
Manuscript submitted to BiophysicalReports

Report

Bayesian Inference Reveals Permissive and
Nonpermissive Channel Closings in CFTR
Alexander S. Moffett1,†, Guiying Cui2, Peter J. Thomas3, William D. Hunt4, Nael A. McCarty2, Ryan S. Westafer5, and Andrew W.
Eckford1,*

1Dept. of Electrical Engineering and Computer Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
2Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and
Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
3Dept. of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland,
OH 44106, USA
4School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA 30332, USA
5Georgia Tech Research Institute, 400 10th St NW, Atlanta, GA 30318, USA
†Current position: Center for Theoretical Biological Physics and Department of Physics, Northeastern University, Boston, MA
02115, USA
*Correspondence: aeckford@yorku.ca

ABSTRACT The closing of the gated ion channel in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) can
be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not.
Identifying the type of closing is of interest, as interactions with nucleotides can be affected in mutants or by introducing agonists.
However, all closings are electrically silent and difficult to differentiate. For single-channel patch clamp traces, we show that the
type of the closing can be accurately determined by a Bayesian inference algorithm, which we demonstrate using both simulated
and lab-obtained patch clamp traces.

SIGNIFICANCE Membrane ion channels are embedded in the plasma membranes of many eukaryotic cells, and the
current through these channels can be measured using a patch clamp apparatus. The opening and closing of an ion
channel is dependent on a sequence of conformational changes between structural states, called kinetic microstates.
These microstates are crucial to understanding the dynamics of the channel, and are a subject of intense theoretical and
experimental interest. In CFTR, ATP binding occurs only in certain sequences of state transitions, while toxins, inhibitors,
and point mutations are known to have a direct impact on these transitions. However, experiments to directly observe
hidden (i.e., electrically equivalent) states are complex, and challenges remain in characterizing the states in their dynamic
context.

In contrast to experimental methods, Bayesian inference is a simple and well-known technique which has long been
used as a solution to hidden-variable inference problems, including patch clamp traces. Applying Bayesian inference to
CFTR ion currents, our algorithm accurately distinguishes between permissive channel closings (without unbinding of
nucleotide) and nonpermissive closings (with unbinding of nucleotide), providing insight into an otherwise hidden, but
physiologically important, process. Our method is flexible, and can be used to complement or improve other contemporary
analytical or experimental techniques.

INTRODUCTION
Cystic fibrosis (CF) is a life-threatening genetic disease affecting the respiratory and digestive systems, caused by mutations to
the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel (1, 2). CFTR is a “broken” member of the
ATP-binding cassette (ABC) transporter class, in that CFTR acts as an ATP-gated ion channel rather than an active transporter
as is the function of other ABC transporters. CFTR consists of a single polypeptide chain, with two transmembrane domain
(TMD)-nucleotide binding domain (NBD) pairs connected through a region called the R domain (3). Each of the two NBDs
contribute to both of the two known binding sites for ATP, although only one of these sites facilitates the hydrolysis of ATP to
ADP. The two TMDs form a gated channel which is controlled by the state of the two intracellular NBDs.
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Figure 1: CFTR cycle model. Possible state transitions are indicated with black arrows. The C1a → C1b transition is sensitive
to ATP concentration, and is indicated with a bold arrow and labelled [ATP]. States with open and closed ion channels are
indicated in blue italics and black, respectively. Closings for which the reopening occurs in the same state are called permissive,
depicted with green arrows; closings from O2 where the reopening is O1 are called nonpermissive, depicted with a red arrow.
See also reference (4) and the SI.

Of key interest are permissive and nonpermissive closings of the CFTR ion channel, in the sense of permissive to rapid
re-opening the channel. Considering the kinetic model in Figure 1 (see (4)), nonpermissive closings involve the release of
ADP in order to enable the binding of ATP (5, 6), and include the irreversible C4 → C1a transition. On the other hand,
permissive closings do not include this transition, meaning that they do not involve the release of ADP or ATP, leading to faster
re-opening. However, as these transitions occur on states in the same conductance level, the two types of closing cannot be
directly distinguished by the patch clamp. An analogous problem is to distinguish the pre- and post-hydrolytic states, O1 and
O2. While we assume there are only two conductance states, O and C, some mutants have different conductance between O1
and O2 (7, 8), which allows the hydrolytic transition to be observed directly.

