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Abstract

We study a convergence result of Bourgain—Brezis—Mironescu (BBM) using Triebel-Lizorkin
spaces. It is well known that as spaces W*7 = F;’p, and H'7 = F;i,z- When s — 1, the
F, , norm becomes the F 11 » norm but BBM showed that the W*:” norm becomes the
H'“’ =F 11.2 norm. Naively, for p # 2 this seems like a contradiction, but we resolve this by
providing embeddings of W*? into F .q forg € {p, 2} with sharp constants with respect to
s € (0, 1). As a consequence we obtain an R _version of the BBM-result, and obtain several
more embedding and convergence theorems of BBM-type that to the best of our knowledge
are unknown.

1 Introduction and main results

1.1 Previous results

For s € (0,1), p € (1,00) and an open set Q2 C RY the W“’p-Gagliardo-seminorm is
defined as

If @) = FO)IP e = ro
[f]Ws,r’(Q) = (/Q dexdy> = ‘ L7 v

N
x —y|? ™

LP(Q2xQ)
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For s = 1 we denote the usual H'-7-Sobolev space seminorm by

flgir =1V fliLr@
and write H'? for the inhomogeneous Sobolev space so that

H'P(Q):={f € LP(Q): Vf € LP(Q)}.

In the influential paper [4] Bourgain—Brezis—Mironescu showed that for any smooth
bounded domain ¢ RY and any f € H'7(2) we have

1/p 1
\Y% = Iim (1 —s)? oS , BBMI1
Il f”LP(Q) <k(p, N)) x—)l’( s) [f]W P(Q) ( )
where k(p, N) = /SN*I le - w|Pdw and e is any unit vector in RY. Even more crucially,

Bourgain—Brezis—Mironescu established the following convergence result.

Theorem 1.1 (Bourgain—-Brezis—Mironescu [4]) Let 2 C RV be open and bounded with
smooth boundary, and p € (1, 00).

(BBM2) Assume that fi € C2°(2) such that
fe—=f weakly in L? (Q2) as k — oc.

Let (sp)ren C (0, 1) such that sy 1 1 and assume that
1
A= sup (Ifellri + (1= 507 Ufiljny) < o0
k

Then f € HYP(Q) and we have
I fllr) + IV fllLr) < CA.

The constant C depends only p and N. Also, fi koo f strongly in LY ().

loc

See also [3, 8, 22] for related results, [15, 21] for an interpretation via interpolation space,
and [19, 20] for the regime s — 0.

1.2 Questions on RV

In this paper, we explore what happens when the bounded domain 2 above is replaced by
the whole space R¥ . It is relatively easy to show that (BBM1) holds with  replaced by RY;
we provide a short proof in Appendix A. Our main result will be an analog of Theorem 1.1
on R¥ . In fact, from the point of view of Harmonic Analysis, Theorem 1.1 seems like a
surprising result, as we shall explain here. Denote the homogeneous Triebel-Lizorkin norm
[ ]ﬁ;.p(RN) by

1
P

[f]p“},h(RN) - /]RN Zzsj”Ajf(x)'p dx

r
JEZ

Here A f are the Littlewood-Paley projections (see Sect. 2.3 for their definitions). It is
well-known that for s € (0, 1), p € (1, 00),

[f]p;)-’p(]RN) ~ [f]W.\wp(RN)a
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whenever f € .7 (RM), where . (RY) denotes the set of Schwartz functions on RY. How-
ever, since || fl.pwy) = ||f||,'po2 we have
D,
et ,@vy X IV FllLe@y)-
From the definition of Triebel-Lizorkin spaces, it easily follows (cf. Lemma 2.7)
Slijfll[f]]l‘.[rhp(RN) = [f]FpI,p(RN)‘

So if Theorem 1.1 holds true on R, it then seems to suggest that in some way W*? R, p
F ; » “convergesto” H Lr ~ » F [i »» Which appears to be a contradiction to the above, because

for p # 2 we have that F 117 ) F F ;’ P These statements, of course, do not make any sense,
because spaces do not converge, but norms. The aim of this note is to clarify the effects we
are seeing here, which we achieve by clarifying various relationships between the W*-7, F, |

and F; , seminorms for 0 < s < 1.

1.3 Results about i’;, p
Our first main theorem is the following quantitative comparison between the W*P and the
F ; » seminorms.

Theorem 1.2 Let N > 1, p € (1, 00). Then there exists C = C(N, p) > 0, such that for
everys € (0, 1) and f € .7 (RV),

(1) ifl <p=<2

1 1 1 1
C_] —_ + —F [f]s E[f]sl fc + —F [f]s .
o+ ) Uit = < () U
(1.1

(2) if2 < p <oo:

(1 1 1 1
T ar) Vaeen SUlien =L 74 G0 | U e o
(1.2)

The upper bounds in (1.1) and (1.2) have been proven by Gu and the third author in [13].
As an immediate corollary we obtain the following Sobolev-type inequality for p = 2. It
is well-known and elementary to show that

Uiz < Cor (1 12y + ez ) - for0<s <t <1,

The main nontriviality in the corollary below is the prefactor min{s, (1 — s)}% on the left-
hand side and min{¢, (1 — t)}% on the right-hand side. We do not know if a similar statement
is true for any p € (1, 00), see Question 1.10.

Corollary 1.3 Let N > 1. Then there exists C = C(N) > 0, such that forall 0 <s <t < 1
and f € F([RN),

min{s, (1 — s)}%[f]ws,z(RN) <C <||f||L2(RN) + min{z, (1 — t)}%[f]W’»z(RN)) :
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For the convenience of the reader, we give the details of the proof Corollary 1.3 in Appendix
B.

Remark 1.4 (Sharpness of the constants) To some extent the constants in Theorem 1.2 are
sharp, as can be shown using the results of [4].

(1) Observe that in general for p < 2

1 1
(1 + ) [f1; @y & CU Disp )

1
s? (1—s)7 "

forC = C(N, p) > 0. Indeed, if that was true for all s € (0, 1), we could pick a function
f e HYP(RN) with compact support that does not belong to F 1; p(RN ). From [4] we
would then obtain that

1
limsup (1 —5) 7 [ flyps.p @y < 00,
s—>1"

however we have

Jim [y vy = LT ey = 00

(2) Similarly, for p > 2 in general

1
[f]WS-p(RN) f c ( +

1
SP

1
1) L1y @y
(I=s)»r

for C = C(N, p) > 0. To obtain a counterexample in this case take, f € F ’l) p(RN )
with compact support and f ¢ H'7(RN). Then, again by [4]

1
limsup (1 —s)? [f]W:,p(RN) = 00,
s—>1-

however

hyl’gilzf [f]ﬁi,p(RN) = [f]Flgyp(RN) < o0.

1.4 Results about i-'; 2

Next we explore relationships between the W* 7 and the F ; , seminorms. Observe that while
Theorem 1.2 is a nice characterization, and we obtain some convergence for functions with

1
uniformly bounded (1 —s) 7 [ f1ys. p(RN)-OTMS, We do not recover Theorem 1.1 yet. For this
we need a different space. Namely, we obtain the following F ;vz—estimate and the main focus

should be on how changing from F ».p 1O F ;’2 improves the dependency on s and (1 — ).

Theorem 1.5 Let N > 1, p € (1, 00). Then there exists C = C(N, p) > 0, such that for all
s€(0,1) and f € SRY),

(1) ifl < p<2:
1 1
C_l (1 + ) [f]F[‘)z(]RN) =< [f]Ws,p(]RN)- (13)

i
sP o (1—=s)r
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(2) if2<p<oo:

1 1
[f]WS’P(]RN) < C <1 + 1) [f]li“'z(RN)' (14)
s? (1—s)7 P

The upper bound for [ f] £S5, ®Y) in (1.3) in Theorem 1.5 provides a full, RY-version of

Theorem 1.1 if p < 2, see Corollary 1.9 below. For p > 2 the desired upper bound for
[f1ps L@®RY) will be provided by the following Sobolev-type estimate: see (1.6).
p.

