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Complete visitation statistics of one-dimensional random walks
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We develop a framework to determine the complete statistical behavior of a fundamental quantity in the
theory of random walks, namely, the probability that n1, n2, n3, . . . distinct sites are visited at times t1, t2, t3, . . ..
From this multiple-time distribution, we show that the visitation statistics of one-dimensional random walks are
temporally correlated, and we quantify the non-Markovian nature of the process. We exploit these ideas to derive
unexpected results for the two-time trapping problem and to determine the visitation statistics of two important
stochastic processes, the run-and-tumble particle and the biased random walk.
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I. INTRODUCTION

A key property of a diffusing particle is the territory that
it covers both because of its fundamental utility (see, e.g.,
Refs. [1–5]) and because of its wide range of applications to
diverse fields, such as chemical reactions [6–9], relaxation in
disordered materials [10], and dynamics on the web [11,12].
For a lattice random walk, the territory covered is quantified
by N (t ), the number of distinct sites visited by the walk up
to time t . Underlying this quantity is the distribution of the
number of distinct sites visited at time t , P (N (t )) [13–20].

For the purposes of this paper, it is important to emphasize
that P (N (t )) is a single-time quantity—the distribution of
N (t ) at the one time instant. It, thus, provides limited informa-
tion about the full stochastic process {N (t )} where the braces
denote the set of N (t ) values for each time step of the walk
(Fig. 1). This stochastic process is generally characterized
by all its multiple-time distributions, namely, the probabil-
ity P (N (t1) = n1; . . . ;N (tk ) = nk ) that n1, n2, . . . , nk distinct
sites are visited at times t1 < · · · < tk , with n1 � · · · � nk
for any k � 2. In this paper, we develop a methodology to
determine all these multitime distributions analytically for
one-dimensional (1D) random walks and several fundamental
generalizations.

One motivation for studying multitime visitation distribu-
tions comes from its central role in the celebrated trapping
problem [6–9]. Here, a random walk wanders on a lattice that
contains a fraction c of immobile and randomly distributed
traps, and the walk dies whenever it encounters a trap [21].
The survival probability of the walk at t steps S(t ) equals
〈(1 − c)N (t )〉, where N (t ) is the number of distinct sites the
walk visits up to t steps (equivalently, the span of the walk
in one dimension), and the angle brackets denote the average
over all random-walk trajectories and all trap configurations.
This average relies on the single-time distribution P (N (t )).

An important extension of trapping is to the two-time
trapping problem: for a walk that has survived until time t1,
what is the probability S(t2|t1) that it survives until time t2?
This corresponds to the probability that the walk does not
encounter any traps among its newly visited sites in the time

interval [t1, t2]. Since none of the N (t2) − N (t1) sites is a trap,
this two-time survival probability is

S(t2|t1) ≡ 〈(1 − c)N (t2 )−N (t1 )〉
=
∑
n1�n2

(1−c)n2−n1P (N (t1) = n1;N (t2) = n2), (1)

which, thus, relies on the the two-time span distribution. This
trapping probability reveals a striking aging feature: if a walk
survives until time t1, its survival statistics at later times is
strongly modified since we now have extra information about
the location of traps. From the two-time span distribution, we
will show the surprising effect that the survival probability
S(t2|t1) goes to a nonzero value, independent of time and trap
concentration when t2 is a multiple of t1.

We finally emphasize that {N (t )} is not a Gaussian process
(even the single-time distribution P (N (t )) is not Gaussian
[4,13–18]), and, thus, is not fully characterized by the knowl-
edge of its mean and covariance (partial results for the latter
quantities are given in Refs. [22–24]). Thus, determining the
full two-time span distribution requires new theoretical devel-
opments. We also stress that {N (t )} is not even a Markovian
process. That is, knowledge of N (t ′) at time t ′ is insufficient
to determine the properties of N (t ) for t > t ′ because the
position of the random walk at time t ′ is not known. As
a consequence, not only the two-time distribution, but also
all k-time distributions are needed to fully characterize the
process {N (t )}.

II. SINGLE-TIME DISTRIBUTION

To introduce our formalism, we first show how to recover
the classic asymptotic distribution of N (t ) for a nearest-
neighbor symmetric random walk. Our approach relies on
the random variable τk , defined as the elapsed time between
visits to the kth and (k + 1)st distinct sites. Crucially, these
times τ0, . . . , τn are independent for a 1D symmetric nearest-
neighbor random walk. This independence arises because the
distribution of times for a random walker to visit a new site
when it starts from the edge of an already visited interval
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FIG. 1. (a) Space-time trajectory of a one-dimensional discrete
random walk and (b) its corresponding span N (t ). At times t1, t2, t3,
and t4 (dashed lines), we are interested in the joint statistics of
N (t1), N (t2), N (t3), and N (t4).

depends only on the number of distinct sites already visited
and nothing else.

We now relate the statistics of N (t ) to that of the times τk
by noting that

P (N (t ) � n) =
t∑

k=0

P (τ0 + · · · + τn−1 = k), (2)

with the convention N (0) = 1 and τ0 = 0. That is, to visit, at
least, n distinct sites by time t , the walk must visit n distinct
sites by time t or earlier. We now define the discrete Laplace
transform for any function f as

L{ f (t )} ≡ f̂ (s) ≡
∞∑
t=0

f (t )e−st ,

from which the Laplace transform of P (N (t ) � n) is

L{P (N (t ) � n)} =
∞∑
k=0

∞∑
t=k

e−stP (τ0 + · · · + τn−1 = k)

=
∞∑
k=0

e−sk

1 − e−s
P (τ0 + · · · + τn−1 = k)

= 1

1 − e−s

n−1∏
k=0

F̂ (s, k). (3)

In the first line, the sums over k and t have been interchanged,
the last line exploits the independence of τk , and F̂ (s, k) is
the Laplace transform of the exit-time distribution from an

interval of length k when the walk starts a unit distance from
its edge [25]. Here, the exit from the interval corresponds to
visiting a new site. We obtain the large-k asymptotic distribu-
tion of N (t ) from the behavior of F̂ (s, k) in the limit k → ∞,
s → 0 with sk2 finite. In Appendix A, Eq. (A3), we show that

F̂ (s, k) = 1 + g(s, k) + o(
√
s)

with

g(s, k) ≡ −
√

2s tanh(
√
sk2/2). (4)

The logarithm of the product in Eq. (3) is then asymptotically
given by

ln

[
n−1∏
k=0

F̂ (s, k)

]
∼
∫ n

0
g(s, k)dk. (5)

Substituting this result in (3) yields the Laplace transform of
the distribution of the number of distinct sites visited

L{P (N (t ) = n)} = −∂nL{P (N (t ) � n)}

∼ −1

s
∂n

(
h(s, 0)

h(s, n)

)
, (6)

where

h(s, n) ≡ exp

(∫ 0

n
g(s, k)dk

)
= cosh2(

√
sn2/2).

Laplace inversion of (6) finally gives the well-known expres-
sion for the asymptotic distribution of the number of distinct
sites visited by a 1D nearest-neighbor symmetric random walk
[4,13–18]; this is also equivalent to the distribution of the span
of a 1D Brownian motion with diffusion constant D = 1/2 at
any time.

