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Abstract. We investigate the occupancy statistics of birds on a wire. Birds
land one by one on a wire and rest where they land. Whenever a newly arriving
bird lands within a fixed distance of already resting birds, these resting birds
immediately fly away. We determine the steady-state occupancy of the wire, the
distribution of gaps between neighboring birds, and other basic statistical fea-
tures of this process. We briefly discuss conjectures for corresponding observables
in higher dimensions.
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1. Introduction

Statistical mechanics provides us with the ‘eyes’ to appreciate collective phenomena in
quantitative and insightful ways. Figure 1 illustrates this synergy between phenomenol-
ogy and analysis: birds alight one at a time to rest at random positions on a wire. We
postulate that birds are sociable but skittish—if a newly arriving bird lands within a
specified distance of any resting birds, they immediately fly away. A first question to
address is: what is the dynamics of this process? Eventually, a steady state is reached
in which the average arrival and departure rates are equal and this prompts several
questions. For example, what is the steady-state density of birds on the wire? What are
the separations between adjacent birds?

While much is known about the spatial patterns of moving animal groups [1-8], the
spatial organization of static groups is less studied (see, however, [9, 10]). We formulate
the ‘pushy birds’ (PB) model (see figure 2) to mimic the spatial organization that
results from repeated landings and departures of birds. This idealized model is similar
in spirit to models of flocking and schooling [1-8]. While our model focuses on the
one-dimensional geometry with local interactions, it naturally extends to longer-range
interactions that may lead to self-organized cooperative behavior, as in forest-fire models
[11-16]. A generalization to higher dimensions leads to a dynamic version of the famous
sphere packing problems in arbitrary dimensions (see, e.g. [17-24]) for which many open
questions still exist.

Our PB model also resembles random sequential adsorption (RSA) [25-33], where
fixed-shape particles impinge on open regions of a substrate and stick irreversibly. One
example of RSA that is close to the PB model is the ‘unfriendly seating arrangement’
problem [34, 35], where people arrive one at a time at a luncheonette and sit at a
counter. People are all mutually unfriendly so they choose seats at random but never
next to another person. The luncheonette reaches a static jammed state of density
Pjam = %(1 — 6*2) ~ 0.432, after which additional patrons cannot be accommodated. In
contrast, the PB model reaches a steady state that is constantly changing locally, but
its global properties are stationary and independent of the initial conditions.

While our model is couched in terms of birds, it should not be taken literally as a
description of real birds. There are many other influences that the determine how birds
organize themselves on a spatially restricted landing spot, such as a wire. Nevertheless,
the behavior of our admittedly unrealistic model is non trivial and perhaps this study
provides some initial steps to understand the organizational dynamics of more realistic
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Figure 1. Birds on wires.

vy oovy I
00000 @ o) JeJoRtto¥oX Xe (o) XONOLOJOX NO) @00---0O000C0Ce
K K k-1 Tk

(a) (b) () (d)

Figure 2. Processes that contribute to changes in the void densities in the PB
model of equation (1). The vertical arrows indicate the possible locations for a bird
to land. In (d) only one of the two possible landing spots that creates a void of
length £ is shown.

models of the arrival and departure of birds at some resting spot. We view the PB model
has being akin to some of the idealized forest-fire models that were proposed long ago
in the statistical physics literature [11-14]. These abstract models miss many features
of real forest fires; nevertheless, the phenomenology that arises from this class of models
is extremely rich and led to many advances about self-organized criticality [36]. It is in
this impressionistic spirit that we investigate the PB model.

2. One-dimensional lattice

It is conceptually simplest to formulate a discrete version of the PB model in which birds
land on empty sites of a one-dimensional lattice; we later treat a continuous version.
Each landing event of a bird scares away birds on adjacent lattice sites (if they are
present) so that they fly away. Our analysis of the PB model focuses on Vj, defined as
the number of voids of length £ divided by the total number of lattice points on the
wire; this is just the density of voids of length k. A void of length k is defined as the
following arrangement of birds and vacancies

where an occupied site is denoted by e and an empty site by o. Since birds cannot be
adjacent, the sites next to each bird outside any void must also be empty.
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2.1. The void densities

The void densities change in time according to the following rate equations:

Vi=—kVi—2Vi+2Via+2 ) Vi=—(@d+hVi+2Y v, (1)

j=k+1 jzk—-1

where the overdot denotes time derivative. Each of the terms on the right corresponds to
one of the processes shown in figure 2. The first term accounts for the loss of a k-void due
to a bird landing anywhere within this void (figure 2(a)). The second term accounts for
the loss of the kvoid when a bird lands in either of the two sites just outside this void.
Immediately afterward, the adjacent bird at the edge of the kvoid flies away, so that a
k-void disappears (figure 2(b)). The third term accounts for the gain of a A-void when a
bird lands on either of the two sites just outside a void of length k — 1; this ultimately
causes an increase in the number of A-voids (figure 2(c)). The last term accounts for
the gain of k-voids when a bird lands within a j-void, with j > k, such that a k-void is
created. If j# 2k+ 1, there are two possible landing sites (figure 2(d)), each of which
creates one k-void. If j = 2k + 1, there is a unique landing site in the middle of the j-void
that creates two k-voids.

The void distribution also satisfy the following basic conditions that will be useful
in solving the model:

Vo=0, > Vi=p, Y (k+1)Vi=1 (2)

k=0 k=0

The first equality states that voids of length 0 cannot exist because this corresponds to
two birds being adjacent. The one-to-one correspondence between each void and exactly
one bird on a wire with periodic boundary conditions leads to the second equality
between void densities V; and the overall density p. The last equality states that the
length of all voids plus the bird at one end of each void equals the total length.

Summing equation (1) over all £ > 1 and using the sum rules (2), we obtain the
closed equation for the density, p = 1 — 3p. For an initially empty system, the solution
is

p=g—e®). ®)

Thus, the approach to the steady-state density of p = % is purely exponential. We now
recast equation (1) as

V1 =-5Vi+2p

Vy=—6Va+2p

Vy=—TV—2V, +2p

Vi = -8V, =2V — 2V5 + 2p,
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etc, which we can solve recursively to give

Vi= 115(2 — 5e 3+ 36’515)
Vo = ;(1 — e’g”f)2
1 —5t —7t 4)
‘/3:%(2—76 + be )
‘/4 — 415<1 _*_46731‘. o 667515 o 56761‘, + 66781‘,)’

etc, for an initially empty system. Since each void density approaches its steady-state
value exponentially quickly, we now focus on the steady state, where equation (1)
reduces to

E+4)Vi=2) V. (5)

jzk—1
Introducing the cumulative distribution F, =3, Vj, (5) becomes

2

Fiv1 — Fryo = Ei5

Fy. (6)
The first two of equation (2) give Fy = Fy =p = %; these serve as the initial conditions
that allow us to generate all the F) one by one: F, = %, F; = %, F5 = 62—3, etc.

To find the general solution of equation (6) we employ the generating function tech-
nique [37]. The factor (k+ 5)~' on the right-hand side of (6) suggests that it is expedient

to define the generating function as

F(z) = ZszkH.

k>0

Multiplying equation (6) by 2" and summing over all k£ > 0, we transform the recurrence
(6) into the integral equation

F(z) — pzt — p2°

F(2) — pz* —
(2) — pz .

= 2/Ozdw F(w). (7)

We now define

z F
O(z z/dwa = 2F
0= [awrow) =3 M

k=0

and after some elementary manipulations, we may express (7) as the ordinary differential
equation

d®
(1—2) L + 228 = p2t. (8)

https://doi.org/10.1088/1742-5468 /ac98bf 5


https://doi.org/10.1088/1742-5468/ac98bf

Birds on a wire
Integrating (8) subject to ®(0) = 0 yields

wh e 2 1

@ = p(l —Z)2€2z/0 dwm = Zp[?)(l —Z)2€2z —3+3Z2 +223:|

Finally, we differentiate ® to give the generating function
3
F(z) = 2P [+ 2% — 2(1 — 2)e*]. (9)

We now expand F(z) in a power series to extract the Fy:

1 k+1
F. = 2k+1
" (k+3)
from which the density of voids of length £ is
k(k +3)
=F, = Fy =2 1
‘/k k k+1 (k + 4)' ( 0)

The average void length (k) = " kVi/ > Vi =2, which accords both with p =} and
with the conditions (2). Higher moments of the void length are less simple: (&) =
3¢ — 17~ 5.167, (K*) = 83 — 9¢* ~ 16.499, etc.