Theorem 1.6 (Sobolev-Estimate) Let N > 1, p € (1, 00).
(1) Then there exists C = C(N, p) > 0, such thatfor0 <r <s <t < land f € S([RY),
1 1
[f]Ws,p(RN)fc 71[f]1%r2+71[f]1:?2 . (1.5)
(s—r)r P t—s)r "

(2) Let A > l Then there exists C = C(N, p, A) > 0, such that the following holds: Let
se[l— 2A’ 1). Let ¥ € (0, s) such that (1 —r) = A(1 — s). Pickr € [0, r]. Then for
any f € S®Y),

1
U1y = € (I oy + (1= )P L Dipgam ) - (1.6)
Applying [4, Theorem 1] to p(x) = |x|~N=U=9P one obtains for a bounded set 2

sup (1= )7 [ Flieriay < CIN, 2, IV f oy,
s€(0,1)

As an immediate corollary of Theorem 1.6, we find a variant of this inequality on R and
even obtain a fractional version of it. In the following we denote for non-integral values of s

HPRN) = F5 ,(RY),

whose seminorm [f]HS @y = (= A)%f”Lp(RN) is defined via the fractional Laplacian.

Observe that ||(— A)z Sler@yy = IV fllLpwn) forany p € (1, 00) by the LP-boundedness
of the Riesz transforms, so for our purposes it does not really matter whether we defined
[f1g1r tobe [V flrr or [(—=A)Y2 || Lr. From (1.5) it is easy to deduce

Corollary 1.7 Let N > 1, p € (1,00), 0 < 6@ < 1. Then there exists C = C(N, p,0) > 0,
such that for s € 0, 1] and f € ./ RN),

1 s
sup (5 =17 (Mo vy = C (I oy + 123 flpen)) . (D)
relo,s)

In particular, setting s = 1, we obtain

sup (1 — ”)” Lf L. PRV = (”f”[,p(]RN) + ||vf||Lp(]RN)) .
rel6,1)

Remark 1.8 Barring the independence of the constant on s, the case s < 1 in (1.7) is only
interesting for the case p < 2. For p > 2 and s < 1 it is an obvious (and non-optimal)
estimate. Indeed, if f € Y(RN), p>2andr € (0, 1), we have

e VA T WA R (GNPt
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where the implicit constants depend on r, p and N. If r is in a compact subinterval of (0, 1),
then the constants can be taken independent of r. Since

1
(s—r)r [f]WrJ)(RN) =< C[f]Wr,p(RN)
and

I8 Fllzras) < € (IF 1oy + 1=8)7 Fllogn))

for r € [0, s] (with constants independent of r and s), if s < 1 — 6’ for some 6’ > 0, then
whenever 0 > 0

1 s
sup (s =) 7 [flyprowny =C (”f”LP(]RN) +I(=A4)2 flle(RN))
relf,s)

with a constant depending on @, 6’, p and N but not on r and s.

1.5 Back to Bourgain—Brezis-Mironescu’s convergence result

From (1.6) and Rellich-Kondrachov theorem we recover in particular (BBM2) of Theo-
rem 1.1 — actually with a stronger convergence than is commonly considered in the literature.

Corollary 1.9 Let p € (1, 00), assume that f; € . (RN) such that
fi—f weakly in LP(RN) as k — oo.

Let (si)ren C (0, 1) such that sy 1 1 and assume that
1
A :=sup <||fk lpeyy + (I — )P [fk]W.ck,p(RN)) < 00. (1.8)
k

Then f € H-P(RYN) and we have

IFler@yy + IV fllr@yy < CA.

The constant C depends on p and N.
k
Also, fi == f strongly in H;{;f(RN)for anyt € [0, 1), that is

klim ||(—A)%f/< — (—A)%fIILp(K) =0 VYcompact sets K C RV, (1.9)
— 00

and forany t € (0, 1)

lim [ fik = flypx) =0 V compact sets K C RV, (1.10)
k—00

We give the details of the proof in Sect. 7. The above strong convergence may not be
global in RY (even strong convergence in L” (RY) may be false). A counterexample is given
by a standard counterexample to the global Rellich-Kondrachov Theorem for W17 (RY)
(which shows that W12 (RY) does not embed compactly into LP(RN)): for instance, if
f € CX@RN) and {fi}x is a sequence of translates of f that escapes off to infinity, then
fi converges weakly to 0 in W17 (RY), (1.8) is satisfied by Corollary 1.7, but f; does not
converge strongly in L? (RV).
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1.6 Open questions and further directions

Question 1.10 Let p € (1,00),0 <0 <s <t < land f € Z(RM). Is it true that there
exists C = C(N, p, 6) > 0, such that

min{s, (1 — S)}%[f]Ws,p(]RN) <C <||f||Ll’(]RN) + min{z, (1 — t)}%[f]W’vl’(RN))?

An indication that the above might be true, is the case p = 2, Corollary 1.3. Also, of
course, Question 1.10 holds asymptotically for s = ¢ and — in view of [4] — it holds if we
first let r 1 1 and then take s 1 1.

Let us remark that a very rough toy-case for Question 1.10 are characteristic functions —
and indeed the inequality from Question 1.10 holds in that case: for A € RY measurable we

sp.
have |xa(x) = xaWI” = [xa () = xa()I* and |x — [N+ = |x — y|N+22. Thus,
2
[XA]W-W(RN) = [XA]P

. sp s
WZ2RY)

SO
2

min{s. (1 = $)}7 [a b ey = minfs, (=)} [xal? o

TORN)
2

= (min{S, (1 - S)}]7[)(/4]‘,1/%-2(RN))E

2 . 1
Sp lxallf> + (mm{t, (1— t)}Z[XA]W’TPg(RN))

SIS

1
= llxalie +min{z, (1 —O}? [xalyprp @y

Moving on to the next question, the estimate (1.7) hints towards the possibility that there
might be a Brezis—Bourgain—-Mironescu-type result for s < 1, namely it establishes an H*:?-
type (BBM1)-estimate. It is unclear to us if the convergence result is also true.

Question 1.11 Let p € (1, 00), assume that f; € .7(RN) such that

fi—f weakly in L?(R"V) as k — oo.

Lett € (0, 1) and (sx)ken C (0, t) such that s; 1 ¢ and assume that
1
A = sup (fellpogm + @ = 507 L) ) < 00
k

Is it true that £ € HP(R") and that there exists C = C(N, p,t) > 0, such that

R r

lim lim sup [[(—=A)2 fillpp@ny < CA?

Mt k—oo
Our next question concerns an extension to other Triebel-Lizorkin spaces. It is known that

Ng
for p > Ntsq

1
» 1
|f () = fWDIT |\« !
[f]W(;'P(RN)I= (/RN </RN =y a’y) dx) ~ [f]Fg,q(RN)’ (1.11)

see [1,25] forg = 2,[28, Section 2.5.10] for s > ﬁpq} and [23] for the general p > N]qu.

Unless ¢ = 2, which was treated in [11], the case of equality p = N/ﬁq seems to be open.
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41 Page80f33 D. Brazke et al.

Question 1.12 What is the dependency on s and (1 —s) ass | O or s 4 1 in the equivalence
(1.11)?

Question 1.12 is related to works by Spector—Leoni, [17, 18]. Of course, the limit cases
p = 1 and p = oo would also be an interesting direction, cf. [7].

