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Abstract
We investigate a moving boundary problem for a Brownian particle on the semi-
infinite line in which the boundarymoves by a distance proportional to the time
between successive collisions of the particle and the boundary. Phenomenolog-
ically rich dynamics arises. In particular, the probability for the particle to first
reach the moving boundary for the nth time asymptotically scales as t−(1+2−n).
Because the tail of this distribution becomes progressively fatter, the typical
time between successive first passages systematically gets longer. We also find
that the number of collisions between the particle and the boundary scales as
ln ln t, while the time dependence of the boundary position varies as t/ln t.

Keywords: first passage, resetting, moving boundary

(Some figures may appear in colour only in the online journal)

1. Introduction and model

Moving boundary problems arise in materials that are near a first-order phase transition
(see, e.g. [1–3], for general introductions). Perhaps the most familiar examples are the melting
of ice that is immersed in water, or the freezing of water on the surface of a lake when the
ambient air suddenly cools to a temperature T < 0◦C at some initial time t = 0. In the latter
case, a layer of ice starts growing on top of the water. The lower ice–water interface remains at
0◦C, while heat is conducted to the upper ice–air interface and thence into the air. If the ice–air
interface is defined to be at spatial position z = 0 and the ice–water interface is at −L(t), then
to a first approximation, the temperature in the ice at vertical position z is T(z) = Tz/L. As
a result of this temperature gradient and the resulting heat conduction, molecules of water at
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the interface freeze and join the ice layer. Through this mechanism, the interface gradually
grows downward at a rate that is proportional to the temperature gradient in the ice; this gives
L(t) ∼

√
t.

Microscopically, heat conduction corresponds to the diffusion of phonons, with interface
motion occurringwhen the phonons first reach the interface. It is in this sense that we can think
of the motion of the boundary being controlled by a first-passage process. Namely, whenever a
diffusing particle reaches the interface, the interface then moves by a specified amount. In [4],
we studied an idealization of this problem in a strictly one-dimensional geometry for the two
cases in which the interface recedes by a fixed distance ormultiplicatively,whenever a diffusing
particle reaches the interface. After each collision between the particle and the interface, the
particle is returned to its starting position and the process begins anew. This process defines
a simple first-passage resetting problem. This is a natural complement to Poisson resetting,
where a random walk or a diffusing particle is returned to its starting position at some fixed
rate [5–15]. The consequences of Poisson resetting have been extensively investigated, but
first-passage resetting is much less explored thus far.

In the former case where the boundary moves by a fixed distance after each first-passage
event [4], we found that the number of collisions between the particle and interface, as well
as the position of the interface grew as t1/4. This should be compared to the t1/2 growth of
the number of collisions when there is no resetting of the particle position. In the case of
multiplicative motion, the interface, which is initially located at L, moves to αL, α2L, α3L,
after each successive collision. Because this interface motion is rapid, the number of collisions
now grows only logarithmically in time. In spite of the small number of resetting events, the
interface position still grows as t1/2 because later collisions between the particle and interface
leads to a large displacement of the interface.

In this work, we study another natural scenario for first-passage resetting where the bound-
ary recedes by an amount that is proportional to the time difference between successive
encounters of the particle and the interface (figure 1). Thus we investigate the dynamics of
a one-dimensional Brownian particle with diffusion coefficient D that starts at the origin in a
semi-infinite geometry, with a boundary that is initially a distance L0 from the particle. This
boundary remains fixed except for these instances when the particle reaches it. When such an
encounter happens, the boundary moves away instantaneously from the particle by a distance
that is proportional to the first-passage time between the previous and the current encounter.
While there is no obvious physical motivation for this model, the resulting phenomenology is
quite rich and perhaps has some fundamental implications.

As illustrated in figure 1, it is necessary to augment the recession distance of the interface
by a small additive amount to regularize a singular behavior that arises when there is no cutoff.
If the interface recedes by an amount that is strictly linear in the first-passage time from the
previous collision, a pathology arises in which the particle can hit the interface infinitely often
in a finite time. That is, if the first-passage time is short, the time to the next collision can
be even shorter, ultimately leading to a singularity. For a random walk on a lattice, there is
no such pathology because the minimum first-passage time cannot be less than the time for a
single step. To obviate the pathology in the case of continuumdiffusion,we define the recession
distance of the interface to be equal to the first-passage time from the previous collision plus a
small cutoff ε. Our results are independent of this cutoff, but this cutoff is necessary to obtain
non-singular results.