A basic question about the steady state is: how many birds fly away after each
landing event? According to our model definition, either 0, 1, or 2 birds can fly away
when a bird lands. The probabilities ¢, that n < 2 birds fly away after each landing

event satisfy the sum rules
Qo +q+gqg=1, OXq+1xXqg+2xgp=1

The first equation imposes normalization. The second equation states that in the steady
state, the average number of birds that leave upon each landing event must equal
the number of birds that arrive, and the latter equals 1. These lead to ¢, = ¢,. The
probabilities ¢, are determined by

k—2)V, 2V, Vi
C]0227( 1_2} £ @ = 71_]; Q = :

k>3 k=2

The first term accounts for a bird that lands in the interior of a gap of length k£ > 3 so
that no bird leaves. The second term accounts for a bird that lands at either end of a gap
of length k£ > 2 so that a single bird leaves. The last term accounts for a bird that lands
in a vacancy between two birds so that both these birds leave. The denominator (1 — p)

is the probability for a bird to land on any vacancy. Using p = % and equation (10), we

ﬁﬂd%:(h:%;%:%

We can also readily extend our approach to treat the situation in which all birds
within a range b > 1 fly away when a bird lands on an unoccupied site. While the
qualitative features of this generalization are the same as that for the case b =1 given
above, some quantitative differences arise. The solution for general b > 1 is given in
appendix A.
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3. The pair correlation function

The spatial distribution of birds may be characterized by the pair correlation function
C; = (ngn;), where n; is the occupancy indicator function at site j. That is, n; =0 if
site j is empty and n; =1 if j is occupied. If the locations of the birds are spatially
uncorrelated, then (ngn;) = (ng)(n;). This implies that the connected correlation func-
tion, C; = (ngn;) — (ng)(n;) would equal zero. Our calculations below seem to suggest
that this is the case. The connected correlation functions C; and C, are non zero, while
C3 = 0 by its very definition, and we show that C,, and C5 are zero. These calculations
become tedious for C4 and C; and we can only conjecture that C; = 0 for j > 5.

The steady-state pair correlation function Cj for j < 3 can be deduced directly from
our results for the density and the void densities. Indeed, Cy = (n§) = (ng) = 3, while
Cl = Vo, CQ = V1 and C3 = VQ, from which

1 2 1
g, 01:0, CQZE, 03:§ (11)

We now derive Cy = C;5 = % As we show, determining these correlation functions
requires various multi-void distributions. The formal expressions for the first few
correlation functions Cj, with j > 4, are:

Cy =

Cy = Prob[ecece| 4 Prob[eccoe| = V|, + V}
Cs5 = Prob[ececoce] + Prob[ecceoce| + Prob[ecocce] =2V, , + V}
Cs = Prob[ececeoce] + Prob[eccecoce| + Prob[ececcoce]

+ Prob[ecoccece] + Problecocooe]

= Vi + Vo +2Vi3+ Vs,

where

Vi = Prob oo,,,o.]
Vi; = Prob OO...ooo,_,o.]

‘/i,j,k‘ = Prob

O ... 000 ,..0000 .,..00

i j k ] ,

denote the single-void, two-void, and three-void distributions. The subscripts on the

multi-void distributions account for the number of sites in the adjacent empty strings.
The void distributions V;  _; satisfy rate equations that are natural extensions of the

rate equation (1) for Vj. Consider first the distribution V;;. Using the same reasoning

as that given in figure 2 to write equation (1), the rate equation for V;; is

Vig==Q+i+j)Vig+ > Vig+ > Vi

C>it1 (2j+1

https://doi.org/10.1088/1742-5468 /ac98bf 7
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+ Vi +Viegm +Vip o+ Vi + Vi, (12)
subject to the boundary conditions
Vio=0=V; (i,7=0), (13a)
and the sum rules

V=V, D> Vu=V (13b)

21 21

In the steady state, (12) reduces to the recurrence

4+i+j)Vij= Z Vij+ Z Vie+ Vg +Vicygo + Vigja + Vi + Vi (14)

=i >3

Specializing (14) and (13b) to (i,7) = (1,1) and additionally using (13a) we obtain
6V, = 2V; + Vi (15)
Recalling that V; = 1% and V3 = % from equation (10), we obtain Vi ; =

gives Cy = Vi1 + Vs = §.
Next, we specialize (14) and (13b) to (4,7) = (1, 2), from which we obtain

which finally

17
3157

6Vig=Va+Vi+ Vi (16)

Using the known results V| = 12—5,\/2 = %,\/4 = ﬁ we obtain Vi, = % and then Cj5 =
2Via+Vy = é It seems unlikely that we can determine the correlation functions C;j
for arbitrary j via this straightforward, but laborious method.