The problem of distinguishing hidden features of a signal is a natural application for Bayesian inference, in which the
objective is to obtain the a posteriori probability 𝑝(𝑠 | 𝑦) of a hidden random variable 𝑠 given observations 𝑦. In this case, 𝑠
represents the underlying kinetic state, while 𝑦 represents the conductance state, O or C. Many algorithms exist for calculating
Bayesian inference, either exactly or approximately (9), such as the sum-product algorithm (10). Applications of inference
algorithms are found in diverse areas such as bioinformatics (11, 12), biophysics (13, 14), telecommunications, and more
recently in machine learning (15).

Previous work has used Bayesian inference to estimate hidden kinetic states from patch clamp measurements (16), The main
contribution of this report is to apply and extend a Bayesian inference algorithm, showing that it can accurately distinguish
between permissive and non-permissive channel closings in CFTR patch clamp traces, without any training or prior knowledge
about parameter values. We demonstrate that this is an accurate and robust technique which reveals the hidden details of CFTR
kinetics, particularly the precise timing of nucleotide unbinding from the channel.

MATERIALS AND METHODS
Receptor model
We use a physical model of CFTR described in Figure 1 (see (4)). In this 7-state model, states C1a, C1b, C2, C3, and C4
are fully closed, so we assume that ions are completely unable to pass through when CFTR is in these states, and thus, they
have the same conductance level. States O1 and O2 are open states in which chloride can flow through CFTR. (The states are
labelled so that the first letter indicates whether the channel is closed (C) or open (O).) Beginning with C1a, with a single
ATP bound at the first ATP binding site, which is incapable of hydrolysis (17), the reversible transition to C1b occurs when a
second ATP binds so that both binding sites are occupied. Because this step involves ATP binding, the rate depends on the
concentration of ATP. The reversible transitions from C1b to C2 and from C2 to O1 are conformational changes resulting in
an open CFTR , much like any ligand-gated channel such as the acetylcholine receptor (18). The transition from O1 to O2
is the first of two irreversible steps in the cycle, with one NBD-bound ATP undergoing hydrolysis to ADP. CFTR can then
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undergo reversible conformational changes from O2 to C3 and from C3 to C4, resulting in a closed pore. Finally, the second
irreversible step occurs in the transition from C4 to C1a, where the NBD-bound ADP unbinds from CFTR, leaving one apo and
one filled ATP binding site. This 7-state model is in agreement with the 4-state simplified cyclic gating model of (19) and
models distinguishing multiple closed and/or open states (20), (21).

As noted in the introduction, we are interested in determining whether the channel closings are permissive or nonpermissive.
Nonpermissive closings include the irreversible C4 to C1a transition, in which ADP unbinds and a binding site is available for
ATP, while permissive closings do not. Thus, considering Figure 1:

• A permissive closing has the same initial and final open states, i.e. O1 → C2 . . .C2 → O1 or O2 → C3 . . .C3 → O2;
and

• A nonpermissive closing has different initial and final open states, i.e., O2 → C3 . . .C2 → O1. From Figure 1, the only
way to do this is to proceed through the C4 → C1a transition.

The states under the ellipsis (. . .) can be any valid sequence of closed states from Figure 1, not necessarily the same state.
The kinetic microstates of CFTR can be modelled using a master equation of the form

𝑑𝑃

𝑑𝑡
= 𝑃𝑅, (1)

where 𝑃 is a row vector with length equal to the number of kinetic microstates, and 𝑅 is a square matrix of kinetic rates for each
possible state transition. In this formulation, 𝑃𝑖 is the probability that a receptor is in microstate 𝑖, while 𝑅𝑖 𝑗 is the transition
rate from state 𝑖 to state 𝑗 . The rate matrix 𝑅 and the full master equation are given in the SI.

