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Universal exploration dynamics of
random walks

Léo Régnier1, Maxim Dolgushev 1, S. Redner2 & Olivier Bénichou 1

The territory explored by a random walk is a key property that may be quan-
tified by the number of distinct sites that the random walk visits up to a given
time. We introduce a more fundamental quantity, the time τn required by a
random walk to find a site that it never visited previously when the walk has
already visited n distinct sites, which encompasses the full dynamics about the
visitation statistics. To study it, we develop a theoretical approach that relies
on a mapping with a trapping problem, in which the spatial distribution of
traps is continuously updated by the random walk itself. Despite the geome-
trical complexity of the territory explored by a random walk, the distribution
of the τn can be accounted for by simple analytical expressions. Processes as
varied as regular diffusion, anomalous diffusion, and diffusion in disordered
media and fractals, fall into the same universality classes.

The numberN(t) of distinct sites visited by a randomwalker up to time
t is a key property in random walk (RW) theory1–7 which appears in
many physical8–21, chemical22,23, and ecological24 phenomena. This
observable quantifies the efficiency of various stochastic exploration
processes, such as animal foraging24 or the trapping of diffusing
molecules1,23. While the average and, for some examples, the dis-
tribution of the number of distinct sites visited, have been determined
analytically5,25–27, this information is far from a complete description. In
this work, we show that thewaiting time τn, defined as the elapsed time
between the visit to the nth and the (n+1)st distinct, or new, sites char-
acterizes the exploration dynamics in a more fundamental and com-
prehensive way (Fig. 1).

In addition to their basic role in characterizing site visitation,
the τn are central to phenomena that are controlled by the time
between visits to new sites. A class of such models are self-
interacting RWs, where a random walker deposits a signal at each
visited site that alters the future dynamics of the walker on its next
visit to these sites. This self-attracting RW 28–30 has recently been
shown to account for real trajectories of living cells31. In this model,
the probability that the RW jumps to a neighboring site i is pro-
portional to expð�uniÞ, where u is a positive constant, ni = 0 if the
site i has never been visited up to time t and ni = 1 otherwise. The
analysis of this strongly non-Markovian walk is a difficult problem
with few results available in dimension higher than 1. However, we
note that its evolution between visits to new sites is described by a

regular RW whose properties are well known. This makes the
determination of the statistics of the τn an important first step in the
analysis and understanding of these non-Markovian RWs.

The variables τn also underlie starving RWs32–36, which describe
depletion-controlled starvation of a RW forager. In these models, the
RW survives only if the time elapsed until a new food-containing site is
visited is less than an intrinsicmetabolic timeS. If the forager collects a
unit of resource each time a new site is visited, then in one trajectory,
the forager might find resources at an almost regular rate while in
another trajectory, the forager might find most of its resources near
the end of its wandering. This discrepancy in histories has dramatic
effects: the forager survives on the first trajectory but not the latter. To
understand this disparity requires knowledge of the random vari-
ables τn.

Despite their utility and fundamentality, the statistical properties
of the τn appear to be mostly unexplored, except for the one-
dimensional (1d) nearest-neighbor RW. In this special case, the dis-
tribution of τn coincides with the classic first-exit probability of a RW
from an interval of length n, Fn(τ)37. We drop the subscript n on τ
henceforth, because the value of n will be evident by context. In the
limit n→∞ with τ/n2

fixed, Fn has the following basic properties: (i)
aging38; in general, Fn depends explicitly on n, or equivalently, the time
elapseduntil the visit to thenth new site; (ii) ann-independent algebraic
decay: τ−3/2 for 1≪ τ≪ n2, where n2 is the typical time to diffuse across
the interval; (iii) an exponential decay for τ≫ n2; (iv) Fn admits the
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scaling form FnðτÞ=n�3ψ τ=n2
� �

(see Sec. S1 in the Supplementary
Information (SI) for details).