III. TWO-TIME DISTRIBUTION

We now generalize and determine the multiple-time dis-
tributions of {N (t )}, starting with the two-time distribution.
Parallel to the one-time distribution, note that for t1 � t2 and
n1 � n2, we have

P (N (t1) � n1;N (t2) � n2)

= P (τ0 + · · · + τn1−1 � t1; τ0 + · · · + τn2−1 � t2)

=
t1∑

k1=0

t2−k1∑
k2=0

P (τ0 + · · ·+τn1−1=k1; τn1 + · · · + τn2−1 = k2).

(7)

Taking the (two-variable) discrete Laplace transform, exploit-
ing the independence of τi, and noting that the upper bound
of the second sum depends on the argument of the first sum
(k2 � t2 − k1), we obtain

L{P (N (t1) � n1;N (t2) � n2)} = F̂ (s1 + s2, 0) · · · F̂ (s1 + s2, n1 − 1)F̂ (s2, n1) · · · F̂ (s2, n2 − 1)

(1 − e−s1 )(1 − e−s2 )
, (8)
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FIG. 2. The conditional two-time distribution (simulations, blue
dots; theory, red curve) and its convergence to the single-time distri-
bution (dashed). Shown is P (N (t2) = n2|N (t1) = n1) versus n2 with
fixed n1 = 10 and t1 = 200 with (a) t2 = 400 and (b) t2 = 3200.

where the argument s1 + s2 comes from the upper bound
dependency. Using Eq. (4), we find, in the large-time (small-s)
limit,

L{P (N (t1) � n1;N (t2) � n2)}
∼ 1

s1s2
F̂ (s1 + s2, 0) · · · F̂ (s1 + s2, n1 − 1)

×F̂ (s2, n1) · · · F̂ (s2, n2 − 1)

∼ 1

s1s2
exp

[∫ n1

0
g(s1 + s2, k)dk +

∫ n2

n1

g(s2, k)dk

]
∼ 1

s1s2

h(s1 + s2, 0)

h(s1 + s2, n1)

h(s2, n1)

h(s2, n2)
(9)

for n1 � n2. We then Laplace invert this formula to obtain
the expression for the asymptotic two-time distribution that
appears in Eq. (A10) of Appendix A.

Equation (9) has several important consequences:
(i) First, we may verify that the covariance of the span,

obtained in Ref. [24], follows from the complete two-time
distribution Eq. (9) (see Appendix A); (ii) second, for t2/t1 →
∞, with ti, ni → ∞ and ni/t

1/2
i = ai fixed for i = 1, 2, the

deviation between the two-time distribution and the product
of one-time distributions reduces to

P (N (t1) = n1;N (t2) = n2) − P (N (t1) = n1) P (N (t2) = n2)

∼ Ca1,a2

t1/2
1

t3/2
2

, (10)

where the expression for the constant Ca1,a2 is given in
Eq. (A19) of Appendix A. Thus, temporal correlations in the
two-time distribution are long range, and statistical indepen-
dence of N (t1) and N (t2) is recovered only in the limit t1, t2 →
∞ with t2 
 t1; (iii) third, we also obtain the conditional
two-time distribution,

P (N (t2) = n2|N (t1) = n1) = P (N (t2) = n2;N (t1) = n1)

P (N (t1) = n1)
.

Figure 2 illustrates the slow convergence of the condi-
tional two-time distribution to the single-time distribution
P (N (t2) = n2|N (t1) = n1) → P (N (t2) = n2) when t2 
 t1.

IV. k-TIME DISTRIBUTIONS

Following our theoretical approach, the Laplace transform
of the k-time span distribution is given by [compare with

FIG. 3. Non-Markovian property of the span {N (t )}. The distri-
bution P (N (t3) = n3|N (t1) = n1;N (t2) = n2) of the quantity N (t3 =
200) conditioned on N (t1 = 100) = 5 and (a) N (t2 = 110) = 15
and (b) N (t2 = 110) = 6 (blue curves). The distribution P (N (t3) =
n3|N (t2) = n2) of N (t3) conditioned only on N (t2) is represented by
the red dashed curves.

Eq. (9)]

L{P (N (t1) � n1; . . . ;N (tk ) � nk )}
∼ 1

s1 · · · sk
h(s1 + · · · + sk, 0)

h(s1 + · · · + sk, n1)

h(s2 + · · · + sk, n1)

h(s2 + · · · + sk, n2)

× · · · × h(sk, nk−1)

h(sk, nk )
. (11)

We can derive and Laplace invert this expression to obtain
the expression given by Eq. (B2) of Appendix B, namely,
P (N (t1) = n1, . . . ,N (tk ) = nk ).

We highlight the non-Markovian property of {N (t )}
by comparing P (N (t3) = n3|N (t1) = n1;N (t2) = n2) and
P (N (t3) = n3|N (t2) = n2) as shown in Fig. 3. For given N (t1)
and N (t2), specifying both observables can change the distri-
bution of the span at later times compared to the distribution
when only N (t2) is specified. This quantifies how the distribu-
tion of visited sites at a particular time depends on previous
values of N (t ).

We may also use Eq. (11) to calculate the difference be-
tween the k-time distribution and the product of k one-time
distributions, analogous to Eq. (10), for t1 � t2 � · · · � tk ,

P (N (t1) = n1; . . . ;N (tk ) = nk )

− P (N (t1) = n1) · · ·P (N (tk ) = nk )

∼ 1√
t1 . . . tk

k−1∑
�=1

t�
t�+1

C�
a1,...,a�

, (12)

with ai = ni/
√
ti fixed, and where the expression for the con-

stant C�
a1,...,ak is given in Eq. (B6) of Appendix B. This slow

temporal decay means that span correlations between k time
points are long range and are controlled by the largest ratio
t�/t�+1 between successive times.

We emphasize that Eq. (11) fully characterizes the
stochastic process {N (t )} in that we can compute any
functional of {N (t )}. Two important and natural examples
are general-order moments of the distribution at arbitrary
time points, E[N (t1)α1 · · ·N (tk )αk ], and the joint statistics
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FIG. 4. Long-time limit of the two-time survival probability,
S(t2|t1) [see Eq. (1)], of the 1D random walk at time t2 knowing that
it survived until time t1. Here z = t2/t1 is a constant with t1, t2 → ∞.
The black line represents the asymptotic theoretical value, Eq. (C5)
of Appendix C. Symbols correspond to numerical simulations, for
different values of the fraction c of immobile and randomly dis-
tributed traps.

P (Tn1 = t1; . . . ; Tnk = tk ) of the time to first visit n distinct
sites Tn ≡ min{t |N (t ) > n}.

V. THE TWO-TIME TRAPPING PROBLEM

We can obtain the exact two-time survival probability
S(t2|t1) defined above by substituting the two-time span dis-
tribution (9) into Eq. (1). The explicit form for this two-time
survival probability is given as Eq. (C2) of Appendix C. Three
distinct cases arise: (a) t2 − t1 � t1, where S(t2|t1) → 1, (b)
t2 − t1 
 t1, where S(t2|t1) → 0, and (c) t1, t2 → ∞ with
z ≡ t2/t1 as a constant. Whereas the behavior of S(t2|t1) in
the first two regimes can be qualitatively inferred from the
one-time span distribution, the last case is subtle and requires
the knowledge of two-time quantities. As shown in Fig. 4, the
survival probability up to time t2 goes to a nonzero value that
depends only on the ratio z ≡ t2/t1, and not on the trap con-
centration. Since the typical size of the new territory explored
beyond time t1, 〈N (t2) − N (t1)〉 ∝ √

Dt1(
√
z − 1), diverges at

long times, we would naively expect that the probability to
encounter a trap among these newly visited sites will be close
to 1 for t2 → ∞. Thus, the walk should be trapped with high
probability at time t2, even when conditioned to survive to
time t1.