Patch clamp signal model
Formally, our system contains a set V of observable conductance states, a set S of hidden kinetic microstates, and a mapping
𝑚 : S → V from microstates to conductance states. For CFTR, we have

V = {0, 1} (2)
S = {C1a, C1b, C2, C3, C4, O1, O2} (3)

𝑚(𝑠) =
{︃

0, 𝑠 ∈ {C1a, C1b, C2, C3, C4}
1, 𝑠 ∈ {O1, O2} (4)

The conductance states {0, 1} correspond to the ion channel’s current when closed and open, respectively.
The patch clamp observes the channel current through additive noise, and samples these observations to form discrete-time

signals. Let 𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑛] ∈ R𝑛 represent the sequence of observations for a single channel, and let 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑛] ∈
S𝑛 represent the corresponding microstates. Then at the 𝑘th sample, the patch clamp measures

𝑦𝑘 = 𝑚(𝑠𝑘) + 𝑛𝑘 , (5)

where 𝑛𝑘 forms a sequence of independent, identically distributed Gaussian random variables with zero mean and variance 𝜎2.
The transitions of microstates 𝑠𝑘−1 → 𝑠𝑘 are modelled as a discrete-time Markov chain (22): let 𝑄 = [𝑄𝑖 𝑗 ] represent a

|S| × |S| transition probability matrix, with 𝑄𝑖 𝑗 = Pr(𝑠𝑘 = 𝑗 | 𝑠𝑘−1 = 𝑖). Given the rate matrix 𝑅, and a discrete time step Δ𝑡, 𝑄
is given by

𝑄 = 𝐼 + 𝑅Δ𝑡 + 𝑜(Δ𝑡), (6)

where 𝐼 is the identity matrix of the same size as 𝑅, and limℎ→0 (𝑜(ℎ)/ℎ) = 0. The value of Δ𝑡 should be small enough that we
can assume 𝑄 = 𝐼 + 𝑅Δ𝑡; a rule of thumb is that 𝑄 should be diagonally dominant. Note that 1/Δ𝑡 is the sampling rate.

Inference, parameter estimation, and simulation
We use the sum-product algorithm (which implements Bayesian inference, see (10)) to obtain the a posteriori distribution
𝑝(𝑠𝑘 | 𝑦). Meanwhile, the transition probability matrix 𝑃 and noise variance 𝜎2 are unknown a priori and must be estimated from
the data. The expectation-maximization (EM) algorithm (23) is a standard tool for this kind of simultaneous inference-estimation
task. We employ a variant of the EM algorithm, known as the factor graph EM algorithm (24, 25), which is intended for
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use alongside sum-product inference algorithms. The complete details of our algorithm are described in the supplemental
information (SI).

Given 𝑝(𝑠𝑘 | 𝑦), we define a confidence threshold 𝐶, 0 ≤ 𝐶 < 1, and use the following decision rule to obtain the estimate
𝑠̂𝑘 for each 𝑠𝑘 :

𝑠̂𝑘 =

{︃
arg max𝑠𝑘 ∈S 𝑝(𝑠𝑘 | 𝑦), 𝑝(𝑠𝑘 | 𝑦) > 𝐶,

∅, otherwise. (7)

That is, 𝑠̂ is the maximum a posteriori (MAP) estimate if the estimate exceeds 𝐶; otherwise, 𝑠̂ is null (∅). Setting 𝐶 = 0 obtains
the MAP estimate for all states 𝑠𝑘 , while setting 𝐶 > 0 reduces the probability of false alarm.

We test our inference algorithm via Monte Carlo simulation, by generating instances of discrete-time Markov chains with
transition probability matrix 𝑃 (equation (6)) and adding noise (equation (5)). To evaluate the algorithm, we consider probability
of false alarm 𝑃FA and probability of missed detection 𝑃MD, respectively also known as type I and type II errors. We first make
a list 𝐿GT of closings (i.e., any sequence OX → CX . . .CX → OX, with OX and CX representing any open or closed state,
respectively, and where all states under the ellipsis (. . .) are closed states), and a list 𝐿 (np)

GT of nonpermissive closings, in the
ground truth state sequence 𝑠𝑘 . We make similar lists 𝐿E and 𝐿

(np)
E for the sequence of estimated states 𝑠̂𝑘 . Represent the length

of a list as, e.g., |𝐿GT |. Now let 𝑛FA be the number of closings that appear in 𝐿
(np)
E but not in 𝐿

