
Whisper: Profile-Guided Branch Misprediction
Elimination for Data Center Applications

Tanvir Ahmed Khan∗ Muhammed Ugur∗ Krishnendra Nathella† Dam Sunwoo† Heiner Litz‡

Daniel A. Jiménez§ Baris Kasikci∗
∗University of Michigan †ARM ‡University of California, Santa Cruz §Texas A&M University

∗{takh, meugur, barisk}@umich.edu †{Krishnendra.Nathella, Dam.Sunwoo}@arm.com ‡hlitz@ucsc.edu
§djimenez@acm.org

Abstract—Modern data center applications experience frequent
branch mispredictions – degrading performance, increasing cost,
and reducing energy efficiency in data centers. Even the state-of-
the-art branch predictor, TAGE-SC-L, suffers from an average
branch Mispredictions Per Kilo Instructions (branch-MPKI) of
3.0 (0.5-7.2) for these applications since their large code footprints
exhaust TAGE-SC-L’s intended capacity.

In this work, we propose Whisper, a novel profile-guided
mechanism to avoid branch mispredictions. Whisper investigates
the in-production profile of data center applications to identify
precise program contexts that lead to branch mispredictions.
Corresponding prediction hints are then inserted into code
to strategically avoid those mispredictions during program
execution. Whisper presents three novel profile-guided techniques:
(1) hashed history correlation which efficiently encodes hard-to-
predict correlations in branch history using lightweight Boolean
formulas, (2) randomized formula testing which selects a locally-
optimal Boolean formula from a randomly selected subset of
possible formulas to predict a branch, and (3) the extension of
Read-Once Monotone Boolean Formulas with Implication and
Converse Non-Implication to improve the branch history coverage
of these formulas with minimal overhead.

We evaluate Whisper on 12 widely-used data center applica-
tions and demonstrate that Whisper enables traditional branch
predictors to achieve a speedup close to that of an ideal branch
predictor. Specifically, Whisper achieves an average speedup of
2.8% (0.4%-4.6%) by reducing 16.8% (1.7%-32.4%) of branch
mispredictions over TAGE-SC-L and outperforms the state-of-
the-art profile-guided branch prediction mechanisms by 7.9% on
average.

I. INTRODUCTION

Modern data center applications exhibit large instruction
footprints and suffer from frequent frontend and misprediction1

stalls, incurring performance losses worth millions of dollars [1,
2, 3, 4, 5, 6, 7]. These applications contain complex application
logic [1, 2, 3] and frequently use different libraries [6], language
runtimes [8, 9], and kernel modules [3, 10]. As a result, these
applications’ hot code footprints range from tens to hundreds
of megabytes [1, 3, 6, 11] which overwhelm on-chip cache
structures like the Instruction cache (I-cache), Branch Target
Buffer (BTB), and the branch predictor, whose sizes are only
hundreds of kilobytes [5]. Consequently, processors are unable
to sufficiently fetch useful instructions [3] when executing
modern data center applications – leading to frequent frontend
and misprediction stalls [5]. These stalls notably increase the

1we use ‘branch misprediction’ and ‘misprediction’ interchangeably

Total Cost of Ownership (TCO) of a data center [3, 6], and
even a single-digit reduction of these stalls can save millions
of dollars in management and energy costs while significantly
reducing the global carbon footprint [4].

Several techniques have been proposed to address these
challenges including decoupled frontends [12] leveraging Fetch
Directed Instruction Prefetching (FDIP) [13, 14, 15] and Profile-
Guided Optimizations (PGO) [11, 16, 17, 18, 19, 20, 21] that are
efficiently supported by today’s hardware [22, 23, 24, 25, 26]
and software [1, 3, 17, 27, 28] systems.

On the hardware side, FDIP avoids the tight coupling
between branch prediction and instruction fetch, enabling
branch predictor-guided instruction prefetching to avoid fron-
tend stalls. As long as FDIP can run sufficiently ahead, it
can eliminate frontend stalls effectively. Thereby, FDIP’s
performance depends on the accuracy of the branch predictor, as
frequent mispredictions limit FDIP’s effectiveness in mitigating
frontend stalls [29, 30, 31, 32].

Profile-guided code layout optimizations address the large
instruction footprint problem by placing frequently executed
I-cache lines together, thereby improving instruction locality.
These techniques do not require any hardware modifications,
and although these techniques are sensitive to profile qual-
ity [33], they work well in practice. Profiles for data center
applications change slowly over several weeks [17] while
companies like Google and Facebook deploy new binaries every
few days – giving PGO techniques ample opportunity to adapt
to changing profiles [1, 11, 17]. As a result, these techniques
are widely-used in today’s data centers [1, 3, 11, 17, 27]. For
example, half of all CPU cycles in Google data centers execute
instructions from PGO-optimized applications [17]. Unfortu-
nately, existing PGO techniques primarily reduce frontend stalls
and eliminate less than 10% of all branch mispredictions [11].

To quantify the performance implications of branch mis-
predictions, we extensively investigate the behavior of 12
modern data center applications to show that their large code
footprints trigger frequent branch mispredictions, significantly
impeding the efficacy of state-of-the-art techniques. In partic-
ular, we find that even a 64KB TAGE-SC-L [34] predictor
experiences an average branch-MPKI of 3.0 (0.5-7.2) for these
applications primarily due to capacity reasons. Furthermore,
our investigation reveals that state-of-the-art profile-guided
branch prediction mechanisms, BranchNet [35] and Read-Once

Monotone Boolean Formulas (ROMBF) [36] reduce only 8.9%
of all branch mispredictions that TAGE-SC-L incurs as they
also fail to scale for large code footprints.

In this work, we focus on eliminating branch mispredictions
with Whisper—a profile-guided technique that identifies branch
instructions causing frequent mispredictions, correlates their
direction with many prior branch directions (i.e., history), and
efficiently encodes this correlation using Boolean formulas.
In particular, Whisper introduces three novel techniques to
improve profile-guided branch prediction and reduces 16.8% of
all mispredictions by leveraging (1) hashed history correlation,
(2) randomized Boolean formula testing, and (3) an extension
of ROMBF [36] with Boolean Implication and Converse Non-
Implication operations.
Hashed history correlation. Prior profile-guided techniques
either consider extremely long histories requiring kilobytes
of metadata storage per static branch [35], or utilize short
(typically 4 or 8) fixed-length histories that fail to predict
many branches accurately [36]. To consider long histories
without incurring metadata overhead, we propose hashed history
correlation that correlates branch outcomes with a hash of
variable-length histories in a profile-guided manner. To find the
best history length for predicting a branch, Whisper considers
different lengths from a geometric series and picks the length
that shows the strongest correlation. Whisper converts histories
of that length into a fixed-length (8-bit) hashed history and
efficiently encodes this hashed history using Boolean formulas.
Randomized formula testing. Determining the optimal
boolean formula for predicting the branch outcome based on an
N-bit history, requires exploring a search space of size 22N

. To
address this challenge, Whisper proposes randomized formula
testing, a technique that only considers a random, yet uniform,
subset of all prediction formulas as candidates, selecting the
best formula for predicting branches. Whisper finds near
optimal formulas, comparable to exhaustive exploration (88.3%
on average) while considering only 0.1% of all possible
prediction formulas.
Implication and Converse Non-Implication operations.
Besides reducing the search space of Boolean formulas,
Whisper also improves their prediction accuracy. In particular,
Whisper introduces Implication and Converse Non-Implication
that improve prediction accuracy over ROMBF by 1.5% while
maintaining the low storage cost of ROMBF.

Whisper enables these three contributions with a novel PGO
technique. In particular, it collects the execution profile of
data center applications in production using efficient hardware
support [37, 38] and then performs an offline branch analysis.
The analysis yields optimized ROMBF enabling the injection
of brhint instructions for branches that cause frequent
mispredictions. The brhint instruction efficiently encodes
precise history lengths, a Boolean formula to differentiate taken
histories from not-taken histories (and vice versa), and a pointer
to the corresponding branch instruction. Using the state-of-the-
art profile-guided correlation algorithm [18, 20, 21], Whisper
inserts the brhint instruction in a suitable predecessor of
the branch at link time to ensure hint timeliness. At run time,

Whisper utilizes the hint of a corresponding branch instruction
to compare the hashed dynamic history against the Boolean
formula for predicting the branch outcome. Thus, Whisper
leverages hardware/software co-design to eliminate data center
applications’ branch mispredictions in a profile-guided manner.

We evaluate Whisper for 12 popular data center applications
that suffer from frequent frontend and misprediction stalls
and show that, on average, Whisper eliminates 16.8% of all
branch mispredictions over the 64KB state-of-the-art TAGE-
SC-L [34] baseline. Due to this 1.7%-32.4% reduction in
mispredictions, Whisper achieves an average speedup of 2.8%
(0.4%-4.6%) for data center applications. Compared to state-of-
the-art profile-guided branch prediction mechanisms [35, 36],
Whisper achieves 1.1% greater speedup while reducing 7.9%
more branch mispredictions. By injecting brhint instructions,
Whisper increases the code footprint by 11.4% and executes
9.8% extra dynamic instructions.

We make the following contributions:
• An extensive investigation of branch instructions’ behavior

in data center applications demonstrating that large code
footprints of these applications trigger frequent branch
mispredictions, significantly limiting the overall performance.

• Whisper: a novel profile-guided mechanism to eliminate
branch mispredictions in data center applications. Whisper
correlates a given branch’s direction with many prior branch
directions, efficiently encodes this correlation using Boolean
formulas, and improves the overall efficacy of branch
prediction.

• A comprehensive evaluation of Whisper for 12 data center
applications that shows that Whisper can eliminate costly
branch mispredictions (16.8% on average) and achieve
substantial performance benefits (2.8% on average).

II. BRANCH PREDICTION CHALLENGES FOR DATA CENTER
APPLICATIONS

In this section, we thoroughly investigate the behavior of
branch instructions from 12 real-world data center applications
to show that branch mispredictions significantly limit their
overall performance. Then, we explain why state-of-the-art
branch predictors fail to eliminate these branch mispredictions.
Finally, we provide valuable insights on how to overcome
branch mispredictions for data center applications.

