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Abstract  14 

The cytoskeleton–a composite network of biopolymers, molecular motors, and associated binding 15 

proteins–is a paradigmatic example of active matter. Particle transport through the cytoskeleton can 16 

range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet, 17 

recapitulating and understanding these properties–ubiquitous to the cytoskeleton and other out-of-18 

equilibrium soft matter systems–remains challenging. Here, we combine light sheet microscopy with 19 

differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective 20 

transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport 21 

that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales. 22 

Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases 23 

the degree of subdiffusion at short timescales and generally slows transport. Corresponding 24 

displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero 25 

modes, indicative of directed advection coupled with caged diffusion and hopping. At larger 26 

spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin 27 

content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed 28 

important new light on the interplay between non-equilibrium processes, crowding and heterogeneity 29 

in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter 30 

systems to elucidate transport and dynamics across scales. 31 

 32 

1 INTRODUCTION 33 

The cytoplasm is a crowded, heterogeneous, out-of-equilibrium material through which 34 

macromolecules and vesicles traverse to perform critical cellular processes such as mitosis, 35 

endocytosis, migration, and regeneration1–4. Macromolecules and particles diffusing through the 36 

cytoplasm and other similar materials have been shown to exhibit widely varying and poorly 37 
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understood anomalous transport properties that deviate significantly from normal Brownian diffusion. 38 

In particular, the mean-squared displacement, 𝑀𝑆𝐷, often does not scale linearly with lag time Δ𝑡, but 39 

is instead better described by 𝑀𝑆𝐷~Δ𝑡𝛼  where 𝛼 < 1 or 𝛼 > 1 for subdiffusion or superdiffusion, 40 

respectively. The distributions of displacements (i.e., van Hove distributions) also often deviate from 41 

Gaussianity and can display exponential tails at large displacements5–8. The cytoskeleton–an active 42 

composite of filamentous proteins including actin, microtubules, and intermediate filaments, along 43 

with their associated motor proteins–plays a key role in these observed anomalous transport 44 

properties9–11. Such anomalous transport phenomena are not just observed in cytoskeleton, but are 45 

ubiquitous in numerous other active and crowded soft matter systems, making their characterization 46 

and understanding of broad interest. 47 

In steady-state, the thermal transport of particles through in vitro cytoskeletal systems exhibit varying 48 

degrees of subdiffusion and non-Gaussianity depending on the types and concentrations of filaments 49 

and crosslinking proteins5,6,12,13. For example, single-particle tracking (SPT) of particles in composites 50 

of entangled actin filaments and microtubules, has revealed increasing degrees of subdiffusion (𝛼 51 

decreasing from ~0.95 to ~0.58) as the molar ratio of semiflexible actin filaments to rigid microtubules 52 

increased6. The corresponding SPT van Hove distributions were reported to be non-Gaussian, 53 

displaying larger than expected probabilities for very small and large displacements, indicative of 54 

particles being caged in the filament mesh and hopping between cages.  55 

Differential dynamic microscopy (DDM), which uses Fourier-space analysis to measure the timescales 56 

over which particle density fluctuations decay, has also been used to measure transport and quantify 57 

anomalous characteristics over larger spatiotemporal scales compared to SPT5,14,15. DDM analysis of 58 

a time-series of images provides a characteristic decay time 𝜏 as a function of the wave vector 𝑞 which 59 

typically follows power-law scaling 𝜏(𝑞)~𝑞−𝛽 15,16, with 𝛽 relating to the anomalous scaling exponent 60 

𝛼 via 𝛽 = 2/𝛼. Specifically, 𝛽 = 2, > 2, < 2 and 1 correspond to diffusive, subdiffusive, 61 

superdiffusive, and ballistic motion (Figure 1F). DDM analysis of actin-microtubule composites 62 

corroborated the SPT results described above, with subdiffusive 𝛽 values tracking with 𝛼 values5,6. 63 

Similar SPT and DDM experiments demonstrated that crosslinking of actin and/or microtubules 64 

introduced bi-phasic transport with the subdiffusive scaling exponents dropping from 𝛼 ≈ 0.5 – 0.7 to 65 

𝛼 ≈ 0.25 – 0.4 (depending on crosslinker type) after Δ𝑡 ≈3 s, due to strong caging and reduced thermal 66 

fluctuations of filaments. At the same time, van Hove distributions were well fit to a sum of a Gaussian 67 

and exponential, and the non-Gaussianity parameter increased, indicating enhanced 68 

heterogeneity5,6,8,12,17.   69 

Numerous studies have also investigated transport in non-equilibrium cytoskeleton networks, in which 70 

activity is introduced via motor proteins, such as actin-associated myosin II and microtubule-associated 71 

kinesin18–20,10,21,2. These studies have shown evidence of vesicle movement strongly tracking with actin 72 

movement, microtubule-dependent flow, and the simultaneous presence of subdiffusive and ballistic 73 

transport dynamics. While the majority of these active matter studies have been on systems of either 74 

actin or microtubules, recent studies have used DDM and optical tweezers microrheology to 75 

characterize the dynamics of actin-microtubule composites pushed out-of-equilibrium by myosin II 76 

minifilaments straining actin filaments14,22,23. These studies showed that active actin-microtubule 77 

composites exhibited ballistic-like (𝛼 ≈ 2) contractile motion, rather than randomly-oriented diffusion 78 

or subdiffusion, with speeds that increased with increasing fraction of actin in the composites, due to 79 

increased composite flexibility14,23. Myosin-driven contractile motion and restructuring was also 80 

reported to increase viscoelastic moduli and relaxation timescales and induce clustering and increased 81 

heterogeneity of the initially uniform meshwork 22.  82 
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However, particle transport through active actin-microtubule composites–likely dictated by the 83 

complex combination of active processes, crowding, and interactions between mechanically distinct 84 

filaments – has remained largely unexplored. The majority of studies that have examined the combined 85 

effect of activity and crowding have been in vivo1,24–29, where a large number of conflating variables 86 