(np)
GT , and let 𝑛MD be the number

of closings that appear in 𝐿
(np)
GT but not in 𝐿

(np)
E . Then

𝑃FA =
𝑛FA

|𝐿 (np)
E |

, 𝑃MD =
𝑛MD

|𝐿 (np)
GT |

. (8)

Patch clamp measurements
Single CFTR channels were studied in inside-out patches pulled from Xenopus oocytes injected with cRNA encoding the
wildtype channel, as previously described (26). Briefly, to enable removal of the vitelline membrane, oocytes were placed in a
bath solution containing (in mM) 200 monopotassium aspartate, 20 KCl, 1 MgCl2, 10 EGTA, and 10 HEPES, pH 7.2 adjusted
with KOH. Gigaohm seals were formed with patch pipettes pulled from borosilicate glass and filled with solution containing (in
mM) 150 N-methyl-D-glutamine (NMDG) chloride, 5 MgCl2, and 10 TES buffer, pH 7.5. After excision of the patch, CFTR
channels were activated by bath solution containing 150 mM NMDG chloride, 1.1 mM MgCl2, 2 mM Tris-EGTA, 10 mM
TES buffer, 1 mM MgATP, and 127 U/ml PKA, pH 7.5. Currents were recorded at VM = -100 mV using an Axopatch 200B
amplifier, with filtering at 0.1-1 kHz. The sampling rate of the patch clamp data was 2 kHz.

Code
Code is available on GitHub, and was used to generate all results in this paper. We do not include simulated patch clamp traces in
this paper, but simulations can be generated using the code we provide. The GitHub repository also includes a Jupyter notebook and
raw data for generating all results in this paper. See: http://github.com/andreweckford/PatchClampFactorGraphEM/

RESULTS
Analysis using simulated patch clamp measurements
Here we give results obtained from Monte Carlo simulations of the CFTR ion channel. To generate simulated patch clamp
results, we use example model parameters for the seven-state CFTR model given in Table 1. These example values are not
provided to the inference algorithm, so performance does not in general depend on their accuracy.

Properties of nonpermissive closings: In Figure 2, we used our simulator to generate ground truth state sequences 𝑠𝑘 ; we
then count the number of nonpermissive closings |𝐿 (np)

GT | and the total number of closings |𝐿GT |, and divide by time to get rates.
In the figure, we see that rate of total closings varies from roughly 0.5-0.7 closings/s, while nonpermissive closings occur at a
much lower rate. While the rate of closings depends on ATP concentration due to the cyclical nature of CFTR gating, the ratio
of nonpermissive to total closings remains nearly independent of concentration. These observations are consistent with the
dynamics of our model: a low ATP concentration will lead to a longer dwell time in state C1a, thus increasing the interval
between openings without affecting the rates of transitions at the boundary between open and closed. Moreover, nonpermissive
closings are relatively rare, with a ratio of roughly 1 nonpermissive closing per 12 total closings.

Missed detection and false alarm probability: In Figure 3, we give missed detection and false alarm probabilities, 𝑃MD and
𝑃FA, using our algorithm (see equation (8)). Setting the confidence threshold 𝐶 = 0 gives the MAP estimate of each state (see
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Destination state
C1a C1b C2 O1 O2 C3 C4

C1a 9.0 · 103 (M s)−1 [ATP]

C1b 5.0 s−1 7.7 s−1

C2 5.8 s−1 4.9 s−1

O1 10.0 s−1 7.1 s−1

O
rig

in
sta

te
O2 3.0 s−1

C3 7.0 s−1 6.0 s−1

C4 1.7 s−1 12.8 s−1

Table 1: Parameters for the CFTR channel, corresponding to the model in Figure 1. A blank entry indicates that the transition is
impossible. [ATP] indicates molar concentration of ATP.
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Figure 2: Prevalence of nonpermissive closings. Subfigure (a): Rate of all channel closings (top line) and nonpermissive closings
(bottom line) versus ATP concentration. Subfigure (b): Ratio of nonpermissive to total closings versus ATP concentration. Dots
represent the outcomes of each simulation run, lines represent mean value at each concentration. Sampling rate = 100 Hz, rate
parameters from Table 1.

