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Abstract
Westudy a convergence result ofBourgain–Brezis–Mironescu (BBM)usingTriebel-Lizorkin
spaces. It is well known that as spaces Ws,p = Fs

p,p , and H1,p = F1
p,2. When s → 1, the

Fs
p,p norm becomes the F1

p,p norm but BBM showed that the Ws,p norm becomes the

H1,p = F1
p,2 norm. Naively, for p �= 2 this seems like a contradiction, but we resolve this by

providing embeddings of Ws,p into Fs
p,q for q ∈ {p, 2} with sharp constants with respect to

s ∈ (0, 1). As a consequence we obtain an R
N -version of the BBM-result, and obtain several

more embedding and convergence theorems of BBM-type that to the best of our knowledge
are unknown.

1 Introduction andmain results

1.1 Previous results

For s ∈ (0, 1), p ∈ (1,∞) and an open set � ⊂ R
N the Ẇ s,p-Gagliardo-seminorm is

defined as

[ f ]Ẇ s,p(�) =
(∫

�

∫
�

| f (x) − f (y)|p
|x − y|N+sp

dx dy

) 1
p ≡

∥∥∥∥∥
f (x) − f (y)

|x − y| Np +s

∥∥∥∥∥
L p(�×�)

.
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For s = 1 we denote the usual Ḣ1,p-Sobolev space seminorm by

[ f ]Ḣ1,p(�) = ‖∇ f ‖L p(�)

and write H1,p for the inhomogeneous Sobolev space so that

H1,p(�) := { f ∈ L p(�) : ∇ f ∈ L p(�)}.

In the influential paper [4] Bourgain–Brezis–Mironescu showed that for any smooth
bounded domain � ⊂ R

N and any f ∈ H1,p(�) we have

‖∇ f ‖L p(�) =
(

p

k(p, N )

)1/p

lim
s→1−(1 − s)

1
p [ f ]Ẇ s,p(�), (BBM1)

where k(p, N ) := ∫
SN−1 |e · ω|pdω and e is any unit vector in R

N . Even more crucially,
Bourgain–Brezis–Mironescu established the following convergence result.

Theorem 1.1 (Bourgain–Brezis–Mironescu [4]) Let � ⊂ R
N be open and bounded with

smooth boundary, and p ∈ (1,∞).

(BBM2) Assume that fk ∈ C∞
c (�) such that

fk⇀ f weakly in L p(�) as k → ∞.

Let (sk)k∈N ⊂ (0, 1) such that sk ↑ 1 and assume that

� := sup
k

(
‖ fk‖L p(�) + (1 − sk)

1
p [ fk]Ẇ sk ,p(�)

)
< ∞.

Then f ∈ H1,p(�) and we have

‖ f ‖L p(�) + ‖∇ f ‖L p(�) ≤ C �.

The constant C depends only p and N. Also, fk
k→∞−−−→ f strongly in L p

loc(�).

See also [5, 8, 22] for related results, [15, 21] for an interpretation via interpolation space,
and [19, 20] for the regime s → 0.

1.2 Questions onR
N

In this paper, we explore what happens when the bounded domain � above is replaced by
the whole space R

N . It is relatively easy to show that (BBM1) holds with � replaced by R
N ;

we provide a short proof in Appendix A. Our main result will be an analog of Theorem 1.1
on R

N . In fact, from the point of view of Harmonic Analysis, Theorem 1.1 seems like a
surprising result, as we shall explain here. Denote the homogeneous Triebel-Lizorkin norm
[ · ]Ḟs

p,p(R
N ) by

[ f ]Ḟs
p,p(R

N ) =
⎛
⎝∫

RN

∑
j∈Z

2s jp|� j f (x)|p dx
⎞
⎠

1
p

.

Here � j f are the Littlewood-Paley projections (see Sect. 2.3 for their definitions). It is
well-known that for s ∈ (0, 1), p ∈ (1,∞),

[ f ]Ḟs
p,p(R

N ) ≈ [ f ]Ẇ s,p(RN ),
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whenever f ∈ S (RN ), where S (RN ) denotes the set of Schwartz functions on R
N . How-

ever, since ‖ f ‖L p(RN ) ≈ ‖ f ‖Ḟ0
p,2

we have

[ f ]Ḟ1
p,2(R

N ) ≈ ‖∇ f ‖L p(RN ).

From the definition of Triebel-Lizorkin spaces, it easily follows (cf. Lemma 2.7)

lim
s→1

[ f ]Ḟs
p,p(R

N ) = [ f ]Ḟ1
p,p(R

N ).

So if Theorem 1.1 holds true on R
N , it then seems to suggest that in some way Ẇ s,p ≈s,p

Ḟs
p,p “converges to” Ḣ

1,p ≈p Ḟ1
p,2, which appears to be a contradiction to the above, because

for p �= 2 we have that Ḟ1
p,2 �≈ Ḟ1

p,p . These statements, of course, do not make any sense,
because spaces do not converge, but norms. The aim of this note is to clarify the effects we
are seeing here, which we achieve by clarifying various relationships between the Ẇ s,p , Ḟ s

p,p

and Ḟ s
p,2 seminorms for 0 < s < 1.

1.3 Results about Ḟsp,p

Our first main theorem is the following quantitative comparison between the Ẇ s,p and the
Ḟ s
p,p seminorms.

Theorem 1.2 Let N ≥ 1, p ∈ (1,∞). Then there exists C = C(N , p) > 0, such that for
every s ∈ (0, 1) and f ∈ S (RN ),

(1) if 1 < p ≤ 2:

C−1

(
1

s
1
2

+ 1

(1 − s)
1
2

)
[ f ]Ḟs

p,p(R
N ) ≤ [ f ]Ẇ s,p(RN ) ≤ C

(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N ).

(1.1)
(2) if 2 ≤ p < ∞:

C−1

(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N ) ≤ [ f ]Ẇ s,p(RN ) ≤ C

(
1

s
1
2

+ 1

(1 − s)
1
2

)
[ f ]Ḟs

p,p(R
N ).

(1.2)

The upper bounds in (1.1) and (1.2) have been proven by Gu and the third author in [13].
As an immediate corollary we obtain the following Sobolev-type inequality for p = 2. It

is well-known and elementary to show that

[ f ]Ẇ s,2(RN ) ≤ Cs,t

(
‖ f ‖L2(RN ) + [ f ]Ẇ t,2(RN )

)
, for 0 < s ≤ t < 1.

The main nontriviality in the corollary below is the prefactor min{s, (1− s)} 1
2 on the left-

hand side and min{t, (1− t)} 1
2 on the right-hand side. We do not know if a similar statement

is true for any p ∈ (1,∞), see Question 1.10.

Corollary 1.3 Let N ≥ 1. Then there exists C = C(N ) > 0, such that for all 0 < s ≤ t < 1
and f ∈ S (RN ),

min{s, (1 − s)} 1
2 [ f ]Ẇ s,2(RN ) ≤ C

(
‖ f ‖L2(RN ) + min{t, (1 − t)} 1

2 [ f ]Ẇ t,2(RN )

)
.
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For the convenience of the reader,wegive the details of the proofCorollary 1.3 inAppendix
B.

Remark 1.4 (Sharpness of the constants) To some extent the constants in Theorem 1.2 are
sharp, as can be shown using the results of [4].

(1) Observe that in general for p < 2(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N ) � C[ f ]Ẇ s,p(RN )

forC = C(N , p) > 0. Indeed, if that was true for all s ∈ (0, 1), we could pick a function
f ∈ H1,p(RN ) with compact support that does not belong to F1

p,p(R
N ). From [4] we

would then obtain that

lim sup
s→1−

(1 − s)
1
p [ f ]Ẇ s,p(RN ) < ∞,

however we have

lim
s→1−[ f ]Ḟs

p,p(R
N ) = [ f ]Ḟ1

p,p(R
N ) = ∞.

(2) Similarly, for p > 2 in general

[ f ]Ẇ s,p(RN ) � C

(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N )

for C = C(N , p) > 0. To obtain a counterexample in this case take, f ∈ F1
p,p(R

N )

with compact support and f /∈ H1,p(RN ). Then, again by [4]

lim sup
s→1−

(1 − s)
1
p [ f ]Ẇ s,p(RN ) = ∞,

however

lim inf
s→1− [ f ]Ḟs

p,p(R
N ) = [ f ]Ḟ1

p,p(R
N ) < ∞.

1.4 Results about Ḟsp,2

Next we explore relationships between the Ẇ s,p and the Ḟ s
p,2 seminorms. Observe that while

Theorem 1.2 is a nice characterization, and we obtain some convergence for functions with

uniformly bounded (1− s)
1
p [ f ]Ẇ s,p(RN )-norms, we do not recover Theorem 1.1 yet. For this

we need a different space. Namely, we obtain the following Ḟ s
p,2-estimate and the main focus

should be on how changing from Ḟ s
p,p to Ḟ s

p,2 improves the dependency on s and (1 − s).

Theorem 1.5 Let N ≥ 1, p ∈ (1,∞). Then there exists C = C(N , p) > 0, such that for all
s ∈ (0, 1) and f ∈ S (RN ),

(1) if 1 < p ≤ 2:

C−1

(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,2(R
N ) ≤ [ f ]Ẇ s,p(RN ). (1.3)
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(2) if 2 ≤ p < ∞:

[ f ]Ẇ s,p(RN ) ≤ C

(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,2(R
N ). (1.4)

The upper bound for [ f ]Ḟs
p,2(R

N ) in (1.3) in Theorem 1.5 provides a full, R
N -version of

Theorem 1.1 if p ≤ 2, see Corollary 1.9 below. For p ≥ 2 the desired upper bound for
[ f ]Ḟs

p,2(R
N ) will be provided by the following Sobolev-type estimate: see (1.6).

Theorem 1.6 (Sobolev-Estimate) Let N ≥ 1, p ∈ (1,∞).

(1) Then there exists C = C(N , p) > 0, such that for 0 ≤ r < s < t ≤ 1 and f ∈ S (RN ),

[ f ]Ẇ s,p(RN ) ≤ C

(
1

(s − r)
1
p

[ f ]Ḟr
p,2

+ 1

(t − s)
1
p

[ f ]Ḟ t
p,2

)
. (1.5)

(2) Let � > 1. Then there exists C = C(N , p,�) > 0, such that the following holds: Let
s ∈ [1 − 1

2�, 1). Let r̄ ∈ (0, s) such that (1 − r̄) = �(1 − s). Pick r ∈ [0, r̄ ]. Then for
any f ∈ S (RN ),

[ f ]Ḟr
p,2(R

N ) ≤ C
(
‖ f ‖L p(RN ) + (1 − s)

1
p [ f ]Ẇ s,p(RN )

)
. (1.6)

Applying [4, Theorem 1] to ρ(x) = |x |−N−(1−s)p one obtains for a bounded set �

sup
s∈(0,1)

(1 − s)
1
p [ f ]Ẇ s,p(�) ≤ C(N ,�, p)‖∇ f ‖L p(�).