We mention that we can also determine the full time dependence of the low-order
pair correlation functions. The behaviors of C; with j=0,1,2, and 3 follow directly
from the relation between these correlation functions and the appropriate void densities.
Namely, Cy(t) = p(t), Ci(t) = Vi(t), Co(t) = Vi(t) and Cs(t) = Va(t). To derive Cy(t) =
Vi1(t) + V3(t) we must find Vi ;(t). From (12) the rate equation for Vi is

Via(t) = —6Viy(t) + 2Vi(t) + Va(t),

with solution, for an initially empty system,

1 :
Via(t) = 52 (17 - 70~ + 63¢ ™" + 35¢ " — 45e”""). (17)

Using Cy(t) = Vi1(t) + V3(t) with V3(¢) from (4) and V;1(¢) from (17) we have

Ci(t) = Via(t) + Va(t) = £ (1— )" (18)

Nel e
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To derive C;(t), we must find Vj,(?). Again from (12), the rate equation for
V]g(f) iS

Via(t) = —6Via(t) + Vi(t) + Va(t) + Va(t),

whose solution is

1 - X
Via(t) = YT (2 — Te 3 4 37 4 5e 0 — 36’815). (19)

Using C5(t) = 2V12(t) + Vi(t) with Vi(¢) from (4) and V; (%) from (19) we thus find

Cs(t) = 2Via(t) + Vilt) = ;(1 _ ey, (20)

4. One-dimensional continuum

A more natural scenario for the dynamics is that each birds can land anywhere along
a wire. Within the RSA framework, the analogous process is the famous Rényi car
parking model [38] in which fixed-length cars attempt to park anywhere along a one-
dimensional line until there are no gaps remaining that can accommodate a car. Without
loss of generality we set the interaction range between birds equal to one. Thus if a bird
lands within a unit distance of one (or two) birds, this bird (or these birds) immediately
fly away.

Instead of voids of integer length, the basic dynamical variable is V(z), the density
of voids of length z. Following the same reasoning as that which led to equation (1), the
evolution equation for the void distribution is now (see also figure 3)

2/ dy V(y,t) 1<z <2,
Viz,t)=—2+2)V(z,t)+{ 7"

~ (21)
2/ dyV(y,t) x> 2.

r—1
In close analogy with equation (2), the void distribution V(z) must now satisfy the
sum rules: (a) V(z) =0 for z < 1, (b) the density of birds is p = [[“dz V (), and (c)
[PdzzV(z) =1. As a result of condition (b), the first of equation (21) can be re-
expressed as V(z,t) = —(2+ z)V (x,t) + 2p(t).
Integrating (21) over all z, the density

p(t) = /12d9: V(x,t)+ /:odx V(x,t)

obeys the rate equation p = 1 — 2p. For an initially empty system, the solution is simply
p=3(1—e?). We now use this result p to solve V(z,t) = —(2 + )V (x,t) + 2p(t) in
the range 1 < z < 2 to give

1— 6—(2+.71)t e 2t _ 6—(2+.71)t
V(z,t) = S . : (22)

https://doi.org/10.1088/1742-5468 /ac98bf 9
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Figure 3. Processes that contribute to changes in the void densities in
equation (21). (a) An a-void disappears if a bird lands anywhere inside the void
(blue arrow) or within a unit distance of either bird outside the void (green arrow),
(b) an z-void is created when a new bird lands a distance z from an existing bird.
Another bird may be anywhere in the range [1,00] for 1 < 2 < 2 or in the range
[ —1,00] for z > 2.

Using p = (1 — e %) in the second of (21), we may rewrite this equation as

Ve, t) = —(24 2)V(z,t) — Q/Ildy V(y,t)+1—e™. (23)

We now substitute the solution for V(z, t) in the range 1 < z < 2 in equation (23) to solve
this equation in the interval 2 < z < 3. Continuing this procedure we can recursively
solve (23) for each interval n < z < n+ 1 using the previously determined solutions for
x < n. While this procedure is straightforward in principle, it quickly becomes tedious
as T increases.