A. Experimental methodology

Data center applications. Recent work from Facebook and
Google reports that their widely-deployed data center applica-
tions exhibit multi-megabyte code footprints [1, 3, 6, 11] and
consequently lose more than 15% of all pipeline slots directly
due to branch mispredictions [4, 5]. Due to large instruction
footprints, these applications also lose more than 29% of all
pipeline slots due to frontend stalls [3, 4, 5, 6]. Accurate and
timely branch predictions can effectively hide a large fraction of
these frontend stalls because of the decoupled nature [12, 13]
of modern processor frontends [22, 23, 24, 25]. Since these
applications and their corresponding workloads are proprietary,
we use open-source applications and workloads used by prior

2

TABLE I: Data center applications and workloads we study.
Applications Workloads
MySQL [43] Different TPC-C queries [44]
PostgreSQL [45] Different pgbench queries [46]
Clang [47] Building LLVM [48]
Python [49] pyperformance benchmarks [50]
Finagle-chirper [51] Java Renaissance benchmark suite [52]
Finagle-http [51]
Cassandra [53]

Java DaCapo benchmark suite [54]Kafka [55]
Tomcat [56]
Drupal [57]

Facebook’s OSS-performance suite [58]Wordpress [59]
Mediawiki [60]

TABLE II: Simulator parameters
Parameter Value
CPU 3.2GHz, 6-wide OOO, 24-entry FTQ, 224-entry ROB,

97-entry RS
Branch predic-
tion unit

64KB TAGE-SC-L [34] (up to 12-instruction), 8192-
entry 4-way BTB, 32-entry RAS, 4096-entry IBTB

Caches 32KB 8-way L1i, 32KB 8-way L1d, 1MB 16-way
unified L2, 10MB 20-way shared L3 per socket

work [1, 11, 18, 20, 21, 39, 40, 41, 42] with large code footprints
that similarly cause frequent branch mispredictions and frontend
stalls. We describe these data center applications and their
workloads in Table I.
Trace collection and simulation parameters. We collect these
applications’ traces using Intel PT [37] and simulate these
traces using the Scarab [61] simulator. Table II lists different
simulation parameters that resemble a recent state-of-the-art
industry baseline [14, 15].

B. Why is branch prediction important for data center appli-
cations?

To understand the importance of the branch prediction
mechanism for data center applications, we perform a limit
study to measure the maximum performance benefits of an
ideal branch direction predictor over the state-of-the-art 64KB
TAGE-SC-L [34] predictor. For this ideal branch predictor,
only the prediction direction is ideal, i.e., it always predicts
taken and not-taken branches correctly. In Fig. 1, we show
that the ideal branch direction predictor achieves an average
Instructions Per Cycle (IPC) speedup of 12.4% (1.3%-26.4%)
over the state-of-the-art TAGE-SC-L branch predictor.

To understand the reason behind this significant performance
gap, we break down the speedup into two categories: (1)
speedup due to avoiding branch misprediction stalls (i.e.,
pipeline squashes [31]) and (2) speedup due to avoiding
frontend stalls by performing FDIP [12, 13]. For traditional
benchmarks (e.g., SPEC2017), avoiding misprediction stalls is
the primary benefit of ideal branch prediction. However, for
data center applications, eliminating branch mispredictions is
also important as it reduces I-cache misses through FDIP.

As also shown in Fig. 1, among the 12.4% mean IPC speedup
provided by the ideal branch predictor, an average IPC speedup
of 7.9% (0.7%-17.1%) is provided by eliminating all branch
misprediction stalls for these applications. On top of that, the
ideal branch predictor achieves an additional 4.5% speedup on
average (0.5%-11.5%) by eliminating frontend stalls (I-cache

cas
san

dracla
ng

dru
pa
l

fin
agl

e-c
hir

pe
r

fin
agl

e-h
ttp
kaf

ka

me
dia

wi
ki
my

sql

po
stg

res

py
tho

n
tom

cat

wo
rdp

res
s
Av

g
0

20

40

Sp
ee
du

p
(%

)

Speedup ideal branch predictor achieves by avoiding
misprediction-stalls frontend-stalls

Fig. 1: Data center application limit study: an ideal branch
predictor achieves an average IPC speedup of 12.4% (1.3%-
26.4%) over the state-of-the-art 64KB TAGE-SC-L baseline.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

2

4

6

Br
an

ch
M

is
pr

ed
ic

ti
on

s
Pe

r
K

ilo
In

st
ru

ct
io

ns
(B

r-
M

PK
I)

Fig. 2: Branch Mispredictions Per Kilo Instructions (branch-
MPKI) for 12 data center applications: 64KB TAGE-SC-L
experiences an average branch-MPKI of 3.0 (0.5-7.2) for these
applications.

misses) for these applications. Therefore, eliminating branch
mispredictions is extremely critical for data center applications.

C. Why does the state-of-the-art TAGE-SC-L branch predictor
fall short?

We now investigate why the state-of-the-art TAGE-SC-L
branch predictor is insufficient for data center applications
with large code footprints.

Fig. 2 shows the branch-MPKI of 64KB TAGE-SC-L
across all 12 data center applications. While measuring the
branch-MPKI, we only consider mispredictions caused by
conditional branch instructions, following the methodology
of 5th Championship Branch Prediction (CBP-5) [62]. As
shown in Fig. 2, TAGE-SC-L exhibits a branch-MPKI in the
range of 0.5-7.2 (3.0 on average) for the analyzed data center
applications. To understand the reason behind these frequent
branch mispredictions, we categorize all branch mispredictions
TAGE-SC-L induces among four different classes: (1) Compul-
sory mispredictions, (2) Capacity mispredictions, (3) Conflict
mispredictions, and (4) Conditional-on-data mispredictions. We
perform this classification by analyzing consecutive accesses of
a branch substream—the combination [63, 64, 65, 66, 67, 68, 69]
of branch instruction’s Program Counter (PC) and history of
different lengths.

Compulsory [70, 71, 72] mispredictions occur when TAGE-
SC-L predicts a branch for the first time and the predicted direc-
tion does not match with the true direction. Capacity [70, 71, 72]
mispredictions occur when the reuse distance [73, 74] of a
branch is too large so that the substream is evicted from
the TAGE-SC-L tables. Conflict [70, 71, 72] mispredictions
occur when the associativity or the replacement mechanism for

3

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

50

100

%
of

al
lb

ra
nc

h
m

is
pr

ed
ic

ti
on

s

Compulsory Capacity Conflict Conditional-on-data

Fig. 3: Breakdown of all branch mispredictions among 4
different classes [70, 71, 72]: data center applications suffer
from frequent branch mispredictions primarily (76.4% of all
mispredictions) due to capacity issues.

TAGE-SC-L tables is not effective enough to retain the branch
substream between two consecutive accesses. Conditional-
on-data mispredictions occur when the branch’s direction
depends on data values and does not correlate with prior history.
Consequently, history-based predictors like TAGE-SC-L cannot
achieve high prediction accuracy for such branches [75].

Fig. 3 shows the breakdown of all branch mispredictions
TAGE-SC-L incurs across different categories. As shown, the
majority of these mispredictions occur due to capacity reasons
(on average 76.4%).

This result reveals that the working set size of branch
substreams for data center applications is significantly larger
than the capacity of even the 64KB state-of-the-art TAGE-
SC-L branch predictor. Furthermore, this characterization
confirms that large instruction footprints of modern data
center applications put extreme pressure on branch predictors
in addition to the instruction cache, instruction translation
lookaside buffer, and branch target buffer as prior works have
observed [1, 2, 3, 4, 5, 6, 7, 9, 11, 17, 18, 20, 21, 39, 40, 41, 42].

D. Why do existing profile-guided techniques fall short?

We now investigate the degree to which prior profile-guided
branch prediction techniques solve the large branch footprint
problem of modern data center applications. We primarily
present the analysis for BranchNet [35], the most recent profile-
guided branch prediction technique, and ROMBF [36], the most
effective profile-guided technique for data center applications
in our study. These techniques are hybrid in nature as they use
profile-guided techniques for hard-to-predict branches and use
TAGE-SC-L for remaining branches.
BranchNet. BranchNet [35] deploys Convolutional Neural
Networks (CNNs) for hard-to-predict branches together with
traditional online branch predictors (e.g., TAGE-SC-L). To train
CNNs for these branches, BranchNet leverages offline profiles
from multiple application inputs. At run time, TAGE-SC-L
makes predictions for the vast majority of branches while CNNs
predict the few hard-to-predict branches. Based on metadata
storage, BranchNet also proposes different variants of CNNs:
(1) 8KB-BranchNet and (2) 32KB-BranchNet. To understand
the potential of CNNs for predicting branches, we also study
BranchNet with no storage restrictions, unlimited-BranchNet.
Read-Once Monotone Boolean Formulas (ROMBF). Prior
work [36] utilizes Boolean formulas to predict branch outcomes

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

20

M
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
) 4b-ROMBF

8b-ROMBF
8KB-BranchNet
32KB-BranchNet

Unlimited-BranchNet

Fig. 4: Performance of prior profile-guided branch prediction
techniques [35, 36] over the 64KB TAGE-SC-L baseline: these
techniques reduce only 3.4%-8.9% of all branch mispredic-
tions TAGE-SC-L incurs. Even with unlimited storage, this
impractical variant of BranchNet [35] achieves an average
misprediction reduction of only 11.9%.

based on history. In particular, every branch outcome in the
history represents a Boolean variable that is combined using
logical operations (e.g., and, or) to predict a branch’s direction.
Branch prediction using Boolean formulas faces two key
challenges. First, to determine the optimal Boolean formula
that provides the best prediction accuracy for a history length
of N, the approach has to explore 22N

all possible formulas.
Second, to encode the Boolean formula, the approach requires
2N-bit storage. Prior work [36] addresses only the second
challenge by using a subset of Boolean formulas where every
variable appears exactly once and by allowing only two logical
operations and and or. Consequently, prior work [36] encodes
a ROMBF of N variables using only N−1 bits. Using such
a compact encoding, prior work annotates branch instructions
with N-bit hints to make branch predictions based on the
outcome of the last N branches. The study also proposes
different variants of ROMBF (4-bit and 8-bit) for different
values of N. For brevity, we refer to this prior work [36] as
ROMBF.

To assess the potential of these existing profile-guided
branch prediction mechanisms, we evaluate BranchNet and
ROMBF over the 64KB TAGE-SC-L baseline. As shown in
Fig. 4, data center applications do not significantly benefit
from these existing mechanisms. Specifically, the state-of-the-
art profile-guided technique, BranchNet, reduces only 3.4%
and 6.6% of all branch mispredictions with 8KB and 32KB
metadata storage. Even with the unlimited metadata storage,
BranchNet only avoids 11.9% of all branch mispredictions.
On the other hand, ROMBF reduces 8.4% and 8.9% of all
branch mispredictions using 4-bit and 8-bit formulas. Next,
we investigate the performance of these prior profile-guided
techniques to understand why they fail to avoid so many branch
mispredictions.