In contrast, the conditional survival probability goes to a
nonzero value. This behavior corresponds to the probability
for the walk to not discover any new sites in the time inter-
val [t1, t2], P (N (t1) = N (t2)) [see Eq. (C5) in Appendix C].
Surprisingly, this expression is concentration independent for
the particular choice t2 = zt1, and this result reveals itself only
through the two-time distribution. Thus correlations between
the number of distinct sites visited at different times are
crucial for understanding observables that are functionals of
several of these variables.

VI. RUN-AND-TUMBLE PARTICLE

More generally, our formalism for the multiple-time span
distribution can be applied to any type of random walk with:

(i) a simply connected span (i.e., no “holes” in the trajectory),
(ii) translation invariance (i.e., the distribution for the next step
is independent of location), (iii) symmetry so that the exit-
time statistics starting from either end of the interval of visited
sites are the same. An important example is the continuous
run-and-tumble particle, a classical model of bacteria motility
(see, e.g., Refs. [26–29]). Such a particle moves ballistically
at a constant speed v during a flight time that is exponentially
distributed with average duration T (a “run”), after which the
particle “tumbles”, i.e., chooses a new direction.

For this continuous-space example, the number of distinct
sites visited is replaced by the length of the span. We again
define g(s, k) as the leading contribution to F̂ (s, k) − 1 for
s → 0 [see Eq. (4)]. Equation (11) still applies with h(s, n)
again given by exp [

∫ 0
n g(s, k)dk]. In Appendix D, we show

that for this process,

h(s, n) =
1 +

√
sT

1+sT tanh(wn/2)

1 −
√

sT
1+sT tanh(wn/2)

sT + cosh2(wn/2)

sT + 1
, (13)

where w2 ≡ s2/v2 + s/(v2T ). Together with Eq. (11), we,
thus, obtain the Laplace transform of the k-time distribu-
tion for the span of a run-and-tumble particle. By numerical
inversion of this Laplace transform, we can compute any
multiple-time distribution, see Appendix F.

For times much longer than the persistence timescale,
namely, ti 
 T , where {ti} is the set of times t1 � t2 � · · · �
tk at which the span is sampled, the run-and-tumble walk
approaches a Brownian motion with diffusion constant D =
v2T . The covariance of the span is shown in Appendix D to
have a relative correction that is proportional to T/t1 com-
pared to a pure symmetric random walk. This shows that
the span of a run-and-tumble walk converges algebraically
towards that of Brownian motion. Moreover, it is the shortest
of the sampling times t1 that controls this relative difference.

VII. BIASED RANDOM WALK

We can generalize still further to treat a biased random
walk that hops one site to the right with probability p or one
site to the left with probability q = 1 − p in a single step.
Whereas the previous point (iii) about the symmetry of the
exit-time statistics no longer holds, it is again possible to
compute the multiple-time span distributions. There are two
new issues that we need to resolve to compute these distri-
butions: (i) the asymmetry of exit-time statistics and (ii) the
dependence of random variables τi. For example, if the bias
is to the right and a new site is reached at the right extremity
of the visited region, then a small value of τi likely leads to a
small value of τi+1. These two difficulties can be overcome by
introducing the coupled variables (τi, δi ), where δi denotes the
direction (left or right end of the visited interval) of the ran-
dom walker when the site i + 1 is first visited. We further need
to replace the exit-time distributions F̂ (s, k) by 2 × 2 matrices
of exit-time distributions, whose first index represents the start
of the walk (left or right side of the interval), whereas the
second index represents the exit side. The Laplace transform
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of the k-time span distribution can now be expressed as

L{P (N (t1) � n1; . . . ;N (tk ) � nk )}
∼ 1

2s1s2 · · · sk (1, 1)M(s1 + · · · + sk, 0, n1)

×M(s2 + · · · + sk, n1, n2) · · ·M(sk, nk−1, nk )(1, 1)T ,

(14)

where M(s,m, n) is a 2 × 2 matrix defined in Eqs. (E23)–
(E25) of Appendix E. This general k-time distribution reduces
to the one-time distribution recently found in Ref. [30]. After
numerical Laplace inversion (see Appendix F), it provides the
k-time distributions, and, thus, the full characterization of the
span of a biased random walk.

VIII. CONCLUSION

To summarize, we developed a new approach to com-
pute the multiple-time distributions of the span of a one-
dimensional random walk, which fully characterize the time
evolution of the span of the walk. We showed that temporal

correlations in the span decay slowly so that the span exhibits
a long-time memory. We applied our formalism to uncover
unexpected behavior of the two-time trapping problem, and
we generalized our approach to determine the multiple-time
span distribution for a run-and-tumble particle and a biased
random walk.

A significant theoretical challenge is to extend our re-
sults to higher spatial dimensions. Whereas important results
are available for the single-time visitation distribution [31],
nothing is known for the multitime visitation distribution.
Equation (2) holds generally and constitutes the starting
point to determine multiple-time distributions of the number
of distinct sites visited in any dimension d . However, for
d > 1, nontrivial correlations between the τi’s arise. To deal
with these correlations developing new theoretical methods is
crucial.
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APPENDIX A: THE TWO-TIME SPAN DISTRIBUTION

1. Derivation of Eq. (9) in the main text

We decompose the process {N (t )} of the number of distinct visited sites at a set of times {t} by using the fact that the times
between visits to new sites {τi} are independent. Supposing that n1 � n2 we have

P (N (t1) � n1;N (t2) � n2) =
min(t1,t2 )∑

k=0

P (τ0 + · · · + τn1−1 = k; τn1 + · · · + τn2−1 � t2 − k)

=
min(t1,t2 )∑

k=0

P (τ0 + · · · + τn1−1 = k)P (τn1 + . . . + τn2−1 � t2 − k). (A1)

Performing the discrete Laplace transform L{ f (t )} = ∑
t�0 f (t )e−st ≡ f̂ (s) on both the variables t1 and t2 gives

L{P (N (t1) � n1;N (t2) � n2)} =
∞∑

t1,t2=0

min(t1,t2 )∑
k=0

e−s1t1 e−s2t2 P
(
τ0 + · · · + τn1−1 = k

)
P
(
τn1 + · · · + τn2−1 � t2 − k

)
= 1

1 − e−s1

∑
0�k�t2�∞

e−(s1+s2 )k P
(
τ0 + · · · + τn1−1 = k

)
e−s2(t2−k)P

(
τn1 + · · · + τn2−1 � t2 − k

)
= 1

(1 − e−s1 )(1 − e−s2 )
F̂ (s1 + s2, 0) · · · F̂ (s1 + s2, n1 − 1)F̂ (s2, n1) · · · F̂ (s2, n2 − 1), (A2)

where F̂ (s, k) is the Laplace transform of the exit-time probability from an interval of length k when a diffusing particle starts a
distance 1 from the edge of the interval, see Eq. (2.2.10) of Ref. [25] [noting that F̂ (s, 0) = 1 as τ0 = 0]. This probability is

F̂ (s, k) = sinh(
√

2s) + sinh[
√

2s(k − 1)]

sinh(
√

2sk)
= 1 −

√
2s tanh(

√
sk2/2) + o(

√
s) ≡ 1 + g(s, k) + o(

√
s), (A3)

where the limit s → 0 and
√
sk2 fixed is taken in the second line. For s1, s2 → 0, we obtain the Laplace transform of the

distribution L{P (N (t1) � n1;N (t2) � n2)} as

L{P (N (t1) � n1;N (t2) � n2)} ∼ 1

s1s2
exp

(∫ n1

0
g(s1 + s2, k)dk +

∫ n2

n1

g(s2, k)dk

)
= 1

s1s2

1

cosh2[n1
√

(s1 + s2)/2]

cosh2(n1
√
s2/2)

cosh2(n2
√
s2/2)

. (A4)
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In the following, we indicate subscripts of the Laplace transform L only when the variable in the subscript is the only one
which has been Laplace transformed. Otherwise, all the time variables are Laplace transformed.