Results
In this work, we extend these visitation properties to the physically
relevant and general situations of higher dimensions and general
classes of RWs, including anomalous diffusion. We investigate sym-
metric Markovian RWs that move in a medium of fractal dimension df,
and whose mean-square displacement is assumed to be given by
hr2ðtÞi / t2=dw , where dw is the dimension of the walk39 and t the
number of RW steps. We assume in particular the existence of a
renewal equation between the propagator and the first-passage time
density of the RW40. We focus on discrete time and space RWs, for
which the number of sites visited at a certain time is clearly defined
(see SI S5.C.1 for the extension of our results to Continuous Time
Random Walks (CTRWs)). The ratio μ = df/dw determines whether the
RW is recurrent (μ < 1), marginal (μ = 1), or transient (μ > 1). For recur-
rent and marginal RWs (μ ≤ 1), the probability to eventually visit any
site is one, while for transient RWs (μ > 1), the probability to visit any
site is strictly less than one41,42. Despite the geometrical complexity of
the territory explored after n steps (which typically contains holes,
islands43 and is not spherical44,45, see Figs. 1 and 2), the distribution of
the times τbetween visits tonew sites obeysuniversal statistics that are
characterized only by μ, as summarized in Table 1 (up to constant
prefactors that are independent of τ, and neglecting algebraic cor-
rections for the two latter regimes).

Fundamental consequences of our results include the following:
(i) Finding new sites takes progressively more time for recurrent and
marginal RWs; this agrees with simple intuition. This property is
quantified by the ndependence of themoments of τn. From the entries
in Table 1 we find hτkni / nk=μ�1 for recurrent RWs, while hτni / lnn and
hτkni / nðk�1Þ=2 for k > 1 for marginal RWs. Conversely, transient RWs
rarely return to previously visited sites, so that hτkni / const (see the SI
Sec. S3.D for the derivation and numerical check). (ii) The statistics of
the τn exhibit universal and giant fluctuations for recurrent and mar-
ginal RWs, with VarðτnÞ=hτni2 / n for recurrent walks and
VarðτnÞ=hτni2 / ffiffiffi

n
p

=ðlnnÞ2 for marginal walks. In the context of the
foraging process mentioned above, this leads to very different life
histories of individual foragers. In contrast, τn remains bounded for
large n for transient RWs, so that fluctuations remain small. (iii) The
early-time regime is independent of n. The feature of aging, which
originates from the finite size n of the domain visited, arises after a
time tn, for recurrent andmarginal RWs, and Tn, for transient RWs (see
Table 1 and below for the definition of these two fundamental time
scales). (iv) As shown below, each regime of the exploration dynamics
is controlled by specific configurations that are illustrated in Fig. 2.
These provide the physical mechanisms that underlie the entries in

Table 1. (v) The algebraic decay of Fn(τ) in the recurrent case should be
compared with the simpler problem of a recurrent RW in unbounded
space, where the first-passage time distribution to a given target
behaves at large times like Ftarget(τ)∝ 1/τ1+θ, with θ the so-called per-
sistence exponent46. Because θ = 1 − μ for processes with stationary
increments38, and in particular for Markovian processes, the algebraic
decay of Fn in Table 1 can be rewritten as Fn(τ)∝ τ−(2−θ), in sharp contrast
with the decay of Ftarget(τ). While the two exponents coincide for a
simple RW in 1d (for which θ = 1/2), the problem here involves the first-
exit time statistics from a domain whose complex shape is generated
by the RW itself.

We now sketch how to derive these results (see Secs. S2–S3 of the
SI for detailed calculations). As an essential step, we first map the
visitation problem to an equivalent trapping problem. In our visitation
problem, we view unvisited sites as traps for the RW, so that a RW is
trapped whenever it leaves the domain of already visited sites. Here,
the term trapped does not mean that the RW disappears, but rather,
the RW continues its motion but now with the visited domain expan-
ded by the site just visited and the inter-visit time τ is reset to zero. By
this equivalence to trapping, the time τ between visits to the nth and
(n+1)st new sites is the same as the probability for the RW to first exit
the domain that is comprised of the n already visited sites, or
equivalently the domain free of traps. A crucial feature of this
equivalence to trapping is that the spatial distribution of traps is
continuously updated by the RW trajectory itself. In contrast to the
classical trapping problem47,48, where permanent traps are randomly
distributed, here the spatial distribution of traps ages because it
depends on n. Moreover, successive traps are spatially correlated, with
correlations generated by the RW trajectory.

These two key points are accounted for by the distribution Qn(r)
of the radius of the largest spherical region that is free of traps after n
sites have been visited. We show in Sec. S2.D of the SI that this dis-
tribution assumes the scaling form QnðrÞ ’ ρ�1

n exp½�a r=ρn

� �df �,
where a is independent of n and r and the characteristic length ρn
provides the typical scale of this radius r. Furthermore, the n depen-
dence of ρn, which quantifies both aging and correlations between
traps, is determined by whether the exploration is recurrent or tran-
sient. Specifically, we find ρn =n

1=df for μ < 1, ρn =n
1=2df for μ = 1 and ρn

of the order of one, up to logarithmic corrections for μ > 1 (see Sec. S2
in the SI). A striking feature of these behaviors is that the exponent
changes discontinuously when μ passes through 1.