To obtain the large-z behavior of the void distribution, we first rely on the fact that
the approach to the steady state again occurs exponentially quickly. Thus, we henceforth
focus on the steady-state properties of the continuum case. In this case, the void density
is determined by

Q/OodyV(y) l<z<?2,
2+a)V(x) =< 7 (24)
2/ dyV(y) z>2.

One way to solve equation (24), in parallel with the approach to solve the discrete

equation (5) for the void densities Vj, is to introduce the Laplace transform 17(3) =
[7dz e ** V(z). Then the Laplace transform of the left-hand side of equation (24) is

/ dze ™ (2+2)V(x) =2V — g
1 ds

The Laplace transform of the right-hand side of the first of (24) is, after accounting for
the constraint 1 < z < 2,

2
.2 , ,
2,0/ dze = 2P (e —e ).
1 S

https://doi.org/10.1088/1742-5468 /ac98bf 10
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Figure 4. The void density V(z) for 0 < z < 4, showing the jump at z=1 and
singularities in the first derivative at z =2 and x = 3.

Similarly, the Laplace transform of the right-hand side of the second of (24) is, after
accounting for the constraint z > 2,

o9 o9 o0 y+1 e~5 -
/ dx e_”"s/ dyV(y) = /dy V(y)/ dee™ = (pe‘s — V).
2 z—1 1 2 s

Using these results, the Laplace transform satisfies

A~

2(1+ 8_16_8)‘7 L 2ps e " (25)
ds
Integrating (25) and using the steady-state density p = % yields
-~ 1 * do
Vis)==-—-¢& - 26
=3[ 5 (26)
where we define £(s) = e*72P15) and F| is the exponential integral [39)

Ei(s) :/ do e ’.

o

The large-z behavior of V(z) is in principle encoded in the Laplace transform V(s).
While the Laplace transform solution is compact, it is not in a form that one can readily
extract the asymptotic form of the gap distribution. It is easier to extract this asymptotic
behavior from the derivative of equation (24), namely, from

(24 2)V(2)] = =2V (z — 1), (27)

where the prime denotes differentiation with respect to z. We will find that V(z) decays
super-exponentially with z for large z. Thus, a Taylor expansion of V(z) is not justified.
Instead we seek a solution of the form V(z) = e "%, where it is justifiable to expand
w(z— 1) as w(x) — w/(x). Doing so in equation (27) gives 2w’ = 2¢* to leading order.
The solution to this equation is

https://doi.org/10.1088/1742-5468 /ac98bf 11
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w=zhzr+In(lnz)—1-In2]+---. (28)

Thus the void density V(z) = e " exhibits essentially a factorial (faster than exponen-
tial) decay. This mirrors the discrete solution for Vj given in equation (10).

We can use the result p = % to directly find V(z) in the successive intervals 1 < z < 2,
2 < x < 3, etc, from (24) without recourse to the Laplace transform method. From the
first of (24), we obtain

1
1 <x <2,
24

YO = 1 2 (w4 1)/3) Y s (29)
2+

For z > 2, we recast the first of equation (24) into

(24 2)V(z)=1— 2/1Ildy V), (30)

from which the density, for 3 < z < 4, is
2+ x)V(x) =1—1n(4/9) — 2Liy(—3) 4+ 2Lis(—2z) — (1 +2 In 3 — 2 In x) In(1 + x),

where Lis(—2) = >, (—)’/ # is the dilogarithm function [39]. One may continue this
iterative procedure to obtain explicit expressions for V(z) for n < x < n+ 1 for positive
integer n. These calculations quickly become tedious, so we do not extend them beyond
x = 4. The resulting function V(z) is singular (figure 4) with a slope discontinuity at
every integer z > 2; thus inversion of the Laplace transform (26) in terms of a compact
formula is also not possible. The main features of the void distribution V(z) is that it
is a piecewise smooth function, with increasingly cumbersome expressions for V(z) for
n < r < n+ 1, and which decays as 27" for large .

In analogy to the argument that led to the probabilities g, for n birds to fly away at
each landing event in the lattice model, in the 1d continuum version the corresponding
probabilities are

- /;de (x— 2V ()
0 = Q/dex V(z) + 2/12019; (x— 1)V (2) (31)
0 = /12d:z: (2 - 2)V ().