BranchNet employs CNNs to predict hard-to-predict
branches assuming that only a few static branches dispro-
portionately cause the vast majority of all mispredictions for
an application. For example, as shown in Fig. 5, the top 50
static branches experience more than 60% of all mispredic-
tions for SPEC2017 integer speed benchmarks (e.g., leela,
xz, omnetpp, deepsjeng, and mcf). Consequently, for
these benchmarks, BranchNet can reduce 12.6%-34% of all

4

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 4 16 64 256 1024 4096 16384

C
D

F
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

of branches (log-2 scale)

deepsjeng
exchange2

gcc
leela
mcf

omnetpp
perlbench

x264
xalancbmk

xz

(a) SPEC2017 integer benchmarks

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 4 16 64 256 1024 4096 16384

C
D

F
 o

f
m

is
p

re
d

ic
ti

o
n

s
(%

)

of branches (log-2 scale)

cassandra
clang

drupal
finagle-chirper

finagle-http
kafka

mediawiki
mysql

postgres
python
tomcat

wordpress

(b) Data center applications

Fig. 5: The distribution of all branch mispredictions across
different branch instructions using TAGE-SC-L. In general,
SPEC benchmarks satisfy BranchNet’s [35] assumption as only
a top-few (e.g., 50) branch instructions cause the majority
(e.g., > 60%) of all mispredictions. Data center applications,
however, do not satisfy this assumption as mispredictions are
distributed across thousands of different branches.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

50

100

%
of

m
is

pr
ed

ic
ti

on
s

History length
1-8 9-16 17-32 33-64 65-128 129-256 257-512 512-1024 1024+

Fig. 6: Distributions of all branch mispredictions among dif-
ferent history lengths. Predicting a branch requires correlating
its direction with even 1024 prior branch outcomes.

mispredictions by allocating 256B-2KB metadata storage for
each of these branches’ CNNs. However, as also shown in
Fig. 5, mispredictions for data center applications and gcc
(from SPEC) are more uniformly distributed across many static
branches. Consequently, for these applications, even unlimited-
BranchNet can only avoid 11.9% of all mispredictions while
using 2KB CNNs for each static branch.

ROMBF predicts a branch by applying an N-bit formula
to the last N branch outcomes. For example, 4-bit and 8-bit
formulas can predict branches based on only the last 4 and
8 branch outcomes. As shown in Fig. 6, most branches in
our data center applications correlate with branch histories of
size 32-1024 and, consequently, 4-bit and 8-bit formulas are
insufficient. As ROMBF requires N-bit hints to consider N-bit
histories, it does not scale well for long branch histories.

Furthermore, ROMBF only considers and and or operators
to compute Boolean formulas along with contradiction (i.e.,
never taken) and tautology (i.e., always taken). This limitation
assumes that these formulas can encode relevant histories
for the large majority of branches without any quantitative
insight. We characterize the implications of this assumption
in Fig. 7 by showing the distribution of all branches among
formulas using contradiction, tautology, and, or, implication,
and converse non-implication. As shown, while formulas using
and (28.9%) and or (5.3%) operations represent histories of
a significant number of branches, formulas using implication
(8.8%) and converse non-implication (9.2%) operations also

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

50

100

%
of

ex
ec

ut
io

ns

And
Always-taken

Converse-nonimplication
Implication

Never-taken
Or

Others

Fig. 7: Distributions of branch executions among different
logical operations used in the Boolean formula to predict a
branch. And (28.9%), always-taken (23.3%), converse non-
implication (9.2%), implication (8.8%), never-taken (5.9%),
and Or (5.3%) operations together can predict more than 80%
of all branch executions.

encode histories of a large number of branches. Consequently,
ROMBF can not avoid mispredictions for these branches.

In §V-B (Fig. 16) we will show that BranchNet requires
orders of magnitude higher training time than ROMBF, while
Whisper outperforms both approaches. Next, we use the insights
from these characterizations to design Whisper, our profile-
guided technique to eliminate branch mispredictions for data
center applications.

III. DESIGN OF WHISPER

Our investigation reveals that ideal branch prediction signifi-
cantly improves the performance of data center applications as
their large branch footprints exhaust 64KB TAGE-SC-L [34].
State-of-the-art profile-guided mechanisms [35, 36] also fail
to eliminate a large majority of branch mispredictions for
these applications. We propose Whisper, a combination of
three novel profile-guided techniques to improve branch predic-
tion. Whisper introduces hashed history correlation to predict
branches that correlate with long variable-length histories.
Furthermore, Whisper proposes randomized formula testing
to reduce the massive offline training time of existing profile-
guided branch prediction techniques [35, 36] without affecting
the prediction accuracy. Finally, Whisper extends ROMBF by
including Implication and Converse Non-Implication operations
to predict branches accurately.

Whisper leverages profile-guided analysis at link time to
correlate branches with previous branch outcomes using effi-
cient hardware-based control flow tracing support such as Intel
PT [37] and LBR [38]. Next, Whisper maps values of variable-
length histories corresponding to different branch outcomes into
fixed-length hashed values and encodes these hashed values
using an extended ROMBF formula. To pick the formula for
any given branch, Whisper considers a randomized subset
of all formulas and selects the formula yielding the fewest
mispredictions for all hashed histories of the branch. Whisper
annotates every hard-to-predict branch with its corresponding
formula to provide the branch predictor in hardware with the
following information: (1) how many prior branches in the
global history are relevant for predicting the current branch,
and (2) how the outcome of these prior branches need to
be combined to compute the direction of the current branch.

5

Whisper introduces minor hardware modifications to match
the dynamic history with an annotated formula, predicting
the corresponding branch outcome. We describe Whisper’s
in-depth usage model in §IV. Now, we discuss the novel
techniques Whisper proposes along with its micro-architectural
modifications in greater detail.

A. Hashed history correlation

As shown in §II-D, the computational complexity of learning
optimal ROMBF and their storage overhead increases linearly
with the number of considered variables. In the context
of branch prediction, these variables are previous branch
directions, i.e., the global branch history leading into a branch.
As a result, prior work [36] is limited in accuracy by only
considering short histories. To address this challenge, Whisper
introduces hashed history correlation, providing three key
capabilities: (1) an efficient encoding scheme of large and
variable-length histories, (2) a technique to correlate a subset
of the branch history with a specific branch outcome, and (3)
a mechanism to represent different history values utilizing a
single formula.
History hashing. Whisper introduces history hashing that
converts the history of any arbitrary length into a fixed length.
For example, Whisper transforms the 64-bit history (i.e., the
outcome of the most recent 64 branches) into a 16-bit hashed
history by dividing the 64-bit value into four 16-bit chunks
and applying logical operations (e.g., and, or, xor) to these
16-bit chunks. We empirically study the sensitivity of Whisper’s
hashing mechanism for different hashed lengths and different
logical operations to find that the 8-bit hash and xor operations
provide a good trade-off between instruction footprint overhead
and prediction accuracy. As branch predictors used in today’s
hardware already use a similar hashing mechanism [76],
Whisper does not introduce significant micro-architectural
modifications to perform history hashing.
History correlation. Directions for different branches correlate
with prior histories of different lengths. Some branches correlate
with the outcome of only the most recent branches while other
branches correlate with the outcome of relatively older branches.
Whisper addresses this challenge by considering various history
lengths for each static branch and selecting the length that
provides the highest accuracy for that branch using profile
samples.

Whisper’s hashed history correlation technique requires three
parameters: (1) the minimum history length a, (2) the maximum
history length N, and (3) the number of different history lengths
m. To find the best history length for a branch, Whisper analyzes
all execution samples, referred to as substreams, for that branch
using an application profile collected via efficient hardware
support (Intel PT [37] and LBR [38]). Each substream contains
two components: (1) the actual direction of the branch execution
and (2) the directions of the most recent N branches before that
branch. Using these scenarios, Whisper determines the best
history length and formula for a given branch by evaluating a
list of potential history lengths.

For each branch, Whisper considers different history
lengths that follow a geometric series [77], up to the
m-th term, starting with the minimum history length, a,
i.e., a,ar,ar2, · · · ,arm−1, where r = (N

a)
(1

m−1). At each history
length in the series, Whisper encodes the branch history up
to this length. As described above, to minimize storage costs,
Whisper does not evaluate raw, full-length histories. Instead,
Whisper operates on hashed histories, allowing it to compare
histories of different original lengths. Next, Whisper determines
a Boolean formula that best fits the substream (see §III-B). This
is done by using the total number of taken and not-taken counts
for the hashed partial history across all samples for that branch.
Then, Whisper counts the total number of mispredictions that
the current history length and formula incur. If there is a
history length that results in the fewest mispredictions for that
branch, then that history length is considered the best and used
later at run time. If none of these history lengths improve
accuracy when compared to the profiled results, then Whisper
indicates that the given branch should be predicted in a purely
dynamic manner (i.e., using the underlying branch predictor).
Additionally, we empirically study Whisper’s sensitivity to
different parameters (a, N, and m) and observe that the values
a = 8, N = 1024, and m = 16 work well.

History representation. The primary goal of Whisper’s profile-
guided analysis is to annotate a static branch with a Boolean
formula that efficiently encodes relevant historical branch
outcomes to predict the directions of the branch accurately. As
we describe in §II-D, in an N-bit history, where each branch
can be either taken or not-taken, there exist 2N potential branch
scenarios. Whisper needs to partition these 2N branch scenarios
into two groups using a Boolean formula, where one group
reflects the scenarios in which the branch is taken and the
other group where the branch is not taken. To achieve this
goal, Whisper considers several Boolean formulas for each
static branch and selects the Boolean formula that can predict
the branch with the highest accuracy based on the collected
profile. Algorithm 1 shows a simplified version of the technique
Whisper utilizes to find the best formula for representing each
branch’s history.

Algorithm 1 takes two hash tables, T and NT as inputs.
They contain the hashed history as keys and the number of
profile samples as values. T and NT denote taken and not-
taken samples respectively. As output, Algorithm 1 generates
the Boolean formula, f , that incurs the minimum number of
mispredictions, m′.

As shown in Algorithm 1, Whisper initializes the minimum
number of mispredictions, m′, with the value ∞ (Line 1)
and the best Boolean formula, f , with a default value of
/0 (Line 2). Next, Whisper generates the list of all Boolean
formulas that will be considered as candidates for predicting
the branch (Line 3). We will later (§III-B and §III-C) describe
how Whisper finds only a subset of Boolean formulas that
approximates the full potential of all Boolean formulas with
high accuracy and efficiency.

6

Algorithm 1 Finding the best Boolean formula to differentiate
taken histories from not-taken histories.

FIND-BOOLEAN-FORMULA (T,NT)
Input: T and NT contain different hashed history as keys and

the number of profile samples as values. T and NT denote
taken and not-taken samples respectively.