equation (7)); we see a low 𝑃MD, meaning few nonpermissive closings are missed, but 𝑃FA is relatively high, i.e. around 50%.
(Since nonpermissive closings are rare, cf. Figure 2b, this is still far better than random guessing.) With a higher confidence
threshold of 𝐶 = 0.8, 𝑃FA is reduced, at the expense of increased 𝑃MD. This is explained by noting that lower-confidence state
estimates are discarded, so those closings will be missed by the algorithm. This demonstrates that 𝐶 can be adjusted to trade
off 𝑃FA against 𝑃MD. The performance of the algorithm is dependent on ATP concentration, with error rates increasing as
concentration increases.

Application to experimentally-obtained patch clamp measurements

In Figure 4, we show the application of our algorithm to lab-obtained CFTR patch clamp measurements. We show two examples,
corresponding to two different experiments. For techniques used to obtain these measurements, see the Methods section.

Prior to applying our algorithm to the patch clamp signal, we perform a preprocessing step, block averaging (taking the
sample average over non-overlapping blocks) for blocks of 50 samples, and scaling (multiplying by a constant, here 1.75, so that
most signal features are in the range from 0 to 1). The block averaging step is performed to reduce the noise at high frequencies,
which contains very little useful information about the signal, while preserving the features of interest at lower frequencies,
improving the performance of the algorithm. We show the preprocessed signal in the middle plots of Figure 4, overlaid with
vertical lines indicating the closings found by our algorithm, both permissive and nonpermissive. In the bottom plots of Figure
4, we give the state estimates 𝑠̂𝑘 found by the algorithm, with different colors indicating whether or not the initial and final
estimated states both exceed a confidence threshold of 𝐶 = 0.8. From the raw data and preprocessed traces, abrupt transitions
from high to low current correspond well to the detected closings.
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Figure 3: Missed detection and false alarm probabilities. Subfigures (a), (b): Missed detection probability versus ATP
concentration for confidence threshold 𝐶 = 0 and 𝐶 = 0.8, respectively. Subfigures (c), (d): False alarm probability versus ATP
concentration for 𝐶 = 0 and 𝐶 = 0.8, respectively. Dots represent each simulation run, while lines represent the average at each
concentration. Sampling rate = 100 Hz, 20000 samples, 400 EM iterations, 𝜎2 = 0.02, rate parameters from Table 1.

Discussion
We have presented an algorithmic tool for revealing the precise microstate kinetics of CFTR. Our method is simple, accurate,
and robust, and can be applied to any patch clamp measurement of a single channel; moreover, it requires no training phase.
Our inference-based approach can also be extended for use in combination with other techniques as long as a stochastic model
exists for them.

By revealing permissive and nonpermissive closings, we can precisely estimate the timing of each nucleotide unbinding
event, a key step in CFTR’s kinetic model. Furthermore, our method may be used to study the effect of reagents that are known
to affect hidden-state kinetics of CFTR, such as scorpion venom (4); future experiments in this direction might also be used to
analyze pharmaceuticals that target CFTR. More generally, beyond permissive and nonpermissive closings, the features of our
algorithm give the designer of an experiment a novel and fine-grained algorithmic tool to discover changes to the behaviour of
receptor proteins. For example, this method could be used to determine the fine-grained, microstate-by-microstate effects of
particular agonists or mutations.
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Figure 4: CFTR patch clamp measurements (raw and preprocessed) along with the corresponding inferred states for two different
experiments, one in each column. Top row (subfigures (a), (d)): Measured patch clamp current. Middle row (subfigures (b), (e)):
Patch clamp current signal after filtering and preprocessing; this signal is provided to the factor graph EM algorithm. Detected
closings are depicted on these figures, with dashed / solid vertical lines respectively indicating permissive / nonpermissive
closings; orange / red lines represent detected closings that, respectively, exceed / do not exceed 𝐶 = 0.8. Bottom row (subfigures
(c), (f)): Inferred state after 400 EM iterations; orange / red lines represent state estimates that, respectively, exceed / do not
exceed 𝐶 = 0.8.
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