The corresponding time scales tn = ρ
dw
n and Tn delineate the three

regimes of scaling behaviors summarized in Table 1 and Fig. 2: (i) a
short-time algebraic regime (1≪ τ≪ tn), (ii) an intermediate-time
stretched exponential regime (tn≪ τ≪ Tn), and (iii) a long-time expo-
nential regime (Tn≪ τ). Here Tn is defined as the time at which the
radius of the trap-free region r*(τ) that controls the dynamics takes its

Fig. 1 | Definition of the random variable τn. a A visited domain (black sites) and
its boundary (green line) for a RWon the square lattice. The nth and (n+1)st new sites
visited are blue and red squares. The red links indicate the intervening RW

trajectory. b The time intervals τn between increments in N(t), the number of new
sites visited at time t.
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maximal possible value of rmax =n
1=df (see Fig. 2c and the discussion

below Eq. (4)). We do not characterize the early time regime τ =O(1)
which depends on details of the model: we are only interested in uni-
versal features.

Algebraic regime
Here, the distribution of τ has a universal algebraic decay whose
origin stems from two essential features: (i) The RW just visited a
new site so that the RW starts from the interface between traps and
visited sites when the clock for the next τ begins. (ii) The region
already visited by the RW is sufficiently large so that we can treat the
region as effectively infinite (Fig. 2a) and thereby approximate Fn(τ)
by F∞(τ).

The first-return time distribution to this set of traps on the inter-
face is determined by the renewal equation40,49,50 that links the prob-
ability Ptrap(t) to be at a trap at time t and the distribution offirst arrival
times F∞(τ) to a trap at time τ,

PtrapðtÞ= δðtÞ+
Z t

0
F1ðτÞPtrapðt � τÞdτ: ð1Þ

This equation expresses the partitioning of the total RW path to the
interface into a first-passage path to the interface over a time τ and a
return path to the interface over the remaining time t − τ; here we
use a continuous-time formulation for simplicity. In this mean-field
type equation (detailed in SI Sec. S3.A.1 and 2, and supported by
numerical simulations given below and an alternative derivation for
the exponent of the algebraic decay given in Sec. S3.A.3 in the SI),
we treat the set of traps collectively, which amounts to neglecting
correlations between the return time and the location of the traps
on the interface.

Next, we estimate Ptrap(t) by using the fact that the RW is almost
uniformly distributed in a sphere of radius rðtÞ / t1=dw at time t. The
number of traps within this sphere is given by rðtÞdT . Here dT is the
fractal dimension of the interface between visited and non-visited
sites; as shown in the SI Sec. S3.A.2, dT = 2df − dw. Finally, we obtain the
fraction of traps within this sphere and thereby Ptrap(t):

PtrapðtÞ /
Number of traps
Number of sites

/ rðtÞdT

rðtÞdf
/ tμ�1: ð2Þ

Based on (2), we solve Eq. (1) in the Laplace domain and invert this
solution to obtain the algebraic decay F∞(τ)≃Aτ−1−μ in Table 1 in the
early-time regime for recurrent and marginal RWs (this derivation is
given in Sec. S3.A in the SI, including exact and approximate
expressions for the amplitude A for marginal and recurrent RWs,
respectively).

In the transient case, the RW is always close to a non-visited site by
the very nature of transience. Consequently, the time scale tn is of
order one and the algebraic regime does not exist.

Intermediate- and long-time regimes
If the RW survives beyond the early-time regime, it can now be con-
sidered to start from within the interior of the domain of visited sites.
In analogy with the classical trapping problem, a lower bound for the
survival probability of the RW, Sn(τ), is just the probability for the RW
to remain within this domain. This lower bound is controlled by the
rare configurations of large spherical trap-free regions inwhich theRW
starts at the center of this sphere, whose radius distribution Qn(r) was
given above.