Our primary results are the following: (a) the probability density for the particle to first
reach the interface for the nth time asymptotically decays as t−βn , with βn = 1+ 2−n. Thus the
tail of the nth-passage probability density becomes progressively fatter after each collision.
(b) The number of collisions between the particle and the interface grows with time as ln ln t.
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Figure 1. Illustration of the moving boundary (red line) in a semi-infinite geometry due
to first-passage resetting. Each time the particle reaches the boundary, the boundary
recedes by a distance ατ i + ε. The successive first-passage times are denoted τ 1, τ 2, . . . .

This slow double logarithmic increase in the number of collisions is reminiscent of the intrigu-
ing Khintchine iterated logarithm law [16–18] for the extreme position of Brownian motion.
Finally, the position of the interface recedes according to t/ln t. Once again, even though col-
lisions between the particle and the boundary are rare, the widely separated collisions in time
lead to a large displacement of the boundary, so that its overall motion is nearly ballistic.

2. Successive-passage distributions

2.1. The second-passage distribution

We define Fn(t|L0) as the probability density that a diffusing particle, which starts at x = 0,
first reaches the boundary at x = L0 for the nth time at time t. When n = 1, this quantity is just
the first-passage probability distribution for a Brownian motion to reach x = L0 [19, 20]:

F1(t | L0) ≡ F(t | L0) =
L0√
4πDt3

e−L
2
0/4Dt. (1)

Because of the convolution structure of the problem we are treating, it is convenient to work
in the Laplace domain. Thus we also introduce the Laplace transform of F1(t|L0):

F̃1(s | L0) =
∫ ∞

0
dt e−stF1(t | L0) = e−L0

√
s/D ≡ e−L0 g1(s), (2)

with g1(s) =
√
s/D.

For the particle to first reach the boundary for the second time at time t, it must first reach
the boundary at an intermediate time τ 1 and then reach it one more time during the remaining
time τ 2, with t = τ 1 + τ 2. Since the boundary will have moved by a distance τ 1 + ε after the
first encounter (see figure 1), the second-passage distribution is given by

F2(t | L0) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 F1(τ1 | L0)× F(τ2 |α τ1 + ε) δ(t − τ1 − τ2). (3)

3
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Taking the Laplace transform gives

F̃2(s | L0) =
∫ ∞

0
dτ1

∫ ∞

0
dτ2 F1(τ1 | L0)F(τ2 |α τ1 + ε) e−sτ1−sτ2 ,

=

∫ ∞

0
dτ1 F1(τ1 | L0) e−sτ1

∫ ∞

0
dτ2 F(τ2 |α τ1 + ε) e−sτ2 ,

(4a)

where the second integral is simply the Laplace transform of the first-passage distribution (2)
with L0 = ατ 1 + ε. Using this fact, we obtain

F̃2(s | L0) =
∫ ∞

0
dτ1 F1(τ1 | L0) e−sτ1 e−(α τ1+ε)

√
s/D,

= e−ε
√
s/D

∫ ∞

0
dτ1 F1(τ1 | L0)e−τ1

(
s+α

√
s/D

)
.

(4b)

The integral is just the Laplace transformof the first-passage distribution (2), but now evaluated
at s+ α

√
s/D. Thus the second-passage probability density is

F̃2(s | L0) = exp

⎡⎣−ε
√
s/D− L0

√
s+ α

√
s/D

√
D

⎤⎦ ≡ e−ε
√
s/D−L0 g2(s), (4c)

where

g2(s) =

√
s+ α

√
s/D

√
D

=

√
s+ αg1(s)√

D
.