We now want the inverse Laplace transform of the quantity (A4). First, we perform the inverse transform on the variable s1.
We use the residue theorem to compute the complex integral coming from the inverse Laplace transform,

Lt2→s2{P [N (t1) � n1,N (t2) � n2 } =
∫ γ+i∞

γ−i∞

dz

2π i
ezt1

1

zs2

1

cosh2[n1
√

(z + s2)/2]

cosh2(n1
√
s2/2)

cosh2(n2
√
s2/2)

(A5)

= cosh2(n1
√
s2/2)

s2 cosh2(n2
√
s2/2)

∂

∂n1

[∫ γ+i∞

γ−i∞

dz

2π i

ezt1

z

√
2

(z + s2)
tanh

(
n1

√
z + s2

2

) ]
(A6)

= 1

s2

cosh2
(
n1
√ s2

2

)
cosh2

(
n2
√ s2

2

) ∂

∂n1

∞∑
k=0

Res

{
ezt1

z

√
2

(z + s2)
tanh

(
n1

√
z + s2

2

)
,

z = − 2

n2
1

(π

2
+ kπ

)2
− s2

}
+ 1

s2 cosh2
(
n2
√ s2

2

) (A7)

= − 1

s2

cosh2(n1
√
s2/2)

cosh2(n2
√
s2/2)

∂

∂n1

⎧⎨⎩
∞∑
k=0

e
− 2π2

n2
1

(k+1/2)2t1−s2t1 4[
s2 + 2

n2
1

(
π
2 + kπ

)2]
n1

⎫⎬⎭
+ 1

s2 cosh2(n2
√
s2/2)

, (A8)

γ being a positive number such that the real part of any poles is smaller than γ . In the rest of the text, we will take γ → 0+ as
all poles have real parts �0. Performing the inverse Laplace transform s2 → t2 in a similar manner, we obtain

P (N (t1) � n1;N (t2) � n2) =
∫ +i∞

−i∞

dz

2π i
ezt2

√
2

z3/2
∂n2

{
− cosh2

(
n1

√
z

2

)
tanh

(
n2

√
z

2

)
∂

∂n1

×
⎡⎣ ∞∑

k=0

e
− 2π2

n2
1

(k+1/2)2t1−zt1 4(
z + 2

n2
1

(
π
2 + kπ

)2)
n1

⎤⎦+ tanh

(
n2

√
z

2

)}
(A9)

= ∂

∂n2

{(
2

π2

)2 ∞∑
k′=0

n2

(k′ + 1/2)2
e
− 2π2

n2
2

(k′+1/2)2(t2−t1 )
cos2

(n1

n2
(π/2 + k′π )

)

× ∂

∂n1

[ ∞∑
k=0

n1

(k + 1/2)2 − n2
1/n

2
2(k′ + 1/2)2

e
− 2π2

n2
1

(k+1/2)2t1

]}
+P (N (t1) � n1) + P (N (t2) � n2) − 1, (A10)

with P (N (t ) � n) which can be found in Ref. [30]. Thus, we find for n1 < n2,

P (N (t1) = n1;N (t2) = n2) = ∂3

∂n2
2∂n1

{(
2

π2

)2 ∞∑
k′=0

n2

(k′ + 1/2)2
e
− 2π2

n2
2

(k′+1/2)2(t2−t1 )
cos2

(n1

n2
(π/2 + k′π )

)

× ∂

∂n1

[ ∞∑
k=0

n1

(k + 1/2)2 − n2
1/n

2
2(k′ + 1/2)2

e
− 2π2

n2
1

(k+1/2)2t1

]}
. (A11)

The case n1 = n2 can be obtained from Eqs. (A10) and (A11),

P (N (t1) = n1;N (t2) = n1) = P (N (t1) = n1) − P (N (t1) = n1,N (t2) > n1)

= lim
n2→n+

1

∂2

∂n2∂n1

{(
2

π2

)2 ∞∑
k′=0

n2

(k′ + 1/2)2
e
− 2π2

n2
2

(k′+1/2)2(t2−t1 )

× cos2
(n1

n2
(π/2 + k′π )

) ∂

∂n1

[ ∞∑
k=0

n1

(k + 1/2)2 − n2
1/n

2
2(k′ + 1/2)2

e
− 2π2

n2
1

(k+1/2)2t1

]}
, (A12)
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whose Laplace transform in both time variables is

L{P (N (t1) = n1;N (t2) = n1)} =
√

2s2 tanh
(
n1
√ s2

2

)+ √
2s1 tanh

(
n1
√ s1

2

)− √
2(s1 + s2) tanh

(
n1

√
s1+s2

2

)
s1s2 cosh2

(
n1

√
s1+s2

2

) . (A13)

2. Covariance of the span

Here we show that the Laplace transform of the covariance of the span of a 1D Brownian motion obtained in Ref. [24] is
retrieved in our formalism. We note the span process of the 1D Brownian motion, i.e., the length of the visited domain at time t
as ND(t ). We compare our result directly with the formula for the covariance as a function of time obtained in Ref. [24] (taking
the diffusion coefficient D = 1/2),

H (s1, s2) ≡ E(N̂D(s1)N̂D(s2))

=
∫∫

dt1dt2 e−s1t1−s2t2 max (t1, t2)

{
6

π

√
z(1 − z) − 1 + 2

π
arcsin(

√
z) + 2

π

z3/2

√
1 − z

g1

(√
z

1 − z

)

+ 1

π

[(
i +

√
z

1 − z

)
g1

(
i +

√
z

1 − z

)
+
(

−i +
√

z

1 − z

)
g1

(
−i +

√
z

1 − z

)]}
, (A14)

with

z ≡ min
( t1
t2

,
t2
t1

)
and

g1(φ) ≡ 1

φ2

∫ 1

0

dβ

β2

(
1 − πφβ

sinh (πφβ )

)
.