Wedevelop a large-deviation approach, inwhich this lower bound
is given by the probability qn for the RW to first survive up to the first
crossover time tn, multiplied by the probability for the RW to remain
inside a spherical trap-free domain over a time τ. The quantity qn is
given by

R1
tn

F1ðτÞdτ, which scales as 1=tμn if μ ≤ 1, and is of order one if
μ > 1. The probability for the RW to remain inside a spherical domainof
radius r over a time τ asymptotically scales as expð�b τ=rdw Þ, where b is
a constant39. As stated above, the probability to find a spherical trap-
free region of radius r is given by QnðrÞ ’ ρ�1

n exp½�aðr=ρnÞdf �. Sum-
ming over all radii up to the largest possible value rmax =n

1=df , we
obtain the lower bound

SnðτÞ≥
qn

ρn

Z n1=df

0
exp �bτ=rdw � aðr=ρnÞdf

h i
dr, ð3Þ

where a and b are constants. Using Laplace’s method by making the
change of variable r =ρτ1=ðdf +dwÞ, we obtain (ignoring algebraic pre-
factors in n and τ),

SnðτÞ≥
R n1=df

0 exp �τμ=ð1 +μÞ b=ρdw +aðρ=ρnÞdf

� �h i
dρ

≳ exp �τμ=ð1 +μÞ b=ρ*dw +aðρ*=ρnÞ
df

� �h i
,

ð4Þ

where the function b=ρdw +aðρ=ρnÞdf reaches its minimum at ρ = ρ*.
The lower bound (4) for τ≫ 1 is controlled by trap-free regions of
radius r*ðτÞ=ρ*τ1=ðdw +df Þ ∼ρdf=ðdw +df Þ

n τ1=ðdw +df Þ (see SI Sec. S3.B for
details). Using tn =ρ

dw
n , this optimal radius is then

r*ðτÞ∼ρnðτ=tnÞ1=ðdw +df Þ. For τ≫ tn, we have r*(τ)≫ ρn. Since ρn deter-
mines the typical radius of the largest spherical region free of traps, the
configurations that control the long-time dynamics (as illustrated in
Fig. 2b, c) are atypically large, and becomemore so as τ increases. Thus
the survival probability in this long-time regime is determined by a
compromise between the scarceness of large trap-free domains and
the long exit times from such domains. Finally, we obtain

Fig. 2 | The three temporal regimes of the exploration dynamics, as illustrated
by a RW on a square lattice. Each panel shows the corresponding different con-
trolling configurations when n = 500 distinct sites have been visited. The nth and
(n+1)st visited site are shown in red and blue, respectively (a and b). a Early time: the
visited domain (black squares within the green boundary) is effectively infinite

(at the scale of the trajectoryof the RWduring the time τn).b Intermediate time: the
exit time probability from the visited domain is governed by atypically large trap-
free regions of radius r*ðτÞ∼ρn τ=tn

� �1=ðdf +dw Þ. c Long time: the exit time probability
is determined by atypically large trap-free regions of radius r*ðTnÞ∼n1=df .
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FnðτÞ= � dSnðτÞ=dτ ∼ exp½�const τ=tn
� �μ=ð1 +μÞ�. As in the classic trap-

ping problem1,3,40, we expect that this lower bound for the survival
probability will have the same time dependence as the survival
probability itself.

This stretched exponential decay holds as long as the optimal
radius is smaller than the maximal value rmax. The point at which this
inequality no longer holds defines a second crossover time Tn by
r*ðTnÞ=n1=df . Beyond this time, the evaluation of the integral in Eq. (4)
now leads to an exponential decay of Fn (Table 1).

Finally, note that the full time dependence of Fn(τ) has a particu-
larly simple form for recurrent RWs. In this case, the intermediate
stretched exponential regime does not exist because tn and Tn both
have the same n dependence. In fact, the short- and long-time limits of
Fn(τ) can be synthesized into the scaling form (as explained in Sec. S3.C
of the SI)

FnðτÞ=
1

n1 + 1=μ
ψ

τ

n1=μ

� �
, ð5Þ

with ψ a scaling function.
We confirm the validity of our analytical results by comparing

them to numerical simulations of paradigmatic examples of RWs that
embody the different cases in Table 1. The recurrent case (μ < 1) is
illustrated in Fig. 3a–c for diverse processes: superdiffusive Lévyflights
in 1d, in which the distribution of jump lengths is fat-tailed, p(ℓ)∝ ℓ− 1−α,
with α∈ ]1,2[; subdiffusive RWs on deterministic fractals with and
without loops, respectively represented by the Sierpinski gasket and
the T-tree (see Sec. S4.A of SI for the definition of the T-tree and the
simulation results); subdiffusive RWs on disordered systems, as
represented by a critical percolation cluster on a square lattice. Our
simulations confirm the scaling form of Fn(τ) given in Eq. (5), as well as
its algebraic (X ≡ τ/tn < 1) and exponential (X > 1) decays at respectively
short and long times.