This expression for F̃2(s | L0) cannot be Laplace inverted analytically; however, in the relevant
s→ 0 limit, its leading behavior simplifies to

F̃2(s | L0)→ exp

[
−L0

√
α

D

( s
D

)1/4
]
,

which can be Laplace inverted. The result of this Laplace inversion is

L0
96t5/4

{
24

Γ
(
3
4

) 0F2

(
;
1
2
,
3
4
;
L40
256t

)
−
√

288
π

L0
t1/4 0F2

(
;
3
4
,
5
4
;
L40
256t

)

+
3L30

t1/2Γ
(
5
4

) 0F2

(
;
5
4
,
3
2
;
L40
256t

)
−

√
8 L30

πt3/4 1F3

(
1;

5
4
,
3
2
,
7
4
;
L40
256t

)}
,

(5)

where pFq is the hypergeometric function. The salient feature of this formidable-looking
expression is that the second-passage probability density asymptotically decays as t−5/4.
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Figure 2. The function gn(s) as a function of s for different values of nwith α = D = 1.

2.2. The nth-passage distribution

By repeatedly applying the reasoning that led to (4c), the Laplace transform of the nth-passage
probability density is

F̃n(s | L0) = exp

[
−ε

n−1∑
m=1

gm(s)− L0 gn(s)

]
, (6)

where, for n � 2, gn(s) is defined by the recursion

gn(s) =

√
s+ α gn−1(s)√

D
. (7)

Note that the probability density F̃n(s | L0) is normalised as it behaves as F̃n(s | L0) ∼ 1 in the
limit s→ 1.

The analytical structure of gn(s) provides the key to understanding the problem. In the
limit n→∞ and s fixed, gn(s)→ g∞(s), where g∞(s) satisfies g∞(s) =

√
(s+ α g∞(s))/D.

The solution for g∞(s) is

g∞(s) =
1
2

(
α

D
+

√
α2

D2
+

4s
D

)
. (8)

The function gn(s) is shown in figure 2 for several values of n, as well as for n = ∞. Notice that
gn(s)→ 0 as s→ 0 for any finite n, while g∞(s = 0) = α/D. Also, when α = 0, (6) reduces
to the nth-resetting probability distribution that we obtained previously [4].

For s→ 0 and fixed n, the recurrence (7) reduces to

gn(s) ∼
(α
D

)1−21−n ( s
D

)2−n

. (9)

Thus gn(s) becomes more singular as n increases in such a way that g∞(0) = α/D. We now
substitute the above limiting behavior in (6), to give the small-s expansion of the nth passage
distribution:

F̃n(s | L0) ∼ 1− L0
(α

D

)1−21−n( s
D

)2−n

, s→ 0. (10a)

5
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By a Tauberian theorem (for a simple derivation see appendix A.2 of [21]), this gives the
power-law decay in the time domain

Fn(t | L0) ∼
L0 α1−21−n

−Γ(−2−n)D1−2−n
1

t1+2−n , t→∞. (10b)

Thus the long-time tail of the nth-passage probability density decays progressivelymore slowly
as n increases, with the exponent value approaching−1 for n→∞.

3. Number of encounters with the boundary

Because the tail of the nth-passage probability density becomes fatter as n increases, the times
between encounters also become progressively longer. Thus we might expect that the total
number of encounters will increase only quite slowly with time. We now show that this naive
expectation is what actually occurs. Let N(t) denote the number of times that the particle
reaches the boundary at time t. The probability that there are exactly n encounters at time t
is formally given by

P(N(t) = n | L0) = P(N(t)�n | L0)− P(N(t)�n+ 1 | L0),

=

∫ t

0
dτ Fn(τ | L0)−

∫ t

0
dτ Fn+1(τ | L0).

(11)

The average number of encounters 〈N(t)〉 is given by

〈N(t)〉 =
∞∑
n=0

n P(N(t) = n | L0). (12a)

We substitute in P(N(t) = n|L0) from equation (11), exploit the telescopic nature of the sum,
and also note that the n = 0 gives no contribution, to obtain

〈N(t)〉 =
∞∑
n=1

P(N(t)�n | L0) =
∞∑
n=1

∫ t

0
dτ Fn(τ | L0). (12b)

In the Laplace domain, the above relation becomes

〈Ñ(s)〉 = 1
s

∞∑
n=1

F̃n(s | L0). (13a)

We now substitute the expression (6) for the Laplace transform of the nth-passage probability
density and find that the Laplace transform of the average number of encounters is

〈Ñ(s)〉 = 1
s

∞∑
n=1

exp

[
−ε

n−1∑
m=1

gm(s)− L0 gn(s)

]
, (13b)

with gn(s) given in (7).