Lastly let us mention that Bourgain—Brezis—Mironescu [4] (see also [22]) the singular
kernel |x — y|~V 75" is only one special case considered. In general they work with family of
kernels p, that suitably approximate |x — y|~”8, ,. It might be possible to adapt our methods
to treat this case as well, in the sense that as n — oo the corresponding p,,-seminorm controls
more and more frequencies estimated in F b2

The paper will be organized as follows. In Sect. 2 we collect a few basic results about
Triebel-Lizorkin spaces. In Sect. 3 we give a simple proof of Theorem 1.2 in the special case
p = 2. In Sect. 4 we prove the upper bounds for [ f]ys,, in Theorem 1.2 and Theorem 1.5,
i.e. the second inequalities of (1.1) and (1.2), and the inequality (1.4). In Sect. 5 we prove
the upper bound (1.5) for [ f]yjs,, in Theorem 1.6. In Sect. 6 we prove the lower bounds
for [ f1yys.» in Theorem 1.2, Theorem 1.5 and Theorem 1.6, i.e. the first inequalities of (1.1)
and (1.2), and the inequalities (1.3) and (1.6). In Sect. 7 we prove Corollary 1.9. Finally, in
Appendix A we prove (BBM1) with Q replaced by R", and in Appendix B we give a short
proof of Corollary 1.3.

Recent progress in [10]

After finishing this manuscript, Dominguez and Milman [10] settled Question 1.10 and
Question 1.11, using heavy interpolation machinery. They also provide alternative proofs of
our main theorems via these interpolation and extrapolation techniques.

2 Preliminaries

In this section we gather preliminary results that most likely are all widely known. Throughout
the paper we use the notation A < B whenever there is a multiplicative constant C > 0 such
that A < CB. A~ Bmeans A < B and B < A. The constant C can change from line to
line and depends on dimension and exponent, but unless otherwise noted does not depend
ons, t etc.

2.1 Mixed measure spaces

Let p,q € (1, 00), and consider the space L (£7) given by sequence (f;) ez C LP(RN)
with finite norm

o=

I fillLeceay == l S Il
j

LP (RN dx)

By a slight abuse of notation, we will have the same notation when considering finite
sequences (fj)fz_,{ c LP(@RM).

From [2, Theorem 1] we obtain that L? (£7) is a Banach space, and more importantly its
dual space is L? (£9) in the following way: any linear functional J € (L”(£7))* is given by
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an element g € LY (Zq,) such that
1= [ 3 pegma
RN “
JEZL
In particular, from Hahn-Banach theorem, we have
Proposition 2.1 Let p,q € (1,00). Let (fj)jez € LP(£%). Then there exists (g;)jez C
LP (RN) with
” (gj)]EZ ”LP,(/Z‘I/) < 1

and

e = [ 3 1108, d.

JEZL

An analogous statement holds for sequences (f) f:_ K

2.2 Fractional Laplacian

For s > 0 denote by (—A)% the operator with Fourier symbol |£]*, that is
F(=DIN)E) = EPFfE).

It is well-known that there is an integral formula for the fractional Laplacian when s €
(0, 2), cf. [9]. We need the following estimate on the constant that appears there.

Lemma22 Let f € S RYYand s € (0, 1). Then

2 — — _

where
CcN,s A~ min{s, 1 — s}.

Proof For s € (0, 1) we have (see e.g. [9])

2f(x) — f(x+2) — f(x —2) 14T (5 +5
O O e e e I T 5%-
RV l2] 72 |0(=s)]
Since
1
[(=s) = .
sin(rs) I'(1 + )
fors € (0,1) we getcy g & |sin(irs)| &~ min{s, 1 — s}. ]

2.3 Littlewood-Paley projections and Triebel-Lizorkin spaces

Below we will need to understand the space L” (R") and the inhomogeneous Sobolev space
HYP(@RYY :={f e LP(RY): Vf e LP(RV))

for 1 < p < oo, via Bessel potentials and Triebel-Lizorkin spaces.
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41 Page 10 0f 33 D. Brazke et al.

First, recall the Bessel potential (I — A)*/2, given by the Fourier multiplier (1 + |£]2)*/?
for s € R. We have (I — A)*/2 : #(RN) » #(RV) continuously, thus (/ — A)*/2 extends
by duality to a map that acts on tempered distributions .7’ (R"). For 1 < p < oo, itis known
that f € .7/ (RN) with (1 = A)'/2 f € LP(RY)ifand onlyif f € L?(RN) with distributional
gradient V f € L?(R"). This motivates one to define, fors € Rand 1 < p < oo, the space
H*P(RYN), as the space of all tempered distributions f € .7 (RN) for which

1 gspny = 1T — A2 fll oy < 0.

When s = 1, the definition of 57 (RV) agrees with our earlier definition in the previous
paragraph using distributional gradients. We also have

I e @yy =p.n 1 @y + 1V Fllpe @y

for f € H'"P(RN).
Next, for a function f € L”(R"), the j-th Littlewood-Paley projection is defined as

Ajf(x) = f 12V 027 H)x).

Here n € .#(R") is a Schwartz function such that its Fourier transform 7 satisfies

Y FEDEIE =1 V& £0. @.1)

JEZ
It is customary to assume 1 € .7 (R") is real-valued and symmetric in the sense that

n(—z) = n(2), (2.2)

so that A is a self-adjoint operator with respect to the L?(RN)-scalar product. We can and
will also assume that Fn(§) = Fno(§) — Fno(2§) for some Schwartz function no with
Fno(§) = 1for |§] < 1 and Fnp(§) = O for |&| > 2. In particular

A&N n(x) dx = cFn)(0) =0. (2.3)

Also we have )
supp}'(Ajf)C{Ee]RN: §§|2_*i~§|52}. 2.4)

In particular, Fn27&)Fn(27*tE) = 0 whenever |£| > 2, and thus
j+1
Ajfx)= Y AjAf(x). 2.5)

t=j—1
Then we have for any f € .7 (RM), see [12, Exercise 1.1.4],
fE) =) Ajf(x) ¥xeRY, 2.6)
jez

and the convergence is in L (R") for any p € (1, oo]. In particular, the set of all Schwartz
functions whose Fourier transform is supported in a compact subset of R¥ \ {0} is dense in
LP(RV)if 1 < p < oo. For further reading on Littlewood-Paley projection we refer to [12,
6.2.2]. Below we write A< f for f * ng.
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Definition 2.3 (Triebel-Lizorkin space) Lets € R, p, g € (1, 00). Then the inhomogeneous
Triebel-Lizorkin space F, , is defined as the set of all tempered distributions f € .%/ "(RN)
such that

L
q

1f Iy, ) = /RN Ao f @I+ D 25A; fW)I7 | dx | < oo,

jz1
For atempered distribution f € .’ (R™) we also define its homogeneous Triebel-Lizorkin

semi-norm as follows:

1
2 »
q P

[f]ﬁ;{q(RN) = AN szsq|Ajf(x)|q dx

JEL

Itis known, for instance, thatifs > 0, p, g € (1, 00)and f € F[S,yq (]RN),the homogeneous
Triebel-Lizorkin semi-norm [f]i,—]s’.q(]RN) is finite and [f][};vq(RN) SN 1N Fy , y-

The class of Triebel-Lizorkin spaces and Besov spaces (where the role of integral and sum
are reversed) contains several classical function spaces, we refer e.g. to [24, § 2.1.2, p.14] or
[28, § 2.3.5]. A well-known function space that is of Triebel-Lizorkin type is L? (RN) for
1 < p < oo: the theory of Hérmander-Mikhlin multipliers implies, for 1 < p < oo, that
LP(RN) = F, B D, (RN)and H'-P(RN) = F) » »(RY) with equivalence of norms. Furthermore:

Lemma 2.4 (Littlewood-Paley) Let p € (1, 00). Then for every f € LP(RN) it holds
||f||L1'(]RN) ~ [f]FS,Z(RN)'
Similarly, a function f € LP(RN) is in H"P(RN), if and only if [flp L@®N) < 00, in
P
which case
IV FlliLr@yy = [f]F,l,z(RN)'
The implicit constants in these equivalences depend only on p and N.
ForO <s < land 1 < p < oo, we also have H*P(RN) = F, ,(RY), with
||f||1-1& PRN) ~ ||f||F‘ 2(]RN)

where the constants depend on p and N (and uniform over s € (0, 1)).
Recall the Gagliardo semi-norm