that are difficult to tune make teasing out the effect of each contribution and mechanism highly non-87 

trivial. 88 

Here, we take advantage of the tunability of in vitro reconstituted cytoskeleton composites to 89 

systematically investigate the coupled effects of non-equilibrium activity, crowding, and heterogeneity 90 

on particle transport. We combine fluorescence light sheet microscopy (fLSM) with single-particle 91 

tracking (SPT) and differential dynamic microscopy (DDM) to examine the anomalous transport of 92 

micron-sized particles within active composites of myosin II minifilaments, actin filaments, and 93 

microtubules with varying molar fractions of actin and tubulin (Fig 1A). We leverage the optical 94 

sectioning and low excitation power of fLSM (Fig 1B) to capture particle trajectories with a temporal 95 

resolution of 0.1s for durations up to 400 s (Fig 1C). Using both SPT and DDM provides transport 96 

characterization over a broad spatiotemporal range that spans ~10-1 -102 s and ~10-1 - 10 μm. From 97 

measured SPT trajectories, we compute ensemble-averaged 𝑀𝑆𝐷s and associated anomalous scaling 98 

exponents 𝛼 (Fig 1D), as well as corresponding distributions of particle displacements, i.e., van Hove 99 

distributions (Fig 1E), for varying lag times Δ𝑡. To expand the spatiotemporal range of our 100 

measurements and provide an independent measure of transport characteristics, we use DDM to 101 

analyze particle density fluctuations in Fourier space, and evaluate the power-law dependence of 102 

decorrelation times 𝜏 on wave vector 𝑞, i.e., 𝜏(𝑞)~𝑞−𝛽 (Figure 1F).  103 

 104 

 105 

Figure 1: Combining light sheet microscopy with real-space single-particle tracking (SPT) and reciprocal-space 106 
differential dynamic microscopy (DDM) to characterize particle transport in active cytoskeletal composites. (A) We 107 
create composites of co-entangled microtubules (blue) and actin filaments (purple) driven out-of-equilibrium by myosin II 108 
minifilaments (green). We track the motion of embedded 1 μm beads (red) in composites with varying molar fractions of 109 
actomyosin, which we denote by the fraction of actin comprising the combined molar concentration of actin and tubulin 110 
(5.8 μM): 𝜙𝐴 = 0, 0.25, 0.5, 0.75, 1. In all cases, the molar ratio of myosin to actin is fixed at 0.08. (B) Schematic of the 111 
light-sheet microscope we use for data collection, which provides the necessary optical sectioning to capture dynamics in 112 
dense three-dimensional samples. (C) Example frame from time-series of 1 μm beads embedded in a cytoskeleton 113 
composite, used to characterize particle transport in active crowded systems. (D) Cartoon of expected mean-squared 114 
displacements (𝑀𝑆𝐷) of embedded particles versus lag time 𝛥𝑡, which we compute via single-particle tracking (SPT) and 115 
fit to a power law 𝑀𝑆𝐷 ∝ Δ𝑡𝛼 to determine the extent to which particles exhibit normal Brownian diffusion (𝛼 = 1, blue), 116 
subdiffusion (𝛼 < 1, red), or superdiffusion (𝛼 > 1, green). (E) Cartoon van Hove distribution 𝐺 of particle displacements 117 
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𝛥𝑥 for a given lag time Δ𝑡 computed from SPT trajectories. The distribution shown is described by a sum of a Gaussian 118 

and exponential function 𝐺(𝛥𝑥, Δ𝑡) = 𝐴𝑒
−

𝛥𝑥2

2𝜎2 + 𝐵𝑒−
|𝛥𝑥|

𝜆 , as is often seen in crowded and confined systems and those that 119 
display heterogeneous transport.  (F) Cartoon of expected characteristic decorrelation times 𝜏(𝑞) as a function of wave 120 
number 𝑞, which we compute by fitting the image structure function computed from DDM analysis. We determine the 121 
scaling exponent 𝛽 from the power-law 𝜏(𝑞)~𝑞−𝛽 to determine if transport is diffusive (𝛽 = 2, blue), subdiffusive (𝛽 > 2, 122 
green), or ballistic (𝛽 = 1, red).  123 

 124 

2 MATERIALS AND METHODS 125 

Protein Preparation: We reconstitute rabbit skeletal actin (Cytoskeleton, Inc. AKL99) to 2 mg/ml in 126 

5 mM Tris–HCl (pH 8.0), 0.2 mM CaCl2, 0.2 mM ATP, 5% (w/v) sucrose, and 1% (w/v) dextran; 127 

porcine brain tubulin (Cytoskeleton T240) to 5 mg/ml in 80 mM PIPES (pH 6.9), 2 mM MgCl2, 0.5 128 

mM EGTA, and 1 mM GTP; and rabbit skeletal myosin II (Cytoskeleton MY02) to 10 mg/ml in 25 129 

mM PIPES (pH 7.0), 1.25 M KCl, 2.5% sucrose, 0.5% dextran, and 1 mM DTT. We flash freeze all 130 

proteins in experimental-sized aliquots and store at -80˚C. We reconstitute the UV-sensitive myosin II 131 

inhibitor, (-)-blebbistatin (Sigma B0560) in anhydrous DMSO and store at -20˚C for up to 6 months. 132 

Immediately prior to experiments, we remove enzymatically dead myosin II from aliquots using 133 

centrifugation clarification, as previously described14,22.  134 

Composite Network Assembly: We prepare actin-microtubule composites by mixing actin 135 

monomers, tubulin dimers and a trace amount of 1 µm diameter carboxylated microspheres 136 

(Polysciences) in PEM-100 (100 mM PIPES, 2 mM MgCl2, and 2 mM EGTA), 0.1% Tween-20, 1 mM 137 