6
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Figure 3. Average number of boundary encounters 〈N(t)〉 scaled by ln ln t as a function
of the inverse of the scaled time for D = L = α = 1. The theoretical prediction from
(14b) is also shown. The lines are linear fits of the numerical data.

To obtain the long-time asymptotics, we focus on the s→ 0 limit of the above expression:

〈Ñ(s)〉 ∼ 1
s

∞∑
n=1

exp

[
−ε

n−1∑
m=1

α1−21−m

D1−2−m s2
−m − L0

α1−21−n

D1−2−n s
2−n

]
. (13c)

As shown in appendix A, this limiting behavior of 〈Ñ(s)〉 reduces to

〈Ñ(s)〉 ∼ 1
s ln 2

ln

[
ln

(
1
s

)]
, (14a)

which, in the time domain, gives the long-time behavior

〈N(t)〉 ∼ 1
ln 2

ln ln t ≈ 1.4427 ln ln t. (14b)

This dependence agrees well with numerical simulations for the number of encounters shown
in figure 3. Smaller values of epsilon are computationally prohibitive because the particle can
hit the boundary many times in a short time interval. Thus the data in figure 3 are restricted to
ε � 1.

4. Location of the boundary

We now study the time dependence of the location of the boundary. Let P(L, t) denote the
spatial location of the boundary at time t. This probability distribution is given by

P(L, t) = δ(L− L0) erf

(
L0√
4πDt

)

+
∞∑
n=1

∫ ∞

0
dτ1 . . . dτn F1(τ1 | L0)× · · · × F(τn |α τn−1+ε) δ

(
L−L0−nε−

n∑
m=1

ατm

)

× erf

⎛⎝ ατn + ε√
4πD

(
t −

∑n
m=1τm

)
⎞⎠Θ

(
t −

n∑
m=1

τm

)
. (15)

7
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The first term accounts for the case where the diffusing particle never reaches the boundary.
The nth term in the sum accounts for the case where the particle reaches the boundary n times.
Thus there must be a first passage, a second passage, . . . , up to an nth passage, after which
the particle cannot reach the boundary again. These events are accounted for by the product
of n first-passage probabilities and the trailing error function. The theta function imposes the
condition that the total time must be larger than the sum of the previous n hitting times. To
simplify notation in the formulas below, we introduce Tn ≡

∑n
m=1τm, the sum of the first n

time intervals between successive encounters.
Computing the average value gives

〈L(t)〉 = L0 erf

(
L0√
4πDt

)

+

∞∑
n=1

∫ ∞

0
dτ1 . . . dτn F(τ1 | L0)× · · · × F

(
τn |α τn−1+ε

)
(L0+nε+αTn)

× erf

(
ατn + ε√

4πD(t− Tn)

)
Θ(t − Tn). (16)

It is now useful to Laplace transform the above relation. This gives

〈L̃(s)〉 = L0
s

(
1− e−L0

√
s
D

)
+

1
s

∞∑
n=1

∫ ∞

0
dτ1 . . . dτn F(τ1 | L0)× · · · × F(τn |α τn−1 + ε) (L0 + nε+ αTn)

×
(
1− e−(ατn+ε)

√
s/D

)
e−sTn . (17a)

We argue that the main contribution to 〈L̃(s)〉 comes from the large-n terms in the sum.
These terms will involve values of τ n that typically are also large. Thus it is plausible that the
exponential term in the parentheses in the last line is negligible. With this assumption, we find

〈L̃(s)〉 ∼ 1
s

∞∑
n=1

∫ ∞

0
dτ1 . . . dτn F(τ1 | L0)× · · · × F(τn |α τn−1 + ε)

× (L0+nε+αTn)e−sTn , (17b)

where we also drop the first term because it is negligible. Furthermore, the integral of the n-fold
product of first-passage probabilities is simply F̃n(s | L0), which corresponds to (4a) in the case
of n = 2. Using this identification, we can write the average in the simpler form

〈L̃(s)〉 ∼ 1
s

[ ∞∑
n=1

(
L0 + nε− α

∂

∂s

)
F̃n(s | L0)

]
. (18)

Following similar reasoning as that given in appendix A, the leading-order behavior is given
by the last term in the brackets. Thus

8
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Figure 4. Rescaled average position of the boundary 〈L(t)〉 as a function of time for
D = L = α = 1. The average has been obtained numerically by averaging 106 trajecto-
ries.