As an immediate corollary of Theorem 1.6, we find a variant of this inequality on R
N and

even obtain a fractional version of it. In the following we denote for non-integral values of s

Ḣ s,p(RN ) ≡ Ḟ s
p,2(R

N ),

whose seminorm [ f ]Ḣ s,p(RN ) = ‖(−�)
s
2 f ‖L p(RN ) is defined via the fractional Laplacian.

Observe that ‖(−�)
1
2 f ‖L p(RN ) ≈ ‖∇ f ‖L p(RN ) for any p ∈ (1,∞) by the L p-boundedness

of the Riesz transforms, so for our purposes it does not really matter whether we defined
[ f ]Ḣ1,p to be ‖∇ f ‖L p or ‖(−�)1/2 f ‖L p . From (1.5) it is easy to deduce

Corollary 1.7 Let N ≥ 1, p ∈ (1,∞), 0 < θ < 1. Then there exists C = C(N , p, θ) > 0,
such that for s ∈ (θ, 1] and f ∈ S (RN ),

sup
r∈[θ,s)

(s − r)
1
p [ f ]Ẇ r,p(RN ) ≤ C

(
‖ f ‖L p(RN ) + ‖(−�)

s
2 f ‖L p(RN )

)
. (1.7)

In particular, setting s = 1, we obtain

sup
r∈[θ,1)

(1 − r)
1
p [ f ]Ẇ r,p(RN ) ≤ C

(‖ f ‖L p(RN ) + ‖∇ f ‖L p(RN )

)
.

Remark 1.8 Barring the independence of the constant on s, the case s < 1 in (1.7) is only
interesting for the case p < 2. For p ≥ 2 and s < 1 it is an obvious (and non-optimal)
estimate. Indeed, if f ∈ S (RN ), p ≥ 2 and r ∈ (0, 1), we have

[ f ]Ẇ r,p(RN ) ≈ [ f ]Ḟr
p,p

≤ [ f ]Ḟr
p,2

≈ ‖(−�)
r
2 f ‖L p(RN ),
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where the implicit constants depend on r , p and N . If r is in a compact subinterval of (0, 1),
then the constants can be taken independent of r . Since

(s − r)
1
p [ f ]Ẇ r,p(RN ) ≤ C[ f ]Ẇ r,p(RN )

and

‖(−�)
r
2 f ‖L p(RN ) ≤ C

(
‖ f ‖L p(RN ) + ‖(−�)

s
2 f ‖L p(RN )

)

for r ∈ [0, s] (with constants independent of r and s), if s ≤ 1 − θ ′ for some θ ′ > 0, then
whenever θ > 0

sup
r∈[θ,s)

(s − r)
1
p [ f ]Ẇ r,p(RN ) ≤ C

(
‖ f ‖L p(RN ) + ‖(−�)

s
2 f ‖L p(RN )

)

with a constant depending on θ, θ ′, p and N but not on r and s.

1.5 Back to Bourgain–Brezis–Mironescu’s convergence result

From (1.6) and Rellich–Kondrachov theorem we recover in particular (BBM2) of Theo-
rem 1.1 – actually with a stronger convergence than is commonly considered in the literature.

Corollary 1.9 Let p ∈ (1,∞), assume that fk ∈ S (RN ) such that

fk⇀ f weakly in L p(RN ) as k → ∞.

Let (sk)k∈N ⊂ (0, 1) such that sk ↑ 1 and assume that

� := sup
k

(
‖ fk‖L p(RN ) + (1 − sk)

1
p [ fk]Ẇ sk ,p(RN )

)
< ∞. (1.8)

Then f ∈ H1,p(RN ) and we have

‖ f ‖L p(RN ) + ‖∇ f ‖L p(RN ) ≤ C �.

The constant C depends on p and N.

Also, fk
k→∞−−−→ f strongly in Ht,p

loc (RN ) for any t ∈ [0, 1), that is

lim
k→∞ ‖(−�)

t
2 fk − (−�)

t
2 f ‖L p(K ) = 0 ∀compact sets K ⊂ R

N , (1.9)

and for any t ∈ (0, 1)

lim
k→∞[ fk − f ]Ẇ t,p(K ) = 0 ∀ compact sets K ⊂ R

N . (1.10)

We give the details of the proof in Sect. 7. The above strong convergence may not be
global in R

N (even strong convergence in L p(RN ) may be false). A counterexample is given
by a standard counterexample to the global Rellich-Kondrachov Theorem for W 1,p(RN )

(which shows that W 1,p(RN ) does not embed compactly into L p(RN )): for instance, if
f ∈ C∞

c (RN ) and { fk}k is a sequence of translates of f that escapes off to infinity, then
fk converges weakly to 0 in W 1,p(RN ), (1.8) is satisfied by Corollary 1.7, but fk does not
converge strongly in L p(RN ).
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1.6 Open questions and further directions

Question 1.10 Let p ∈ (1,∞), 0 < θ < s < t < 1 and f ∈ S (RN ). Is it true that there
exists C = C(N , p, θ) > 0, such that

min{s, (1 − s)} 1
p [ f ]Ẇ s,p(RN ) ≤ C

(
‖ f ‖L p(RN ) + min{t, (1 − t)} 1

p [ f ]Ẇ t,p(RN )

)
?

An indication that the above might be true, is the case p = 2, Corollary 1.3. Also, of
course, Question 1.10 holds asymptotically for s = t and – in view of [4] – it holds if we
first let t ↑ 1 and then take s ↑ 1.

Let us remark that a very rough toy-case for Question 1.10 are characteristic functions –
and indeed the inequality from Question 1.10 holds in that case: for A ⊂ R

N measurable we
have |χA(x) − χA(y)|p = |χA(x) − χA(y)|2, and |x − y|N+sp = |x − y|N+ sp

2 2. Thus,

[χA]Ẇ s,p(RN ) = [χA]
2
p

Ẇ
sp
2 ,2

(RN )
,

so

min{s, (1 − s)} 1
p [χA]Ẇ s,p(RN ) = min{s, (1 − s)} 1

p [χA]
2
p

Ẇ
sp
2 ,2

(RN )

=
(
min{s, (1 − s)} 1

2 [χA]
Ẇ

sp
2 ,2

(RN )

) 2
p

�p ‖χA‖
2
p

L2 +
(
min{t, (1 − t)} 1

2 [χA]
Ẇ

tp
2 ,2

(RN )

) 2
p

= ‖χA‖L p + min{t, (1 − t)} 1
p [χA]Ẇ t,p(RN ).

Moving on to the next question, the estimate (1.7) hints towards the possibility that there
might be a Brezis–Bourgain–Mironescu-type result for s < 1, namely it establishes an Hs,p-
type (BBM1)-estimate. It is unclear to us if the convergence result is also true.

Question 1.11 Let p ∈ (1,∞), assume that fk ∈ S (RN ) such that

fk⇀ f weakly in L p(RN ) as k → ∞.

Let t ∈ (0, 1) and (sk)k∈N ⊂ (0, t) such that sk ↑ t and assume that

� := sup
k

(
‖ fk‖L p(RN ) + (t − sk)

1
p [ fk]Ẇ sk ,p(RN )

)
< ∞.

Is it true that f ∈ Ht,p(RN ) and that there exists C = C(N , p, t) > 0, such that

lim
t̃↑t

lim sup
k→∞

‖(−�)
t̃
2 fk‖L p(RN ) ≤ C�?

Our next question concerns an extension to other Triebel-Lizorkin spaces. It is known that
for p >

Nq
N+sq

[ f ]Ẇ s,p
q (RN ):=

(∫
RN

(∫
RN

| f (x) − f (y)|q
|x − y|N+sq

dy

) p
q

dx

) 1
p

≈ [ f ]Ḟs
p,q (RN ), (1.11)

see [1, 25] for q = 2, [28, Section 2.5.10] for s ≥ N
min{p,q} and [23] for the general p >

Nq
N+sq .

Unless q = 2, which was treated in [11], the case of equality p = Nq
N+sq seems to be open.

123
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Question 1.12 What is the dependency on s and (1− s) as s ↓ 0 or s ↑ 1 in the equivalence
(1.11)?

Question 1.12 is related to works by Spector–Leoni, [17, 18]. Of course, the limit cases
p = 1 and p = ∞ would also be an interesting direction, cf. [7].

Lastly let us mention that Bourgain–Brezis–Mironescu [4] (see also [22]) the singular
kernel |x − y|−N−sp is only one special case considered. In general they work with family of
kernels ρn that suitably approximate |x− y|−pδx,y . It might be possible to adapt our methods
to treat this case as well, in the sense that as n → ∞ the corresponding ρn-seminorm controls
more and more frequencies estimated in Ḟ s

p,2.
The paper will be organized as follows. In Sect. 2 we collect a few basic results about

Triebel-Lizorkin spaces. In Sect. 3 we give a simple proof of Theorem 1.2 in the special case
p = 2. In Sect. 4 we prove the upper bounds for [ f ]Ẇ s,p in Theorem 1.2 and Theorem 1.5,
i.e. the second inequalities of (1.1) and (1.2), and the inequality (1.4). In Sect. 5 we prove
the upper bound (1.5) for [ f ]Ẇ s,p in Theorem 1.6. In Sect. 6 we prove the lower bounds
for [ f ]Ẇ s,p in Theorem 1.2, Theorem 1.5 and Theorem 1.6, i.e. the first inequalities of (1.1)
and (1.2), and the inequalities (1.3) and (1.6). In Sect. 7 we prove Corollary 1.9. Finally, in
Appendix A we prove (BBM1) with � replaced by R

N , and in Appendix B we give a short
proof of Corollary 1.3.

Recent progress in [10]

After finishing this manuscript, Domínguez and Milman [10] settled Question 1.10 and
Question 1.11, using heavy interpolation machinery. They also provide alternative proofs of
our main theorems via these interpolation and extrapolation techniques.