If () — FOIP p
Lf Tyirs.r vy = (/]RN/RN X — y| Nt dXd}’>

from the Introduction. It is also known that the following identification holds for s € (0, 1),
p € (1, 00):

[F1is @ny Sspn [f oy, Vs € 0.1, f € SRY),

and it is the objective of the present work to understand the dependency of the constant on
s. It is important to observe that F I; p does not correspond to the classical Sobolev space

H'P(RN) = F;,Z(RN), unless p = 2.
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We will need the following well-known vector-valued estimate for Littlewood-Paley pro-
jections, which follows from a vector-valued singular integral estimate (see e.g. [27, Chapter
1L.5.4]):

Lemma 2.5 Forany 1l < p < oo and any (f})jez € LP(£%), we have
%

p 1
7 p

Aifi| d </ 0P| d
LS smwr] | | [ \Ximme]

JEZL JEL

b
2

Fors > 0and 1 < p < oo, the Fourier multiplier |&|*(1 + |€]2)~5/% defines a bounded
linear map on LP([RN) (see [26, Chapter V]). Thus one can define a bounded linear map
(=A)/2: HP(RN) — LP(RN). It is known that (—A)? : FI’,ZS — FI’,’q is an isomor-
phism, see [24, 2.6.2, Proposition 2] and [28, 5.2.3], [28, 2.3.8]. Their argument (basically a
vector-valued multiplier theorem) implies:

Lemma2.6 Let p, g € (1,00), ® > 0. Then for any s € [0, ©] and any f € .Z(RY) we
have

[y, 2102 fgg
Also
e SR + D 1a5=0)2 1

p.q r.q
Jj=0
Ll’(RN)

The constant depends on p, q, N and ®, and is otherwise independent of s.

Next we need the following result about the Triebel-Lizorkin norm of a weak limit in L”:

Lemma2.7 Let f; € LP(RN) weakly converge to f € LP(RN), and assume that for some
sk 1t € (0, 00) we have
szlp [fi] £k @Yy < 0O
Then
[f]Fg,q(RN) = Sl]'(lp [fk]F;,kq(RN)
Proof For each fixed M and R,

127 8, Fllesm=j=un|

= lim H||2jskAjfk||£‘i(fMSj§M)

LP(B(O.R))  k—o0 LP(B(0,R))
= Sl]'clp[fk]pgkq (RNy*
In the estimate above, the middle equality follows from the fact that
1
M 7\’
KA fr —20A; < max 2Jsk _ it max Aj;
'ZM\ =) £ max | max 1A ]
j=—

max ~ 2/% max Aifi—A;
+_ ¥ Y M}| A/fk /f|
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which as k — oo converges to 0 pointwise almost everywhere in B(0, R), and hence in
LP(B(0, R)), if fx converges weakly to f on L? (RM). O

2.4 A duality characterization for Triebel-Lizorkin spaces

The following duality statement must be known to experts — we did not find it in this precise
form in the literature, and thus repeat the proof.

Theorem 2.8 (Duality) Let s > 0, p,q € (1,00). For any f € #(RN) there exist g €
FHCP®N\{(0})) such that

[8lis, vy =1
pq

and

£y, vy ~ ‘ fR LENEF) (—A)Fg(dal. @7

The constants depend on s, p, q, N, however if for some 0 > 0 we have s € [0, 0),
p,qge(1+ é, 0), then the constant can be chosen only to depend on 6 and N.

Observe that in (2.7), (—A)%g belongs to the Schwartz class, since Fg € C2° (RN\{O}),
consequently ]—'(—A)%g e C¥ (RM\{0}), which implies (—A)%g e .Z(RV). Moreover, it
is easy to check that f € (R") implies that (—A)% f e L%®RN), so the integral on the
right hand side of (2.7) makes sense.

Proof of Theorem 2.8 Once g is found, the >-direction follows from two applications of
Holder’s inequality and definition of the associated spaces.
So we focus on the <-direction. Let f € .(R"). Then by Lemma 2.6

[f]F;.q(RN) ~ [(_A)%f]ﬁg,q(RN)'

In particular (Aj(—A)%f)jeZ € LP(¢%). In the case that [ f]z, = 0 we have f is zero
P4
since the only polynomial in .7 (R") is zero, and thus (2.7) s trivially true for any g.
Consequently, from now own we assume [(—=A)2 f]zo ®N) > 0. By monotone conver-
p-q
gence theorem, there must be K € N, depending on f, such that

2 ?
q ’

K s
DUIA=A f | dx

j=—kK

(=8 Pl e <2 | [
Applying Proposition 2.1, there exists (7 ) 5-(:_ x C L” (RV) with

Lo\
K q
L X hwr ) ax| <1

j=—K

such that

K
=80 Flgg e <2 [ D0 8 rwis ).

j=—K
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By density of Cfo(RN) inL! (RM), there exists h_k, ..., hg € CSO(RN) such that

q

K 1
R AT -
Z lhj —hjl <7
j=—K /
LP'(RN)
Consequently,
doNT
K ) q 5
L X meor | | <3 8)
RN . 4
j=—K
and
. K , 1
[(=2)7 flgo @) <2 /RN 'ZK A=) f () () dx| + S8 flg vy,
j=—

which implies

K
[(8)% fljg, @y <4 /R L2 MA@ Ry dx |

j=—K
With an integration by parts (in this case this is just Fubini’s theorem, using also symmetry

(2.2)),
/ Aj(—A)%f(x)hj(x)dx:/ (—A)2 f(x) Ajhj(x)dx.
RN RN

Now we set
K
hi= Y Ajhj(x), and g:=(—A) 2h.
j=—K

Then clearly g € f’l[Cfo(RN \ {0D] C .#(RN), and the above shows that

=4 V (—A)2 f(x) (=A)2g(x) dx|.
RN

[(=8)% flo, 54‘fRN(—A)%f(X)h(x)dx

Furthermore,

K
[g]ﬁi;_q A [h]pqu %zf}%,l /RN 'ZK [AjreAjhj(x)l? dx
je—

By Lemma 2.5 and (2.8), we then have [g]; < 1. This completes the proof of this
pr.q

theorem. o

We also obtain the inhomogeneous version of Theorem 2.8.

Theorem 2.9 (Inhomogeneous Duality Estimate) Let s > 0, p,q € (1,00). For any f €
S RN there exist g € (RN with Fg supported on {|&| > 1/4} such that

[glps =<1
14

/g’
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and

[F1y @y S g, vy + ‘ fR AR (~A)Fg(x) dx

The constants depend on s, p, q, N, however if for some 0 > 0 we have s € [0, 0),
p,q € (1+ é, 0), then the constant can be chosen only to depend on 0 and N.

Proof We have

[f]F;,q(RN) < [f]F[(,).q(RN) + [‘f]pjg,q(RN) where f = Z Akf-
k>0

Following the proof of Theorem 2.8, one can find g € .% (RM), with Fg supported on
{|€] = 1/4}, such that [g]Fs, < 1and
p.a

[f]F-;.q(RN)sl /}R NI (~8)33(0) dx

= fRN(—A)%ﬂx) (—A)2 " MA@ (x) dx|.

k>0

It remains to check that g := Y ", Axg satisfies the conclusion of the theorem. O

3 An easy proof for the estimates for W5 whenp = 2

As a curiosity we give now a simple proof of the equivalence between W*2 and F2T 5 Semi-
norms.

Proposition 3.1 Let s € (0,1) and f € #(RN). Then it holds with constants independent
of sand f,

mings, (1 = )} 2 [fs2qan) = [Flg, -
Proof Let f € #(RV). Then by Lemma 2.6 and Fubini’s theorem,
A (CTNER TR ZZ /R LEARAF) (~0)EA;f () da.
je
Integrating by parts (via the Fourier transform) we have
[ eviarmeEniarwan = [ a%a; 087w dr.