The marginal case (μ = 1) is illustrated by 1d Lévy flights of para-
meter α = 1, persistent and simple RWs on the 2-dimensional square
lattice (Fig. 3d–f respectively). The data collapse when plotted versus
the scaling variable τ=

ffiffiffi
n

p
; this confirms that the crossover time tn

scales as tn / ffiffiffi
n

p
. Figure 3d and e clearly show the expected algebraic

decay τ−2 at short times (dashed line). Figure 3f validates the stretched
exponential form of Fn(τ) at intermediate times, as well as the expo-
nential decrease at long times and the scaling of Tn = n3/2.

The transient case (μ > 1) is illustrated by RWs on hypercubic
lattices (see Fig. 3g for the 2d Lévyflights of parameterα = 1, Fig. 3h for
a persistent RWand Fig. 3i for a nearest neighbour RW in 3d, as well as
Sec. S4.C.5 in the SI for higher dimensions and Sec. S4.C.6 for tran-
sient Lévy flights). Figure 3i confirms the stretched exponential tem-
poral decay for intermediate times, the scaling of the crossover time
Tn = n1/μ+1, and the long-time exponential decay of Fn(τ) for transient
RWs. The numerically challenging task of observing the stretched
exponential decay followed by the exponential decay that originates
from rare, trap-free regions, was achieved by relying on Monte Carlo
simulations coupled with an exact enumeration technique (see
Sec. S4.C of the SI for details). We note that in Fig. 3g and h, the
distribution is independent of n for the values of X ≡ τ represented,

and Y = � ln FnðτÞ
� �

=τμ=ð1 +μÞ reaches a plateau. It further confirms the
stretched exponential regime and the absence of the algebraic
regime (tn = 1).

Overall, we find excellent agreement between our analytical pre-
dictions and numerical simulations. The diverse nature of these
examples also demonstrates the wide range of applicability of our
theoretical approach.

We can extend our approach to treat the dynamics of other
basic observables that characterize the support of RWs.
Following51,52 two classes of observables can be defined: boundary
and bulk. Boundary observables involve both visited and unvisited
sites, such as the perimeter P(t) of the visited domain or the number
of islands I(t) enclosed in the support of the RW trajectory; note that
these variables can both increase and decrease with time. We show,
for example, in Sec. S5.A of the SI, that the corresponding dis-
tribution of the times between successive increases in a boundary
observable Σ again has an early-time algebraic decay, FΣ(τ) ∝ τ−2μ for
μ < 1, and FΣðτÞ / ln τ=τ2 for μ = 1. These behaviors are illustrated in
Fig. 4a–c. Bulk observables involve only visited sites, such as the
number of dimers51, k-mers, and k × k squares in 2d. We show in
Sec. S5.A of the SI that the dynamics of bulk variables is the same as
that for the number of distinct sites visited.

Discussion
In addition to providing asymptotic expressions for the τn distribution
and their extension to basic observables characterizing the support of
RWs, our results open new avenues in several directions. First, they
allow us to revisit the old question of the number N(t) of distinct sites
visited at time t. Indeed, our theoretical approach for the set of inter-
visit times τ represents a start towards determining multiple-time
visitation correlations for general RWs, quantities that have remained
inaccessible this far. These multiple-time correlations are crucial to
fully characterize the stochastic process {N(t)}, the number of sites
visited at every single time. However, they have been studied only for
the special case of 1d nearest-neighbor RWs 27,53. Using our formalism
we can further compute temporal correlations of {N(t)} for compact
Lévy flights in 1d with 1/μ = α > 1 (which do leave holes in their trajec-
tories). We compute the scaling with time of the two-time covariance
of the number of distinct sites visited,

Cov½Nðt1Þ,Nðt2Þ� � hNðt1ÞNðt2Þi � hNðt1ÞihNðt2Þi:

We obtain in the limit 1≪ t1≪ t2 (see Sec. S5.B of the SI for a
numerical check of the derivation of Eq. (6) and its numerical con-
firmation which can also be seen in Fig. 4d),