We compare the result in Eq. (A14) from Ref. [24] with the one obtained from our Eqs. (A4) and (A13) by splitting the
integral into the domains n1 < n2, n1 = n2, and n2 < n1,

L(s1, s2) ≡ �(s1, s2) + m(s1, s2) + �(s2, s1), (A15)
with

�(s1, s2) = 1

s1s2

∫
n1<n2

dn1 dn2 n1 n2
∂2

∂n1∂n2

⎡⎣ 1

cosh2
(
n1

√
s1+s2

2

) cosh2
(
n1
√ s2

2

)
cosh2

(
n2
√ s2

2

)
⎤⎦

= 2

s1s2
2

∫ ∞

0
du

(
−u + u tanh(u) − u2

cosh2(u)

)
∂

∂u

⎡⎣ cosh2 (u)

cosh2
(
u
√

s1
s2

+ 1
)
⎤⎦, (A16)

and

m(s1, s2) =
∫ ∞

0
n2

√
2s2 tanh

(
n
√ s2

2

)+ √
2s1 tanh

(
n
√ s1

2

)− √
2(s1 + s2) tanh

(
n
√

s1+s2
2

)
s1s2 cosh2

(
n
√

s1+s2
2

) dn. (A17)

The numerically calculated functions H and L coincide as shown in Fig. 5.

3. Derivation of Eq. (10) in the main text

We compute the difference between the distributions P (N (t1) = n1;N (t2) = n2) and P (N (t1) = n1)P (N (t2) = n2) in the limit
ti, ni → ∞ and ni/t

1/2
i = ai fixed for i = 1 and 2, and n1/n2 → 0. Starting from Eq. (A11), we have

P (N (t1) = n1;N (t2) = n2) ∼ ∂3

∂n2
2∂n1

⎛⎝( 2

π2

)2 ∞∑
k′=0

n2

(k′ + 1/2)2
e
− 2π2

n2
2

(k′+1/2)2t2
[
1 + t1

2π2

n2
2

(k′ + 1/2)2

][
1 −

(
n1

n2
π (k′ + 1/2)

)2]

× ∂

∂n1

{ ∞∑
k=0

n1

(k + 1/2)2

[
1 +

(
(k′ + 1/2)n1

(k + 1/2)n2

)2]
e
− 2π2

n2
1

(k+1/2)2t1

}⎞⎠
∼ P (N (t1) = n1) × P (N (t2) = n2) +Ca1,a2

t1/2
1

t3/2
2

, (A18)
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FIG. 5. Comparison of the Laplace transform of the two point expectation H (s1, s2), obtained in Ref. [24] and the same quantity L(s1, s2)
obtained using our formalism Eq. (A15).

with

Ca1,a2 ≡ ∂3

∂a2
2∂a1

{(
2

π2

)2 ∞∑
k′=0

π2 2 − a2
1

a2
e
− 2π2

a2
2

(k′+1/2)2 ∂

∂a1

[ ∞∑
k=0

a1

(k + 1/2)2
e
− 2π2

a2
1

(k+1/2)2

]}

+ ∂3

∂a2
2∂a1

{(
2

π2

)2 ∞∑
k′=0

e
− 2π2

a2
2

(k′+1/2)2 ∂

∂a1

[ ∞∑
k=0

a3
1

(k + 1/2)4a2
e
− 2π2

a2
1

(k+1/2)2

]}
. (A19)

APPENDIX B: k-TIME SPAN DISTRIBUTIONS

1. Derivation of Eq. (11) in the main text

For the probability distribution of the events {N (t1) � n1, . . . ,N (tk ) � nk}, its multivariate Laplace transform is obtained by
performing the same steps as those that led to (A2),

L{P (N (t1) � n1; . . . ;N (tk ) � nk )}

= 1

s1 · · · sk F̂ (s1 + · · · + sk, 0) · · · F̂ (s1 + · · · + sk, n1 − 1)F̂ (s2 + · · · + sk, n1) · · · F̂ (sk, nk − 1)

= 1

s1 · · · sk
1

cosh2
(
n1

√
s1+···+sk

2

) cosh2
(
n1

√
s2+···+sk

2

)
cosh2

(
n2

√
s2+···+sk

2

) · · · cosh2
(
nk−1

√ sk
2

)
cosh2

(
nk
√ sk

2

) . (B1)

The formula for the k-time span distribution in the time domain is given similarly to (A11) by recursively performing the
inverse Laplace transforms, first on s1, then on s2, ...until sk (here supposing that n1 < n2 < · · · < nk),

P (N (t1) = n1, . . . ,N (tk ) = nk ) = ∂n1,...,nk

(−2

π2

)k
∂

∂nk

[ ∞∑
ik=0

nk
(ik + 1/2)2

e
− 2π2

i2k
(ik+1/2)2(tk−tk−1 )

cos2
(nk−1

nk
(π/2 + ikπ )

)

× ∂

∂nk−1

[( ∞∑
ik−1=0

nk−1 cos2
( nk−2

nk−1
(π/2 + ik−1π )

)
(ik−1 + 1/2)2 − n2

k−1/n
2
k (ik + 1/2)2

e
− 2π2

n2
k−1

(ik−1+1/2)2(tk−1−tk−2 )
)

· · ·

∂

∂n1

( ∞∑
i1=0

n1

(i1 + 1/2)2 − n2
1/n

2
2(i2 + 1/2)2

e
− 2π2

n2
1

(i1+1/2)2t1

)]
· · ·
]
. (B2)

Similar to Eq. (A12), the case of ni = ni+1 for any i follows from Eq. (B2). Additionally, we obtain the expression for the k-time
span distribution for a Brownian motion with arbitrary diffusion constant D by noting that the previous result pertains to the
particular choice D = 1/2.
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2. Derivation of Eq. (12) in the main text

We treat the limit 1 � t1 � t2 � · · · � tk; i.e., s1 
 s2 
 · · · 
 sk 
 1. Starting from Eq. (B1) with ni
√
si = ai fixed, we

have

L{P (N (t1) � n1, . . . ,N (tk ) � nk )} = 1

s1 · · · sk
1

cosh2
(
a1

√
s1+···+sk

2s1

) cosh2
(
a1

√
s2+···+sk

2s1

)
cosh2

(
a2

√
s2+···+sk

2s2

) · · ·
cosh2

(
ak−1

√
sk

2sk−1

)
cosh2

( ak√
2

)
∼ 1

s1 · · · sk
1

cosh2
(
a1

√
s1+s2

2s1

) cosh2
(
a1

√
s2

2s1

)
cosh2

(
a2

√
s2+s3

2s2

) · · ·
cosh2

(
ak−1

√
sk

2sk−1

)
cosh2

( ak√
2

)
∼ L{P (N (t1) � n1) · · ·P (N (tk ) � nk )}

{
1 +

k−1∑
�=1

s�+1

s�

[
a2

�

2
− tanh

(
a�√

2

)
a�√

2

]

+ o(s�+1/s�)

}
. (B3)

Thus, we obtain a result similar to the two-time span distribution for the first-order correction to the product of independent
one-time span distributions,

L{P (N (t1) = n1; . . . ;N (tk ) = nk ) − P (N (t1) = n1) · · ·P (N (tk ) = nk )}

∼ 1√
s1 · · · sk ∂a1,...,ak

{
k−1∑
�=1

s�+1

s�

[
a2

�

2
− tanh

(
a�√

2

)
a�√

2

]
1

cosh2(a1/
√

2) · · · cosh2(ak/
√

2)

}
. (B4)

Consequently, with ai = ni/
√
ti, and using the Tauberian theorem,

P (N (t1) = n1; . . . ;N (tk ) = nk ) − P (N (t1) = n1) · · ·P (N (tk ) = nk ) ∼ 1√
t1 · · · tk

k−1∑
�=1

t�
t�+1

C�
a1,...,a�

. (B5)

Here C�
a1,...,a�

can be obtained either by Laplace inversion of the �th term of the sum, or starting directly from (B2) and keeping
the first-order term in t�/t�+1 � 1,

C�
a1,...,ak = P (ND(1) = a1)P (ND(1) = a2) · · ·P (ND(1) = a�−1)

(
2

π2

)2

× ∂a�,a�+1,a�+1

{ ∞∑
i�+1=0

2 − a2
�

a�+1
π2e

− 2π2

a2
�+1

(i�+1+1/2)2 ∂

∂a�

[ ∞∑
i�=0

a�

(i� + 1/2)2
e
− 2π2

a2
�

(i�+1/2)2

]

+ e
− 2π2

a2
�+1

(i�+1+1/2)2 ∂

∂a�

[ ∞∑
i�=0

a3
�

(i� + 1/2)4a�+1
e
− 2π2

a2
�

(i�+1/2)2

]}
P (ND(1) = a�+2) · · ·P (ND(1) = ak ), (B6)

ND(t ) being the span process of the Brownian motion of parameter D as defined in Appendix A 2.