With the integral characterization of the fractional Laplacian, Lemma 2.2, we have

fRN(—A)%A;f(x) A () dx
_ / / QA fX)=Ajfx+2)—Ajf(x —2) A fx)
=CN,s dz
]RN ]RN

ELEES dx. (3.1

We note that by a change of variables x +— x + z, we have

Ajfx)=Ajf(x —2))Aj f(x)dx = (Ajfx+2)=A; f(xX)A; f(x +2)dx.
RN RN
(3.2)
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Hence (3.1) is equal to

/ / A f(x+2)— Ajf(x”zdxdz:c’zv,sf 1A f(+2)— Af()IILz(RN)d
RN JRN RN

|N+2x |Z|N+2s
‘We obtain via Lemma 2.4

DA FCHD = A f Ol @y, = 1FC+2 = FOI @y

JEL

from which we deduce

1
IfCe+z)— f()||2 N 2 1
LF 1y vy & (CN'S /RN [N == )dz> =y [ his2@yy-

The proposition then follows from the estimate cy ¢ &~ min{s, (1 — s)} in Lemma 2.2. O

4 The upper bounds for [f]Ws,p in Theorems 1.2 and 1.5

In this section we prove the upper bounds for [ f];s,, in Theorems 1.2 and 1.5, namely we
show

Theorem4.1 Let p € (1,00), s € (0, 1) and f € S (RN). Then

1 1

L Tsr@yy S (1 + ) [f]F: L®RY) ifl <p<2, 4.1)
sP (1 —s)l’
1 1

[f]Wx,p(RN) 5 (l + ) [f]F‘ (]RN) lf2 <p <09, (42)
sz (11— s)

and

1 1

[f]W“"P(RN) ,S <] + 1) [f]FSZ(RN) lf2 < p <o (43)
s? (1 —=s)r P

(4.1) and (4.2) have been proven by Gu and the third author in [13], and (4.3) is a slight
adaptation of their argument. We still present it for the sake of completeness.
Below we repeatedly use the following estimate for geometric sums: for 1 < p < oo,

1 1
Zz P — A~ fors >0 4.4)

j=0 I=27r s

and 1 1
szvp = 1=5=7 ~ — foro > 0. 4.5)

Jj=<0 B ?

The first step for (4.1), (4.2) and (4.3) is the following estimate.
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Lemma4.2 Let p € (1,00) and s € (0, 1). Then

S|
|

U isrny S | 20 fR 2212 Ak r@r | da

keZ j=0
TN
. 2
+ Z/RN Z’zlzkmkﬂf(x) dx
keZ j<0

Proof We have

1
I+ = FOI @y, 7
Lf Brs.r vy = (fRN 2N dz

5 (Z 2k517 sup ||f( + Z) - f()Hil’(RN)) .

keZ lz|~2*

But for |z| ~ 2%, Littlewood-Paley implies

<=

L
2

1£C+2) = FOlrgy < fR S Ak 2 — Aesj F@P | dx

JEL

which by the triangle inequality is

N

5[ D oAk f 42 = A fOP | dx
RN i~0
J=z

» 1

5 p

1 /N D 1Ak fx+2) = Ay FOF | dx
R ;
j<0

The first term above is bounded by the triangle inequality by

» 1
7 p

2 N 2l 4
[ D I
Jj=0
For the second term, the fundamental theorem of calculus implies

1
|Akj f(x +2) = Mgy fOI S IZI/O IV Ay f(x +12)ldt,
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so Minkowski’s inequality implies

L
2

LA 80642 = Ay s | dx

j<0

p

1 2
< Izl E |VAk+jf(x+tz)|2 dx | dt
0 RN j<0

<=

which is

’ :
~ 27k VA fOO? < 2 A ()2
L Livan ) ax| s [ S racreor) ax

j<0

<=

by the Littlewood-Paley inequality again. Altogether, we get

I4
2

zké‘p . _ AP < ZkAA ' 5
\ZFSf—k ”f( +Z) f()“Lp(RN)N/RN §)| k+]f(x)| dx

(]

+ [ E 2 anrwr ) s
RN\ “ '

Jj<0

which implies the desired estimate.

Now (4.1) is a consequence of Lemma 4.2 and the following proposition.
Proposition4.3 Let 1 < p < 2. Then

P

ZfRN D125 A fP ] dx s+

keZ >0

14
2

% [f]F;,’p(]RN)
N

and

1
L Iz

2
Z/RN Yt aref | ax| £ —

S g, @
keZ j<0 (1 —s)r
)2

Proof Since p € (1, 2], we have ‘Zj Fi|* <%, 1F,15. Thus

P
2

1 1
P L
P
E/RN > 1258k fP | dx | < E:AN§:|2kSAk+jf(x)|pdx
keZ j=0

keZ j=0

’
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and we conclude by noting that for s > 0, (4.4) gives

DD 2 A f P = 2y R A o)1

keZ j=0 Jj=0 keZ
1
~ ks .
~ =) PR A1
keZ

similarly

p

P

2 P
. 2 .
> /R St asrw| | ax] =X ANZD'/szAij(xﬂpdx ,
keZ Jj

i <0 keZ j<0

and we conclude by noting that for s < 1, (4.5) witho = 1 — s gives

DY RIS A e =)y 20PN RS AL ()1

keZ j<0 j<0 keZ

1
N D 1R A I,

keZ

Next, (4.2) is a consequence Lemma 4.2 and the following
Proposition 4.4 Let2 < p < oco. Then

» 1
27 P

' 1
)3 /RN D250k P dx | < 1y @y

T
keZ j=0 §2

and

p 1
5 p

)3 /R Sl | ax| £ i1 e

keZ <0 (1—s9)2
Proof Since p > 2 we can apply Minkowski inequality for 0% (L% (R™)) and get

1
P

> [ (St anrwr) ar| < Z(

keZ Jj=0 Jj=0

2y 3
P
>/ |2k‘YAk+jf(X)|pdx>

keZ

which for s > 0 is equal to

2 2
o L . 1
Z‘/RN |2(k+1)3Ak+jf(x)|de) = ZZ*ZJs[f]%;w %—[f]F;;p

1
keZ j=0 s52

< [

j=0
using (4.4) with p = 2. Similarly,

5 ,l; 2\ 2
Z/ (Z‘2j2kSAk+jf(x)‘2) dx | < (Z <Z/ ‘Z-kasAkﬂf(x)pdx) )
rez /R \j<o <0 \kez /RY
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which for s < 1is equal to

1

2
Zzz,u—m (Z/ |2(k+1)sAk+ f(x)|1’dx>

j<0 keZ

2

=22V | Ay,
i Y AIEDE
using (4.5)witho =1 —sand p = 2. O

Lastly, (4.3) is a consequence of Lemma 4.2 and the following proposition.

Proposition 4.5 Let2 < p < oo. Then

)
<=

1
3 / SRS A f0R | dr | S = g,
keZ j=0 sP ’
and
» 1
2 P
j nks 2 1
Z/ SR av @] ] dr| S ——— 1S,
keZ j<0 (1 —s)» ’

Proof Fix x € RV. We have for any k € 7Z

SRS A F@IP = Y RE A P = 3RS AF )P

j=0 j=0 e

Consequently, since p > 2 we have

r
2 21

p-
oAM=y 12 Ak P (ZIZ“Azf(x)Iz)

kez \j=0 keZ j=0 ez

which is

l’_]

=Y 2723 D A )P (Z |2“Azf(X)|2)

j=0 keZ e
E
1 Ls
= (Z 2% Acf ()] )
§ LeZ

using (4.4) with p = 2. Integrating this with respect to x gives the first inequality. Similarly,
forany k € Z

DRI AP <Y TR AL F@P <) REAF )P

j<0 Jj<0 el
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Consequently, since p > 2 we have

£ Loy
S A @] =Y M A feP (ZIZ“Aef(x)Iz)

keZ \ j<O0 keZ j<0 LeZ

which is

(SIS]

—1

=2 20 Y T A f @) (Z |2“Aef<x)|2>

j<0 keZ LeZ
5
1 .
ok p— (Z |2“Azf(x)|2>
LeZ

using (4.5) with 0 = 1 — s and p = 2. Integrating this with respect to x gives the second
inequality. O

5 The upper bound for [f] ;; , in of Theorem 1.6

In this section we prove the first part of Theorem 1.6, which provides an upper bound for
[f1yys.p in terms of[f]Fr2 and [f]F’2 when0 <r <s <t <landl < p < co. Namely,
p, P,

we show that for any such r, s, ¢, p and f € (RY),
1 1
[f]W.v,p(RN) 5 - 1 [f]prz(]RN) + D [f]p'f L(RN)* (1.5)
(s—r)p " (t—s)7 "

The constant C depends on p and N only. In view of Lemma4.2, (1.5) is then a consequence
of the following four lemmata.