Cov½Nðt1Þ,Nðt2Þ� / tμ1 t
μ
2
t1
t2

: ð6Þ

This result canbe further extended to k-timecorrelation functions (see
the numerical confirmation for k = 4 in Fig. 4e),

hðNðt1Þ � hNðt1ÞiÞ . . . ðNðtkÞ � hNðtkÞiÞi / tμ1 . . . t
μ
k
t1
tk
: ð7Þ

Table 1 | Summary of the time dependence of Fn(τ) for the three classes of RWs—recurrent, marginal, and transient

tn Tn 1≪ τ≪ tn tn≪ τ≪ Tn Tn≪ τ

μ < 1 [recurrent] n1/μ n1/μ τ−(1+μ)≡ τ−(2−θ) exp �const τ=n1=μ
	 


μ = 1 [marginal]
ffiffiffi
n

p
n3/2 τ-(1+μ)≡τ-(2-θ) exp

	� const τ=tn
� �μ=ð1 +μÞ
 exp �const τ=n1=μ

	 

μ > 1 [transient] 1 n(μ+1)/μ exp

	� const τ=tn
� �μ=ð1 +μÞ
 exp �const τ=n1=μ

	 

The constants are independent of n and τ. The crossover times tn and Tn are given up to logarithmic prefactors. The time regimes identified in the last three columns are the same as the ones
presented in Fig. 2. The persistence exponent θ is here given by θ = 1 − μ, see text.
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To obtain these results, we rely on the assumption that for any values
of the number of distinct sites visited n1 and n2 holds

Cov
Xn1�1

k =0

τk ,
Xn2�1

k =n1

τk

2
4

3
5=O n2=μ

1

� �
, ð8Þ

which is indeed verified for 1d Lévy flights (see SI Sec. S5 B). In addition
to the case of 1d Lévy flights, where Eq. (8) is satisfied, Eqs. (6) and (7)
provide in fact lower bounds on the correlation functions for recurrent
RWs (see SI Sec. S5.B for numerical checks),

hðNðt1Þ � hNðt1ÞiÞ . . . ðNðtkÞ � hNðtkÞiÞi ≥ tμ1 . . . tμk
t1
tk
: ð9Þ

This lower bound is algebraically decreasing in tk. The salient
feature of these results is that temporal correlations in multiple-time
distributions of recurrent RWs, such as those in Eq. (6), have a long
memory.

Second, the distribution of τn allows us to provide a quantita-
tive answer to the question raised in the introduction regarding the
disparity in life histories of foragers that starve if they do not eat
after S steps. While in 1d, the mean starvation time is known to
increase linearly with S (at large S), the corresponding question in

2d, which is relevant to most applications of foraging, is open. We
now show, by relying on the results introduced in this paper, that
the mean number of sites visited and consequently the starvation
time in 2d increases quadratically with S (up to logarithmic cor-
rections). We start with the observation that, knowing that n sites
have been visited, the probability to starve is given by the prob-
ability that the time τn to visit a new site is larger than themetabolic
time S, Pðτn >SÞ=

P
τ > SFnðτÞ. Using Table 1, we have that for

tn =
ffiffiffi
n

p
<S, the probability to starve is stretched exponentially

small (up to algebraic prefactors), Pðτn >SÞ≈ exp �
ffiffiffiffiffiffiffiffiffiffiS=tn

p	 

. The

desert (domain witout food) formed by the set of visited sites is too
small to prevent the RW from finding new sites: the RW visits S2

sites in total in this first regime. However, for tn =
ffiffiffi
n

p
>S, the

probability for the RW to starve before finding a new site is large, as
it is given by the tail of an algebraic distribution Pðτn >SÞ / 1=S.
Consequently, the number of sites visited in this regime is negli-
gible compared to the first one. Thus, the number of sites visited at
starvation is given, up to log corrections, by n=S2 and the lifetime
by

PS2

k = 1 τk
� �

∼S2. This result is confirmed numerically in Fig. 4f.
This resolves the open question of the lifetime of 2d starving
RWs32–36.

Finally, the generality of our results opens the question of
extending them to the challenging situation of non-Markovian

Fig. 3 | Universal distribution of the time between visits to new sites for RWs.
Recurrent RWs (μ < 1). Shown is the scaled distribution Y � θ1 +μn FnðτÞ versus
X ≡ τ/θn for n = 100, 500, and 1000.Hereθn ~ n1/μ is the decay rate of the exponential
in FnðτÞ∼ exp �τ=θn