〈L̃(s)〉 ∼ −α

s
∂

∂s

∞∑
n=1

F̃n(s | L0) ∼ − α

s ln 2
∂

∂s
ln

[
ln

(
1
s

)]
,

∼ α

s2 ln 2 ln(1/s)
, s→ 0.

(19a)

In the time domain, we then obtain

〈L(t)〉 ∼ α t
ln 2 ln t

, t→∞. (19b)

This asymptotic behavior is in good agreementwith numerical simulations as shown in figure 4.
The numerical results clearly illustrate that 〈L(t)〉 ∝ t/ln(t) for t→∞. However, the ampli-
tude that is found numerically is roughly twice the value of the amplitude that is given in
equation (19b). We do not know the source of the discrepancy, but it could stem from the
neglect of the exponential term in equation (17a).

5. Concluding comments

We investigated a simple one-dimensional moving boundary problem that is driven by the
motion of a single Brownian particle. This particle moves freely on the infinite line and when-
ever it encounters the boundary, the boundary instantaneously moves a distance that is pro-
portional to the time between successive collisions between the particle and the boundary. We
determined some natural observables of this process. The probability density that the particle
first hits the boundary for the nth time asymptotically decays as t−(1+2−n). Thus each succes-
sive first-passage event is governed by a progressively fatter tail. The number of collisions
between the particle and the boundary scales as ln ln t; this is the same dependence as the iter-
ated logarithm law of free Brownian motion [16–18]. This law describes the time dependence
of the envelope of Brownian motion. Perhaps there is some unifying mechanism that links our
moving boundary problem with free diffusion. In spite of the fact that encounters between the
particle and the boundary are rare, the position L(t) of the boundary moves nearly ballistically:
L(t) ∼ t/ln t. This rapid boundary motion indicates that there must be some long time inter-
vals between successive particle-boundary encounters, so that the boundary moves by a large
distance when such an encounter occurs.

9
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Appendix A. Asymptotic analysis of 〈Ñ(s)〉

In this appendix, we study the small s asymptotic behavior of (13c):

〈Ñ(s)〉 ∼ 1
s

∞∑
n=1

exp

[
−ε

n−1∑
m=1

α1−21−m

D1−2−m s2
−m − L0

α1−21−n

D1−2−n s2
−n

]
, s→ 0.

(A.1)

The sum over n can be split roughly into two parts: (i) one is the contribution when n runs

from 0 to n∗ = n∗(s) such that s2
−n∗

= O(1), and (ii) the contribution when n runs from n∗ to
∞. That is

〈Ñ(s)〉 ∼ 1
s

n∗∑
n=1

exp

[
−L0

α1−21−n

D1−2−n s2
−n
]

+
1
s

∞∑
n∗

exp

[
−ε

(
n−1∑
m=1

α1−21−m

D1−2−m

)
− L0

α1−21−n

D1−2−n

]
, s→ 0. (A.2)

Because the series in the second term converges, we are left with

〈Ñ(s)〉 ∼ 1
s

n∗∑
n=1

exp

[
−L0

α1−21−n

D1−2−n s
2−n

]
, s→ 0. (A.3)

Because the second term is negligible, the final result is independent of the cutoff ε. The terms
for n < n∗ will tend to 1, and therefore we find

〈Ñ(s)〉 ∼ 1
s
n∗, s→ 0. (A.4)

Finally, using that s2
−n∗

= O(1), we obtain (14a).