Lemma5.1 Let p € (1,00),0 <r < s. Then

L
2
5 1
};/RN > 128k 0P | dx | S ———flir -

1
k<0 >0 (s—r)r

Proof We have forany 0 <r <'s

2
> Z‘zk‘YAk+,/‘f(x)‘2 = Z‘zﬂzkmk*"f(x)

k<0 \ j>0 k<0 \j>0

3

P
2

_ sz(ﬁr)p 2‘2(k+j)rAk+jf(x)‘2 .

k<0 j<0

We extend the sum over j to all integers, and use (4.5) with s — r in place of o to evaluate
the sum over k. This gives

5 2

> 2‘2“Ak+jf(X)2 Sir (ZP“Agf(x)‘z)z,

k<0 \j>0 (eZ

A
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which gives the conclusion of the lemma upon integrating in x.

Lemma5.2 Let p € (1,00)ands <t < 1. Then

2
5 P

s [ (Spsr) )

~ [f]F;,z(RN)'
k>0 Jj<0

T
(t—s)r
Proof We have forany s < <1

P

3 Z‘zfzkmkﬂf(x)‘z 252 Z’thszAk+jf(x)‘2

k>0 \j<0

P

2

k>0 \j<0

S S

k=0 j<0

We extend the sum over j to all integers, and use (4.4) with ¢ — s in place of s to evaluate
the sum over k. This gives

2 2

- 2\° 1 ' 2\°

Y| a5 (X pravw|) .
k=0 \j<0 5 \tez

which gives the conclusion of the lemma upon integrating in x.

Lemma5.3 Let p € (1,00),r <sandr < 1. Then

>

Proof We have forany r < lands > r

fs
<=

Joks . 2 < !
> 22N A f () dx

~ 1 [f]ﬁ;z(RN)-
j<0 (S _r)p '

14
2

k<0 \j<0

)2
2
. 2 e 2
I DRLENITIN BED B DBIE I
k<0 \j<0

4

2
_ sz(sfr)p Z '2(k+j)rAk+jf(x)‘2 .

k<0 j<0

We extend the sum over j to all integers, and use (4.5) with s — r in place of o to evaluate
the sum over k. This gives

b
: :
Y X ot ac s 51<Z\2Z’Aff()‘)‘2) ’

s—r
k=<0 \j<0 LeZ

which gives the conclusion of the lemma upon integrating in x.
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Lemma5.4 Let p € (1,00),s <tandt > 0. Then

Y
2
‘ 1
> /R A2 M P | dx | S 11 -

k=0 j=0 (t—s)r
Proof We have forany t > Oands < ¢t

Y (X[ e s 252 > [ s fw)|

k=0 \j=0 k=0 \j=0

P

2

)

2

_ Zz—k(t—s)p Z‘z(k+j)tAk+jf(x)‘2

k>0 j<0

We extend the sum over j to all integers, and use (4.4) with t — s in place of s to evaluate
the sum over k. This gives

:
Y X Poavrwf | = (Z PZ’A“‘(”’Z) ’
LeZ

k=0 \j=0

which gives the conclusion of the lemma upon integrating in x. O

6 The lower bounds for [f] ;s ,: proof via duality

We obtain the lower bounds for [ f]y;s,, in Theorem 1.2, Theorem 1.5 and Theorem 1.6 from
the corresponding upper bounds by a duality argument, and using the integral representation
of the fractional Laplacian, adapting the proof of Proposition 3.1.

Our main ingredient is the following duality estimate.

Proposition 6.1 Let p,q € (1,00), s € (0,1). Let t1,to > 0, such that t| + t, = 2s. Let

P1, p2 € (1, 00), such that ﬁ + % = 1. Then for any f € f’(RN) we have
[f]ﬁ;q(RN) S minfs, (1 =)} [f Lo gyy  SUP l[g]Wtz.pz(RN),
8 8lps, /f
P .q

where the supremum on the right-hand side is over Schwartz functions g € Fl (O (RN\{O})).
We also have

[f]F;»q(RN) S [f]ﬁqu(RN) + min{s, (1 — )} [f .0 @y [g]:SuP o [81yira.r2 mV)

!l

suppFgC{lE|=1/4)

where this time the supremum on the right-hand side is over Schwartz functions g with the
indicated constraints.

Proof By duality, Theorem 2.8, for any f € .#(RV) there exists g € F~1(CX(RN\{0}))
with [g],;-;/ =< 1 and
r.q

L1y v = VRN(—A)if(x)(—A)ig(x) dx|. (6.1)
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Integrating by parts the operator (—A)?2 (this can be done via Fourier transform and
Plancherel, since f, g € .”(R")) we find for a constant C+ depending on the precise choice
of Fourier transform

/R N(—Aﬁf(—m%g =Cr fR JEPFLE) 181 Fo(—6) dg

—cr [ ePFr© Fe-ode= [ arse

From Lemma 2.2 and symmetry arguments we then find with a constant cy ¢ such that
¢N,s ~ min{s, 1 — s} and

/ (A3 f(— A>2g—cm/ /N(zf(x) fat) — [ =)
R

|Z|N+2s

Now since f, g € (R")and 25 € (0, 2), we may apply Fubini’s theorem to interchange
the z and the x integral, and use a similar change of variable as in (3.2). Then

/ (_A)%f(_m%gzw,s/ / (fer+9 = FONEE+) —gw) |
RN RN JRN

|Z|N+2s

Hence using the bound for cy 4, and writing N + 2s = % +1 + % + 1, we obtain

(f(x+2)— fx) (g(x+z) g(X))d J

N s

£, < mins. (1 = 5))

RN |p1+t1 |z| P2

Applying twice the integral Holder inequality yields
[f]F\ SRY) S < min{s, (I — S)}[f]Wan (RN [g]Wtz-ﬂz(RN)-

This concludes the proof of the first inequality.
The proof of the second inequality is very similar. Instead of Theorem 2.8 we use Theo-
rem 2.9 and obtain instead of (6.1)

[Fly, S U0k, vy + ‘ /R LENI@) (—8) g ) dal,

where this time we have g € #(R"), Fg supported on {|&| > 1/4}, and [g]l;-s (RN) < 1.