2 Preliminaries

In this sectionwe gather preliminary results thatmost likely are allwidely known. Throughout
the paper we use the notation A � B whenever there is a multiplicative constant C > 0 such
that A ≤ CB. A ≈ B means A � B and B � A. The constant C can change from line to
line and depends on dimension and exponent, but unless otherwise noted does not depend
on s, t etc.

2.1 Mixedmeasure spaces

Let p, q ∈ (1,∞), and consider the space L p(�q) given by sequence ( f j ) j∈Z ⊂ L p(RN )

with finite norm

‖ f j‖L p(�q ) :=

∥∥∥∥∥∥∥

⎛
⎝∑

j

| f j (x)|q
⎞
⎠

1
q

∥∥∥∥∥∥∥
L p(RN ,dx)

.

By a slight abuse of notation, we will have the same notation when considering finite
sequences ( f j )Kj=−K ⊂ L p(RN ).

From [2, Theorem 1] we obtain that L p(�q) is a Banach space, and more importantly its
dual space is L p′

(�q
′
) in the following way: any linear functional J ∈ (L p(�q))∗ is given by

123
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an element g ∈ L p′
(�q

′
) such that

J ( f ) =
∫
RN

∑
j∈Z

f j (x)g j (x) dx .

In particular, from Hahn-Banach theorem, we have

Proposition 2.1 Let p, q ∈ (1,∞). Let ( f j ) j∈Z ∈ L p(�q). Then there exists (g j ) j∈Z ⊂
L p′

(RN ) with

‖(g j ) j∈Z‖L p′ (�q′
)
≤ 1

and

‖ f j‖L p(�q ) =
∫
RN

∑
j∈Z

f j (x)g j (x) dx .

An analogous statement holds for sequences ( f j )Kj=−K .

2.2 Fractional Laplacian

For s > 0 denote by (−�)
s
2 the operator with Fourier symbol |ξ |s , that is
F((−�)

s
2 f )(ξ) := |ξ |sF f (ξ).

It is well-known that there is an integral formula for the fractional Laplacian when s ∈
(0, 2), cf. [9]. We need the following estimate on the constant that appears there.

Lemma 2.2 Let f ∈ S (RN ) and s ∈ (0, 1). Then

(−�)s f (x) = cN ,s

∫
RN

2 f (x) − f (x + z) − f (x − z)

|z|N+2s dz,

where

cN ,s ≈ min{s, 1 − s}.
Proof For s ∈ (0, 1) we have (see e.g. [9])

(−�)s f (x) = cN ,s

∫
RN

2 f (x) − f (x + z) − f (x − z)

|z|N+2s dz, cN ,s = 1

2

4s

( N
2 + s

)
π

N
2 |
(−s)|

.

Since


(−s) = − π

sin(πs)

1


(1 + s)
,

for s ∈ (0, 1) we get cN ,s ≈ | sin(πs)| ≈ min{s, 1 − s}. ��

2.3 Littlewood-Paley projections and Triebel-Lizorkin spaces

Below we will need to understand the space L p(RN ) and the inhomogeneous Sobolev space

H1,p(RN ) := { f ∈ L p(RN ) : ∇ f ∈ L p(RN )}
for 1 < p < ∞, via Bessel potentials and Triebel-Lizorkin spaces.
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41 Page 10 of 33 D. Brazke et al.

First, recall the Bessel potential (I − �)s/2, given by the Fourier multiplier (1+ |ξ |2)s/2
for s ∈ R. We have (I − �)s/2 : S (RN ) → S (RN ) continuously, thus (I − �)s/2 extends
by duality to a map that acts on tempered distributionsS ′(RN ). For 1 < p < ∞, it is known
that f ∈ S ′(RN )with (I−�)1/2 f ∈ L p(RN ) if and only if f ∈ L p(RN )with distributional
gradient ∇ f ∈ L p(RN ). This motivates one to define, for s ∈ R and 1 < p < ∞, the space
Hs,p(RN ), as the space of all tempered distributions f ∈ S ′(RN ) for which

‖ f ‖Hs,p(RN ) := ‖(I − �)s/2 f ‖L p(RN ) < ∞.

When s = 1, the definition of Hs,p(RN ) agrees with our earlier definition in the previous
paragraph using distributional gradients. We also have

‖ f ‖H1,p(RN ) ≈p,N ‖ f ‖L p(RN ) + ‖∇ f ‖L p(RN )

for f ∈ H1,p(RN ).
Next, for a function f ∈ L p(RN ), the j-th Littlewood-Paley projection is defined as

� j f (x) := f ∗ [2 j Nη(2 j ·)](x).
Here η ∈ S (RN ) is a Schwartz function such that its Fourier transform Fη satisfies

∑
j∈Z

(Fη)(2 j ξ) = 1 ∀ξ �= 0. (2.1)

It is customary to assume η ∈ S (RN ) is real-valued and symmetric in the sense that

η(−z) = η(z), (2.2)

so that � j is a self-adjoint operator with respect to the L2(RN )-scalar product. We can and
will also assume that Fη(ξ) = Fη0(ξ) − Fη0(2ξ) for some Schwartz function η0 with
Fη0(ξ) = 1 for |ξ | ≤ 1 and Fη0(ξ) = 0 for |ξ | ≥ 2. In particular∫

RN
η(x) dx = cF(η)(0) = 0. (2.3)

Also we have

suppF(� j f ) ⊂
{
ξ ∈ R

N : 1

2
≤ |2− j ξ | ≤ 2

}
. (2.4)

In particular, Fη(2 jξ)Fη(2 j+�ξ) = 0 whenever |�| ≥ 2, and thus

� j f (x) =
j+1∑

�= j−1

� j�� f (x). (2.5)

Then we have for any f ∈ S (RN ), see [12, Exercise 1.1.4],

f (x) =
∑
j∈Z

� j f (x) ∀x ∈ R
N , (2.6)

and the convergence is in L p(RN ) for any p ∈ (1,∞]. In particular, the set of all Schwartz
functions whose Fourier transform is supported in a compact subset of R

N \ {0} is dense in
L p(RN ) if 1 < p < ∞. For further reading on Littlewood-Paley projection we refer to [12,
6.2.2]. Below we write �≤0 f for f ∗ η0.
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Definition 2.3 (Triebel-Lizorkin space) Let s ∈ R, p, q ∈ (1,∞). Then the inhomogeneous
Triebel-Lizorkin space Fs

p,q is defined as the set of all tempered distributions f ∈ S ′(RN )

such that

‖ f ‖Fs
p,q (RN ) :=

⎛
⎜⎝

∫
RN

⎛
⎝|�≤0 f (x)|q +

∑
j≥1

2 jsq |� j f (x)|q
⎞
⎠

p
q

dx

⎞
⎟⎠

1
p

< ∞.

For a tempered distribution f ∈ S ′(RN )we also define its homogeneousTriebel-Lizorkin
semi-norm as follows:

[ f ]Ḟs
p,q (RN ) :=

⎛
⎜⎝

∫
RN

⎛
⎝∑

j∈Z
2 jsq |� j f (x)|q

⎞
⎠

p
q

dx

⎞
⎟⎠

1
p

.

It is known, for instance, that if s > 0, p, q ∈ (1,∞) and f ∈ Fs
p,q(R

N ), the homogeneous
Triebel-Lizorkin semi-norm [ f ]Ḟs

p,q (RN ) is finite and [ f ]Ḟs
p,q (RN ) �s,p,q,N ‖ f ‖Fs

p,q (RN ).
The class of Triebel-Lizorkin spaces and Besov spaces (where the role of integral and sum

are reversed) contains several classical function spaces, we refer e.g. to [24, § 2.1.2, p.14] or
[28, § 2.3.5]. A well-known function space that is of Triebel-Lizorkin type is L p(RN ) for
1 < p < ∞: the theory of Hörmander-Mikhlin multipliers implies, for 1 < p < ∞, that
L p(RN ) = F0

p,2(R
N ) and H1,p(RN ) = F1

p,2(R
N )with equivalence of norms. Furthermore:

Lemma 2.4 (Littlewood-Paley) Let p ∈ (1,∞). Then for every f ∈ L p(RN ) it holds

‖ f ‖L p(RN ) ≈ [ f ]Ḟ0
p,2(R

N ).

Similarly, a function f ∈ L p(RN ) is in H1,p(RN ), if and only if [ f ]Ḟ1
p,2(R

N ) < ∞, in

which case

‖∇ f ‖L p(RN ) ≈ [ f ]Ḟ1
p,2(R

N ).

The implicit constants in these equivalences depend only on p and N.

For 0 < s < 1 and 1 < p < ∞, we also have Hs,p(RN ) = Fs
p,2(R

N ), with

‖ f ‖Hs,p(RN ) ≈ ‖ f ‖Fs
p,2(R

N )

where the constants depend on p and N (and uniform over s ∈ (0, 1)).
Recall the Gagliardo semi-norm

[ f ]Ẇ s,p(RN ) =
(∫

RN

∫
RN

| f (x) − f (y)|p
|x − y|N+sp

dxdy

)1/p

from the Introduction. It is also known that the following identification holds for s ∈ (0, 1),
p ∈ (1,∞):

[ f ]Ḟs
p,p(R

N ) ≈s,p,N [ f ]Ẇ s,p(RN ) ∀s ∈ (0, 1), f ∈ S (RN ),

and it is the objective of the present work to understand the dependency of the constant on
s. It is important to observe that F1

p,p does not correspond to the classical Sobolev space

H1,p(RN ) = F1
p,2(R

N ), unless p = 2.
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We will need the following well-known vector-valued estimate for Littlewood-Paley pro-
jections, which follows from a vector-valued singular integral estimate (see e.g. [27, Chapter
II.5.4]):

Lemma 2.5 For any 1 < p < ∞ and any ( f j ) j∈Z ∈ L p(�2), we have

⎛
⎜⎝

∫
RN

⎛
⎝∑

j∈Z
|� j f j (x)|2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

�

⎛
⎜⎝

∫
RN

⎛
⎝∑

j∈Z
| f j (x)|2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

For s > 0 and 1 < p < ∞, the Fourier multiplier |ξ |s(1 + |ξ |2)−s/2 defines a bounded
linear map on L p(RN ) (see [26, Chapter V]). Thus one can define a bounded linear map
(−�)s/2 : Hs,p(RN ) → L p(RN ). It is known that (−�)

s
2 : Ḟ t+s

p,q → Ḟ t
p,q is an isomor-

phism, see [24, 2.6.2, Proposition 2] and [28, 5.2.3], [28, 2.3.8]. Their argument (basically a
vector-valued multiplier theorem) implies:

Lemma 2.6 Let p, q ∈ (1,∞), � > 0. Then for any s ∈ [0,�] and any f ∈ S (RN ) we
have

[ f ]Ḟs
p,q

≈ [(−�)
s
2 f ]Ḟ0

p,q
.