Using p = 5 and (29) we find ¢y = ¢, =41In(4/3) — 1~ 0.151 and ¢, = 3-81In(4/3) ~
0.699.

https://doi.org/10.1088/1742-5468 /ac98bf 12
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5. Higher dimensions

Our PB model naturally extends to the realistic situation of multiple wires, as in figure 1,
and to higher dimensions. On hyper-cubic lattices Z?, we posit that all resting birds that
are one lattice spacing from the newly arriving bird fly away. In the continuum R¢, all
resting birds within a unit distance of the newly arriving bird fly away. Simulations of
the PB model on various substrates show that an initially empty system quickly reaches
a steady state, and the steady-state densities are p ~ % and p ~ %, respectively, for the
square and cubic lattices. These results lead to conjectural steady-state densities on

d-dimensional hyper-cubic lattices

1

C2d+ 1

The derivation of this result is left to future work.
It is also instructive to construct a mean-field theory for the steady-state density of

the PB model on hypercubic lattices. This theory is based on neglecting correlations

in the spatial positions of the birds. In this approximation, the density of birds on a
d-dimensional hypercubic lattice obeys the rate equation

b =--pX -2 )a- e (33

p (32)

n
n=0

The n = 0 term in this sum is positive corresponds to the case where the bird lands on
an empty site and all neighbors of this site are also empty, so that no birds fly away and
p increases. The terms with n > 1 are non-negative and correspond to the situations
where at least one resting bird flies away when the bird lands. Equation (33) simplifies
to %f = (1 —p)(1 —2pd). This gives the steady-state density p = %, which approaches
the exact steady state (32) in the limit d — co. From this same mean-field argument,
the probabilities ¢, for n birds to fly away, with 0 < n < 2d, after each landing event is

G = (2d> (1—p)*="p". (34)

n

Using the mean-field steady-state density p = 2—1d, the above expression reduces to ¢, =

e '/n! as d — oo. This is a rapidly decaying distribution, so that the average size of the
‘avalanche’ that is nucleated when a bird lands is small: (n) =1 — e !

6. Concluding comments

Our PB model is inspired by natural observations and seamlessly leads to a simple non-
equilibrium statistical physics model of competing adsorption/desorption. We solved for
the time-dependent and steady-state properties of the model analytically. An appealing
challenge is to determine the steady-state properties of the PB model in general dimen-
sions, both on lattices and on a continuum. Another potentially fruitful direction is to
extend to realistic longer-range interactions between birds. In such a scenario, when a
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bird lands, it may drive a large groups of birds to fly away. This type of slow driving and
sudden large ‘avalanches’ is reminiscent of the size of fires in self-organized forest fire

models [12, 13], as well as the size of mass rearrangements in the random organization
model [40, 41].
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Appendix A. Birds with interaction range b > 1

We outline some basic steady-state properties of the PB model on a discrete one-
dimensional lattice in which, after each landing event, all birds that are within a distance
b of the incident bird fly away. While the solution for the generating function can again
be obtained by following the steps from equations (5)—(9), this calculation becomes
cumbersome as b increases. However, the steady-state density p = 1/(2b+ 1) can be
extracted fairly easily without the complete solution for the void distribution.

Let us first treat the case b = 2; the extension for b > 2 then readily follows. In the
steady state, the generalization of equation (5) for the void densities Vj is

(k+6)Vi=2) V,=2F_, (A1)

jzk—2

We use the initial conditions Vy = V; =0, as well as p= Zk;>0 Vi to solve (A.1)
recursively and obtain

1 2 1 3
— — 0 — — = — = — A2
Vy 1P Vs L Vi =P Vs 557" (A.2)

etc. By using the generating function technique, we can fix p and then determine Vj for
arbitrary k. However, if we merely want to find the steady-state density, we adopt the
following approach. We first rewrite (A.1) as

(k + 8)[Fias — Fiis] = 2F, (A.3)

and then sum over all £ > 0 to yield

T+ Fr=2) F. (A.4)

k>2 k>0

The initial conditions Vy = V; = 0 leads to Fy = F), = F, = p, which then allows us
to reduce (A.4) to
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5p=>Y_Fi. (A.5)

k=0

Using the normalization condition »,_(k+ 1)V, = >, Fi = 1 we arrive at the basic
result

