% error level. Overall, the PCA can be used as an assistant 
tool to estimate the required size of the training datasets. 

VI. CONCLUSIONS 
In this paper, a CNN model is proposed for the prediction of 

RF-induced heating of complex-shaped PIMDs. In-vitro EM 
simulations are performed with 1416 tibia plate configurations 
with different geometrical variations. After that, the 3-D device 
mesh information is combined with the local incident electric 
field information and used as the input of the CNN model. Good 
convergence was achieved and an over 0.99 correlation 
coefficient for both training and testing datasets was obtained, 
indicating the accuracy of the CNN model. The PCA on the 
input data can be used as a potential criterion for selecting an 



 

 
 

appropriate dataset for network training. Overall, it was 
demonstrated that the mesh-based CNN model can be used for 
quick access to the RF-induced heating for complex-shaped 
PIMDs under MRI. 
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