Also

[ f ]Ḟs
p,q

� [ f ]Ḟ0
p,q

+

∥∥∥∥∥∥∥

⎛
⎝∑

j≥0

|� j (−�)
s
2 f |q

⎞
⎠

1
q

∥∥∥∥∥∥∥
L p(RN )

.

The constant depends on p, q, N and �, and is otherwise independent of s.

Next we need the following result about the Triebel-Lizorkin norm of a weak limit in L p:

Lemma 2.7 Let fk ∈ L p(RN ) weakly converge to f ∈ L p(RN ), and assume that for some
sk ↑ t ∈ (0,∞) we have

sup
k

[ fk]Ḟsk
p,q (RN )

< ∞.

Then

[ f ]Ḟ t
p,q (RN ) ≤ sup

k
[ fk]Ḟsk

p,q (RN )
.

Proof For each fixed M and R,∥∥∥‖2 j t� j f ‖�q (−M≤ j≤M)

∥∥∥
L p(B(0,R))

= lim
k→∞

∥∥∥‖2 jsk� j fk‖�q (−M≤ j≤M)

∥∥∥
L p(B(0,R))

≤ sup
k

[ fk]Ḟsk
p,q (RN )

.

In the estimate above, the middle equality follows from the fact that

⎛
⎝ M∑

j=−M

∣∣∣2 jsk� j fk − 2 j t� j f
∣∣∣q

⎞
⎠

1
q

� max
j∈{−M,...,M} |2

jsk − 2 j t | max
j∈{−M,...,M} |� j f |

+ max
j∈{−M,...,M} 2

jsk max
j∈{−M,...,M} |� j fk − � j f |
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which as k → ∞ converges to 0 pointwise almost everywhere in B(0, R), and hence in
L p(B(0, R)), if fk converges weakly to f on L p(RN ). ��

2.4 A duality characterization for Triebel-Lizorkin spaces

The following duality statement must be known to experts – we did not find it in this precise
form in the literature, and thus repeat the proof.

Theorem 2.8 (Duality) Let s ≥ 0, p, q ∈ (1,∞). For any f ∈ S (RN ) there exist g ∈
F−1(C∞

c (RN\{0})) such that
[g]Ḟs

p′,q′ (RN ) ≤ 1

and

[ f ]Ḟs
p,q (RN ) ≈

∣∣∣∣
∫
RN

(−�)
s
2 f (x) (−�)

s
2 g(x)dx

∣∣∣∣ . (2.7)

The constants depend on s, p, q, N, however if for some θ > 0 we have s ∈ [0, θ),
p, q ∈ (1 + 1

θ
, θ), then the constant can be chosen only to depend on θ and N.

Observe that in (2.7), (−�)
s
2 g belongs to the Schwartz class, since Fg ∈ C∞

c (RN\{0}),
consequently F(−�)

s
2 g ∈ C∞

c (RN\{0}), which implies (−�)
s
2 g ∈ S (RN ). Moreover, it

is easy to check that f ∈ S (RN ) implies that (−�)
s
2 f ∈ L∞(RN ), so the integral on the

right hand side of (2.7) makes sense.

Proof of Theorem 2.8 Once g is found, the �-direction follows from two applications of
Hölder’s inequality and definition of the associated spaces.

So we focus on the �-direction. Let f ∈ S (RN ). Then by Lemma 2.6

[ f ]Ḟs
p,q (RN ) ≈ [(−�)

s
2 f ]Ḟ0

p,q (RN ).

In particular (� j (−�)
s
2 f ) j∈Z ∈ L p(�q). In the case that [ f ]Ḟs

p,q
= 0 we have f is zero

since the only polynomial in S (RN ) is zero, and thus (2.7) is trivially true for any g.
Consequently, from now own we assume [(−�)

s
2 f ]Ḟ0

p,q (RN ) > 0. By monotone conver-

gence theorem, there must be K ∈ N, depending on f , such that

[(−�)
s
2 f ]Ḟ0

p,q (RN ) ≤ 2

⎛
⎜⎝

∫
RN

⎛
⎝ K∑

j=−K

|� j (−�)
s
2 f (x)|q

⎞
⎠

p
q

dx

⎞
⎟⎠

1
p

.

Applying Proposition 2.1, there exists (h̄ j )
K
j=−K ⊂ L p′

(RN ) with

⎛
⎜⎜⎝

∫
RN

⎛
⎝ K∑

j=−K

|h̄ j (x)|q ′
⎞
⎠

p′
q′

dx

⎞
⎟⎟⎠

1
p′

≤ 1,

such that

[(−�)
s
2 f ]Ḟ0

p,q (RN ) ≤ 2

∣∣∣∣∣∣
∫
RN

K∑
j=−K

� j (−�)
s
2 f (x) h̄ j (x) dx

∣∣∣∣∣∣ .
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By density of C∞
c (RN ) in L p′

(RN ), there exists h−K , . . . , hK ∈ C∞
c (RN ) such that∥∥∥∥∥∥∥

⎛
⎝ K∑

j=−K

|h j − h̄ j |q ′
⎞
⎠

1
q′

∥∥∥∥∥∥∥
L p′ (RN )

≤ 1

4
.

Consequently, ⎛
⎜⎜⎝

∫
RN

⎛
⎝ K∑

j=−K

|h j (x)|q ′
⎞
⎠

p′
q′

dx

⎞
⎟⎟⎠

1
p′

≤ 5

4
(2.8)

and

[(−�)
s
2 f ]Ḟ0

p,q (RN ) ≤ 2

∣∣∣∣∣∣
∫
RN

K∑
j=−K

� j (−�)
s
2 f (x) h j (x) dx

∣∣∣∣∣∣ + 1

2
[(−�)

s
2 f ]Ḟ0

p,q (RN ),

which implies

[(−�)
s
2 f ]Ḟ0

p,q (RN ) ≤ 4

∣∣∣∣∣∣
∫
RN

K∑
j=−K

� j (−�)
s
2 f (x) h j (x) dx

∣∣∣∣∣∣ .
With an integration by parts (in this case this is just Fubini’s theorem, using also symmetry

(2.2)), ∫
RN

� j (−�)
s
2 f (x)h j (x) dx =

∫
RN

(−�)
s
2 f (x)� j h j (x) dx .

Now we set

h :=
K∑

j=−K

� j h j (x), and g := (−�)−
s
2 h.

Then clearly g ∈ F−1[C∞
c (RN \ {0})] ⊂ S (RN ), and the above shows that

[(−�)
s
2 f ]Ḟ0

p,q
≤ 4

∣∣∣∣
∫
RN

(−�)
s
2 f (x) h(x) dx

∣∣∣∣ = 4

∣∣∣∣
∫
RN

(−�)
s
2 f (x) (−�)

s
2 g(x) dx

∣∣∣∣ .
Furthermore,

[g]Ḟs
p,q

≈ [h]Ḟ0
p,q

≈ max
�=−1,0,1

⎛
⎜⎜⎝

∫
RN

⎛
⎝ K∑

j=−K

|� j+�� j h j (x)|q ′
⎞
⎠

p′
q′

dx

⎞
⎟⎟⎠

1
p′

By Lemma 2.5 and (2.8), we then have [g]Ḟs
p,q

� 1. This completes the proof of this
theorem. ��

We also obtain the inhomogeneous version of Theorem 2.8.

Theorem 2.9 (Inhomogeneous Duality Estimate) Let s ≥ 0, p, q ∈ (1,∞). For any f ∈
S (RN ) there exist g ∈ S (RN ) with Fg supported on {|ξ | ≥ 1/4} such that

[g]Ḟs
p′,q′ ≤ 1
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and

[ f ]Ḟs
p,q (RN ) � [ f ]Ḟ0

p,q (RN ) +
∣∣∣∣
∫
RN

(−�)
s
2 f (x) (−�)

s
2 g(x) dx

∣∣∣∣ .
The constants depend on s, p, q, N, however if for some θ > 0 we have s ∈ [0, θ),

p, q ∈ (1 + 1
θ
, θ), then the constant can be chosen only to depend on θ and N.

Proof We have

[ f ]Ḟs
p,q (RN ) ≤ [ f ]Ḟ0

p,q (RN ) + [ f̃ ]Ḟs
p,q (RN ) where f̃ :=

∑
k≥0

�k f .

Following the proof of Theorem 2.8, one can find g̃ ∈ S (RN ), with F g̃ supported on
{|ξ | ≥ 1/4}, such that [g̃]Ḟs

p′,q′ ≤ 1 and

[ f̃ ]Ḟs
p,q (RN ) �

∣∣∣∣
∫
RN

(−�)
s
2 f̃ (x) (−�)

s
2 g̃(x) dx

∣∣∣∣=
∣∣∣∣∣∣
∫
RN

(−�)
s
2 f (x) (−�)

s
2
∑
k≥0

�k g̃(x) dx

∣∣∣∣∣∣ .

It remains to check that g := ∑
k≥0 �k g̃ satisfies the conclusion of the theorem. ��

3 An easy proof for the estimates for Ẇs,p when p = 2

As a curiosity we give now a simple proof of the equivalence between Ẇ s,2 and Ḟ s
2,2 semi-

norms.

Proposition 3.1 Let s ∈ (0, 1) and f ∈ S (RN ). Then it holds with constants independent
of s and f ,

min{s, (1 − s)} 1
2 [ f ]Ẇ s,2(RN ) ≈ [ f ]Ḟs

2,2(R
N ).

Proof Let f ∈ S (RN ). Then by Lemma 2.6 and Fubini’s theorem,

[ f ]2
Ḟs
2,2(R

N )
≈ [(−�)

s
2 f ]2

Ḟ0,2
2 (RN )

=
∑
j∈Z

∫
RN

(−�)
s
2 � j f (x) (−�)

s
2 � j f (x) dx .

Integrating by parts (via the Fourier transform) we have∫
RN

(−�)
s
2 � j f (x) (−�)

s
2 � j f (x) dx =

∫
RN

(−�)
2s
2 � j f (x)� j f (x) dx .