Output: The Boolean formula, f which incurs the minimum
number of mispredictions, m′

1: m′← ∞

2: f ← /0
3: F ← List-of-Considered-Formulas ()
4: for each f ′ ∈ F do
5: t← 0
6: for each k ∈ T.keys do
7: if satisfy (k, f ′) ̸= 1 then
8: t← t +T [k]
9: for each k ∈ NT.keys do

10: if satisfy (k, f ′) = 1 then
11: t← t +NT [k]
12: if t < m′ then
13: f ← f ′

14: m′← t
15: return (f , m′)

For each formula f ′, Whisper initializes the total number
of mispredictions the formula sustains, t, as 0 (Line 5). Next,
Whisper iterates over each key-value pair of T (Lines 6-8) and
NT (Lines 9-11) to calculate the value of t. Since each key k
denotes the hashed history, Whisper first determines whether
k satisfies the Boolean formula f ′ (Line 7 and 10 for T and
NT respectively). For taken samples (T), if k does not satisfy
f ′, predicting the branch using f ′ will result in mispredictions.
Therefore, Whisper adds the corresponding number of profile
samples, T [k], to t (Line 8). Similarly, for not-taken samples
(NT), if k satisfies f ′, predicting the branch using f ′ will also
result in mispredictions, so Whisper also adds the corresponding
number of profile samples, NT [k], to t (Line 11). Thus, Whisper
counts the total number of mispredictions f ′ incurred for all
profile samples.

Finally, Whisper compares t with m′ to decide whether the
current formula, f ′ causes the minimum number of mispre-
dictions (Line 12). If t is smaller than m′, Whisper updates
f and m′ with the values f ′ and t correspondingly (Lines 13-
14). Whisper produces the final values of f and m′ as output
after iterating over all formulas from the subset of considered
Boolean formulas (Line 15). Next, we explain how Whisper
efficiently generates only a subset of all Boolean formulas
that effectively achieves the high accuracy of considering all
Boolean formulas.

B. Randomized formula testing

As we discuss in §II-D, any N-bit variable can take 2N

different values. Therefore, finding the best formula that
predicts a branch with the least number of mispredictions
requires exhaustively searching the search space of all 22N

different formulas. For example, predicting a branch based on
the outcome of the last 4 branches will require testing 65536

(= 224
) different possible formulas. While testing one formula

does not depend on the outcome of a different formula, i.e.,
checking all formulas is embarrassingly parallelizable, it still
requires a large amount of computational operations. Whisper
leverages randomized formula testing to reduce this exponential
search space.

To perform randomized formula testing, Whisper first
generates a random permutation of all formulas using the
Fisher-Yates shuffle algorithm [78, 79]. The Fisher-Yates shuffle
algorithm ensures that Whisper generates the random order
only once and reuses this order for all different branches. For
each branch, Whisper selects only a fraction of all formulas
to consider as potential candidates to predict the branch.
Among these selected candidates, Whisper picks the best
formula using Algorithm 1. We investigate the implications of
randomized formula testing to the fraction of all formulas tested
in §V-B (Fig. 15) and show that Whisper achieves comparable
performance to exhaustive search (88.3%) even after checking
only 0.1% of all Boolean formulas.

C. Implication and Converse Non-Implication

As discussed in §II-D, when considering arbitrary Boolean
formulas for N-bit variables, we need to evaluate 22N

formulas
and also need 2N-bits of storage for tagging each hard-to-
predict branch. As accurate branch prediction often requires
significantly larger histories, prior work [36] proposed ROMBF
to reduce the storage overheads of these formulas to N-
bits. Unfortunately, considering every variable only once
leads to sub-optimal Boolean formulas as it is impossible
to represent formulas where variables appear twice (e.g.,
(a&&b)||(!a&&c)). Whisper addresses the reduced accuracy
provided by ROMBF by introducing additional operations
such as contradiction, tautology, and, or, implication, and
converse non-implication. This approach enables more powerful
Boolean formulas, improving branch prediction accuracy while
increasing storage only linearly.In particular, Whisper requires
log2(op)∗hash(n)-bits for each formula, where op represents
the number of supported operations and n denotes the number
of branches considered in the history. As discussed in §III-A,
Whisper also utilizes hashing to represent longer histories of
size n because fewer bits are produced by the hash function.
Micro-architectural implementation. Adding Implication and
Converse Non-Implication requires minor micro-architectural
modifications to the original hardware implementation of
ROMBF [36]. Fig. 8 shows an implementation for predicting
the branch direction based on the outcome of the last two
branches (N = 2). For two data inputs (b0 and b1), Whisper
requires three control inputs (O0 , O1 , and I). As a single unit,
Whisper produces the outcome of all four logical operations
using b0 and b1. Then, Whisper selects the output based on
the two control inputs (O0 and O1) using a 4×1 multiplexer.
Finally, Whisper selects either the output of the multiplexer
or its inverted value based on the remaining control input,
I using another 2× 1 multiplexer. Next, we describe how

Whisper combines multiple single units in general (N > 2).

7

4⨉1
Multiplexer!!

!"

"!
""

2⨉
1

M
ultiplexer

Prediction

#

Single unit

Fig. 8: Micro-architecture of the Read-Once Monotone Boolean
Formulas Whisper extends with Implication and Converse Non-
Implication. It shows the single unit to predict a branch based
on the outcome of the last 2 branches.

Fig. 9 shows the micro-architectural requirements of Whis-
per’s mechanism to predict a branch based on the direction
of the last 8 branches. Whisper uses four single units that
operate on the outcomes of prior branches, b0,b1, · · · ,b7. Then,
Whisper uses outputs of these single units as inputs to two
single units in the next layer. Next, Whisper uses the output
of these two single units as inputs to a single unit in the last
layer. All of these single units at different layers require 14
(2× (8−1)=2×7) control inputs, O0 to O13 . Finally, Whisper
uses a 2×1 multiplexer to select either the last layer’s output
or its inverted value based on I .

As shown in Fig. 9, Whisper performs most of the Boolean
operations at a single layer in parallel. The longest delay
Whisper incurs is due to 3 sequential single units at different
layers following the final step that uses the 2×1 multiplexer.
Every single unit has a maximum delay of 5 logic gates: Not
gate, And/Or gate, and three gates for the 4×1 multiplexer.
The final step’s maximum delay is 4 logic gates: Not gate and
three gates for the 2× 1 multiplexer. The hashing operation
does not incur any extra overhead as existing processors already
perform similar hashing operations [76]. Thus, Whisper incurs
a maximum delay of only 19 logic gates. Even if Whisper can
not compute this entire logic in a single cycle, Whisper can
easily pipeline these operations, e.g., by registering the results
of the first ten operations in one cycle and performing the
last nine operations in the next cycle. In any event, Whisper
generates its prediction in parallel with TAGE-SC-L, whose
logical depth and complexity with hashed SRAM table lookups,
tag comparisons, and adder tree for the SC component exceed
Whisper’s complexity.

IV. USAGE MODEL

We show the high-level usage model of Whisper in Fig. 10.
Whisper collects data center applications’ execution profiles in
production and analyzes these profiles offline to inject branch
hint instructions.
Run-time profiling. First, Whisper collects the execution
trace of branch instructions for data center applications in
production (step 1) using Intel PT [37] and LBR [38]. Similar

!!
!"

"!
""

Single
unit

!#
!$

"%
"&

Single
unit

!'
!(

"#
"$

Single
unit

!"%
!"&

")
"*

Single
unit

!%
!&

Single
unit

!"!
!""

Single
unit

!)! *
Si

ng
le

un

it

2⨉1
Multiplexer

Prediction

#

Fig. 9: Micro-architecture showing how Whisper combines
multiple single units in general. This shows how Whisper
predicts a branch based on the outcome of the last 8 branches.

10110
01011
10010

Release binary
Branch trace +

prediction accuracy

101101
010110
100101

Updated binary

Offline

Branch
analysis

1

23

Online

Hint
injection

Data center

Whisper
aware

Runtime
profiling

T/NT Address
T

T
NT

0x4040

0x5010
-

PC Accuracy
0x4080 95%
0x6020 75%

Fig. 10: Whisper’s usage model.

to recent work [3, 18, 20, 21], Whisper leverages Intel PT
and LBR as they are widely adopted in today’s data cen-
ters [1, 11, 17, 80, 81]. Intel PT captures the trace of dynamically
executed branch instructions with low overhead (only up to
1% [82, 83, 84, 85]). As shown in Fig. 10, this trace contains a
branch direction (taken, T or not-taken, NT) for each branch
instruction along with the next instruction’s address when an
indirect branch is taken. Intel LBR provides Whisper with
the prediction accuracy of each dynamically executed branch
instruction for the underlying branch predictor. Similar to PT,
LBR also incurs minimal overhead [19, 86].

Branch analysis. Next, in step 2 , Whisper analyzes the
in-production execution trace of branch instructions. For a
static branch instruction, Whisper considers all of its dynamic
executions and the profiled processor’s prediction accuracy
of the branch to find the best history length using the
hashed history correlation technique (§III-A). Also, Whisper
determines the best history length for a branch only if Boolean
formula-based prediction achieves better accuracy than the
profiled processor’s predictor for the branch. For such branches,
Whisper injects an extra instruction per branch in the binary
specifying hint to predict the branch.

8

History Boolean formula Bias PC pointer

4-bit 15-bit 2-bit 12-bit
Fig. 11: Different components of the brhint instruction
Whisper proposes.

Hint injection. Whisper’s offline analysis identifies branches
for which history-based Boolean formulas achieve better
prediction accuracy than the profiled processor’s predictor.
Whisper injects a hint instruction, brhint, for each of
these branches. A brhint instruction includes 4 specific
components as we show in Fig. 11.

The first component specifies the History length from
a geometric series. As described in §III-A, Whisper uses the
geometric series (i.e., 8,11,15, · · · ,1024) with parameter values
a = 8, N = 1024, and m = 16 based on empirical results. The
4-bit History specifies which of these 16 history lengths
Whisper should use to predict the corresponding branch.

The second component specifies the 15-bit Boolean
formula that Whisper uses to predict the branch. As described
in §III-C, Whisper needs 2N − 1 bits to encode a Boolean
formula that predicts a branch based on the outcome of
the last N branches. Consequently, the 15-bit Boolean
formula can directly predict a branch with a history length
of 8. To predict a branch with longer history lengths (i.e.,
11,15, · · ·1024), Whisper transforms the long histories into
8-bit histories via hashing as we describe in §III-A.

The third component specifies the 2-bit Bias for always-
taken and never-taken branches. The fourth component, PC
pointer, specifies the branch instruction’s program counter
(PC). Whisper uses a 12-bit offset to represent branch instruc-
tion pointers as such an offset is enough to cover the vast
majority (> 80%) of all branch instructions [21, 87].

Instead of directly encoding the hint in the branch instruction,
Whisper injects a separate brhint instruction for mainly two
reasons. First, it avoids the instruction footprint growth for
branch instructions for which Whisper does not inject any hint
as these branches are predicted dynamically. Second, it also
ensures hint timeliness by avoiding the requirement of pre-
decoding the branch instruction. Conditional branch instructions
in x86 format already support similar prefix opcodes for biased
branches [88]. We extend these opcodes with additional bytes
to implement the brhint instruction.