The remaining arguments are the same. O

With Proposition 6.1 we obtain the lower bound of (1.2).
Proposition 6.2 Let p € [2,00), s € (0, 1) and f € .7 (RN). Then
1 1
1 + 1 [f]Flgp(]RN) ~ [f]Ws,p(RNy
sP (1—s)r

Proof Since p € [2, c0), we have p’ = % € (1, 2]. So from the upper bound (1.1) for
g € Z(R") we have
- 1 1
[l @y S\ =+ 2 )8l @)
s?” o (1—=s) rr
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From Proposition 6.1, we thus obtain

1 1
Ui @y < min{s, (1 —s)} ( — + 1) L Dysr @y -
" s (1—s5)7

Now we can conclude since for any s € (0, 1)

-1
<min{s,(l —s)}< ! +11>> ~ minfs, (1 — 5)} 77 ~ (
s (1—s)7

N

m\~‘ I
+

—_

N~——

1
1—=s)r
(6.2)
O
We also obtain the lower bound of (1.1):

Proposition 6.3 Let p € (1,2], s € (0, 1) and f € .7 (RN). Then
! ! [f1f < C[fly
T o1 ) Ve = CU ey

Proof Since p € (1, 2], we have p’ = # € [2, 00). So from the upper bound of (1.2) for
g € .Z@RY) we have

[g] <(L + L [g]
8 lyys. o' RNY S 8lfs Ny
ws.P"(RN) s% (] _s)% Fp’,p’(R )

From Proposition 6.1, we thus obtain

. 1 1
Lf]gs (RN) < min{s, (1 —s)} e [f]WS«F(RN)'
rr 52 (1—s)2
Now we can conclude since for any s € (0, 1)
1
+—F).
(I—s)2

—1
(min{s, (1—19)) (11 + 1]>) ~ min{s, (1 — 5)}"2 ~ (
52 (1—=ys)2
O
Next is the proof of (1.3).

‘ =

Nl—=

N

Proposition 6.4 Let p € (1,2], s € (0,1) and f € S RN). Then

1 1
<1 + ) L1z vy S U s vy-
s (1—=s)7 '

Proof Since p € (1, 2], we have p’ € [2, 00). So from the upper bound (1.4) for g € S (RN)
we have

< 1 1
[g]W.\',p’(RN) S| T + - 1 [g]FS,z(RN)‘
s =9/ "
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From Proposition 6.1, we thus obtain

s (1 —s)7

. 1 1
[f]ﬁ;_z(RN) < min{s, (1 —s)} ( T 1) [f]W.v,p(RN)

We conclude by using (6.2). O

The lower bound of Theorem 1.6 is contained in the following statement:

Proposition 6.5 Let A > 1suchthat (1—s) < i.Let? € (0, s) suchthat (1—r) = A(1—ys).
Letr € [0, 7]. Then

i S (1l + (4 =97 [l )

Proof Since for r € [0, 7],

ey, < Ugo, + g, SIF e + 1),
it suffices to prove the proposition when r = 7. From Proposition 6.1 we have
L1y S 1 Ny + minlf, (L= DN oy S0 [8hjaress oy
8 Fr, =

P2
suppFgC{|§[=1/4}

Now from (1.5), since %s < r < s, which implies 0 < 2r — s < r, we find for any
g € ZRN) with Fg supported in {|§] > 1/4},

1
[g]WZi—x,p’(]RN) S [g]FO (RN) + [g]p;/ Z(RN)

QF—s)p 72 s—7)7

1 1
< ( — + 1) [g]F?,Z(RN).
Qr —s5)7  (s—F)7 -

Here the support condition on Fg guarantees that [g]z0 < [g] £, - So we arrive at
P2 P2

1 1
[f]ﬁfz(RN) 5 ||f||Lp(]RN) + min{r, (1 — )} < T + 1) [f]W.\wﬁ(RN)
" QF =)V (s—P)7

Now we have
min{7, (1-7)}<(1—s), s—r=(A—-1)(1—s) and 2r—s=2-2A(l—s5s)—s >1—3s.

So

- _ 1 1 1—s 1
mm{r,(l—r)}( — + 1)5 —=(1—-s5)7.
Qr—s)7"  (s—7r)7 (1—s)7

This establishes the claim of the proposition. O
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7 Strong convergence as s — 1: Proof of Corollary 1.9

Proof of Corollary 1.9 Let p € (1, 00), assume that f; € .”(R") such that
fi—f weakly in L?(R"Y) as k — oo.

Let (sx)ken C (0, 1) such that s 1 1 and assume that
1
A = sup (Ifellogmy + (1= 507 iy, ) < 00 (18)
k

First we claim that

lim sup ||fk||Lp(]RN) + [filgr L(RN) <A Vre(0,1). (7.1)
k— 00 P

with constant independent of r. If p < 2 this follows easily from (1.3), but the following
proof, using (1.6) instead, works for all p € (1, 0o). Up to removing finitely many sequence
elements, we may assume that (1 — sz) < 41 for all k € N. From (1.6) we have for any
r<1-=201—sp),

1
Uil vy = € (Ikllzoy + (=507 Ufilimngn)) < C A,

. k— 00 .
Since sy —— 1, this proves (7.1).
In view of Lemma 2.7 we deduce from (7.1) that f € L?(RY) and [f1p L@®N) < 00
P,
with

I f1lLr@yy + [f]F;.Z(RN) S A
In view of Lemma 2.4, we conclude that f € H Lr(RN ) and

I lLe@yy + IV Fll Lo @y S A

The locally strong convergence of fy — f in H"P for any ¢t € (0, 1) follows from
Rellich’s Theorem. More precisely, fix 0 < t < r < 1 and a ball B(0, R) for some R > 0.
Denote by n € C2°(B(0, 2R)), n = 1 in B(0, R) any usual bump function. We then have by
(7.1)

sup |7 fi I @yy+Il (=2)Z( fi) [ F2:09) Ssup | fi o @yy+II(=A)2 Jx 2o ®wy SA <oo.
keN keN
Here we have used the Coifman—McIntosh—-Meyer commutator estimate for
z z r
(7, (=A)21(g) :=n(=A)2g — (=A)2(ng),
which implies that for any 7 € (0, 1)

I, (=) 1@ ory < (Il + nluip) 1212y

For an overview of these commutator estimates see, e.g., [16].

Then, 7 f; has uniformly compact support and is uniformly bounded in H"-” (R") and
thus, up to taking a subsequence, converges strongly in H*? (R™) (this can be either proven
via the usual Rellich—Kondrachov argument, or by interpolation theory). That is, after passing
to a subsequence (which we denote by f,,)

klin;o 17 fne = nf lpp@yy + 1(=D)2(0 fr — 1) pwyy = 0. (7.2)
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Repeating this argument for different balls B(0, I'R) (extracting subsequence again if
necessary) we obtain that

lim || fu, — fllLegoo,rr)y =0 VI > 0. (7.3)
k— o0
Now we have
[(=A)2 fu, — (=D)2 fllLr(BO,R)
L
< Im(=D)2(fu, — HliLrso,r))
L T
<M= 2 fue =) lLeo,rRy) + 10 (=2)21(fu — HllLrso,R)
L L
S N=A)20fue — ) Lro,R)) + 110, (=A)Z1(XBO,rR) frir — XB©O.TR) ) LP(BO,R)
L
+ H [7, (=A)21(xB©O,rR) fry — XB(O,FR)Cf)‘

LP(B(O.R)) |
By (7.2) we have

. '
lim [(=2)2(m fu, —nH)llLrBoO,R) = 0.
k—o00

By the Coifman—McIntosh—-Meyer estimate and then (7.3) we have

. L
lim [, (=A)21(xB©,rR) fux — XB©,TR) F)Lr(BO,R))
k—00
<C) lim || fuo, — fllLrBo.rr) = 0.
k— o0

Lastly, observe that since nxp,rryc = 0,

1
L(=A)? o — .
H[n (=A)2)(xB@©,rR) fux — XBO,TR) f) LA (BO.RY

< H (—A)? (xBoO.rRY (faf — f))‘

LP(B(O.R))
fort € (0,1), " > 2,and x € B(0, R) from the integral representation of the fractional
Laplacian (—A)% we find

| fr ) — f (DI

t
[(=A)2 (xBO.rR) (fur — ) )] = C () dy
(xzo.0)(fn ) BoO.rR)e  lx — y[NF
N
SR 7 fuy = Fllie@m
Consequently, for any I" > 2,
t N
lim H L(—A): ¢ fo — ‘ ‘ <SRIT VA,
Jim [7, (=A)21(xB©O,rR) fu — XBO,TR)C ) LrBO.RY