APPENDIX C: THE TWO-TIME TRAPPING PROBLEM

Starting from Eq. (1) of the main text, and going to the continuum limit, we have

S(t2|t1) = 〈(1 − c)N (t2 )−N (t1 )〉 =
∫
n1�n2

dn1dn2 (1 − c)n2−n1 P (N (t1) = n1,N (t2) = n2) (C1)

= P (N (t1) = N (t2)) +
∫
n1<n2

dn1dn2 (1 − c)n2−n1
∂2

∂n2∂n1
P (N (t1) � n1,N (t2) � n2), (C2)

We now discuss the different regimes:
(a) t2 − t1 
 t1: In this limit, P (N (t1) = n1;N (t2) = n2) ∼ P (N (t1) = n1) × P (N (t2) = n2) for n1 < n2, and P (N (t1) =

N (t2)) is a decreasing exponential at long times (since this quantity is related to the exit probability from an interval). Thus,

S(t2|t1) ∼
∫
n1<n2

dn1dn2(1 − c)n2−n1P (N (t1) = n1)P ((t2) = n2) ∼ f (t1)S(t2), (C3)

where f (t1) depends only on c and t1 but not on t2.
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(b) t2 − t1 � t1: From the scale invariance of Brownian motion as the law of [ND(t1),ND(t2)] is the same as the one
of [ND(1)

√
t1,ND(t2/t1)

√
t1], the term P (N (t1) = N (t2)) ∼ P (ND(1)

√
t1 = ND(t2/t1)

√
t1) = P (ND(1) = ND(1 + t2−t1

t1
)) → 1

dominates. We note that 1 − P (ND(1) = ND(1 + t2−t1
t1

)) corresponds to the probability of exiting an interval of unit size after a

time t = t2−t1
t1

� 1, whose scaling behavior is known to be ∝√
t , Eq. (5.219) of Ref. [3]. Thus,

1 − S(t2|t1) ∼ 1 − P (ND(t1) = ND(t2)) ∝
√
t2 − t1
t1

. (C4)

(c) t2 = zt1: The term which dominates is still P (N (t1) = N (t2)) ∼ P (ND(1) = ND(z)) as the integral in n1 < n2 is decreas-
ing (at least, as a stretched exponential). Moreover, the conditional survival probability S(t2|t1) converges to a value that is neither
0 nor 1,

S(t2|t1) → P (ND(1) = ND(z)) =
∫ ∞

0
dn1 lim

n2→n+
1

∂2

∂n2∂n1

{(
2

π2

)2 ∞∑
k′=0

n2 cos2
( n1
n2

(π/2 + k′π )
)

(k′ + 1/2)2
e
− 2π2

n2
2

(k′+1/2)2(z−1)

× ∂

∂n1

[ ∞∑
k=0

n1

(k + 1/2)2 − n2
1/n

2
2(k′ + 1/2)2

e
− 2π2

n2
1

(k+1/2)2

]}
. (C5)

This limit is illustrated in Fig. 4 of the main text as a function of z.

APPENDIX D: RUN-AND-TUMBLE PARTICLE

1. Derivation of Eq. (13) in the main text

We consider the exit time distribution, p±(t, x) from the interval [0, k] for a run-and-tumble particle that starts at position x
with speed ±v, respectively. This distribution obeys the following coupled differential equations:

∂t p+(t, x) = v∂x p+(t, x) + 1

2T
[p−(t, x) − p+(t, x)]; ∂t p−(t, x) = −v∂x p−(t, x) + 1

2T
[p+(t, x) − p−(t, x)], (D1)

with p+(t = 0, x) = p−(t = 0, x) = 0 and p+(t, k) = p−(t, 0) = δ(t ). Laplace transforming Eq. (D1), we obtain the Laplace
transform of the exit-time distribution from an interval of length k when the walk starts at position dk,

F̂ (s, k) ≡ p̂+(s, dk) + p̂−(s, dk) = (2T )−1{sinh(wdk) + sinh[w(k − dk)] + s sinh[w(k − dk)] + vw cosh[w(k − dk)]}
[s sinh(wk) + vw cosh(wk)] + (2T )−1 sinh(wk)

,

(D2)

where w2 ≡ s2/v2 + s/(v2T ). Keeping only the first-order terms in the limit dk � k, we have

F̂ (s, k) = 1 − w dk
s cosh(wk) + vw sinh(wk) + (2T )−1[cosh(wk) − 1]

s sinh(wk) + vw cosh(wk) + (2T )−1 sinh(wk)

≡ 1 + dk g(s, k) (D3)

with ∫ 0

n
g(s, k)dk = ln

⎡⎣1 +
√

s
T−1+s tanh (wn/2)

1 −
√

s
T−1+s tanh (wn/2)

sT + cosh2(wn/2)

sT + 1

⎤⎦ ≡ ln[h(s, n)]. (D4)

To obtain the exit-time distribution in the time domain from (D4) is difficult. However, in the diffusive limit t 
 T ; i.e., sT � 1
and n

√
s fixed, one can obtain simple results. By keeping the first-order terms of h in this limit, we get

h(s, n) ∼ cosh2

(√
s

T v2

n

2

)[
1 + 2

√
sT tanh

(√
s

T v2

n

2

)]
. (D5)

Thus, with D = T v2, and defining {NT,v (t )} as the span process for a run-and-tumble particle and {ND(t )} the span process for a
Brownian motion,

L{P (NT,v (t ) � n)} = L{P (ND(t ) � n)} −
√

4T

s

sinh
(√ s

D
n
2

)
cosh

(√ s
D

n
2

)3 + o(
√
T/s). (D6)
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Consequently, we have that

P (NT,v (t ) � n) − P (ND(t ) � n) ∼ ∂2
n

{
L−1

[
4D

√
T

s3/2
tanh

(√
s

D

n

2

)]}
∼ −∂2

n

[ ∞∑
k=0

e−4Dπ2(k+1/2)2t/n2 4n
√
DT

π2(k + 1/2)2

]
, (D7)

and differentiating this equation, we finally obtain

P (NT,v (t ) = n) = P (ND(t ) = n) + ∂3
n

[ ∞∑
k=0

e−4Dπ2(k+1/2)2t/n2 4n
√
DT

π2(k + 1/2)2

]
+ o(

√
T /t ). (D8)