ATP, and 1 mM GTP, and incubating at 37°C for 30 minutes to allow for polymerization of actin 138 

filaments and microtubules. We coat microspheres (beads) with AlexaFluor594 BSA (Invitrogen) to 139 

visualize the particles and prevent nonspecific interactions with the composite30,31. We fix the 140 

combined molar concentration of actin and tubulin to 𝑐 = 𝑐𝐴 + 𝑐𝑇 = 5.8 µM and the ratio of myosin 141 

to actin to 𝑅 = 0.08, and vary the molar fraction of actin in the composite (𝑐𝐴/𝑐 = 𝜙𝐴) from 𝜙𝐴 = 0 142 

to 1 in 0.25 increments (Fig 1A). To stabilize actin filaments and microtubules, we add an equimolar 143 

ratio of phalloidin to actin and a saturating concentration of Taxol (5 µM)32,33. We add an oxygen 144 

scavenging system (45 μg/ml glucose, 0.005% β-mercaptoethanol, 43 μg/ml glucose oxidase, and 7 145 

μg/ml catalase) to inhibit photobleaching, and add 50 µM blebbistatin to control actomyosin activity.  146 

Sample Preparation and Imaging: We pipet prepared composites into capillary tubing with an inner 147 

diameter of 800 μm, then seal with epoxy. Microspheres are imaged using a custom-built fLSM with 148 

a 10× 0.25NA Nikon Plan N excitation objective, a 20× 1.0 NA Olympus XLUMPlanFLN detection 149 

objective, and an Andor Zyla 4.2 CMOS camera5. A 561 nm laser is formed into a sheet to image the 150 

microspheres, while a collimated 405 nm laser is used to deactivate the blebbistatin, thereby activating 151 

actomyosin activity. Each acquisition location is at least 1 mm away from the previous one to ensure 152 

that there is no myosin activity when the image acquisition begins. For SPT, we collect ≥15 time-153 

series consisting of  ≥2000 frames, each with a 1000×300 pixel (194×58 µm2) field of view (FOV), 154 

at 10 frames per second (fps). For DDM, we collect ≥3 time-series of  ≥4000 frames, each with a 155 

768×266 pixel (149×52 µm2) FOV, at 10 fps.  156 

Single-Particle Tracking (SPT): We use the Python package Trackpy34 to track particle trajectories 157 

and measure the 𝑥- and 𝑦- displacements (∆𝑥, ∆𝑦) of the beads as a function of lag times ∆𝑡 = 0.1 s to 158 

50 s. From the particle displacements, we use a custom-written Python script to calculate the time-159 

averaged mean-squared displacement of the ensemble, 𝑀𝑆𝐷 =  1

2
(Δ𝑥2 + Δ𝑦2), from which we 160 

compute an anomalous scaling exponent, 𝛼, via 𝑀𝑆𝐷~Δ𝑡𝛼 . Additionally, we compute van Hove 161 

probability distributions of particle displacements, 𝐺(𝛥𝑥, 𝛥𝑡) (Fig 1E), for 10 different lag times that 162 

span ∆𝑡 = 0.1 s to 15 s. Following previous works5–7, we fit each distribution for a given lag time to a 163 
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sum of a Gaussian and exponential function: 𝐺(𝛥𝑥) = 𝐴𝑒
−

𝛥𝑥2

2𝜎2 + 𝐵𝑒−
|𝛥𝑥|

𝜆 , where 𝐴 is the amplitude of 164 

the Gaussian term, 𝜎2 is the variance, 𝐵 is the amplitude of the exponential term, and 𝜆 is the 165 

exponential decay constant. 166 

 167 

Differential Dynamic Microscopy (DDM): We obtain the image structure function 𝐷(𝑞, 𝛥𝑡), where 168 

𝑞 is the magnitude of the wave vector, following our previously described methods12,35. We fit each 169 

image structure function, or DDM matrix, to the following function:  170 

𝐷(𝑞, Δ𝑡) = 𝐴(𝑞)[1 − exp[−(Δ𝑡 𝜏(𝑞)⁄ )𝛾(𝑞)]] + 𝐵(𝑞), 171 

where 𝜏(𝑞) is the density fluctuation decay time, 𝛾 is the stretching exponent, 𝐴 is the amplitude, and 172 

𝐵 is the background5,6. 𝜏(𝑞) is a measure of the timescale over which particle density fluctuations 173 

decorrelate over a given lengthscale ℓ = 2𝜋 𝑞⁄ . By fitting 𝜏(𝑞) to a power-law (i.e., 𝜏(𝑞)~𝑞−𝛽) we 174 

determine the dominant mode of transport, with 𝛽 = 2, >2, and <2, indicating normal Brownian 175 

diffusion, subdiffusion and superdiffusion, respectively. We also examine the stretching exponent 176 

𝛾 that we extract from fitting 𝐷(𝑞, ∆𝑡) as another transport metric, with 𝛾 < 1 indicative of confined 177 

and heterogeneous dynamics5,36–38 and 𝛾 > 1 indicative of active ballistic-like motion14,39–41. 178 

 179 

3 RESULTS AND DISCUSSION 180 

To elucidate the combined effects of non-equilibrium activity and steric hindrance on particle transport 181 

in crowded active matter, we leverage the tunability of reconstituted cytoskeleton composites42 and the 182 

power of coupling real-space (SPT) and reciprocal space (DDM) transport analysis, to robustly 183 

characterize particle transport as a function of active substrate content. Specifically, we tune the 184 

composition of actomyosin-microtubule composites to display a wide range of transport characteristics 185 

by varying the molar fraction of actomyosin, which we denote by the molar actin fraction 𝜙𝐴, keeping 186 

the myosin molarity fixed at 8% of 𝜙𝐴 (Fig 1A, Methods).  187 

In Figure 2A, we plot the ensemble-averaged 𝑀𝑆𝐷 as a function of lag time 𝛥𝑡 for particles diffusing 188 

in composites of varying 𝜙𝐴. While 𝜙𝐴 = 0 (no actomyosin) exhibits subdiffusive transport across the 189 

entire 𝛥𝑡 range, with 𝛼 ≃ 0.67, all 𝜙𝐴 > 0 composites display biphasic transport which is subdiffusive 190 