For a given branch, Whisper injects the corresponding
brhint instruction in one of the predecessor basic blocks for
the branch. To find the appropriate predecessor, Whisper lever-
ages the execution trace collected in production and applies a
conditional probability-based correlation algorithm [18, 20, 21].
Run-time hint usage. Whisper produces an updated binary
for an application after injecting the brhint instructions.
This updated binary is deployed in production during the next
build and deployment cycle. When a data center application
executes a brhint instruction at run time, Whisper places
the corresponding four parameters in a small hint buffer. We
empirically study Whisper’s sensitivity to the size of this hint

buffer and observe that Whisper provides high performance
even with a 32-entry hint buffer.

At run time, while predicting a branch, Whisper simultane-
ously queries the branch predictor (e.g., TAGE-SC-L) and the
hint buffer. For branch PCs currently not in the hint buffer,
Whisper uses the branch predictor to predict the branch. If
the hint buffer includes the branch PC, Whisper uses the
hint information and the micro-architectural implementation
described in §III-C to predict the branch. Furthermore, Whisper
ensures that the branch predictor does not allocate new entries
for these branches. Thus, Whisper allows the branch predictor
to allocate its storage for the remaining branches and provide
better prediction accuracy.

V. EVALUATION

A. Methodology

Data center applications and their workloads/inputs. We
evaluate Whisper using 12 widely-used data center appli-
cations (as described in §II-A). We vary workloads/inputs
for these applications by changing different database queries
(e.g., oltp_read_only vs oltp_write_only), different
database scaling factors (e.g., 100 vs 8000), different input
data and file sizes (e.g., large vs small), different query
mapping styles (e.g., imperative vs declarative), dif-
ferent webpages client requests (e.g., feed=rss2 vs p=37),
different numbers of concurrent clients (e.g., 2 vs 10), and
different random number seeds (e.g., 1 vs 10). We optimize
each of these applications with Whisper using the profile from
one workload/input and test the performance of Whisper’s
optimization on a different workload/input.
Profile collection. We collect data center applications’ profile
using Intel LBR [38] and PT [37], and use the hardware
performance event, “br_misp_retired.conditional”
to identify branch mispredictions.
Simulation setup. We evaluate Whisper using Scarab [61]
where we implement support for the brhint instruction
and micro-architectural modifications Whisper proposes. We
also modify Scarab to simulate instruction traces collected
via Intel PT and evaluate Whisper by simulating 100 million
representative, steady-state instructions for each application
using simulation parameters listed in Table II.

B. Performance analysis

Speedup. We show Whisper’s speedup for 12 data center
applications in Fig. 12. For comparison, we also show speedups
that recent techniques (different variants of ROMBF [36] and
BranchNet [35]) offer. To understand the limit, we also show
speedups provided by the ideal branch predictor and MTAGE-
SC, the best predictor in the unlimited storage category of
CBP-5 [62]. As shown, Whisper provides an average speedup
of 2.8% (0.4%-4.6%) that is 44.1% of the average speedup
(6.3%) MTAGE-SC achieves with unlimited storage.

The speedup gap between Whisper and MTAGE-SC origi-
nates from several reasons. Whisper can not eliminate some
mispredictions for previously unobserved branch instructions as
Whisper optimizes applications using only one different input

9

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpress Avg
0

20

Sp
ee

du
p

(%
)

4b-ROMBF
8b-ROMBF

8KB-BranchNet
32KB-BranchNet

Unlimited-BranchNet
Whisper

Unlimited-MTAGE-SC
Ideal-Branch-Predictor

Fig. 12: Speedup over 64KB TAGE-SC-L: Whisper achieves an average speedup of 2.8% (0.4%-4.6%) and outperforms state-
of-the-art profile-guided prediction techniques [35, 36]. Whisper’s speedup corresponds to 44.1% of the speedup MTAGE-SC
offers with unlimited storage [89].

profile in this case. We quantify the performance implications
of this input sensitivity later in this section. Furthermore,
the brhint instructions Whisper injects incur static and
dynamic instruction increases which we also quantify later
in the section. Nevertheless, Whisper achieves greater speedup
than prior works, ROMBF and BranchNet, as they only
provide 1.7% and 0.8% on average. Furthermore, on average,
Whisper provides greater speedup than BranchNet even when
it leverages unlimited metadata storage. Next, we investigate
how Whisper achieves this speedup by reducing a substantial
amount of branch mispredictions.
Misprediction reduction. We evaluate how well Whisper
reduces branch mispredictions compared to prior techniques
and show the results in Fig. 13. As shown, on average, Whisper
reduces 16.8% of all branch mispredictions (1.7%-32.4%) the
TAGE-SC-L baseline incurs for these data center applications
and significantly outperforms all prior mechanisms. Specifically,
Whisper reduces 7.9% more mispredictions than the best
performing prior technique that can be used in a practical
scenario. Furthermore, Whisper outperforms the state-of-the-
art, BranchNet, by 4.9% even when BranchNet uses unlimited
metadata storage. This unlimited-BranchNet outperforms Whis-
per only for three applications (mediawiki, python, and
wordpress) that exhibit the behavior BranchNet assumes,
i.e., the top-few branch instructions cause the majority of
all mispredictions, as shown in Fig. 5. Nevertheless, Whisper
eliminates more mispredictions than the practical variants (8KB
and 32KB) of BranchNet even for these three applications
as shown in Fig. 13. Next, we provide a breakdown of
mispredictions Whisper eliminates among different sources
of optimizations.
Breakdown of misprediction reduction. In Fig. 14, we show
the contributions of hashed history correlation and Implication
and Converse Non-Implication to Whisper’s overall perfor-
mance. We quantify the reduction in branch mispredictions
these two novel techniques offer over 8-bit ROMBF. As shown,
hashed history correlation achieves an average misprediction
reduction of 6.4% while Implication and Converse Non-
Implication eliminate 1.5% of all mispredictions.

Implications of randomized formula testing and training
time. Whisper’s randomized formula testing does not eliminate
any new mispredictions. Instead, randomized formula testing
reduces Whisper’s offline training time (i.e., time to find the
best Boolean formula to predict a branch) without sacrificing
prediction accuracy. Fig. 15 shows this tradeoff between
Whisper’s average misprediction reduction and average training
time with an increase in the percentage of formulas Whisper
explores via randomized formula testing. As shown, Whisper
eliminates 16.8% of all mispredictions even after exploring
only 0.1% of all formulas. This reduction is comparable (88.3%
on average) to the reduction Whisper achieves after considering
100% of all formulas. In terms of training time, randomized
formula testing is also efficient as it reduces the exploration time
by an order of magnitude (Fig. 15). Consequently, Whisper’s
training time is lower than training times for 8-bit ROMBF
and BranchNet (Fig. 16).

Performance across different workloads/inputs. As we
mention in §V-A, we optimize data center applications with
Whisper using the profile from one input and test the per-
formance of Whisper’s optimization on a different input.
Now, we investigate Whisper’s performance across three
separate input configurations (‘#1’ to ‘#3’). We optimize
each application using the training input’s profile ‘#0’ and
measure mispredictions Whisper eliminates for different test
inputs ‘#1, #2, #3’. For each input, we also measure the
performance when Whisper optimizes the application with the
same input’s profile. As shown in Fig. 17, Whisper avoids 6.6%
more mispredictions with input-specific profiles compared to
profiles that are not input-specific.

To address this input sensitivity, prior work [35] recom-
mended merging profiles from multiple inputs. We study the
impact of merging profiles on Whisper’s performance in Fig. 18.
We compare Whisper’s performance against prior works after
merging profiles from different application inputs. As shown,
Whisper outperforms prior techniques even for merged profiles.
Furthermore, Whisper’s effectiveness increases as profiles from
multiple inputs are merged.

10

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpress Avg
0

20

40

M
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

4b-ROMBF
8b-ROMBF

8KB-BranchNet
32KB-BranchNet

Unlimited-BranchNet
Whisper

Fig. 13: Whisper’s reduction in branch mispredictions compared with BranchNet and ROMBF: Whisper eliminates 7.9%
more mispredictions than the best performing realistic prior work. Whisper even removes 4.9% more mispredictions than the
unlimited-BranchNet.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

10

20

30

Im
pr

ov
em

en
to

ve
r

8b
-R

O
M

BF
(%

) Hashed-history-correlation Implication-converse-nonimplication

Fig. 14: Misprediction reduction (%) achieved by hashed history
correlation and Implication and Converse Non-Implication over
8-bit ROMBF: hashed history correlation reduces more branch
mispredictions than Implication and Converse Non-Implication.

0.1 1 10 100
% of formulas explored

0

5

10

15

20

M
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

0.1 1 10 100
% of formulas explored

0

100

101

102

A
ve

ra
ge

tr
ai

ni
ng

ti
m

e
in

se
co

nd
s

(l
og

-1
0

sc
al

e)

Fig. 15: Thanks to randomized formula testing, Whisper
achieves high misprediction reduction even after exploring
only 0.1% of all formulas (left) while significantly reducing
the training time (right, the y-axis is log-10 scale).

Hint overhead. Unlike BranchNet, Whisper does not incur any
extra metadata overhead. Hence, Whisper’s only overhead is
brhint instructions added in the program binary and executed
at run time. We estimate the static and dynamic overhead
of these brhint instructions in Fig. 19. As shown, on
average, Whisper increases these applications’ static footprint
by 11.4% (9.8%-13%) while introducing 9.8% (5.3%-14.7%)
extra dynamic instructions.
Sensitivity analysis. As we describe in §III, Whisper’s design
includes several parameters including a minimum, maximum,
and different history lengths, hashed history length, different

4b-ROMBF

8b-ROMBF

8KB-BranchNet

32KB-BranchNet

Unlim
ite

d-BranchNet

Whisp
er

0
100

101

102

103

A
ve

ra
ge

tr
ai

ni
ng

ti
m

e
in

se
co

nd
s

(l
og

-1
0

sc
al

e)

Fig. 16: Average training time for Whisper compared to prior
techniques (the y-axis is log-10 scale): BranchNet requires
training times of more than thousands of seconds, even when
trained on an NVIDIA Tesla V100 GPU. The training time
for ROMBF grows exponentially with an increase in history
length. The training time for Whisper is significantly lower
than training times for 8-bit ROMBF and BranchNet.