With the integral characterization of the fractional Laplacian, Lemma 2.2, we have∫
RN

(−�)
2s
2 � j f (x)� j f (x) dx

= cN ,s

∫
RN

∫
RN

(2� j f (x) − � j f (x + z) − � j f (x − z))� j f (x)

|z|N+2s dz dx . (3.1)

We note that by a change of variables x �→ x + z, we have∫
RN

(� j f (x) − � j f (x − z))� j f (x)dx =
∫
RN

(� j f (x + z) − � j f (x))� j f (x + z)dx .

(3.2)
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Hence (3.1) is equal to

cN ,s

∫
RN

∫
RN

|� j f (x + z) − � j f (x)|2
|z|N+2s dx dz = cN ,s

∫
RN

‖� j f (· + z) − � j f (·)‖2L2(RN )

|z|N+2s dz.

We obtain via Lemma 2.4

∑
j∈Z

‖� j f (· + z) − � j f (·)‖2L2(RN )
= ‖ f (· + z) − f (·)‖2L2(RN )

,

from which we deduce

[ f ]Ḟs
2,2(R

N ) ≈
(
cN ,s

∫
RN

‖ f (· + z) − f (·)‖2
L2(RN )

|z|N+2s dz

) 1
2

= c
1
2
N ,s[ f ]Ẇ s,2(RN ).

The proposition then follows from the estimate cN ,s ≈ min{s, (1 − s)} in Lemma 2.2. ��

4 The upper bounds for [f ]Ẇs,p in Theorems 1.2 and 1.5

In this section we prove the upper bounds for [ f ]Ẇ s,p in Theorems 1.2 and 1.5, namely we
show

Theorem 4.1 Let p ∈ (1,∞), s ∈ (0, 1) and f ∈ S (RN ). Then

[ f ]Ẇ s,p(RN ) �
(

1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N ) if 1 < p ≤ 2, (4.1)

[ f ]Ẇ s,p(RN ) �
(

1

s
1
2

+ 1

(1 − s)
1
2

)
[ f ]Ḟs

p,p(R
N ) if 2 ≤ p < ∞, (4.2)

and

[ f ]Ẇ s,p(RN ) �
(

1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,2(R
N ) if 2 ≤ p < ∞. (4.3)

(4.1) and (4.2) have been proven by Gu and the third author in [13], and (4.3) is a slight
adaptation of their argument. We still present it for the sake of completeness.

Below we repeatedly use the following estimate for geometric sums: for 1 < p < ∞,

∑
j≥0

2− jsp = 1

1 − 2−sp
≈ 1

s
for s > 0 (4.4)

and ∑
j≤0

2 jσ p = 1

1 − 2−σ p
≈ 1

σ
for σ > 0. (4.5)

The first step for (4.1), (4.2) and (4.3) is the following estimate.
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Lemma 4.2 Let p ∈ (1,∞) and s ∈ (0, 1). Then

[ f ]Ẇ s,p(RN ) �

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

+
⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≤0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

.

Proof We have

[ f ]Ẇ s,p(RN ) =
(∫

RN

‖ f (· + z) − f (·)‖p
L p(RN )

|z|N+sp
dz

) 1
p

�
(∑
k∈Z

2ksp sup
|z|≈2−k

‖ f (· + z) − f (·)‖p
L p(RN )

) 1
p

.

But for |z| ≈ 2−k , Littlewood-Paley implies

‖ f (· + z) − f (·)‖L p(RN ) �

⎛
⎜⎝

∫
RN

⎛
⎝∑

j∈Z
|�k+ j f (x + z) − �k+ j f (x)|2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

which by the triangle inequality is

�

⎛
⎜⎝

∫
RN

⎛
⎝∑

j≥0

|�k+ j f (x + z) − �k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

+
⎛
⎜⎝

∫
RN

⎛
⎝∑

j<0

|�k+ j f (x + z) − �k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

.

The first term above is bounded by the triangle inequality by

2

⎛
⎜⎝

∫
RN

⎛
⎝∑

j≥0

|�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

.

For the second term, the fundamental theorem of calculus implies

|�k+ j f (x + z) − �k+ j f (x)| � |z|
∫ 1

0
|∇�k+ j f (x + t z)|dt,
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so Minkowski’s inequality implies

⎛
⎜⎝

∫
RN

⎛
⎝∑

j<0

|�k+ j f (x + z) − �k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� |z|
∫ 1

0

⎛
⎜⎝

∫
RN

⎛
⎝∑

j<0

|∇�k+ j f (x + t z)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

dt

which is

≈ 2−k

⎛
⎜⎝

∫
RN

⎛
⎝∑

j<0

|∇�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

�

⎛
⎜⎝

∫
RN

⎛
⎝∑

j<0

|2 j�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

by the Littlewood-Paley inequality again. Altogether, we get

2ksp sup
|z|≈2−k

‖ f (· + z) − f (·)‖p
L p(RN )

�
∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

+
∫
RN

⎛
⎝∑

j<0

|2 j2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

which implies the desired estimate. ��

Now (4.1) is a consequence of Lemma 4.2 and the following proposition.

Proposition 4.3 Let 1 < p ≤ 2. Then

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

s
1
p

[ f ]Ḟs
p,p(R

N ).

and

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(1 − s)
1
p

[ f ]Ḟs
p,p(R

N ).

Proof Since p ∈ (1, 2], we have
∣∣∣∑ j Fj

∣∣∣
p
2 ≤ ∑

j |Fj | p
2 . Thus

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

≤
⎛
⎝∑

k∈Z

∫
RN

∑
j≥0

|2ks�k+ j f (x)|pdx
⎞
⎠

1
p

,
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and we conclude by noting that for s > 0, (4.4) gives∑
k∈Z

∑
j≥0

|2ks�k+ j f (x)|p =
∑
j≥0

2− jsp
∑
k∈Z

|2(k+ j)s�k+ j f (x)|p

≈ 1

s

∑
k∈Z

|2ks�k f (x)|p;

similarly

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

≤
⎛
⎝∑

k∈Z

∫
RN

∑
j<0

|2 j2ks�k+ j f (x)|pdx
⎞
⎠

1
p

,

and we conclude by noting that for s < 1, (4.5) with σ = 1 − s gives∑
k∈Z

∑
j<0

|2 j2ks�k+ j f (x)|p =
∑
j<0

2 j(1−s)p
∑
k∈Z

|2(k+ j)s�k+ j f (x)|p

≈ 1

1 − s

∑
k∈Z

|2ks�k f (x)|p.

��
Next, (4.2) is a consequence Lemma 4.2 and the following

Proposition 4.4 Let 2 ≤ p < ∞. Then

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

s
1
2

[ f ]Ḟs
p,p(R

N )

and ⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(1 − s)
1
2

[ f ]Ḟs
p,p(R

N ).

Proof Since p ≥ 2 we can apply Minkowski inequality for �
p
2 (L

p
2 (RN )) and get

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

≤
⎛
⎝∑

j≥0

(∑
k∈Z

∫
RN

|2ks�k+ j f (x)|pdx
) 2

p
⎞
⎠

1
2

which for s > 0 is equal to

⎛
⎝∑

j≥0

2−2 js

(∑
k∈Z

∫
RN

|2(k+ j)s�k+ j f (x)|pdx
) 2

p
⎞
⎠

1
2

=
⎛
⎝∑

j≥0

2−2 js[ f ]2
Ḟs
p,p

⎞
⎠

1
2

≈ 1

s
1
2

[ f ]Ḟs
p,p

using (4.4) with p = 2. Similarly,

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

≤
⎛
⎝∑

j<0

(∑
k∈Z

∫
RN

∣∣∣2 j2ks�k+ j f (x)
∣∣∣p dx

) 2
p
⎞
⎠

1
2
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which for s < 1 is equal to

⎛
⎝∑

j<0

22 j(1−s)

(∑
k∈Z

∫
RN

|2(k+ j)s�k+ j f (x)|pdx
) 2

p
⎞
⎠

1
2

=
⎛
⎝∑

j<0

22 j(1−s)[ f ]2
Ḟs
p,p

⎞
⎠

1
2

≈ 1

(1 − s)
1
2

[ f ]Ḟs
p,p

using (4.5) with σ = 1 − s and p = 2. ��

Lastly, (4.3) is a consequence of Lemma 4.2 and the following proposition.

Proposition 4.5 Let 2 ≤ p < ∞. Then

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

s
1
p

[ f ]Ḟs
p,2

and

⎛
⎜⎝∑

k∈Z

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(1 − s)
1
p

[ f ]Ḟs
p,2

.

Proof Fix x ∈ R
N . We have for any k ∈ Z

∑
j≥0

|2ks�k+ j f (x)|2 ≤
∑
j≥0

|2(k+ j)s�k+ j f (x)|2 ≤
∑
�∈Z

|2�s�� f (x)|2.

Consequently, since p ≥ 2 we have

∑
k∈Z

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

≤
∑
k∈Z

∑
j≥0

|2ks�k+ j f (x)|2
(∑

�∈Z
|2�s�� f (x)|2

) p
2 −1

which is

=
∑
j≥0

2−2 js
∑
k∈Z

|2(k+ j)s�k+ j f (x)|2
(∑

�∈Z
|2�s�� f (x)|2

) p
2 −1

≈ 1

s

(∑
�∈Z

|2�s�� f (x)|2
) p

2

using (4.4) with p = 2. Integrating this with respect to x gives the first inequality. Similarly,
for any k ∈ Z

∑
j<0

|2 j2ks�k+ j f (x)|2 ≤
∑
j<0

|2(k+ j)s�k+ j f (x)|2 ≤
∑
�∈Z

|2�s�� f (x)|2.
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Consequently, since p ≥ 2 we have

∑
k∈Z

⎛
⎝∑

j<0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

≤
∑
k∈Z

∑
j<0

|2ks�k+ j f (x)|2
(∑

�∈Z
|2�s�� f (x)|2

) p
2 −1

which is

=
∑
j<0

22 j(1−s)
∑
k∈Z

|2(k+ j)s�k+ j f (x)|2
(∑

�∈Z
|2�s�� f (x)|2

) p
2 −1

≈ 1

1 − s

(∑
�∈Z

|2�s�� f (x)|2
) p

2

using (4.5) with σ = 1 − s and p = 2. Integrating this with respect to x gives the second
inequality. ��

5 The upper bound for [f ]Ẇs,p in of Theorem 1.6

In this section we prove the first part of Theorem 1.6, which provides an upper bound for
[ f ]Ẇ s,p in terms of [ f ]Ḟr

p,2
and [ f ]Ḟ t

p,2
when 0 ≤ r < s < t ≤ 1 and 1 < p < ∞. Namely,

we show that for any such r , s, t, p and f ∈ S (RN ),

[ f ]Ẇ s,p(RN ) � 1

(s − r)
1
p

[ f ]Ḟr
p,2(R

N ) + 1

(t − s)
1
p

[ f ]Ḟ t
p,2(R

N ). (1.5)

The constantC dependson p and N only. In viewofLemma4.2, (1.5) is then a consequence
of the following four lemmata.