(𝛼 < 1) at short 𝛥𝑡 and superdiffusive (𝛼 > 1) at long 𝛥𝑡. To more clearly show the transition from 191 

subdiffusion to superdiffusion, we plot 𝑀𝑆𝐷/𝛥𝑡 versus 𝛥𝑡 (Fig 2B), which is a horizontal line for 192 

normal Brownian diffusion with the 𝛥𝑡-independent magnitude proportional to the diffusion 193 

coefficient. Positive and negative slopes correspond to superdiffusion and subdiffusion, respectively, 194 

with 𝑀𝑆𝐷/𝛥𝑡 ~ 𝛥𝑡1 indicating ballistic motion. Corresponding 𝑀𝑆𝐷/𝛥𝑡 magnitudes are proportional 195 

to 𝛥𝑡-dependent transport coefficients. While all 𝜙𝐴 > 0 composites exhibit similar general trends with 196 

𝛥𝑡, the lag time at which the dynamics transition from subdiffusive to superdiffusive, along with the 197 

degree to which 𝛼 deviates from 𝛼 = 1 in each regime, depend non-trivially on 𝜙𝐴. Moreover, as 198 

clearly seen in Fig 2C, while 𝛼 values for active composites (𝜙𝐴 > 0) transition to superdiffusive at 199 

longer lag times, the magnitudes of the transport coefficients remain nearly an order of magnitude 200 

smaller than that of the inactive network (𝜙𝐴 = 0) at any given 𝛥𝑡. 201 

To evaluate the 𝜙𝐴-dependence of the biphasic behavior, we first compute the lag times at which each 202 

composite transitions out of subdiffusive scaling, denoted as 𝛥𝑡1, and transitions into superdiffusive 203 

scaling, denoted as 𝛥𝑡2. Note that for some composites there is an extended plateau regime between 204 

the two timescales such that 𝛥𝑡1 and 𝛥𝑡2 are substantially separated. To quantify 𝛥𝑡1, we compute the 205 
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largest lag time for which linear regression of log 𝑀𝑆𝐷 versus log 𝛥𝑡 over the range 𝛥𝑡 ∈ [0.1 s, 𝛥𝑡1] 206 

 207 

Figure 2: Actomyosin activity in actin-microtubule composites endows biphasic particle transport marked by 208 
pronounced subdiffusion at short lag times and superdiffusion at long lag times. (A) Mean-squared displacements 209 
(𝑀𝑆𝐷) plotted versus lag time Δ𝑡 for myosin-driven actin-microtubule composites with molar actin fractions of 𝜙𝐴 = 0 210 
(blue), 0.25 (gold), 0.50 (green), 0.75 (red), and 1 (purple). Fits of the data to 𝑀𝑆𝐷~𝛥𝑡𝛼, shown in (B), determine the 211 
anomalous scaling exponent 𝛼 that describes the dynamics (see Fig 1). (B) Mean-squared displacements scaled by lag time 212 
(𝑀𝑆𝐷/𝛥𝑡) plotted versus lag time Δ𝑡 delineate regions of subdiffusion (negative slopes) and superdiffusion (positive 213 
slopes). Black lines indicate fits to 𝑀𝑆𝐷~𝛥𝑡𝛼 over the short (Δ𝑡 < 𝛥𝑡1) and long (Δ𝑡 > 𝛥𝑡2) time regimes where each 214 
curve is well-fit by a single power law. (C) Data shown in B plotted versus actin fraction 𝜙𝐴 , with all 𝑀𝑆𝐷/𝛥𝑡 values for 215 
each 𝜙𝐴 plotted along the same vertical, with the gradient indicating increasing Δ𝑡 from light to dark. The magnitude of 216 
each data point is proportional to a transport rate, with higher values indicating faster motion. (D) Lag times at which each 217 
composite transitions out of subdiffusive transport (Δ𝑡1) and transitions into superdiffusivity (Δ𝑡2). (E) Anomalous scaling 218 
exponent 𝛼 derived from fits shown in (B) for Δ𝑡 < 𝛥𝑡1 (𝛼1) and Δ𝑡 > 𝛥𝑡2 (𝛼2). Dashed line at α = 1 represents scaling 219 
indicative of normal Brownian diffusion. Values above and below the line indicate superdiffusion and subdiffusion, 220 
respectively. For both (C) and (D) error bars indicate standard error of the mean. Color-coding in all subfigures matches 221 
the legend in A.  222 
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yields 𝑅2 > 0.99. Likewise, we define 𝛥𝑡2 as the shortest 𝛥𝑡 for which the same linear regression yields 223 

𝑅2 > 0.99 for the range 𝛥𝑡 ∈ [𝛥𝑡2, 50 s] (Fig 2C). We find that both timescales generally decrease 224 

with increasing 𝜙𝐴 as does the separation between the timescales (𝛥𝑡2 − 𝛥𝑡1), suggesting that the rate 225 

of particle motion mediated by directed motor-driven network dynamics increases with increasing 𝜙𝐴. 226 

In other words, the time it takes for the active dynamics to be ‘felt’ by the particles, driving them out 227 

of their confined subdiffusive motion, decreases with increasing 𝜙𝐴.  228 

To understand this phenomenon, we consider that active ballistic transport would only be detectable at 229 

timescales in which the network motion can move a bead more than the minimum resolvable 230 

displacement: 𝛥𝑡𝑎 ≈ (100 nm)/(𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑝𝑒𝑒𝑑). Using reported speed values of 𝑣 ≈ 2.2 − 85 231 

nm/s for similar myosin-driven composites 23, we compute 𝛥𝑡𝑎 ≈ (100 nm)/𝑣 ≈ 1 − 50  s, aligning 232 

with our 𝛥𝑡1 and 𝛥𝑡2 values, and thus corroborating that the deviation from sub-diffusion and transition 233 

to superdiffusion is due to myosin-driven ballistic motion. Moreover, the previously reported speeds 234 

generally decreased with decreasing 𝜙𝐴, such that 𝛥𝑡𝑎 should increase to values that are beyond our 235 

experimental range for 𝜙𝐴 < 0.75, just as we see in Fig 2B in which 𝜙𝐴 < 0.75 composites do not 236 

display a clear uptick to superdiffusive dynamics. 237 

To determine the extent to which motor-driven transport and confinement contribute to the particle 238 

dynamics, we next evaluate the anomalous scaling exponent in the short and long 𝛥𝑡 regimes by 239 

performing power-law fits to the 𝑀𝑆𝐷s in each regime (Figure 2D). Surprisingly, the scaling exponents 240 

in the 𝛥𝑡 < 𝛥𝑡1 regime for all active composites (𝜙𝐴 > 0) are markedly smaller (more subdiffusive) 241 

than the inactive composite (𝜙𝐴 = 0), with 𝜙𝐴-dependent values of 𝛼 ≃ 0.29 − 0.39 compared to 𝛼 ≃242 