TABLE III: Different design parameters’ values.
Design parameter Value Design parameter Value

Minimum history length 8 Length of the hashed history 8
Maximum history length 1024 Logical operations used 4
Different history lengths 16 Hint buffer's size 32

logical operations used, and hint buffer’s size. We determine
these parameters’ values empirically via sensitivity studies. For
brevity, we do not present detailed results corresponding to
these studies. As a summary, Table III shows these parameters’
values we use to evaluate Whisper.
128KB TAGE-SC-L as baseline. We evaluate Whisper’s
effectiveness for a much larger, 128KB TAGE-SC-L baseline
and show the results in Fig. 20. The 128KB TAGE-SC-L
exhibits a branch-MPKI in the range of 0.4-5.4 (2.4 on average)
for 12 data center applications. As shown, Whisper achieves
an average misprediction reduction of 13.4% over the 128KB
TAGE-SC-L baseline highlighting Whisper’s effectiveness even
for a larger TAGE-SC-L branch predictor.
Predictor size. We evaluate Whisper’s sensitivity to the baseline
branch predictor’s size by varying TAGE-SC-L’s capacity from
8KB to 1MB. Fig. 21 shows the results. As shown, Whisper
consistently reduces more than 10% of all mispredictions

11

#1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3
0

10

20

30

40

50
M

is
pr

ed
ic

ti
on

re
du

ct
io

n
(%

)
Profile-from-the-training-input Profile-from-the-same-input

cassa
ndra

clang
drupal

finagle-chirp
er

finagle-http

kafka
mediawiki

mysql
postg

res

python
tomcat

wordpress

Fig. 17: Whisper’s performance for various application inputs: On average Whisper reduces 6.6% more branch mispredictions
with input-specific profiles compared to profiles from different inputs.

1-in
put

2-in
puts

3-in
puts

4-in
puts

5-in
puts Avg

0

5

10

15

20

25

A
ve

ra
ge

m
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

8b-ROMBF Unlimited-BranchNet Whisper

Fig. 18: Whisper eliminates more branch mispredictions after
merging profiles from various inputs.

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

5

10

15

20

In
st

ru
ct

io
n

in
cr

ea
se

(%
)

Static Dynamic

Fig. 19: Whisper’s overhead in static and dynamic instruction
increase: on average, Whisper incurs a static overhead of 11.4%
(9.8%-13%) and executes 9.8% (5.3%-14.7%) extra dynamic
instructions due to brhint instructions.

irrespective of the predictor’s capacity. Even the 1MB TAGE-
SC-L incurs an average branch-MPKI of 1.9 compared to
MTAGE-SC’s branch-MPKI of 1.4. As even the 1MB TAGE-
SC-L suffers from capacity and conflict mispredictions, Whisper
still has the potential to reduce a significant number of
mispredictions. Consequently, Whisper reduces mispredictions
by 11.2% for the 1MB TAGE-SC-L.
Predictor warm-up. We evaluate Whisper’s sensitivity to
baseline branch predictor’s (TAGE-SC-L) state by varying
% of warm-up instructions from 0% to 90%. Fig. 22 shows
the results. As shown, Whisper reduces all mispredictions
TAGE-SC-L incurs by 17.5% without any warm-up. As TAGE-
SC-L’s warm-up period increases and TAGE-SC-L incurs fewer
mispredictions, Whisper’s average misprediction reduction (%)
over to TAGE-SC-L drops slightly. Nevertheless, Whisper still
avoids a large number of mispredictions as it reduces TAGE-SC-

cassa
ndra

cla
ng

drupal

finagle-ch
irp

er

finagle-http
kafka

mediawiki
mysql

postg
res

python
tomcat

wordpressAvg
0

10

20

M
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

Fig. 20: Whisper’s reduction in branch mispredictions over the
128KB TAGE-SC-L baseline: Whisper reduces 13.4% of all
mispredictions the 128KB TAGE-SC-L incurs.

8KB
16KB

32KB
64KB

128KB
256KB

512KB

1024KB

Baseline branch predictor’s size

0

10

20

A
ve

ra
ge

m
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

Fig. 21: Whisper’s performance for various baseline branch
predictor’s sizes: Whisper reduces even 1MB TAGE-SC-L’s
mispredictions by 11.2%.

L’s mispredictions by 16.8% even when warm-up instructions
account for 50% of all instructions.
Simulated instructions. We evaluate Whisper’s sensitivity
to the total number of instructions simulated by varying the
number of instructions from 100 million to 1 billion. Fig. 23
shows the results. As shown, Whisper reduces 14.7% of all
mispredictions even when one billion instructions are simulated.

VI. RELATED WORK

PGO for data center applications. The large instruction
footprint and software complexity of modern data center
applications make them a prime target for PGO [3, 4, 5, 6,
7, 90, 91]. Prior PGO techniques include code layout opti-
mizations [1, 11, 17, 27, 33, 92, 93, 94, 95, 96, 97, 98], I-cache
prefetching [3, 18] and replacement [20], and BTB prefetch-
ing [21] and replacement [99]. These techniques primarily

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% Avg

Warm-up (% of instructions)

0

5

10

15

A
ve

ra
ge

m
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

Fig. 22: Whisper’s performance for various TAGE-SC-L
warm-up periods: Whisper reduces 16.8% of TAGE-SC-L’s
mispredictions with 50% of instructions considered as warm-up.
On the other hand, Whisper avoids 17.5% of TAGE-SC-L’s
mispredictions without any warm-up.

100 200 300 400 500 600 700 800 900
1000

of simulated instructions (in millions)

0

5

10

15

A
ve

ra
ge

m
is

pr
ed

ic
ti

on
re

du
ct

io
n

(%
)

Fig. 23: Whisper’s performance for various numbers of sim-
ulated instructions: on average, Whisper avoids 14.7% of all
mispredictions after simulating one billion instructions.

focus on reducing frontend stalls while Whisper focuses on
reducing branch mispredictions. Consequently, Whisper should
be equally effective even in the presence of these techniques.
Online branch predictors. Most state-of-the-art online branch
predictors are variants of TAGE [100] and Perceptron [101].
TAGE hashes global branch and path histories of different
lengths to index into various tables composed of tagged
saturating counters. TAGE-SC-L [34, 102], which won CBP-
5 [62], is a popular TAGE variant that uses additional loop
predictor and statistical corrector components to improve
accuracy. Perceptron-based predictors, such as the Multi-
perspective Perceptron [103, 104], use a single-layer neural
network to compute a sum of weights that represent a learned
correlation in branch history. A fundamental limitation of
TAGE and Perceptron-based predictors is their inability to
learn increasingly complex branch histories due to storage and
run-time constraints. Other work in online branch prediction
includes domain-specific branch predictors and predictors
targeting data-dependent branches [105, 106, 107, 108].

Considering prior limitations, Whisper still leverages online
branch predictors in the common case. Offline profiling and
hardware support for ROMBF are then used to predict branches
that online predictors struggle to predict accurately. This
approach allows Whisper to reduce the resource burden placed
on traditional online predictors from applications with noisy
branch histories. Also, Whisper does not attempt to alter
existing online branch predictors in hardware, which simplifies
its implementation in modern processors.
Offline methods for branch prediction. Offline techniques,
such as profiling and compiler-based optimizations, have

been used extensively to improve accuracy for branch pre-
diction [36, 75, 109, 110, 111, 112, 112, 113, 114, 115, 116, 117,
118, 119, 120, 121, 122, 123, 124, 125]. BranchNet [35] is a
recent offline method for reducing branch mispredictions. It
uses CNNs, with a hardware-based inference component, to han-
dle branches that online predictors struggle to predict accurately.
The main limitation of BranchNet is its resource requirements
(i.e., multiple GPUs for efficient training, one CNN model
per static branch) and implementation complexity in hardware.
Whereas for Whisper, ”training” or analyzing execution profiles
can be done relatively cheaply using commodity CPUs and
the hardware implementation is less demanding than hardware
inference for deep learning. Additionally, BranchNet struggles
to cover mispredictions spread out across many unique static
branches. Whisper has less overhead per static branch due to
the lightweight design of ROMBF compared to a CNN model
in BranchNet.

VII. CONCLUSION

The state-of-the-art branch predictor, TAGE-SC-L, suffers
frequent branch mispredictions for data center applications
as their large branch footprints overwhelm TAGE-SC-L’s
64KB capacity. We propose, Whisper, a profile-guided hard-
ware/software mechanism to efficiently reduce branch mispre-
dictions in these data center applications through extended
Read-Once Monotone Boolean Formulas that encode hard-
to-predict correlations in branch history. Whisper inserts
lightweight formulas in application code at link time using
a new brhint instruction that is complemented by micro-
architectural support for ROMBF. Through efficient offline
analysis of application profiles, only select branches use these
new micro-architectural changes; the remaining are predicted
using the underlying branch predictor – requiring no changes to
the predictor itself. On average, Whisper reduces 16.8% (1.7%-
32.4%) of branch mispredictions over TAGE-SC-L for 12
widely-used data center applications, with an average speedup
of 2.8% (0.4%-4.6%), and outperforms existing profile-guided
branch prediction mechanisms, such as BranchNet, by 7.9%.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
feedback. This work was supported by generous gifts from Intel
Labs, Google, NSF/Intel joint grants #2010810 and #1912617,
NSF grants #1942754 and CNS-1938064, a Rackham Predoc-
toral Fellowship, and the Applications Driving Architectures
(ADA) Research Center, a JUMP Center cosponsored by
SRC and DARPA. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the funding
agencies. We thank Jaekyu Lee, Jumana Mundichipparakkal,
Prakash Ramrakhyani, José A. Joao, Matt Horsnell from ARM,
Akanksha Jain from Google, Zhenhang He from the University
of Michigan, and Siavash Zangeneh from the University of
Texas at Austin for helping us at various stages of this work.

13

REFERENCES

[1] M. Panchenko, R. Auler, L. Sakka, and G. Ottoni, “Lightning bolt:
powerful, fast, and scalable binary optimization,” in Proceedings
of the 30th ACM SIGPLAN International Conference on Compiler
Construction, 2021, pp. 119–130.

[2] G. Ottoni and B. Liu, “Hhvm jump-start: Boosting both warmup and
steady-state performance at scale,” in 2021 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). IEEE, 2021,
pp. 340–350.

[3] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ran-
ganathan, “Asmdb: understanding and mitigating front-end stalls in
warehouse-scale computers,” in Proceedings of the 46th ISCA, 2019.

[4] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity@ scale,” in Proceedings
of the 46th International Symposium on Computer Architecture, 2019,
pp. 513–526.

[5] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
643–656.

[6] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd ISCA, 2015.

[7] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
Acm sigplan notices, vol. 47, no. 4, pp. 37–48, 2012.

[8] K. Adams, J. Evans, B. Maher, G. Ottoni, A. Paroski, B. Simmers,
E. Smith, and O. Yamauchi, “The hiphop virtual machine,” in Proceed-
ings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, 2014, pp. 777–790.