ORCID iDs

J Randon-Furling https://orcid.org/0000-0001-9497-2297
S Redner https://orcid.org/0000-0001-5906-4904

10

https://orcid.org/0000-0001-9497-2297
https://orcid.org/0000-0001-9497-2297
https://orcid.org/0000-0001-5906-4904
https://orcid.org/0000-0001-5906-4904


J. Phys. A: Math. Theor. 55 (2022) 354002 B De Bruyne et al

References

[1] Crank J and Crank J 1984 Free and Moving Boundary Problems (Oxford: Oxford University Press)
[2] Rubinstein L 2000 The Stefan Problem vol 8 (Providence, RI: American Mathematical Society)
[3] Langer J S 1980 Rev. Mod. Phys. 52 1–28
[4] De Bruyne B, Randon-Furling J and Redner S 2021 J. Stat. Mech. 013203
[5] Evans M R and Majumdar S N 2011 Phys. Rev. Lett. 106 160601
[6] Evans M R and Majumdar S N 2011 J. Phys. A: Math. Theor. 44 435001
[7] Evans M R, Majumdar S N and Schehr G 2020 J. Phys. A: Math. Theor. 53 193001
[8] Boyer D and Solis-Salas C 2014 Phys. Rev. Lett. 112 240601
[9] Christou C and Schadschneider A 2015 J. Phys. A: Math. Theor. 48 285003
[10] Rotbart T, Reuveni S and Urbakh M 2015 Phys. Rev. E 92 060101
[11] Majumdar S N, Sabhapandit S and Schehr G 2015 Phys. Rev. E 92 052126
[12] Reuveni S 2016 Phys. Rev. Lett. 116 170601
[13] Pal A and Reuveni S 2017 Phys. Rev. Lett. 118 030603
[14] Belan S 2018 Phys. Rev. Lett. 120 080601
[15] Bodrova A S, Chechkin A V and Sokolov I M 2019 Phys. Rev. E 100 012119
[16] Khintchine A 1924 Fundam. Math. 6 9–20
[17] Feller W 2008 An Introduction to Probability Theory and its Applications (New York: Wiley)
[18] Mörters P and Peres Y 2010 Brownian Motion vol 30 (Cambridge: Cambridge University Press)
[19] Redner S 2001 A Guide to First-Passage Processes (Cambridge: Cambridge University Press)
[20] Bray A J, Majumdar S N and Schehr G 2013 Adv. Phys. 62 225–361
[21] Evans M, Majumdar S N and Zia R 2006 J. Stat. Phys. 123 357–90

11

https://doi.org/10.1103/revmodphys.52.1
https://doi.org/10.1103/revmodphys.52.1
https://doi.org/10.1103/revmodphys.52.1
https://doi.org/10.1103/revmodphys.52.1
https://doi.org/10.1088/1742-5468/abcd33
https://doi.org/10.1103/physrevlett.106.160601
https://doi.org/10.1103/physrevlett.106.160601
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8113/44/43/435001
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1088/1751-8121/ab7cfe
https://doi.org/10.1103/physrevlett.112.240601
https://doi.org/10.1103/physrevlett.112.240601
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/physreve.92.060101
https://doi.org/10.1103/physreve.92.060101
https://doi.org/10.1103/physreve.92.052126
https://doi.org/10.1103/physreve.92.052126
https://doi.org/10.1103/physrevlett.116.170601
https://doi.org/10.1103/physrevlett.116.170601
https://doi.org/10.1103/physrevlett.118.030603
https://doi.org/10.1103/physrevlett.118.030603
https://doi.org/10.1103/physrevlett.120.080601
https://doi.org/10.1103/physrevlett.120.080601
https://doi.org/10.1103/physreve.100.012120
https://doi.org/10.1103/physreve.100.012120
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1080/00018732.2013.803819
https://doi.org/10.1007/s10955-006-9046-6
https://doi.org/10.1007/s10955-006-9046-6
https://doi.org/10.1007/s10955-006-9046-6
https://doi.org/10.1007/s10955-006-9046-6

	First-passage-driven boundary recession
	1.  Introduction and model
	2.  Successive-passage distributions
	2.1.  The second-passage distribution
	2.2.  The -passage distribution

	3.  Number of encounters with the boundary
	4.  Location of the boundary
	5.  Concluding comments
	Acknowledgments
	Data availability statement
	Appendix A.  Asymptotic analysis of 
	Appendix A. 
	ORCID iDs
	References