0.67 for the 𝜙𝐴 = 0 network. To understand the decrease in 𝛼 with increasing 𝜙𝐴 for the active 243 

composites, as well as the unexpected ~2-fold reduction in 𝛼 for active composites, we turn to previous 244 

studies5,6, that reported that, in the absence of any crosslinking, steady-state actin-microtubule 245 

composites exhibit subdiffusion with scaling exponents that decrease from 𝛼 ≈ 0.82 to 𝛼 ≈ 0.56 as  246 

𝜙𝐴 increases from 0 to 1. This monotonic ~30% decrease with increasing 𝜙𝐴, similar to the ~25% 247 

decrease we observe with increasing 𝜙𝐴, was suggested to arise from increased composite mobility 248 

that entrains the bead motion as rigid microtubules are replaced with semiflexible actin filaments6,12. 249 

This mobility is paired with a decreasing mesh size as 𝜙𝐴 increases, which, in turn, increases composite 250 

viscoelasticity and particle confinement, both of which contribute to decreasing 𝛼6.  251 

To understand the lower 𝛼 values we measure, compared to those previously reported for steady-state 252 

composites, we look to previous studies on 𝜙𝐴 = 0.5 actin-microtubule composites with varying types 253 

of static crosslinking. In these studies, subdiffusion is much more extreme (𝛼 ≈ 0.33) when actin 254 

filaments are crosslinked to each other versus when there is no crosslinking (𝛼 ≈ 0.64) 5. Taken 255 

together, our results suggest that the ~2-fold reduction in 𝛼 between 𝜙𝐴 = 0 and 𝜙𝐴 > 0 composites 256 

likely arises from myosin motors acting as static crosslinkers on timescales shorter than the timescale 257 

over which they can actively translate the composite. As described above, myosin acting as a static 258 

crosslinker for 𝛥𝑡 < 𝛥𝑡1 is consistent with previously reported speeds for myosin-driven composites5,6, 259 

as well as reported actomyosin turnover rates24. The weak decrease in 𝛼 with increasing 𝜙𝐴 likely 260 

arises from the decreasing mesh size and increasing mobility of the network as 𝜙𝐴 increases43, as 261 

described above. 262 

Finally, examining the long-time regime, 𝛥𝑡 > 𝛥𝑡2, our results show that higher actomyosin fractions 263 

correspond to higher 𝛼 values, increasing ~2-fold from ~0.73 for 𝜙𝐴 = 0.25 to ~1.47 for 𝜙𝐴 = 1. 264 

Moreover, only 𝜙𝐴 > 0.5 composites exhibit an uptick to superdiffusive dynamics (𝛼 > 1) over our 265 

measurement window, suggesting that the extent to which myosin-driven dynamics contribute to 266 

particle transport scales with the fraction of active substrate. Moreover, the timescale at which its 267 
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contribution dominates particle transport is determined by the network speed, which increases with 268 

increasing 𝜙𝐴 as described above23. 269 

 270 

Figure 3: Asymmetric non-Gaussian van Hove distributions reveal a combination of heterogeneous subdiffusion and 271 
advective transport of particles in active composites. (A) van Hove distributions 𝐺(𝛥𝑥, 𝛥𝑡) of particle displacements 272 
𝛥𝑥, measured via SPT, for lag times Δ𝑡 = 0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 15 𝑠 denoted by the color gradient going from light 273 
to dark for increasing Δ𝑡. Each panel corresponds to a different composite demarked by their 𝜙𝐴 value with color-coding 274 
as in Fig 2. (B) The square of the full width at half-maximum (𝐹𝑊𝐻𝑀)2 versus lag time Δ𝑡 for each composite shown in 275 
A. Solid lines are fits to (𝐹𝑊𝐻𝑀)2~Δ𝑡𝛼. For 𝜙𝐴 > 0 composites we fit short (Δ𝑡 ≤ 1 s) and long (Δ𝑡 ≥ 1 s) lag time 276 
regimes separately. (C) The scaling exponents 𝛼 as functions of 𝜙𝐴 determined from the fits shown in B, where 𝛼1(stars) 277 
and 𝛼2 (triangles) correspond to scalings for the short and long Δ𝑡 regimes, respectively. The dashed horizontal line denotes 278 
scaling for normal Brownian diffusion. (D) A sample 𝐺(𝛥𝑥, 𝛥𝑡) distribution (𝜙𝐴 = 0.75 at Δ𝑡 =  10𝑠) showing the 279 
asymmetry about the mode value 𝛥𝑥𝑝𝑒𝑎𝑘 . We divide each distribution into a leading edge (dark grey, displacements of the 280 
same sign as 𝛥𝑥𝑝𝑒𝑎𝑘  and greater in magnitude) and the trailing edge (light grey, the remaining part of the distribution). To 281 
clearly demonstrate the asymmetry, we mirror each edge about 𝛥𝑥𝑝𝑒𝑎𝑘  using dashed lines. (E) The fractional difference of 282 
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the half-width at half maximum 𝐻𝑊𝐻𝑀 of the trailing (-) edge from the leading (+) edge, (𝛥∓𝐻𝑊 = 𝐻𝑊𝐻𝑀− −283 
𝐻𝑊𝐻𝑀+)/ 𝐻𝑊𝐻𝑀+), for each 𝜙𝐴 and Δ𝑡. Color coding and gradient indicate 𝜙𝐴 and 𝛥𝑡, respectively, as in A. Horizontal 284 
bars through each distribution denote the mean.  285 