2. Comment on Eq. (13) in the main text

a. First-order correction to the covariance

We look at the two-time span distribution in the limit s2 � s1 � T−1 and ai = ni
√
si fixed. We do the asymptotic development

up to the first relevant order

L{P (NT,v (t1) � n1,NT,v (t2) � n2)},
= L{P (NT,v (t1) � n1)}L{P (NT,v (t2) � n2)} (D9a)

+ s2

s1

[
a2

1 − 2a1

√
D tanh

( a1

2
√
D

)]
4D

L{P (ND(t1) � n1)P (ND(t2) � n2)} (D9b)

+
√
T

s3/2
1

{−[a2
1 − 2a1

√
D tanh

( a1

2
√
D

)]
tanh

( a1

2
√
D

)+ D
[ a1√

D
+ a1√

D
tanh2

( a1

2
√
D

)− 2 tanh
( a1

2
√
D

)]
2D cosh

( a1

2
√
D

)2
cosh2

( a2

2
√
D

) }
(D9c)

+T

s1

(
8
(
a2

1 + 3D
)− 3

(
3a2

1 + 8D
)

cosh−2
( a1

2
√
D

)− a1 tanh ( a1
2
√
D )[a2

1−24D cosh−2 ( a1
2
√
D )+34D]√

D

)
8D cosh2

( a1

2
√
D

)
cosh2

( a2

2
√
D

) + o(T/s1). (D9d)

Integration of Eq. (D9a) gives the product of the first moments. Equation (D9b) gives the same contribution to the covariance
as the symmetric random walk. Integration of Eq. (D9c) with respect to a1 and a2 leads to the first-order correction to the
difference of the covariances. However, this integral vanishes. This means that one should compute the correction at the next
order using (D9d). This leads to

Cov[NT,v (t1),NT,v (t2)] − Cov[ND(t1),ND(t2)]

∼
2DT

√
t1
t2

�(3/2)�(1/2)

∫ ∞

0
da1

8
(
a2

1 + 3
)− 3

(
3a2

1 + 8
)

cosh−2
( a1

2

)− a1 tanh
( a1

2

)[
a2

1 − 24 cosh−2
( a1

2

)+ 34
]

8 cosh2
( a1

2

)
≈ −2.957DT

√
t1
t2

. (D10)

b. First-order correction to the span distribution

We study the correction to the diffusive limit of the two-time span distribution in the limit T � t1 � t2; i.e., s2T � s1T � 1.
Keeping only the dominant terms, we have

L{P (NT,v (t1) � n1;NT,v (t2) � n2)} = L{P (ND(t1) � n1;ND(t2) � n2)}
[

1 − 2
√
s1T tanh

(√
s1

D

n1

2

)
+ o(

√
s1T )

]
. (D11)

If we focus on the behavior of this distribution for a typical realization; i.e., situations for which ni
√
si = ai is fixed with siT → 0

and s2/s1 → 0, we have

L{P (NT,v (t1) � n1;NT,v (t2) � n2) − P (ND(t1) � n1;ND(t2) � n2)} ∝
√
T

s1/2
1 s2

. (D12)

This means that in the time domain the relative difference between the two cumulative distributions in the case where ni/
√
ti = ai

is fixed behaves as ∝√
T/t1.
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APPENDIX E: BIASED RANDOM WALK

1. Derivation of Eq. (14) in the main text

First, we write the continuum limit exit-time distribution of the biased random walk of speed v = p− q, see Eq. (2.2.28) of
Ref. [25] when the walk starts at distance dk = 1 to the left boundary of the interval of size k (and exits the interval either to the
left or to the right side),

F̂ l→l (s, k) = D∂x

(
ev(x−dk)/2D

Dw sinh(wk)
sinh[w(k − dk)] sinh(wx)

)∣∣∣∣
x=0

= e−vdk/2D

sinh(wk)
sinh[w(k − dk)],

F̂ l→r (s, k) = −D∂x

(
ev(x−dk)/2D

Dw sinh(wk)
sinh[w(k − x)] sinh(wdk)

)∣∣∣∣
x=k

= ev(k−dk)/2D

sinh(wn)
sinh(w dk), (E1)

with w ≡ √
v2 + 4Ds/(2D). Here the superscripts refer to the left and right ends of the interval. Similarly, by reversing the

direction of the velocity, we have

F̂ r→r (s, k) = evdk/2D

sinh(wk)
sinh[w(k − dk)], F̂ r→l (s, k) = e−v(k−dk)/2D

sinh(wk)
sinh(w dk). (E2)

We use the convention F̂ 0→r (s, 0) = F̂ 0→l (s, 0) = 1/2, corresponding to starting with a single visited site at time 0, which is
both on the left and on the right side of the interval of size 1. We define the indices δi direction (left, δi = l , or right, δi = r, end
of the visited interval) of the random walker when the site i + 1 is first visited. Performing the same calculation as in Appendix B
we get

L{P (N (t1) � n1; . . . ;N (tk ) � nk )} = 1

s1 · · · sk
∑
{δi}i

F̂ 0→δ1 (s1 + · · · + sk, 0) · · · F̂ δn1−1→δn1 (s1 + · · · + sk, n1 − 1)

× F̂ δn1 →δn1+1 (s2 + · · · + sk, n1) · · · F̂ δnk−1→δnk (sk, nk − 1). (E3)

We use the transfer matrix technique by defining

F̂ (s, k) ≡
(
F̂ l→l (s, k) F̂ l→r (s, k)
F̂ r→l (s, k) F̂ r→r (s, k)

)
. (E4)

In the limit dk � k [taking w(s)k fixed], we obtain F̂ (s, k) = I2 + g(s, k)dk with

g(s, k) ≡
⎛⎝−v

2D − w
tanh(kw) w evk/2D

sinh(wk)

w e−vk/2D

sinh(wk)
v

2D − w
tanh(kw)

⎞⎠. (E5)

Using this matrix notation, we have the simpler formula,

L{P (N (t1) � n1; . . . ;N (tk ) � nk )}

= 1

2s1s2 · · · skU
T F̂ (s1 + · · · + sk, 1) · · · · · F̂ (s1 + · · · + sk, n1 − 1)F̂ (s2 + · · · + sk, n1) · · · · · F̂ (sk, nk − 1)U . (E6)

where the vector U is
(1

1

)
. Performing the product of matrices F̂ (s, k) having the same argument s, we rewrite the previous

equation as

L{P (N (t1) � n1; . . . ;N (tk ) � nk )} = 1

2s1s2 · · · sk UTM(s1 + · · · + sk, 0, n1)M(s2 + · · · + sk, n1, n2) · · · · · M(sk, nk−1, nk )U,

(E7)

where

M(s,m, n) ≡: exp

(∫ n

m
g(s, k)dk

)
: for m < n, (E8)

and : · · · : represents the k-ordering operator. Equation (E8) is equivalent to the set of partial differential equations
∂nM(s,m, n) = M(s,m, n)g(s, n) with M(s,m,m) = I2.
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FIG. 6. Cumulative distribution of the span at times t = 5, 10, and 15 for parameters v = 1 and D = 1. The curves are 1
2 [yl (t, n) + yr (t, n)],

whereas the circles are from Ref. [30].