� �
. The red dashed lines indicate the algebraic decay A(μ)t−1−μ

(A(μ) defined in SI Sec. S3.A.4). a 1d Lévy flights with index α = 1=μ= ln6= ln 3.
b Subdiffusion on a Sierpinski gasket (μ = ln3= ln 5, scaling of θnwith n shown in SI
Sec. S4.A). c Subdiffusionon a 2d critical percolation cluster (μ ≈0.659).Marginally
recurrent RWs (μ = 1). d e Marginal RWs (μ = 1) at early times. Shown is the scaled
distribution Y ≡ nFn(τ) versus X � τ=

ffiffiffi
n

p
for d 1d Lévy flights of index α = 1 for

n = 800, 1600, and 3200, e persistent RWs in 2d where the probability to continue
in the same direction is p =0.3 for n = 800, 1600 and 3200. The red dashed line
represent the algebraic decay Aτ−2 (A given in SI Sec. S3.A.4). f Marginal RWs at
intermediate and long times. Shown is the scaled distribution Y �

� lnnFnðτÞ
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffi
τ=

ffiffiffi
n

pp
versus X ≡ τ/n3/2 for simple RWs on a 2d square lattice for

n = 200, 800 and 3200. The green and blue dashed lines represent the stretched
exponential and the exponential regimes, respectively. Transient RWs (μ > 1).
Shown is the scaled distribution Y � � ln FnðτÞ

� �
=τμ=ð1 +μÞ for g Lévy flights of

parameter α = 1 in 2d, for n = 400, 800, 1600and X ≡ τ,hpersistent RWs in 3dwhere
the probability to continue in the same direction is p =0.25 for n = 200, 800, 3200
and X ≡ τ, i simple RWs on cubic lattice, for n = 200, 400, 500 and X ≡ τ/n1+1/μ. The
green and blue dashed lines represent the stretched exponential and the expo-
nential regimes, respectively. For all panels, blue stars, orange circles and green
squares correspond to increasing values of n. The insets indicate the jump pro-
cesses. Red squares are the initial and arriving positions of the walker. The green
squares represent the prior position of the walker.
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processes, which is a priori not covered by our approach. However, we
argue in SI Sec S5.C that our results concerning the recurrent case can
be extended to non-Markovian processes. The agreement with
numerical simulations of highly non-Markovian processes such as the
Fractional Brownian Motion54 (in the sub- and super-diffusive cases)
and the True Self Avoiding Walk55 (see SI Sec S5.C.4 for definition) is
displayed in Fig. 4 (g–i respectively). We point out again that this
behavior Fn(τ)∝ τ−(2−θ) is in sharp contrast to the usual decay of the first-
passage probability to a target Ftarget(τ)∝ τ−(1+θ). This difference origi-
nates both from the complex geometry of the support of the RW and
potentialmemory,which, remarkably, areuniversally accounted for by
our results.

We have shown that the times between successive visits to new
sites are a fundamental and useful characterization of the territory
explored by a RW. We identified three temporal regimes for the
behavior of these inter-visit time distributions, as well as the physical
mechanisms that underlie these different regimes. In addition to their
fundamental nature, these inter-visit times satisfy strikingly universal
statistics, in spite of the geometrical complexity of the support of the
underlying RW processes. The elucidation of these inter-visit times
represents a promising research avenue to discover many more
aspects of the intriguing explorationdynamicsof RWs, as shownby the
first applications provided here in the case of non-Markovian
processes.

Methods
Analytical results are verified using simulations of different RW
models:

Numerical simulations of recurrent and marginal RWs

• Lévy flights in 1d with α∈ [1,2[, where the jump length is drawn
from p(s) = 1/[2ζ(1 + α)∣s∣1+α]. Intermediary sites between initial
and final positions of the jump are not visited.

• Nearest-neighbour RWs on the Sierpinski gasket. The gasket is
unbounded, and each neighbouring site is chosen with equal
probability. Each RW starts at the central site (red square
on Fig. 3b).

• Nearest-neighbour RWs on the T tree. The T tree is generated up
to generation9, and thenweperformaRWstarting at the central
site. Each neighbouring site is chosen with equal probability.

• Nearest-neighbour RWs on critical percolation clusters. The
clusters are constructed from a 1000 × 1000 periodic square
lattice, from which half of the bonds were randomly removed
and then the largest cluster was selected. We start from a site
chosen uniformly on the cluster. Each neighbouring site is
chosen with equal probability.