To shed further light on the mechanisms underlying the anomalous transport shown in Fig 2, we 286 

compute van Hove distributions 𝐺(𝛥𝑥, 𝛥𝑡) for two decades of lag times (𝛥𝑡 =  0.1 − 15 𝑠) (Fig 3A). 287 

From the distributions, we first compute anomalous scaling exponents 𝛼, to corroborate our 𝑀𝑆𝐷 288 

analysis, by recalling that the full width at half maximum, 𝐹𝑊𝐻𝑀, for a Gaussian distribution scales 289 

with the standard deviation 𝜎 as 𝐹𝑊𝐻𝑀 =  2√2𝑙𝑛2 𝜎. Because 𝜎2~∆𝑥2, by definition, and 290 

𝑀𝑆𝐷~∆𝑥2~∆𝑡𝛼, we determine 𝛼 by computing 𝐹𝑊𝐻𝑀 for each distribution and fitting the 𝛥𝑡-291 

dependent values to the power-law 𝐹𝑊𝐻𝑀(𝛥𝑡)~(𝛥𝑡)𝛼/2 (Fig 3B)7,44. As shown in Figs 3B,C, 292 

𝐹𝑊𝐻𝑀(𝛥𝑡) for 𝜙𝐴 = 0 fits well to a single power-law, with 𝛼 ≃ 0.7, nearly indistinguishable from 293 

that computed from the 𝑀𝑆𝐷, across the entire 𝛥𝑡 range. Conversely, informed by the biphasic 𝑀𝑆𝐷 294 

scaling we observe for active composites (Fig 2C), we fit 𝐹𝑊𝐻𝑀(𝛥𝑡) for each active composite to 295 

separate power-law functions over short (0.15 𝑠 < 𝛥𝑡 < 2 𝑠) and long (2 𝑠 < 𝛥𝑡 < 15 𝑠) lag times, 296 

relative to the average 𝛥𝑡1 we determine from 𝑀𝑆𝐷 fits. Further, similar to the 𝜙𝐴-dependence of 297 

𝛼1 and 𝛼2 values determined from 𝑀𝑆𝐷s, the scaling exponents determined from 𝐹𝑊𝐻𝑀, increase 298 

with increasing 𝜙𝐴, with 𝛼1 (for 𝛥𝑡 < 2 𝑠) increasing from ~0.62 to ~0.85, similar to values reported 299 

for steady-state actin-microtubule composites6, and 𝛼2 (for 𝛥𝑡 > 2 𝑠) spanning from subdiffusive to 300 

superdiffusive. Higher 𝛼1 values compared to those determined via 𝑀𝑆𝐷s are likely due to the lower 301 

𝛥𝑡 resolution in 𝐹𝑊𝐻𝑀 fitting and the single 𝛥𝑡 value used to divide the two regimes.  302 

While our analysis described above assumes Gaussian distributions, Fig 3A shows that nearly all 303 

distributions have distinct non-Gaussian features similar to those reported for steady-state actin-304 

microtubule composites5,7. In particular, 𝐺(𝛥𝑥, 𝛥𝑡) distributions for the inactive network (𝜙𝐴 = 0) 305 

exhibit pronounced exponential tails at large displacements. This non-Gaussianity, seen in other 306 

crowded and confined soft matter systems7, is a signature of heterogeneous transport and can also 307 

indicate caging and hopping between cages.  308 

The distributions for active composites are even more complex, with asymmetries and peaks at Δ𝑥 ≠309 

0 (Fig 3A), not readily predictable from our 𝑀𝑆𝐷 analysis. The first interesting feature we investigate 310 

is the non-zero mode value 𝛥𝑥𝑝𝑒𝑎𝑘 that increases in magnitude with increasing 𝛥𝑡, indicating directed 311 

ballistic-like motion, thereby corroborating our superdiffusive scaling exponents. Perhaps less intuitive 312 

is the robust asymmetry between the ‘leading (+) edge’ and ‘trailing (-) edge’ of each distribution, 313 

which we define by splitting each distribution about its peak, 𝛥𝑥𝑝𝑒𝑎𝑘. Specifically, the leading edge is 314 

the part of the distribution that has displacements of the same sign as 𝛥𝑥𝑝𝑒𝑎𝑘 and greater in magnitude, 315 

while the remaining part is the trailing edge (Figure 3D). We observe that for most distributions the 316 

leading edge appears more Gaussian-like while the trailing edge exhibits pronounced large-317 

displacement ‘tails’. To broadly quantify this asymmetry, we evaluate the half-width at half-maximum 318 

(𝐻𝑊𝐻𝑀) for the leading (+) and trailing (-) edges of each distribution and compute the percentage 319 

increase in 𝐻𝑊𝐻𝑀 for the trailing versus leading edge: 𝛥∓𝐻𝑊 = (𝐻𝑊𝐻𝑀− − 𝐻𝑊𝐻𝑀+)/ 𝐻𝑊𝐻𝑀+ 320 

(Fig 3E). We find that 𝛥∓𝐻𝑊 is positive for all active composites and increases with increasing 𝜙𝐴, 321 

demonstrating that the asymmetry is a direct result of active composite dynamics which contribute 322 

more to the transport as the actomyosin content increases. 323 

To more quantitatively characterize the rich transport phenomena revealed in Fig 3, we first fit each 324 

𝐺(𝛥𝑥, 𝛥𝑡) to a sum of a Gaussian and an exponential (see Methods), as done for steady-state 325 

cytoskeleton composites5–7. Fig 4A compares the distributions and their fits for all composite 326 

formulations at 𝛥𝑡 = 0.3 𝑠 (top panel) and 10 𝑠 (bottom panel), and Fig 4B displays zoom-ins of the 327 

corresponding leading and trailing edges. As shown, while this sum describes the inactive network 328 

distributions reasonably well, it overestimates leading edge displacements and underestimates trailing 329 