2. The one-time span distribution

The one-time span distribution derived in Ref. [30] can be retrieved using Eq. (E7). Consider the Laplace transform of the
distribution of the number of distinct sites visited at a single time,

L{P (N (t ) � n)} = 1

2s
UTM(s, 0, n)U = 1

2s
x(s, n)TU, (E9)

where x(s, n) is solution of ∂nx(s, n) = g(s, n)T x(s, n) with x(s, 0) = U as follows from Eq. (E8). We solve the system of
equations for n > 0 (for the sake of simplicity, we drop the argument s and write x(s, n) = [xl (s, n), xr (s, n)] = [xl (n), xr (n)]),

∂nxl (n) = [−v/2D − w coth(wn)]xl (n) + w
exp(−vn/2D)

sinh(wn)
xr (n)

∂nxr (n) = [v/2D − w coth(wn)]xr (n) + w
exp(vn/2D)

sinh(wn)
xl (n). (E10)

Solving these coupled equations, we obtain

xr (n) = [v/2D − w coth(wn)]
2

sinh(nw)

∫ n

0
ev(n−n′ )/2D sinh(wn′)dn′ + 2. (E11)

To obtain the distribution of the number of distinct sites visited in the time domain, we perform the inverse Laplace transform of
xr (n)/s, identifying the poles at s = 0 and w(s)n = ikπ , k ∈ N,

yr (t, n) ≡
∫ +i∞

−i∞

dz

2π i
ezt

xr (z, n)

z
(E12)

=
∫ +i∞

−i∞

dz

2π i
ezt

(v/2D − w(z) coth[w(z)n]) 2
sinh[nw(z)]

∫ n
0 ev(n−n′ )/2D sinh[w(z)n′]dn′ + 2

z
(E13)

= 2 +
(

v

D sinh(vn/2D)
− v cosh(vn/2D)

D sinh(vn/2D)2

)∫ n

0
ev(n−n′ )/2D sinh(vn′/2D)dn′

+
∞∑
k=1

(−1)k
∫ n

0
dn′ev(n−n′ )/2De− v2t

4D

[
2kπv sin(kπn′/n)

v2n2/4D + k2π2D
e− k2π2Dt

n2 + ∂n

(
4kπD sin(kπn′/n)

v2n2/4D + k2π2D
e− k2π2Dt

n2

)]
. (E14)

By reversing the velocity, v → −v, we get the inverse Laplace transform of xl (n)/s, namely, yl (t, n). We check numerically in
Fig. 6 that P (N (t ) � n) = 1

2 [yl (t, n) + yr (t, n)] is indeed the same as the expression obtained in Ref. [30].

3. Derivation of the k-time span distribution

For the k-time span distribution, we need the general expression of the matrices Mm,n(s). We solve the set of partial
differential equations (E10) starting at m > 0 to n > m with arbitrary initial conditions [xl (m), xr (m)]. Defining x̃l (n) ≡
xl (n) sinh(wn) exp(vn/2D) and x̃r (n) ≡ xr (n) sinh(wn) exp(−vn/2D), we have that

∂nx̃l (n) = wxr (n), ∂nx̃r (n) = wxl (n). (E15)
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Thus, as x̃l (m) = xl (m) exp(vm/2D) sinh(wm) and x̃r (m) = xr (m) exp(−vm/2D) sinh(wm),

xl (n) = w
exp(−vn/2D)

sinh(wn)

(∫ n

m
xr (n

′)dn′ + w−1xl (m) exp(vm/2D) sinh(wm)

)
= w

exp(−vn/2D)

sinh(wn)
Xr (n)

xr (n) = w
exp(vn/2D)

sinh(wn)

(∫ n

m
xl (n

′)dn′ + w−1xr (m) exp(−vm/2D) sinh(wm)

)
= w

exp(vn/2D)

sinh(wn)
Xl (n). (E16)

This gives the equation for Xr ,

∂nXr (n) = [v/2D − w coth(wn)]Xr (n) − [v/2D − w coth(wm)]Xr (m) + xr (m) (E17)

= [v/2D − w coth(wn)]Xr (n) + α(m), (E18)

where α(m) is defined as

α(m) ≡ w−1[−v/2D + w coth(wm)]xl (m) sinh(wm) exp(vm/2D) + xr (m). (E19)

Equation (E18) solution is given by

Xr (n) = α(m)
exp(vn/2D)

sinh(wn)

∫ n

m
exp(−vn′/2D) sinh(wn′) + Xr (m)

exp[v(n − m)/2D] sinh(wm)

sinh(wn)
, (E20)

and deriving this expression,

xr (n) = [v/2D − w coth(wn)]

(
α(m)

exp(vn/2D)

sinh(wn)

∫ n

m
exp(−vn′/2D) sinh(wn′) + Xr (m)

exp[v(n − m)/2D] sinh(wm)

sinh(wn)

)
+α(m). (E21)

We get the expression for xr (n) as a function of xl (m) and xr (m),

xr (n) = xr (m)

(
[v/2D − w coth(wn)]

exp(vn/2D)

sinh(wn)

∫ n

m
exp(−vn′/2D) sinh(wn′)dn′ + 1

)

+ xl (m)

[
−w−1[v/2D − w coth(wn)]([/2D − w coth(wm)]

exp[v(m + n)/2D] sinh(wm)

sinh(wn)

×
∫ n

m
exp(−vn′/2D) sinh(wn′)dn′ − w−1[v/2D − w coth(wm)][exp(vm/2D) sinh(wm)]

+ w−1[v/2D − w coth(wn)][exp(vm/2D) sinh(wm)] exp[−v(n − m)/2D]
sinh(wm)

sinh(wn)

]
. (E22)

The expression for xl (n) is similar and is obtained by reversing the velocity v → −v and the indices l ↔ r. Thus, we obtain,
using (E22), the exact expression of the matrix M(s,m, n),

M(s,m, n) ≡
(

μ(−v,m, n) ν(v,m, n)
ν(−v,m, n) μ(v,m, n)

)
, (E23)

with

μ(v,m, n) ≡ 1 + [v/2D − w coth(wn)]

(
exp(vn/2D)

sinh(wn)

∫ n

m
exp(−vn′/2D) sinh(wn′)dn′

)
(E24)

ν(v,m, n) ≡ evm/2D sinh(wm)

w

[
[v/2D − w coth(wn)]

(
− v/2D − w coth(wm)

sinh(wn)

∫ n

m
e

v(n−n′ )
2D sinh(wn′)dn′

+exp[v(n − m)/2D] sinh(wm)

sinh(wn)

)
− (v/2D − w coth(wm))

]
, (E25)

and all the s dependence being within the variable w. Hence, the knowledge of Eqs. (E7), (E23), (E24), and (E25) give us the
full description of the stochastic process {N (t )}, the span of a biased random walk.

APPENDIX F: ILLUSTRATION OF EQS. (13) AND (14)

We numerically invert the Laplace transform of the two-time distributions of a run-and-tumble particle using Eq. (13) and of
a biased random walk using Eq. (14) of the main text. As shown in Fig. 7, knowledge of the Laplace-transformed distributions
can be used to extract numerical values of the statistics, besides the theoretical characterization.
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FIG. 7. Two-time distribution for the persistent random walk for (a) parameters T = v = 1 and t1, t2 = 10, 30 as well as for (b) a biased
random walk of parameters v = 1 and diffusion D = 1 at times t1, t2 = 20, 30. Numerical simulations are represented by the dots.
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