Lemma 5.1 Let p ∈ (1,∞), 0 ≤ r < s. Then

⎛
⎜⎝∑

k<0

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(s − r)
1
p

[ f ]Ḟr
p,2(R

N ).

Proof We have for any 0 ≤ r < s

∑
k<0

⎛
⎝∑

j≥0

∣∣∣2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

≤
∑
k<0

⎛
⎝∑

j≥0

∣∣∣2 jr2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

=
∑
k<0

2k(s−r)p

⎛
⎝∑

j<0

∣∣∣2(k+ j)r�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

.

We extend the sum over j to all integers, and use (4.5) with s − r in place of σ to evaluate
the sum over k. This gives

∑
k<0

⎛
⎝∑

j≥0

∣∣∣2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

� 1

s − r

(∑
�∈Z

∣∣∣2�r�� f (x)
∣∣∣2

) p
2

,
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which gives the conclusion of the lemma upon integrating in x . ��
Lemma 5.2 Let p ∈ (1,∞) and s < t ≤ 1. Then

⎛
⎜⎝∑

k≥0

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(t − s)
1
p

[ f ]Ḟ t
p,2(R

N ).

Proof We have for any s < t ≤ 1

∑
k≥0

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

≤
∑
k≥0

⎛
⎝∑

j<0

∣∣∣2 j t2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

=
∑
k≥0

2−k(t−s)p

⎛
⎝∑

j<0

∣∣∣2(k+ j)t�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

.

We extend the sum over j to all integers, and use (4.4) with t − s in place of s to evaluate
the sum over k. This gives

∑
k≥0

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

� 1

t − s

(∑
�∈Z

∣∣∣2�t�� f (x)
∣∣∣2

) p
2

,

which gives the conclusion of the lemma upon integrating in x . ��
Lemma 5.3 Let p ∈ (1,∞), r < s and r ≤ 1. Then

⎛
⎜⎝∑

k≤0

∫
RN

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(s − r)
1
p

[ f ]Ḟr
p,2(R

N ).

Proof We have for any r ≤ 1 and s > r

∑
k≤0

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

≤
∑
k≤0

⎛
⎝∑

j<0

∣∣∣2 jr2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

=
∑
k≤0

2k(s−r)p

⎛
⎝∑

j<0

∣∣∣2(k+ j)r�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

.

We extend the sum over j to all integers, and use (4.5) with s − r in place of σ to evaluate
the sum over k. This gives

∑
k≤0

⎛
⎝∑

j<0

∣∣∣2 j2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

� 1

s − r

(∑
�∈Z

∣∣∣2�r�� f (x)
∣∣∣2

) p
2

,

which gives the conclusion of the lemma upon integrating in x . ��
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Lemma 5.4 Let p ∈ (1,∞), s < t and t ≥ 0. Then

⎛
⎜⎝∑

k≥0

∫
RN

⎛
⎝∑

j≥0

|2ks�k+ j f (x)|2
⎞
⎠

p
2

dx

⎞
⎟⎠

1
p

� 1

(t − s)
1
p

[ f ]Ḟ t,p
2 (RN )

.

Proof We have for any t ≥ 0 and s < t

∑
k≥0

⎛
⎝∑

j≥0

∣∣∣2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

≤
∑
k≥0

⎛
⎝∑

j≥0

∣∣∣2 j t2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

=
∑
k≥0

2−k(t−s)p

⎛
⎝∑

j<0

∣∣∣2(k+ j)t�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

.

We extend the sum over j to all integers, and use (4.4) with t − s in place of s to evaluate
the sum over k. This gives

∑
k≥0

⎛
⎝∑

j≥0

∣∣∣2ks�k+ j f (x)
∣∣∣2

⎞
⎠

p
2

� 1

t − s

(∑
�∈Z

∣∣∣2�t�� f (x)
∣∣∣2

) p
2

,

which gives the conclusion of the lemma upon integrating in x . ��

6 The lower bounds for [f ]Ẇs,p : proof via duality

We obtain the lower bounds for [ f ]Ẇ s,p in Theorem 1.2, Theorem 1.5 and Theorem 1.6 from
the corresponding upper bounds by a duality argument, and using the integral representation
of the fractional Laplacian, adapting the proof of Proposition 3.1.

Our main ingredient is the following duality estimate.

Proposition 6.1 Let p, q ∈ (1,∞), s ∈ (0, 1). Let t1, t2 > 0, such that t1 + t2 = 2s. Let
p1, p2 ∈ (1,∞), such that 1

p1
+ 1

p2
= 1. Then for any f ∈ S (RN ) we have

[ f ]Ḟs
p,q (RN ) � min{s, (1 − s)} [ f ]Ẇ t1,p1 (RN ) sup

[g]Ḟs
p′,q′ ≤1

[g]Ẇ t2,p2 (RN ),

where the supremumon the right-hand side is over Schwartz functions g∈F−1(C∞
c (RN\{0})).

We also have

[ f ]Ḟs
p,q (RN ) � [ f ]Ḟ0

p,q (RN ) + min{s, (1 − s)} [ f ]Ẇ t1,p1 (RN ) sup
[g]Ḟs

p′,q′ ≤1

suppFg⊂{|ξ |≥1/4}

[g]Ẇ t2,p2 (RN )

where this time the supremum on the right-hand side is over Schwartz functions g with the
indicated constraints.

Proof By duality, Theorem 2.8, for any f ∈ S (RN ) there exists g ∈ F−1(C∞
c (RN\{0}))

with [g]Ḟs
p′,q′ ≤ 1 and

[ f ]Ḟs
p,q (RN ) �

∣∣∣∣
∫
RN

(−�)
s
2 f (x)(−�)

s
2 g(x) dx

∣∣∣∣ . (6.1)
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Integrating by parts the operator (−�)
s
2 (this can be done via Fourier transform and

Plancherel, since f , g ∈ S (RN )) we find for a constantCF depending on the precise choice
of Fourier transform∫

RN
(−�)

s
2 f (−�)

s
2 g =CF

∫
RN

|ξ |sF f (ξ) |ξ |sFg(−ξ) dξ

=CF
∫
RN

|ξ |2sF f (ξ)Fg(−ξ) dξ =
∫
RN

(−�)s f g.

From Lemma 2.2 and symmetry arguments we then find with a constant cN ,s such that
cN ,s ≈ min{s, 1 − s} and

∫
RN

(−�)
s
2 f (−�)

s
2 g = cN ,s

∫
RN

∫
RN

(2 f (x) − f (x + z) − f (x − z))g(x)

|z|N+2s dzdx

Now since f , g ∈ S (RN ) and 2s ∈ (0, 2), we may apply Fubini’s theorem to interchange
the z and the x integral, and use a similar change of variable as in (3.2). Then∫

RN
(−�)

s
2 f (−�)

s
2 g = cN ,s

∫
RN

∫
RN

( f (x + z) − f (x))(g(x + z) − g(x))

|z|N+2s dxdz.

Hence using the bound for cN ,s , and writing N + 2s = N
p1

+ t1 + N
p2

+ t2, we obtain

[ f ]Ḟs
p,p

� min{s, (1 − s)}
∣∣∣∣∣
∫
RN

∫
RN

( f (x + z) − f (x))

|z| N
p1

+t1

(g(x + z) − g(x))

|z| N
p2

+t2
dxdz

∣∣∣∣∣ .
Applying twice the integral Hölder inequality yields

[ f ]Ḟs
p,p(R

N ) � min{s, (1 − s)}[ f ]Ẇ t1,p1 (RN ) [g]Ẇ t2,p2 (RN ).

This concludes the proof of the first inequality.
The proof of the second inequality is very similar. Instead of Theorem 2.8 we use Theo-

rem 2.9 and obtain instead of (6.1)

[ f ]Ḟs
p,q

� [ f ]Ḟ0
p,q (RN ) +

∣∣∣∣
∫
RN

(−�)
s
2 f (x) (−�)

s
2 g(x) dx

∣∣∣∣ ,
where this time we have g ∈ S (RN ), Fg supported on {|ξ | ≥ 1/4}, and [g]Ḟs

p′,q′ (RN ) ≤ 1.

The remaining arguments are the same. ��
With Proposition 6.1 we obtain the lower bound of (1.2).

Proposition 6.2 Let p ∈ [2,∞), s ∈ (0, 1) and f ∈ S (RN ). Then(
1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,p(R
N ) � [ f ]Ẇ s,p(RN ).

Proof Since p ∈ [2,∞), we have p′ = p
p−1 ∈ (1, 2]. So from the upper bound (1.1) for

g ∈ S (RN ) we have

[g]Ẇ s,p′ (RN )
�

(
1

s
1
p′

+ 1

(1 − s)
1
p′

)
[g]Ḟs

p′,p′ (R
N ).
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From Proposition 6.1, we thus obtain

[ f ]Ḟs
p,p(R

N ) � min{s, (1 − s)}
(

1

s
1
p′

+ 1

(1 − s)
1
p′

)
[ f ]Ẇ s,p(RN ).

Now we can conclude since for any s ∈ (0, 1)

(
min{s, (1 − s)}

(
1

s
1
p′

+ 1

(1 − s)
1
p′

))−1

≈ min{s, (1 − s)}− 1
p ≈

(
1

s
1
p

+ 1

(1 − s)
1
p

)

(6.2)
��

We also obtain the lower bound of (1.1):

Proposition 6.3 Let p ∈ (1, 2], s ∈ (0, 1) and f ∈ S (RN ). Then
(

1

s
1
2

+ 1

(1 − s)
1
2

)
[ f ]Ḟs

p,p(R
N ) ≤ C[ f ]Ẇ s,p(RN )

Proof Since p ∈ (1, 2], we have p′ = p
p−1 ∈ [2,∞). So from the upper bound of (1.2) for

g ∈ S (RN ) we have

[g]Ẇ s,p′ (RN )
�

(
1

s
1
2

+ 1

(1 − s)
1
2

)
[g]Ḟs

p′,p′ (R
N ).