[9] G. Ottoni, “Hhvm jit: A profile-guided, region-based compiler for php
and hack,” in Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2018, pp. 151–
165.

[10] M. Ugur, C. Jiang, A. Erf, T. A. Khan, and B. Kasikci, “One profile fits
all: Profile-guided linux kernel optimizations for data center applications,”
ACM SIGOPS Operating Systems Review, vol. 56, no. 1, pp. 26–33,
Jun. 2022.

[11] M. Panchenko, R. Auler, B. Nell, and G. Ottoni, “Bolt: a practical
binary optimizer for data centers and beyond,” in 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2019, pp. 2–14.

[12] G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture
for fast instruction delivery,” ACM SIGARCH Computer Architecture
News, vol. 27, no. 2, pp. 234–245, 1999.

[13] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction
prefetching,” in MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture. IEEE, 1999, pp. 16–27.

[14] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Rebasing instruction
prefetching: An industry perspective,” IEEE Computer Architecture
Letters, 2020.

[15] ——, “Re-establishing fetch-directed instruction prefetching: An indus-
try perspective,” IEEE International Symposium on Performance
Analysis of Systems and Software, 2021.

[16] K. Pettis and R. C. Hansen, “Profile guided code positioning,” in
Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, 1990, pp. 16–27.

[17] D. Chen, T. Moseley, and D. X. Li, “Autofdo: Automatic feedback-
directed optimization for warehouse-scale applications,” in CGO, 2016.

[18] T. A. Khan, A. Sriraman, J. Devietti, G. Pokam, H. Litz, and B. Kasikci,
“I-spy: Context-driven conditional instruction prefetching with coalesc-
ing,” in 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2020, pp. 146–159.

[19] T. A. Khan, I. Neal, G. Pokam, B. Mozafari, and B. Kasikci, “Dmon:
Efficient detection and correction of data locality problems using
selective profiling,” in Proceedings of the 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), ser. OSDI
2021. USENIX Association, Jul. 2021.

[20] T. A. Khan, D. Zhang, A. Sriraman, J. Devietti, G. Pokam, H. Litz,
and B. Kasikci, “Ripple: Profile-guided instruction cache replacement
for data center applications,” in Proceedings (to appear) of the 48th

International Symposium on Computer Architecture (ISCA), ser. ISCA
2021, Jun. 2021.

[21] T. A. Khan, N. Brown, A. Sriraman, N. K. Soundararajan, R. Kumar,
J. Devietti, S. Subramoney, G. A. Pokam, H. Litz, and B. Kasikci,
“Twig: Profile-guided btb prefetching for data center applications,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 816–829.

[22] D. Suggs, M. Subramony, and D. Bouvier, “The amd “zen 2” processor,”
IEEE Micro, vol. 40, no. 2, pp. 45–52, 2020.

[23] A. Pellegrini, N. Stephens, M. Bruce, Y. Ishii, J. Pusdesris, A. Raja,
C. Abernathy, J. Koppanalil, T. Ringe, A. Tummala et al., “The arm
neoverse n1 platform: Building blocks for the next-gen cloud-to-edge
infrastructure soc,” IEEE Micro, vol. 40, no. 2, pp. 53–62, 2020.

[24] J. Rupley, “Samsung exynos m3 processor,” IEEE Hot Chips, vol. 30,
2018.

[25] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez,
T. Nakra, P. Kitchin, R. Hensley, E. Brekelbaum, V. Sinha et al., “Evo-
lution of the samsung exynos cpu microarchitecture,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 40–51.

[26] A. Yasin, L. Rappoport, J. W. Stark, J. Baxter, I. Diamand, P. Fridman,
I. Hur, and N. Tell, “Code prefetch instruction,” Nov. 4 2021, uS Patent
App. 17/033,751.

[27] Google, “Propeller: Profile guided optimizing large scale llvm-based
relinker,” https://github.com/google/llvm-propeller, 2020.

[28] J. Mundichipparakkal, K. Nathella, and T. A. K. Khan,
“Arm neoverse n1 core: Performance analysis methodology,”
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-
paper/neoverse-n1-core-performance-v2.pdf, 2021.

[29] M. Ferdman, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Temporal instruction fetch streaming,” in International Symposium on
Microarchitecture, 2008.

[30] B. Falsafi and T. F. Wenisch, “A primer on hardware prefetching,”
Synthesis Lectures on Computer Architecture, vol. 9, no. 1, pp. 1–67,
2014.

[31] R. Kumar, C.-C. Huang, B. Grot, and V. Nagarajan, “Boomerang: A
metadata-free architecture for control flow delivery,” in 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 493–504.

[32] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the front-end
bottleneck with shotgun,” ACM SIGPLAN Notices, vol. 53, no. 2, pp.
30–42, 2018.

[33] W. He, J. Mestre, S. Pupyrev, L. Wang, and H. Yu, “Profile inference
revisited,” Proceedings of the ACM on Programming Languages, vol. 6,
no. POPL, pp. 1–24, 2022.

[34] A. Seznec, “Tage-sc-l branch predictors,” in JILP-Championship Branch
Prediction, 2014.

[35] S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt, “Branchnet: A convo-
lutional neural network to predict hard-to-predict branches,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 118–130.

[36] D. A. Jiménez, H. L. Hanson, and C. Lin, “Boolean formula-based
branch prediction for future technologies,” in Proceedings 2001 Interna-
tional Conference on Parallel Architectures and Compilation Techniques.
IEEE, 2001, pp. 97–106.

[37] “Adding processor trace support to linux,”
https://lwn.net/Articles/648154/.

[38] “An introduction to last branch records,”
https://lwn.net/Articles/680985/.

[39] Y. Zhou, X. Dong, A. L. Cox, and S. Dwarkadas, “On the impact of
instruction address translation overhead,” in 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 2019, pp. 106–116.

[40] R. Lavaee, J. Criswell, and C. Ding, “Codestitcher: inter-procedural basic
block layout optimization,” in Proceedings of the 28th International
Conference on Compiler Construction, 2019, pp. 65–75.

[41] G. Vavouliotis, L. Alvarez, B. Grot, D. Jiménez, and M. Casas,
“Morrigan: A composite instruction tlb prefetcher,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, 2021,
pp. 1138–1153.

[42] A. A. Moreira, G. Ottoni, and F. M. Quintão Pereira, “Vespa: static
profiling for binary optimization,” Proceedings of the ACM on Pro-
gramming Languages, vol. 5, no. OOPSLA, pp. 1–28, 2021.

14

https://github.com/google/llvm-propeller

[43] “Mysql,” [Online; accessed 19-Nov-2021]. [Online]. Available:
https://www.mysql.com

[44] T. P. P. Council, “Tpc-c,” [Online; accessed 19-Nov-2021]. [Online].
Available: http://www.tpc.org/tpcc/

[45] “Postgresql: The world’s most advanced open source database,” [Online;
accessed 19-Nov-2021]. [Online]. Available: https://www.postgresql.org/

[46] “Postgresql: Documentation: 14: pgbench,” [Online; accessed 19-Nov-
2021]. [Online]. Available: https://www.postgresql.org/docs/current/
pgbench.html

[47] “Clang c language family frontend for llvm,” [Online; accessed
19-Nov-2021]. [Online]. Available: https://clang.llvm.org/

[48] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[49] “Welcome to python.org,” [Online; accessed 19-Nov-2021]. [Online].
Available: https://www.python.org/

[50] “The python performance benchmark suite,” [Online; accessed 19-Nov-
2021]. [Online]. Available: https://pyperformance.readthedocs.io/

[51] “Twitter finagle,” https://twitter.github.io/finagle/.
[52] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-

dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder, “Renaissance: Benchmarking suite for parallel applications
on the jvm,” in Programming Language Design and Implementation,
2019.

[53] “Apache cassandra,” http://cassandra.apache.org/.
[54] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,

R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al.,
“The dacapo benchmarks: Java benchmarking development and analysis,”
in Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, 2006, pp.
169–190.

[55] “Apache kafka,” https://kafka.apache.org/powered-by.
[56] “Apache tomcat,” https://tomcat.apache.org/.
[57] “Drupal,” https://www.drupal.org, [Online; accessed 30-June-2022].
[58] “facebookarchive/oss-performance: Scripts for benchmarking various

php implementations when running open source software,” https://github.
com/facebookarchive/oss-performance, 2019, (Online; last accessed 15-
November-2019).

[59] “Wordpress,” https://wordpress.org, [Online; accessed 30-June-2022].
[60] “Mediawiki,” https://www.mediawiki.org/wiki/MediaWiki, [Online;

accessed 30-June-2022].
[61] “Scarab,” https://github.com/hpsresearchgroup/scarab.
[62] “Championship branch prediction,” https://jilp.org/cbp2016/, 2016.
[63] C. Young, N. Gloy, and M. D. Smith, “A comparative analysis of

schemes for correlated branch prediction,” ACM SIGARCH Computer
Architecture News, vol. 23, no. 2, pp. 276–286, 1995.

[64] Lee and Smith, “Branch prediction strategies and branch target buffer
design,” Computer, vol. 17, no. 1, pp. 6–22, 1984.

[65] S. McFarling, “Combining branch predictors,” Citeseer, Tech. Rep.,
1993.

[66] R. Nair, “Dynamic path-based branch correlation,” in Proceedings of
the 28th annual international symposium on Microarchitecture. IEEE,
1995, pp. 15–23.

[67] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of dynamic
branch prediction using branch correlation,” in Proceedings of the fifth
international conference on Architectural support for programming
languages and operating systems, 1992, pp. 76–84.

[68] J. E. Smith, “A study of branch prediction strategies,” in 25 years of
the international symposia on Computer architecture (selected papers),
1998, pp. 202–215.

[69] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch predic-
tion,” in Proceedings of the 24th annual international symposium on
Microarchitecture, 1991, pp. 51–61.

[70] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches,”
IEEE Transactions on Computers, vol. 38, no. 12, pp. 1612–1630, 1989.

[71] R. A. Sugumar and S. G. Abraham, “Efficient simulation of caches
under optimal replacement with applications to miss characterization,”
in Proceedings of the 1993 ACM SIGMETRICS conference on Mea-
surement and modeling of computer systems, 1993, pp. 24–35.

[72] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity
aliasing in conditional branch predictors,” in Proceedings of the 24th
annual international symposium on Computer architecture, 1997, pp.
292–303.

[73] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” ACM SIGARCH Computer Architecture News, vol. 38, no. 3,
pp. 60–71, 2010.

[74] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis,” in Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, 2003,
pp. 245–257.

[75] M. U. Farooq, L. K. John et al., “Store-load-branch (slb) predictor:
A compiler assisted branch prediction for data dependent branches,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2013, pp. 59–70.