• Nearest-neighbour RWs on the 2d lattice, persistent and not
persistent. For persistent RW, the probability to do the same

Fig. 4 | Extensions and applications of the time between visits to new sites for
RWs. Boundary observables for recurrent and marginal RWs: The perimeter of
the visited domain and the number of islands enclosed in the support. a The elapsed
time τP for successive increments of the timedependenceof theperimeterP(t) of the
visited domain. b Distribution FP(τ) of the time elapsed τP between the first obser-
vations of a domain perimeter of length P and P+ 2 for simple RWs on the square
lattice. cDistribution FI(τ) of the elapsed time τIbetween the first occurrence of I and
I + 1 islands for Lévy flights of index α= 1.2. Plotted in b and c are the scaled dis-
tributions Y � FP ðτÞ= ln 8τð Þ and Y≡ FI(τ) versus X = τ. The red dashed lines have
slope− 2μ. The data are for P, I = 50, 100, and 200 (respectively blue stars, orange
circles and green squares). Multiple-time covariances and starving
RWs. d Y =Cov Nðt1Þ,Nðt2Þ

	 

= Nðt1Þ
� �

Nðt2Þ
� �� �

for Lévy flights of parameter α= 1.5,
andwe compare Y to t1

t2
(dashed line). The stars, circles, and squares indicate data for

t1 = 10, t1 = 100, and t1 = 1000. e Y = t3
t1

ðNðt1Þ � Nðt1Þ
� �ÞðNðt2Þ � Nðt2Þ

� �ÞðNðt3Þ��
Nðt3Þ
� �ÞðNðt4Þ � Nðt4Þ

� �Þi=ð Nðt1Þ
� �

Nðt2Þ
� �

Nðt3Þ
� �

Nðt4Þ
� �Þ, for Lévy flights of para-

meter α= 1.3. We compare Y to the dashed line proportional to t3
t4
. Data in red and

green indicate t1 = 10 and t1 = 100. Stars indicate t2 = 2t1 and circles indicate t2 = 4t1.
We take t3 = 4t2. f Lifetime at starvation. Blue circles show the mean lifetime versus
the metabolic time S. The dashed line is proportional to S2. Non-Markovian
examples. Rescaled distribution Y= Fn(τ)n1+1/μ versus X = τ/n1/μ for g Fractional
Brownian motion with parameter 1/H = 1/0.4 = μ = 1 −θ (n= 20, 40 and 80)
h Fractional Brownian motion with parameter 1/H = 1/0.75 = μ = 1 −θ (n= 20, 40 and
80), i True Self Avoiding Walks μ = 2/3 = 1 −θ (n= 200, 400 and 800). For the last
three panels, increasing values of n are represented successively by blue stars,
orange circles and green squares, and the dashed line is proportional to X−(2−θ).
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step as the previous one is larger than 1/4, while the probability
to go in any other direction is taken uniformly among the 3
directions left.

We perform the RWs to get the domain rn of n distinct visited
sites. To obtain the time τn to visit a new site, we use the exact enu-
meration method based on the adjacency matrix M(rn) of the visited
domain. The θn, based on which the rescaled data lead to Fig. 3, are
obtained by measuring the slope of the exponential decrease at large
times of the statistics of τn.

Numerical simulations of transient RWs
In addition to the exact enumeration used to obtain the exit time
statistics from the visited domain rn, we rely on a Monte Carlo Markov
Chain generation of rn on hypercubic lattices d = 3, 4, 5 and 6 (we
generate the visited domains in the same way as for recurrent RWs for
thepersistent RW in 3dor transient Lévy flights). Using the observation
that the average exit time is proportional to the surface of the visited
domain, we bias the generation of these domains towards states of
small surfaces. The bias is generated by a Wang-Landau procedure, in
order to obtain a uniform probability on the surface of the visited
domain, resulting in an increased probability of the small surface
states.

Numerical simulations of non-Markovian RWs
For the True Self Avoiding Random Walk on the 1d line, we record
the number of visits Ci of site i. The probability to jump to the site on
the right is given by expð�Ci + 1Þ=ðexpð�Ci + 1Þ+ expð�Ci�1ÞÞ, other-
wise the RW jumps on the left. For the fractional Brownian motion
(fBM), we use the module fbm56 of python based on Hosking’s
method57. We discretize the line in intervals of size one, and con-
sider that an interval has been visited when the RW enters it for the
first time. τn is the time elapsed between visit of the nth interval and
the new (n+1)st interval.

Data availability
The data generated in this study have been deposited in a GitHub
repository58 located at: https://github.com/LeoReg/Universal
ExplorationDynamics.git.

Code availability
The code used to generate the data presented in this study have been
deposited in a GitHub repository58 located at: https://github.com/
LeoReg/UniversalExplorationDynamics.git.
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