We conclude that for any I' > 2,
. L r _ N
lim [[(=A)2 fu, — (=D)2 fllerBoO.R) S R TP AL
k— 00
Taking I' — oo we conclude
. I I
lim |[(=A)2 fu, — (=D)2 fllLrso, Ry = 0.
k—00
This holds for any R > 0 and thus in particular for any compact set K c RY

lim [[(=A)? fo, — (=A)2 fllLo) = 0.
k—o00
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Since the weak limit f is unique, we can apply this argument to any subsequence of
(fi)ken, and find that actually

. L L
lim [[(=A)2 fy — (=A)Z fllLrx) = 0.
k—00

This implies (1.9). As for (1.10), from Sobolev embedding one finds that forany 0 < 7 < ¢
and K C K both compact with dist (K d0K) > 0 we have

~ = L
Uk = iy = €7 po KRN (185 (= Do + 1 = Fllo))
So we conclude (1.10) as well. ]
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Appendix A. Proof of the BBM formula on RV

For the convenience of the reader we give here the proof of the following BBM formula on
RV:

Theorem A.1 Forl < p < coand f € LP(RY), one has
p Ip 1
IV £l oy = ( T N)) Bim (1= )7L oy (A1)

in the sense that the left hand side of the equality is finite if and only if the right hand side
is finite, in which case the two sides are equal. In fact, we have f € H"P(RN) as long as

1
liminf,_,-(1 —s)7 Lf Typrs.p vy < 00

Proof Step 1. First, we establish (A.1) for f € C'NH"P(RV).Let R > 100and s € [}, 1).
Then

1 1
=97 linry — =97 U hiriairy)

1
1 [f(x) — fOIP )5
< (1 — dxd
S </1;N\B(R) /H‘KN Clx — y|NEsP e
1
1 [f(x) = fOIP !
<(1—=3s)7 dxd
< (/RN\B(R)/IX yelr X —yNEo ) y)

1

1 [f QI +1f )P g

(=57 / / dxdy)| .
e (RN\B(R) k—yl=iR X =y LT ! y)

‘We observe for the second term
1

> i
o SO+ IO\ (a=9N
(1=s5) </]RN\B(R) /{x yelr  Ix k=Nt dxdy) N( 5 ) RN llr@ny-
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For the first term, we use
L) = FOI S 1 = y] (Mape—y IV F (O] + Mope—y IVF D)

where

M, g(x) := sup ][ lg(z)]dz
o€(0,r)) B(x,0)

is the centered maximal function, cf. [3, 14]. Then we have

1
1 [f(x) = f)IP ?
1-— dxd
(1 —s)r (AQN\B(R) /lx islR k= gV X y)

1 1 7
SU—s)r (/ MgplV ()] ”dz/ 7dw)
RN\B(3R/4)( / ) jwi<g [w|NF6=Dp

1
V4
SRS ( / IVf(z)I”dz>
RN\B(R/4)

In the last step we used the maximal theorem. That is, we have shown that forany s € [% , 1)

1 1
‘(1 —s)r [f]Wx,p(RN) —(I=s)r [f]WS-p(B(R))
L
S Rl_s”Vf”Lp(]RN\B(RM)) + A =57 RN fllem@yy- (7.2)

Now we can conclude from the local case in [4]; recall that in [4, Corollary 2] it is proven
that for any R > 0

1/p
p . 1
IV fllLrsry) = (k(p, N)) Sl_lgl_(l = )7 [f TyisoB(R))» (7.3)
where k(p, N) = fSN*I le - w|Pdw and e is any unit vector in RY. Fix ¢ > 0. Since

Vf e LP(RY) there must be a large radius R > 0 such that

IV FllLe®¥\B(R/4) < € (7.4)

Then

p 1/p 1
(k(p, N)) (1 _S)p[f]Wx,p(RN) — ”vf”Ll’(RN)

A

&+

k(p, N)

p 1/p 1
( ) A=) 7 [fypsp@yy = IV fllLrsry)

1
&+ RNV ey + (=97 R oy,

A

1/p
P 1
+ <k(p, N)) (1 —S)P[f]Wx,,;(B(R)) — IV fllLrB(R))

1 _
< R+ De+ (1 =97 RIf o,

p 1/p 1
1—s)r - — |V »
+ <k(p, N)) A =)7L sogry — IV FllLe sy
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where the first and the third inequality follows from (7.4) and the second inequality follows
from (7.2). Since R is fixed once ¢ is fixed, we may let s — 1~ and use (7.3). This shows

1
hsnlsllflp (k(p, N)) ! (- s)%[f]WW(RN) — IV FllLr@y)| < e
but since ¢ > 0 is arbitrary, this proves

( P )Up tim (1= )L/ Tps.pqvy = 1V 1l o)

k(p, N) R Vrs.p(RN) LP(RN)

Step 2. Next, assume f € H'?(RN). We show that

tim sup(1 = )VPf s ) < <k(p [;N)>W IV £ o). (1.5)
PR

We first observe that for f € H'“P(RNyand s € [1/2, 1),

If(x+h) — fFO0I? p
[f]WS<F(RN) = (/RN AN |h|N+sp dxdh)

I/p
_ (I=s)
< / / [f(x + h) f(x)lpdxlhl pdh
lhj<1 JRN |h|P |h|N

1 1/p
i </h|>1 /RN(|f(x TR+ |f(x)|P)dedh> .

We appeal to the facts that

[ G = F@dx < WP A1 g,

(see [6, Proposition 9.3]) and that f]RN [f(x+m)P+|fx)|Pdx = 2||f||ip(RN). Thus

< -\ I p
U lierm S / dh) 19 fllry +<f —dh) 1/ o
Ws.p (RN) et (Y LP(RN) ot THIVFP LP(RV)

1
S/ m”vf“LP(]RN) + m”f”Ll’(]RN)

which implies

sup (1= )P Lf1psp@ny < CIS gy (7.6)
1/2<s<l

for some constant C = C), y, whenever f € H Lp(RNY (note that (7.6) strengthens the
second conclusion of Corollary 1.7 by weakening the hypothesis on f from f € .7(RV)
to f € H'P(RM)). To proceed further, for any ¢ > 0, pick g € Cl!'n HLP(RY) so that

Il f — gllgir@yy < €. Then

A=) flep@ny < 4= 9Plglp@y) + 1= 9YPLf = gljsp@n)
<{- S)l/p[g]WS.p(RN) + Ce,

where in the last inequality we applied (7.6) to f —g € H'7(R") in place of f. Now recall
(A.1) has already been proved for g € C' N H"7(RY). As a result, letting s — 17, we
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obtain

. k(p, N) 1/p
lim sup(1 — S)]/p[f]Ws.p(]RN) < (T) IVgllLrwny +&

s—>1-

k(p, N)\'7
= T UV Fllpp@yy +€)+ Ce.

Since ¢ > 0 is arbitrary, (7.5) follows.
Step 3. Finally, assume f € LP(R") and

A = liminf(1 — )" f1jys.p@n, < 0o.
s—>1-

It is known that then f € H'?(RV) and

p 1/p
”Vf”LP(RN) = <W> A. (7.7)

In fact, then for every bounded smooth domain 2 C RY, we have

liminf (1 — )7 [f1jjp(q) < A < 00,
s—>1-

so [4, Theorem 2] (and its proof) shows that f € H Lr(Q) with

p 1/p
\% <|— A
IVfler < (k(p, N))

Since € is an arbitrary bounded smooth domain in R¥, this shows f € H'"7(R") and
that (7.7) holds.

Appendix B. Proof of Corollary 1.3

Proofof Corollary 1.3 Let0 < s <t < 1 and f € (RY). From Theorem 1.2 we have
mins, (1 = )2 [fljis2) S [y,

and
U1y, S minr, (1= 0} [fTjuay):

The result now follows from the inequality [f]ﬁ§ ) Sl + [f]th R when0 <s <t.O
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