[76] N. Adiga, J. Bonanno, A. Collura, M. Heizmann, B. R. Prasky, and
A. Saporito, “The ibm z15 high frequency mainframe branch predictor
industrial product,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2020, pp. 27–39.

[77] A. Seznec, “Analysis of the o-geometric history length branch predictor,”
in 32nd International Symposium on Computer Architecture (ISCA’05).
IEEE, 2005, pp. 394–405.

[78] R. A. Fisher and F. Yates, Statistical tables for biological, agricultural
and medical research. Hafner Publishing Company, 1953.

[79] R. Durstenfeld, “Algorithm 235: random permutation,” Communications
of the ACM, vol. 7, no. 7, p. 420, 1964.

[80] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and
I. Yun, “{REPT}: Reverse debugging of failures in deployed software,”
in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 17–32.

[81] W. Erquinigo, D. Carrillo-Cisneros, and A. Tang, “Reverse debugging
at scale,” https://engineering.fb.com/2021/04/27/developer-tools/reverse-
debugging/.

[82] B. Kasikci, W. Cui, X. Ge, and B. Niu, “Lazy diagnosis of in-production
concurrency bugs,” in Proceedings of the 26th Symposium on Operating
Systems Principles, 2017, pp. 582–598.

[83] B. Kasikci, C. Pereira, G. Pokam, B. Schubert, M. Musuvathi, and
G. Candea, “Failure sketches: A better way to debug,” ser. Hot Topics
in Operating Systems, 2015, p. 5.

[84] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea, “Failure
sketching: A technique for automated root cause diagnosis of in-
production failures,” in Proceedings of the 25th Symposium on Operating
Systems Principles, 2015, p. 344–360.

[85] G. Zuo, J. Ma, A. Quinn, P. Bhatotia, P. Fonseca, and B. Kasikci,
“Execution reconstruction: Harnessing failure reoccurrences for failure
reproduction,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2021, p. 1155–1170.

[86] S. Jamilan, T. A. Khan, G. Ayers, B. Kasikci, and H. Litz, “Apt-get:
Profile-guided timely software prefetching,” in Proceedings of the 17th
European Conference on Computer Systems (EuroSys), ser. EuroSys
2022, Apr. 2022.

[87] N. K. Soundararajan, P. Braun, T. A. Khan, B. Kasikci, H. Litz, and
S. Subramoney, “Pdede: Partitioned, deduplicated, delta branch target
buffer,” in MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, 2021, pp. 779–791.

[88] I. Corparation, “Intel (r) 64 and ia-32 architectures software developer’s
manual,” Combined Volumes, Dec, 2016.

[89] A. Seznec, “Exploring branch predictability limits with the mtage+ sc
predictor,” in 5th JILP Workshop on Computer Architecture Competitions
(JWAC-5): Championship Branch Prediction (CBP-5), 2016, p. 4.

[90] T. A. Khan, Y. Zhao, G. Pokam, B. Mozafari, and B. Kasikci, “Huron:
hybrid false sharing detection and repair,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 453–468.

[91] H. Litz, G. Ayers, and P. Ranganathan, “Crisp: critical slice prefetching,”
in Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2022, pp. 300–313.

[92] C.-K. Luk and T. C. Mowry, “Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern
processors,” in International Symposium on Microarchitecture, 1998.

[93] S. Harizopoulos and A. Ailamaki, “Steps towards cache-resident
transaction processing,” in International conference on Very large data
bases, 2004.

15

https://www.mysql.com
http://www.tpc.org/tpcc/
https://www.postgresql.org/
https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/pgbench.html
https://clang.llvm.org/
https://www.python.org/
https://pyperformance.readthedocs.io/
https://www.drupal.org
https://github.com/facebookarchive/oss-performance
https://github.com/facebookarchive/oss-performance
https://wordpress.org
https://www.mediawiki.org/wiki/MediaWiki
https://jilp.org/cbp2016/

[94] J. Zhou and K. A. Ross, “Buffering databse operations for enhanced
instruction cache performance,” in International conference on Man-
agement of data, 2004.

[95] L. L. Peterson, “Architectural and compiler support for effective
instruction prefetching: a cooperative approach,” ACM Transactions on
Computer Systems, 2001.

[96] D. X. Li, R. Ashok, and R. Hundt, “Lightweight feedback-directed cross-
module optimization,” in Proceedings of the 8th annual IEEE/ACM
international symposium on Code generation and optimization, 2010,
pp. 53–61.

[97] C.-K. Luk, R. Muth, H. Patil, R. Cohn, and G. Lowney, “Ispike: a
post-link optimizer for the intel/spl reg/itanium/spl reg/architecture,” in
International Symposium on Code Generation and Optimization, 2004.
CGO 2004. IEEE, 2004, pp. 15–26.

[98] Y. Zhang, T. A. Khan, G. Pokam, B. Kasikci, H. Litz, and J. Devietti,
“Ocolos: Online code layout optimizations,” in Proceedings of the 55th
International Symposium on Microarchitecture (MICRO), Oct. 2022.

[99] S. Song, T. A. Khan, S. M. Shahri, A. Sriraman, N. K. Soundararajan,
S. Subramoney, D. A. Jiménez, H. Litz, and B. Kasikci, “Thermometer:
profile-guided btb replacement for data center applications,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022, pp. 742–756.

[100] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” J. Instr. Level Parallelism, vol. 8,
2006.

[101] D. A. Jiménez and C. Lin, “Dynamic branch prediction with
perceptrons,” in Proceedings of the Seventh International Symposium
on High-Performance Computer Architecture (HPCA’01), Nuevo Leone,
Mexico, January 20-24, 2001. IEEE Computer Society, 2001, pp. 197–
206. [Online]. Available: https://doi.org/10.1109/HPCA.2001.903263

[102] A. Seznec, “TAGE-SC-L Branch Predictors Again,” in 5th JILP Work-
shop on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[103] D. A. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Champi-
onship Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[104] ——, “Multiperspective perceptron predictor with tage,” in 5th JILP
Workshop on Computer Architecture Competitions (JWAC-5): Champi-
onship Branch Prediction (CBP-5), Seoul, South Korea, Jun. 2016.

[105] S. Pruett and Y. Patt, “Branch runahead: An alternative to branch
prediction for impossible to predict branches,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 804–815. [Online]. Available: https://doi.org/10.
1145/3466752.3480053

[106] S. Gupta, N. Soundararajan, R. Natarajan, and S. Subramoney,
“Opportunistic early pipeline re-steering for data-dependent branches,”
in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 305–316.
[Online]. Available: https://doi.org/10.1145/3410463.3414628

[107] A. Samara and J. Tuck, “The case for domain-specialized branch
predictors for graph-processing,” IEEE Computer Architecture Letters,

[114] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer,
and B. Zorn, “Evidence-based static branch prediction using machine
learning,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 19, no. 1, pp. 188–222, 1997.

vol. 19, no. 2, pp. 101–104, 2020.
[108] A. Sridhar, N. Kabylkas, and J. Renau, “Load driven branch predictor

(LDBP),” CoRR, vol. abs/2009.09064, 2020. [Online]. Available:
https://arxiv.org/abs/2009.09064

[109] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” ACM SIGPLAN Notices,
vol. 27, no. 9, pp. 85–95, 1992.

[110] T. Ball and J. R. Larus, “Branch prediction for free,” ACM SIGPLAN
Notices, vol. 28, no. 6, pp. 300–313, 1993.

[111] Y. Wu and J. R. Larus, “Static branch frequency and program profile
analysis,” in Proceedings of the 27th annual international symposium
on Microarchitecture, 1994, pp. 1–11.

[112] C. Young and M. D. Smith, “Improving the accuracy of static branch
prediction using branch correlation,” ACM SIGOPS Operating Systems
Review, vol. 28, no. 5, pp. 232–241, 1994.

[113] A. Krall, “Improving semi-static branch prediction by code replication,”
ACM SIGPLAN Notices, vol. 29, no. 6, pp. 97–106, 1994.

[115] J. R. Patterson, “Accurate static branch prediction by value range
propagation,” in Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, 1995, pp. 67–78.

[116] D. A. Jiménez and C. Lin, “Branch path re-aliasing,” in Proceedings
of the 4th Workshop on Feedback Directed and Dynamic Optimization
(FDDO-4). Citeseer, 2001.

[117] D. A. Jiménez, “Code placement for improving dynamic branch
prediction accuracy,” ACM SIGPLAN Notices, vol. 40, no. 6, pp. 107–
116, 2005.

[118] T. Sherwood and B. Calder, “Automated design of finite state machine
predictors for customized processors,” in Proceedings 28th Annual
International Symposium on Computer Architecture. IEEE, 2001, pp.
86–97.

[119] M.-D. Tarlescu, K. B. Theobald, and G. R. Gao, “Elastic history
buffer: A low-cost method to improve branch prediction accuracy,”
in Proceedings International Conference on Computer Design VLSI in
Computers and Processors. IEEE, 1997, pp. 82–87.

[120] J. Stark, M. Evers, and Y. N. Patt, “Variable length path branch
prediction,” in Proceedings of the eighth international conference on
Architectural support for programming languages and operating systems,
1998, pp. 170–179.

[121] A. Adileh, D. J. Lilja, and L. Eeckhout, “Architectural support
for probabilistic branches,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-51. IEEE Press, 2018, p. 108–120. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00018

[122] S. Verma, B. Maderazo, and D. M. Koppelman, “Spotlight-a low
complexity highly accurate profile-based branch predictor,” in 2009
IEEE 28th International Performance Computing and Communications
Conference. IEEE, 2009, pp. 239–247.

[123] V. Desmet, L. Eeckhout, and K. D. Bosschere, “Using decision trees to
improve program-based and profile-based static branch prediction,” in
Asia-Pacific Conference on Advances in Computer Systems Architecture.
Springer, 2005, pp. 336–352.

[124] Y. Mao, J. Shen, and X. Gui, “A study on deep belief net for branch
prediction,” IEEE Access, vol. 6, pp. 10 779–10 786, 2017.

[125] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang, “Improving
branch prediction by modeling global history with convolutional neural
networks,” arXiv preprint arXiv:1906.09889, 2019.

16

https://doi.org/10.1109/HPCA.2001.903263
https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1145/3410463.3414628
https://arxiv.org/abs/2009.09064
https://doi.org/10.1109/MICRO.2018.00018

	Introduction
	Branch Prediction Challenges for Data Center Applications
	Experimental methodology
	Why is branch prediction important for data center applications?
	Why does the state-of-the-art TAGE-SC-L branch predictor fall short?
	Why do existing profile-guided techniques fall short?

	Design of WHISPER
	Hashed history correlation
	Randomized formula testing
	Implication and Converse Non-Implication

	Usage Model
	Evaluation
	Methodology
	Performance analysis

	Related Work
	Conclusion
	References