  Running Title 

 
10 

This is a provisional file, not the final typeset article 

edge displacements of the active networks (Fig 4B). This asymmetry suggests that the leading edges 330 

are more Gaussian-like and the trailing edges are more exponential-like. To account for this 331 

asymmetry, we fit each half of each distribution separately to a one-sided sum of a Gaussian and 332 

exponential and evaluate the relative contributions from the Gaussian and exponential terms. As 333 

detailed in the Methods, we denote the amplitude of the Gaussian term and exponential term as 𝐴 and 334 

𝐵, respectively, such that their relative contributions are 𝑎 = 𝐴/(𝐴 + 𝐵) and 𝑏 = 𝐵/(𝐴 + 𝐵). 335 

As shown in Fig 4C,D, in which 𝑎 and 𝑏 are normalized by the corresponding 𝜙𝐴 = 0 value and plotted 336 

for each 𝜙𝐴, active composites are more Gaussian-like (𝑎/𝑎(𝜙𝐴 = 0) > 1) and less exponential 337 

(𝑏/𝑏(𝜙𝐴 = 0) < 1) than the inactive system for both leading and trailing edges, suggesting that the 338 

active processes that induce contraction and flow of the composites, likewise reduce transport 339 

heterogeneity and intermittent hopping, possibly by promoting mixing and advection. Consistent with 340 

this interpretation is the observation that the Gaussian contribution 𝑎 increases with increasing 𝜙𝐴 and 341 

is consistently larger for the leading edge, which consists of displacements oriented with the direction 342 

of the myosin-driven composite motion (Fig 4D).  343 

 344 

Figure 4: Actomyosin activity reduces heterogeneous non-Gaussian diffusivity and endows Gaussian-like advective 345 
transport. (A) Comparing van Hove distributions of composites with different 𝜙𝐴 (see legend) at lag times of 𝛥𝑡 = 0.3 𝑠 346 
(top) and 𝛥𝑡 = 10 𝑠 (bottom). Color-coded solid lines are fits of each distribution to the sum of a Gaussian and an 347 

exponential: 𝐺(𝛥𝑥) = 𝐴𝑒
−

𝛥𝑥2

2𝜎2 + 𝐵𝑒−
|𝛥𝑥|

𝜆 . Black rectangles indicate regions of the distributions that are shown zoomed-in 348 
in (B). (C) Fractional amplitude of the Gaussian term in each fit, 𝑎 = 𝐴/(𝐴 + 𝐵), normalized by the corresponding value 349 
for 𝜙𝐴 = 0. Fits are performed separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution. 350 
Data shown are the averages and standard deviations across all lag times for each 𝜙𝐴. (D) Fractional amplitude of the 351 
exponential term in each fit, 𝑏 = 𝐴/(𝐴 + 𝐵), normalized by the corresponding value for 𝜙𝐴 = 0. Fits are performed 352 
separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution. Data shown are the averages and 353 
standard deviations across all lag times for each 𝜙𝐴. 354 
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 355 

Conversely, the increased contribution from the exponential term for the trailing edge, implies that 356 

displacements comprising these exponential tails are dominated by heterogeneous transport modes 357 

such as hopping between heterogeneously distributed cages 6,7. To better understand this effect, we 358 

recall that particle displacements comprising the trailing edge are lagging behind the bulk translational 359 

motion of the composite. As the composite moves and restructures, a fraction of the particles remain 360 

caged in the moving composite and thus move along with it, corresponding to displacements 361 

comprising the leading edge, whereas a fraction of the particles are squeezed out or hop out of 362 

composite cages and into new ‘trailing’ cages. It is also likely that as the composite contracts and forms 363 

more heterogeneous structures and larger open voids that characteristic ‘hopping’ displacements, as 364 

well as displacements within cages, may increase and become more heterogeneous, thereby enhancing 365 

exponential tails.  366 

To expand the range of length and time scales over which we probe the non-equilibrium transport, and 367 

provide an independent measure of the dynamics, we complement our real-space SPT analysis with 368 

Fourier-space DDM analysis, as described in the Methods and previously 5,6,14. Briefly, we compute 369 

the radially-averaged image structure function 𝐷(𝑞, 𝛥𝑡) of the Fourier transform of image differences 370 

as a function of wavevector 𝑞 and lag time 𝛥𝑡. From fits of 𝐷(𝑞, 𝛥𝑡) to a function with a stretched 371 

exponential term (see Methods, Fig 5A), we determine the 𝑞-dependent characteristic decay time 𝜏(𝑞) 372 

and stretching exponent 𝛾 for each composite (Fig 5), which characterize the dynamics. 𝜏(𝑞) typically 373 

exhibits power-law scaling 𝜏(𝑞)~𝑞−𝛽 where 𝛽 is related to the anomalous scaling exponent 𝛼 via 𝛽 =374 

2/𝛼, such that 𝛽 > 2, 𝛽 = 2, 𝛽 < 2 and 𝛽 = 1 correspond to, respectively, subdiffusive, normal 375 

diffusive, superdiffusive, and ballistic motion. Similarly, stretching exponents 𝛾 are typically 1 for 376 

normal Brownian motion, while 𝛾 < 1 is a signature of crowded and confined systems15,40 and 𝛾 > 1 377 

indicates active transport15,45. 378 

As shown in Fig 5B, 𝜏(𝑞) curves for all active composites follow scaling indicative of superdiffusive 379 

or ballistic transport while the 𝜙𝐴 = 0 system more closely follows diffusive scaling. Further, 𝜏(𝑞) 380 

for 𝜙𝐴 = 0 is an order of magnitude lower than for all active composites, indicating that particle 381 

transport is faster for the inactive composite, in line with our results shown in Fig 2C, despite the 382 

displacements exhibiting diffusive rather than ballistic-like motion. This effect can be more clearly 383 