From Proposition 6.1, we thus obtain

[ f ]Ḟs
p,p(R

N ) � min{s, (1 − s)}
(

1

s
1
2

+ 1

(1 − s)
1
2

)
[ f ]Ẇ s,p(RN ).

Now we can conclude since for any s ∈ (0, 1)

(
min{s, (1 − s)}

(
1

s
1
2

+ 1

(1 − s)
1
2

))−1

≈ min{s, (1 − s)}− 1
2 ≈

(
1

s
1
2

+ 1

(1 − s)
1
2

)
.

��

Next is the proof of (1.3).

Proposition 6.4 Let p ∈ (1, 2], s ∈ (0, 1) and f ∈ S (RN ). Then
(

1

s
1
p

+ 1

(1 − s)
1
p

)
[ f ]Ḟs

p,2(R
N ) � [ f ]Ẇ s,p(RN ).

Proof Since p ∈ (1, 2], we have p′ ∈ [2,∞). So from the upper bound (1.4) for g ∈ S (RN )

we have

[g]Ẇ s,p′ (RN )
�

(
1

s
1
p′

+ 1

(1 − s)
1
p′

)
[g]Ḟs

p′,2(R
N ).
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From Proposition 6.1, we thus obtain

[ f ]Ḟs
p,2(R

N ) � min{s, (1 − s)}
(

1

s
1
p′

+ 1

(1 − s)
1
p′

)
[ f ]Ẇ s,p(RN )

We conclude by using (6.2). ��

The lower bound of Theorem 1.6 is contained in the following statement:

Proposition 6.5 Let� > 1 such that (1−s) ≤ 1
2� . Let r̄ ∈ (0, s) such that (1−r̄) = �(1−s).

Let r ∈ [0, r̄ ]. Then

[ f ]Ḟr
p,2(R

N ) �
(
‖ f ‖L p(RN ) + (1 − s)

1
p [ f ]Ẇ s,p(RN )

)
.

Proof Since for r ∈ [0, r̄ ],
[ f ]Ḟr

p,2
≤ [ f ]Ḟ0

p,2
+ [ f ]Ḟ r̄

p,2
� ‖ f ‖L p + [ f ]Ḟ r̄

p,2

it suffices to prove the proposition when r = r̄ . From Proposition 6.1 we have

[ f ]Ḟ r̄
p,2(R

N ) � ‖ f ‖L p(RN ) + min{r̄ , (1 − r̄)}[ f ]Ẇ s,p(RN ) sup
[g]

Ḟr̄
p′,2

≤1

suppFg⊂{|ξ |≥1/4}

[g]Ẇ 2r̄−s,p′ (RN )
.

Now from (1.5), since 1
2 s < r̄ < s, which implies 0 < 2r̄ − s < r̄ , we find for any

g ∈ S (RN ) with Fg supported in {|ξ | ≥ 1/4},

[g]Ẇ 2r̄−s,p′ (RN )
� 1

(2r̄ − s)
1
p

[g]Ḟ0
p′,2(R

N ) + 1

(s − r̄)
1
p

[g]Ḟ r̄
p′,2(R

N )

≤
(

1

(2r̄ − s)
1
p′

+ 1

(s − r̄)
1
p′

)
[g]Ḟ r̄

p′,2(R
N ).

Here the support condition on Fg guarantees that [g]Ḟ0
p′,2

� [g]Ḟ r̄
p′,2

. So we arrive at

[ f ]Ḟ r̄
p,2(R

N ) � ‖ f ‖L p(RN ) + min{r̄ , (1 − r̄)}
(

1

(2r̄ − s)
1
p′

+ 1

(s − r̄)
1
p′

)
[ f ]Ẇ s,p(RN )

Now we have

min{r̄ , (1−r̄)}�(1 − s), s−r̄ =(�−1)(1−s) and 2r̄−s=2−2�(1−s)−s ≥ 1 − s.

So

min{r̄ , (1 − r̄)}
(

1

(2r̄ − s)
1
p′

+ 1

(s − r̄)
1
p′

)
� 1 − s

(1 − s)
1
p′

= (1 − s)
1
p .

This establishes the claim of the proposition. ��
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7 Strong convergence as s → 1: Proof of Corollary 1.9

Proof of Corollary 1.9 Let p ∈ (1,∞), assume that fk ∈ S (RN ) such that

fk⇀ f weakly in L p(RN ) as k → ∞.

Let (sk)k∈N ⊂ (0, 1) such that sk ↑ 1 and assume that

� := sup
k

(
‖ fk‖L p(RN ) + (1 − sk)

1
p [ fk]Ẇ sk ,p(RN )

)
< ∞. (1.8)

First we claim that

lim sup
k→∞

‖ fk‖L p(RN ) + [ fk]Ḟr
p,2(R

N ) � � ∀r ∈ (0, 1). (7.1)

with constant independent of r . If p ≤ 2 this follows easily from (1.3), but the following
proof, using (1.6) instead, works for all p ∈ (1,∞). Up to removing finitely many sequence
elements, we may assume that (1 − sk) < 1

4 for all k ∈ N. From (1.6) we have for any
r < 1 − 2(1 − sk),

[ fk]Ḟr
p,2(R

N ) ≤ C
(
‖ fk‖L p(RN ) + (1 − sk)

1
p [ fk]Ẇ sk ,p(RN )

)
≤ C �.

Since sk
k→∞−−−→ 1, this proves (7.1).

In view of Lemma 2.7 we deduce from (7.1) that f ∈ L p(RN ) and [ f ]Ḟ1
p,2(R

N ) < ∞
with

‖ f ‖L p(RN ) + [ f ]Ḟ1
p,2(R

N ) � �.

In view of Lemma 2.4, we conclude that f ∈ H1,p(RN ) and

‖ f ‖L p(RN ) + ‖∇ f ‖L p(RN ) � �.

The locally strong convergence of fk → f in Ht,p for any t ∈ (0, 1) follows from
Rellich’s Theorem. More precisely, fix 0 < t < r < 1 and a ball B(0, R) for some R > 0.
Denote by η ∈ C∞

c (B(0, 2R)), η ≡ 1 in B(0, R) any usual bump function. We then have by
(7.1)

sup
k∈N

‖η fk‖L p(RN )+‖(−�)
r
2 (η fk)‖L p(RN ) � sup

k∈N
‖ fk‖L p(RN )+‖(−�)

r
2 fk‖L p(RN ) ��<∞.

Here we have used the Coifman–McIntosh–Meyer commutator estimate for

[η, (−�)
t̃
2 ](g) := η(−�)

t̃
2 g − (−�)

t̃
2 (ηg),

which implies that for any t̃ ∈ (0, 1)

‖[η, (−�)
t̃
2 ](g)‖L p(RN ) �

(‖η‖L∞ + [η]Lip
) ‖g‖L p(RN ).

For an overview of these commutator estimates see, e.g., [16].
Then, η fk has uniformly compact support and is uniformly bounded in Hr ,p(RN ) and

thus, up to taking a subsequence, converges strongly in Ht,p(RN ) (this can be either proven
via the usual Rellich–Kondrachov argument, or by interpolation theory). That is, after passing
to a subsequence (which we denote by fnk )

lim
k→∞ ‖η fnk − η f ‖L p(RN ) + ‖(−�)

t
2 (η fnk − η f )‖L p(RN ) = 0. (7.2)
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Repeating this argument for different balls B(0, 
R) (extracting subsequence again if
necessary) we obtain that

lim
k→∞ ‖ fnk − f ‖L p(B(0,
R)) = 0 ∀
 > 0. (7.3)

Now we have

‖(−�)
t
2 fnk − (−�)

t
2 f ‖L p(B(0,R))

≤ ‖η(−�)
t
2 ( fnk − f )‖L p(B(0,R))

≤ ‖(−�)
t
2 (η fnk − η f )‖L p(B(0,R)) + ‖[η, (−�)

t
2 ]( fnk − f )‖L p(B(0,R))

≤ ‖(−�)
t
2 (η fnk − η f )‖L p(B(0,R)) + ‖[η, (−�)

t
2 ](χB(0,
R) fnk − χB(0,
R) f )‖L p(B(0,R))

+
∥∥∥[η, (−�)

t
2 ](χB(0,
R)c fnk − χB(0,
R)c f )

∥∥∥
L p(B(0,R))

.

By (7.2) we have

lim
k→∞ ‖(−�)

t
2 (η fnk − η f )‖L p(B(0,R)) = 0.

By the Coifman–McIntosh–Meyer estimate and then (7.3) we have

lim
k→∞ ‖[η, (−�)

t
2 ](χB(0,
R) fnk − χB(0,
R) f )‖L p(B(0,R))

≤ C(η) lim
k→∞ ‖ fnk − f ‖L p(B(0,
R) = 0.

Lastly, observe that since ηχB(0,
R)c ≡ 0,∥∥∥[η, (−�)
t
2 ](χB(0,
R)c fnk − χB(0,
R)c f )

∥∥∥
L p(B(0,R))

≤
∥∥∥(−�)

t
2
(
χB(0,
R)c ( fnk − f )

)∥∥∥
L p(B(0,R))

.

for t ∈ (0, 1), 
 > 2, and x ∈ B(0, R) from the integral representation of the fractional
Laplacian (−�)

t
2 we find

|(−�)
t
2
(
χB(0,
R)c ( fnk − f )

)
(x)| ≤ C(t)

∫
B(0,
R)c

| fnk (y) − f (y)|
|x − y|N+t

dy

� (
R)
−t− N

p ‖ fnk − f ‖L p(RN )

Consequently, for any 
 > 2,

lim
k→∞

∥∥∥[η, (−�)
t
2 ](χB(0,
R)c fnk − χB(0,
R)c f )

∥∥∥
L p(B(0,R))

� R−t

−t− N

p �.

We conclude that for any 
 > 2,

lim
k→∞ ‖(−�)

t
2 fnk − (−�)

t
2 f ‖L p(B(0,R)) � R−t


−t− N
p �.

Taking 
 → ∞ we conclude

lim
k→∞ ‖(−�)

t
2 fnk − (−�)

t
2 f ‖L p(B(0,R)) = 0.

This holds for any R > 0 and thus in particular for any compact set K ⊂ R
N

lim
k→∞ ‖(−�)

t
2 fnk − (−�)

t
2 f ‖L p(K ) = 0.
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Since the weak limit f is unique, we can apply this argument to any subsequence of
( fk)k∈N, and find that actually

lim
k→∞ ‖(−�)

t
2 fk − (−�)

t
2 f ‖L p(K ) = 0.