= _. A6

p=x (A.6)

We now determine the probabilities ¢, that n birds fly away after each landing event.
First note that g, is given by

5
¢ = 1(2‘/2 + V3). (A.7)

The factor 2 accounts for that fact that the fraction of successful landing events in the
steady state is %. The term 2V, accounts for the two landing spots inside a vacancy of
length 2 that leads to two birds flying away, while the term V3 accounts for the fact
that the landing must be at the center of a gap of length 3 to trigger two departures.
Using (A.2) and (A.6), the remaining probabilities g, are

13 23
do = q2 79’ ¢ 36 (A.8)
For the case of arbitrary b. The analog of equation (A.3) is
(k + 3b + 2)[Fk+b - Fk+b+1] — 2Fk. (A.g)
Summing over all k£ > 0 we obtain
Bb+1)F+ > F=2Y F. (A.10)
kb k>0
The initial condition Fy = Fy = -+ - = F, = p yields > ., Fy = >, Fi + bp. Using this
in (A.10), we obtain
2b+1)p=> F. (A.11)
k>0
Now using the normalization condition ), , F}, = 1, the steady-state density is
S (A.12)
P= o+t ‘

From (A.9) and (A.12), and using the initial condition F; = p for j < b as well as the
definition of V}, in terms of F}, we find

2 1

Vi = .
T+ 13b+2+

(A.13)
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Figure Al. The probability ¢, as a function of b for b < 1000.

Let us now determine the probabilities ¢, for arbitrary b. The generalization
of (A.7) is

241

2 = TZ (b= J)Visj- (A.14)
j=0

The meaning of each term in the sum is the same as the two terms in equation (A.7):
we are counting the number of ways that a bird can land within a gap of length b+ 5
such that exactly two birds fly away. Substituting in (A.13) into (A.14) and computing
the sum, we obtain

G =22+ b ") (Hyo— Hypyy) —1—b7", (A.15)

where H, = Zlgjgn 4! is the nth harmonic number. Again, ¢, = ¢, and ¢, is fixed by
normalization, ¢; = 1 — 2¢,. For b — oo, ¢, — 41n(4/3) — 1 ~ 0.150 73, which reproduces
the continuum result of equation (31), as it must. The dependence of ¢, on b is shown
in figure Al.

Now we extend the above result to find the time-dependent behavior. For general
b > 1, the void densities V; with k& > b evolve according to

Vi=—(2b+2+k)Vi+2) Vi, (A.16)
0=k—b

subject to the constraint that Vy = --- = V},_; = 0. Summing equation (A.16) over k > b
and using the above constraint, as well as equation (2), we obtain the simple equation
for the density

from which

p(t) =

1— 6—(2b+1)t

2b+1 (A.17)
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The first non-trivial void density V, satisfies

Vi(t) = —(3b+2)V, + 2p, (A.18)
from which
) ) —(2b+1)t 2 —(3b+2)t
Vi(t) = - =t +=° . (A.19)
(26+1)(36+2) (b+1)(26+1) (b+1)(3b+2)
The density Vj,; satisfies
Vi1 = =(3b+ 3)Vis1 + 2p, (A.20)
from which
9 D) 67(2b+1)t D) 67(3b+3)t
Via(t) = - + (A.21)

(26+1)(3b+3) (b+2)(2b+1) (b+2)(3b+3)
When b < k < 2b, the rate equation for V) has a form
Vi=—(2b+24k)Vi; +2p (A.22)
similar to (A.18) and (A.20). Solving (A.22) yields

D) 2 67(2b+1)t D) 67(2b+2+k)t

Vi(t) = (26+1)(2b+2+k) (k+1)(2b+1) + (k+1)(20+2+k)

(A.23)

for b < k< 20.

Appendix B. Higher-order correlation functions

The pattern in the equations for Cj, C5, and Cy generalizes in straightforward way and
we merely write the equations for the next three correlation functions in the steady
state:

Cr=2Vi12+ Vig1 +2Viy+2Vo3 + Vs

Cs=Viti1+2Viig+ Vigai +2Vis +2Vou + Vg + V7

Co=2Vi1120+2Viio1 +2Viqa+ Via1 +2Va15+2Vio3+2Vis39 + Vooo
+2Vi6+2Vas +2V5 4 + Vs,
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