This implies (1.9). As for (1.10), from Sobolev embedding one finds that for any 0 < t̃ < t
and K̃ ⊂ K both compact with dist (K̃ , ∂K ) > 0 we have

[ fk − f ]Ẇ t̃,p(K̃ )
≤ C(t, t̃, p, K , K̃ , N )

(
‖(−�)

t
2 ( fk − f )‖L p(K ) + ‖ fk − f ‖L p(K )

)
.

So we conclude (1.10) as well. ��
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Appendix A. Proof of the BBM formula on R
N

For the convenience of the reader we give here the proof of the following BBM formula on
R

N :

Theorem A.1 For 1 < p < ∞ and f ∈ L p(RN ), one has

‖∇ f ‖L p(RN ) =
(

p

k(p, N )

)1/p

lim
s→1−(1 − s)

1
p [ f ]Ẇ s,p(RN ) (A.1)

in the sense that the left hand side of the equality is finite if and only if the right hand side
is finite, in which case the two sides are equal. In fact, we have f ∈ H1,p(RN ) as long as

lim infs→1−(1 − s)
1
p [ f ]Ẇ s,p(RN ) < ∞.

Proof Step 1. First, we establish (A.1) for f ∈ C1∩H1,p(RN ). Let R ≥ 100 and s ∈ [ 12 , 1).
Then ∣∣∣(1 − s)

1
p [ f ]Ẇ s,p(RN ) − (1 − s)

1
p [ f ]Ẇ s,p(B(R))

∣∣∣
� (1 − s)

1
p

(∫
RN \B(R)

∫
RN

| f (x) − f (y)|p
|x − y|N+sp

dx dy

) 1
p

� (1 − s)
1
p

(∫
RN \B(R)

∫
|x−y|≤ 1

4 R

| f (x) − f (y)|p
|x − y|N+sp

dx dy

) 1
p

+ (1 − s)
1
p

(∫
RN \B(R)

∫
|x−y|≥ 1

4 R

| f (x)|p + | f (y)|p
|x − y|N+sp

dx dy

) 1
p

.

We observe for the second term

(1−s)
1
p

(∫
RN \B(R)

∫
|x−y|≥1

4 R

| f (x)|p + | f (y)|p
|x − y|N+sp

dx dy

) 1
p

�
(

(1 − s)

s

) 1
p

R−s‖ f ‖L p(RN ).

123



41 Page 30 of 33 D. Brazke et al.

For the first term, we use

| f (x) − f (y)| � |x − y| (M2|x−y||∇ f (x)| + M2|x−y||∇ f (y)|) ,

where

Mr g(x) := sup
σ∈(0,r)

∫
B(x,σ )

|g(z)| dz

is the centered maximal function, cf. [3, 14]. Then we have

(1 − s)
1
p

(∫
RN \B(R)

∫
|x−y|≤ 1

4 R

| f (x) − f (y)|p
|x − y|N+sp

dx dy

) 1
p

� (1 − s)
1
p

(∫
RN \B(3R/4)

(MR/2|∇ f (z)|)p dz
∫

|w|≤R

1

|w|N+(s−1)p
dw

) 1
p

� R1−s
(∫

RN \B(R/4)
|∇ f (z)|pdz

) 1
p

In the last stepwe used themaximal theorem.That is, we have shown that for any s ∈ [ 12 , 1)∣∣∣(1 − s)
1
p [ f ]Ẇ s,p(RN ) − (1 − s)

1
p [ f ]Ẇ s,p(B(R))

∣∣∣
� R1−s‖∇ f ‖L p(RN \B(R/4)) + (1 − s)

1
p R−s‖ f ‖L p(RN ). (7.2)

Now we can conclude from the local case in [4]; recall that in [4, Corollary 2] it is proven
that for any R > 0

‖∇ f ‖L p(B(R)) =
(

p

k(p, N )

)1/p

lim
s→1−(1 − s)

1
p [ f ]Ẇ s,p(B(R)), (7.3)

where k(p, N ) := ∫
SN−1 |e · ω|pdω and e is any unit vector in R

N . Fix ε > 0. Since
∇ f ∈ L p(RN ) there must be a large radius R > 0 such that

‖∇ f ‖L p(RN \B(R/4)) < ε. (7.4)

Then ∣∣∣∣∣
(

p

k(p, N )

)1/p

(1 − s)
1
p [ f ]Ẇ s,p(RN ) − ‖∇ f ‖L p(RN )

∣∣∣∣∣
≤ ε +

∣∣∣∣∣
(

p

k(p, N )

)1/p

(1 − s)
1
p [ f ]Ẇ s,p(RN ) − ‖∇ f ‖L p(B(R))

∣∣∣∣∣
� ε + R1−s‖∇ f ‖L p(RN \B(R/4)) + (1 − s)

1
p R−s‖ f ‖L p(RN )

+
∣∣∣∣∣
(

p

k(p, N )

)1/p

(1 − s)
1
p [ f ]Ẇ s,p(B(R)) − ‖∇ f ‖L p(B(R))

∣∣∣∣∣
≤ (R1−s + 1)ε + (1 − s)

1
p R−s‖ f ‖L p(RN )

+
∣∣∣∣∣
(

p

k(p, N )

)1/p

(1 − s)
1
p [ f ]Ẇ s,p(B(R)) − ‖∇ f ‖L p(B(R))

∣∣∣∣∣
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where the first and the third inequality follows from (7.4) and the second inequality follows
from (7.2). Since R is fixed once ε is fixed, we may let s → 1− and use (7.3). This shows

lim sup
s→1−

∣∣∣∣∣
(

p

k(p, N )

)1/p

(1 − s)
1
p [ f ]Ẇ s,p(RN ) − ‖∇ f ‖L p(RN )

∣∣∣∣∣ � ε,

but since ε > 0 is arbitrary, this proves
(

p

k(p, N )

)1/p

lim
s→1−(1 − s)

1
p [ f ]Ẇ s,p(RN ) = ‖∇ f ‖L p(RN ).

Step 2. Next, assume f ∈ H1,p(RN ). We show that

lim sup
s→1−

(1 − s)1/p[ f ]Ẇ s,p(RN ) ≤
(
k(p, N )

p

)1/p

‖∇ f ‖L p(RN ). (7.5)

We first observe that for f ∈ H1,p(RN ) and s ∈ [1/2, 1),

[ f ]Ẇ s,p(RN ) =
(∫

RN

∫
RN

| f (x + h) − f (x)|p
|h|N+sp

dxdh

)1/p

≤
(∫

|h|≤1

∫
RN

| f (x + h) − f (x)|p
|h|p dx

|h|(1−s)p

|h|N dh

)1/p

+
(∫

|h|>1

∫
RN

(| f (x + h)|p + | f (x)|p)dx 1

|h|N+sp
dh

)1/p

.

We appeal to the facts that∫
RN

| f (x + h) − f (x)|pdx ≤ |h|p‖∇ f ‖p
L p(RN )

(see [6, Proposition 9.3]) and that
∫
RN | f (x + h)|p + | f (x)|pdx = 2‖ f ‖p

L p(RN )
. Thus

[ f ]Ẇ s,p(RN ) �
(∫

|h|≤1

|h|(1−s)p

|h|N dh

)1/p

‖∇ f ‖L p(RN ) +
(∫

|h|>1

1

|h|N+sp
dh

)1/p

‖ f ‖L p(RN )

� 1

(1 − s)1/p
‖∇ f ‖L p(RN ) + 1

s1/p
‖ f ‖L p(RN )

which implies
sup

1/2≤s<1
(1 − s)1/p[ f ]Ẇ s,p(RN ) ≤ C‖ f ‖H1,p(RN ) (7.6)

for some constant C = Cp,N , whenever f ∈ H1,p(RN ) (note that (7.6) strengthens the
second conclusion of Corollary 1.7 by weakening the hypothesis on f from f ∈ S (RN )

to f ∈ H1,p(RN )). To proceed further, for any ε > 0, pick g ∈ C1 ∩ H1,p(RN ) so that
‖ f − g‖H1,p(RN ) < ε. Then

(1 − s)1/p[ f ]Ẇ s,p(RN ) ≤ (1 − s)1/p[g]Ẇ s,p(RN ) + (1 − s)1/p[ f − g]Ẇ s,p(RN )

≤ (1 − s)1/p[g]Ẇ s,p(RN ) + Cε,

where in the last inequality we applied (7.6) to f − g ∈ H1,p(RN ) in place of f . Now recall
(A.1) has already been proved for g ∈ C1 ∩ H1,p(RN ). As a result, letting s → 1−, we
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obtain

lim sup
s→1−

(1 − s)1/p[ f ]Ẇ s,p(RN ) ≤
(
k(p, N )

p

)1/p

‖∇g‖L p(RN ) + ε

≤
(
k(p, N )

p

)1/p

(‖∇ f ‖L p(RN ) + ε) + Cε.

Since ε > 0 is arbitrary, (7.5) follows.
Step 3. Finally, assume f ∈ L p(RN ) and

A := lim inf
s→1− (1 − s)1/p[ f ]Ẇ s,p(RN ) < ∞.

It is known that then f ∈ H1,p(RN ) and

‖∇ f ‖L p(RN ) ≤
(

p

k(p, N )

)1/p

A. (7.7)

In fact, then for every bounded smooth domain � ⊂ R
N , we have

lim inf
s→1− (1 − s)1/p[ f ]Ẇ s,p(�) ≤ A < ∞,

so [4, Theorem 2] (and its proof) shows that f ∈ H1,p(�) with

‖∇ f ‖L p(�) ≤
(

p

k(p, N )

)1/p

A.

Since � is an arbitrary bounded smooth domain in R
N , this shows f ∈ H1,p(RN ) and

that (7.7) holds.

Appendix B. Proof of Corollary 1.3

Proof of Corollary 1.3 Let 0 < s ≤ t < 1 and f ∈ S (RN ). From Theorem 1.2 we have

min{s, (1 − s)} 1
2 [ f ]Ẇ s,2(RN ) � [ f ]Ḟs

2,2

and

[ f ]Ḟ t
2,2

� min{t, (1 − t)} 1
2 [ f ]Ẇ t,2(RN ).

The result now follows from the inequality [ f ]Ḟs
2,2

� ‖ f ‖L2 +[ f ]Ḟ t
2,2

when 0 ≤ s ≤ t . ��
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