seen in Fig 5D, which displays the 𝑞-dependent distribution of 𝜏(𝑞)−1 values, a measure of dynamic 384 

decorrelation rates, for each 𝜙𝐴. As shown, 𝜏−1 values for 𝜙𝐴 = 0 are an order of magnitude larger 385 

than those for 𝜙𝐴 > 0 composites. Fig 5D also shows that decorrelation rates in active composites 386 

increase modestly with increasing 𝜙𝐴 suggesting that transport is dictated primarily by active 387 

restructuring and flow, rather than crowding and confinement, which increases as actomyosin content 388 

increases. The lack of subdiffusive scaling or crossovers from sub- to super-diffusive dynamics for 389 

active composites (as our SPT analysis shows) can be understood as arising from the larger length 390 

and time scales DDM probes. Namely, DDM spans lengthscales of 2𝜋 𝑞⁄ ≃ 1.6 − 6.28 μm and 391 

timescales of 𝜏 ≃ 20 − 100 𝑠 (Fig 5A) compared to the ~0.1 − 1.5 μm and ~0.1 − 50 𝑠 length and 392 

timescales accessible to SPT. 393 

To better visualize differences in 𝜏(𝑞) scaling between composites we plot 𝜏(𝑞) × 𝑞2 normalized by 394 

𝜏(𝑞𝑚𝑎𝑥) × (𝑞𝑚𝑎𝑥)2 (Fig 5C). Diffusive transport manifests as a horizontal line, as we see for 𝜙𝐴 =395 

0, while ballistic-like motion follows a power-law scaling of 1, which roughly describes the 𝜙𝐴 > 0 396 

curves. To quantify the DDM scaling exponent 𝛽 that describes the dynamics, we fit each 𝜏(𝑞) curve 397 

to a power-law (i.e., 𝜏(𝑞)~𝑞−𝛽) (Fig 5C,E). For the active composites, we restrict our fitting range to 398 

𝑞 > 1.5 μm−1, in which a single power-law is observed. For smaller 𝑞 values (larger length and time 399 

scales), we note that 𝜙𝐴 = 0.25 and 1 composites exhibit roughly ballistic motion whereas 𝜙𝐴 = 0.5 400 
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and 0.75 exhibit roughly diffusive dynamics (Fig 5B)15,16. However, we restrict further quantification 401 

and interpretation of this small-𝑞 regime as it comprises relatively few data points and low statistics. 402 

 403 

Figure 5: DDM analysis reveals ballistic-like transport of particles entrained in active composites at mesoscopic 404 
spatiotemporal scales. (A) Sample image structure functions 𝐷(𝑞, 𝛥𝑡) for composites with actin fractions 𝜙𝐴 indicated in 405 
the legend. All curves shown are evaluated at 𝑞 =  3.92 μm−1, and solid black lines are fits to the data to determine 406 
corresponding 𝑞-dependent decay times 𝜏(𝑞) and stretching exponents 𝛾, as described in Methods. (B) Decay times 𝜏(𝑞) 407 
for each composite shown in (A). Dashed and dotted black lines show scaling 𝜏(𝑞)~𝑞−𝛽 for ballistic (𝛽 = 1) and diffusive 408 
(𝛽 = 2) transport. (C) 𝜏(𝑞) × 𝑞2, normalized by 𝜏(𝑞𝑚𝑎𝑥) × (𝑞𝑚𝑎𝑥)2, for the data shown in (B). Horizontal dotted line and 409 
unity-sloped dashed line correspond to scaling indicative of normal diffusion (𝛼 = 2/𝛽 = 1) and ballistic motion (𝛼 =410 
2/𝛽 = 2). Color-coded solid lines correspond to power-law fits, with the corresponding exponents 𝛽  and 𝛼 shown in (E) 411 
and (F). For 𝜙𝐴 > 0 composites, the fitting range is truncated to 𝑞 > 1.5 μm−1 where a single power-law is observed. (D) 412 
Scatter plot of 1/𝜏(𝑞), a measure of the transport rate, for all measured 𝑞 values for each 𝜙𝐴. Color coding and gradient 413 
indicate 𝜙𝐴 and 𝑞, respectively, with light to dark shades of each color indicating increasing 𝑞 values. (E) DDM scaling 414 
exponents 𝛽 determined from fits shown in (C). (F) Anomalous scaling exponents 𝛼2 determined from 𝜏(𝑞) fits (filled 415 
circles, 𝛼𝐷𝐷𝑀 = 2/𝛽), as well as the large-Δ𝑡 regime fits of the 𝑀𝑆𝐷s (open triangles, 𝛼𝑀𝑆𝐷,2) and van Hove distributions 416 
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(open triangles, 𝛼𝑣𝐻,2) measured via SPT (see Figs 2,3). Error bars indicate 95% confidence intervals of fits. (G) Stretching 417 
exponent 𝛾(𝑞), averaged over all 𝑞 values, for each composite 𝜙𝐴, with error bars indicating standard error.  418 

Over the range that we fit our data, we find that 𝛽 ≃ 1.92 for the inactive composite, indicative of 419 

diffusive dynamics, whereas active composites exhibit near-ballistic values of 𝛽 ≃ 1.03 − 1.26. To 420 

directly compare 𝛽 values to the anomalous scaling exponents 𝛼 that we determine from SPT (Figs 2E, 421 

3B), we plot 𝛼𝐷𝐷𝑀 = 2/𝛽 (Fig 5C,F) with the 𝛼 values we determined from the 𝑀𝑆𝐷s and van Hove 422 

distributions in the large 𝛥𝑡 regime, which we denote as 𝛼𝑀𝑆𝐷,2 and 𝛼𝑣𝐻,2. Scaling exponents 423 

determined from all three methods follow similar trends with 𝜙𝐴 with active composites displaying 424 

larger 𝛼 values than the 𝜙𝐴 = 0 system. Generally, for each 𝜙𝐴, we find that 𝛼𝐷𝐷𝑀 > 𝛼𝑣𝐻,2 > 𝛼𝑀𝑆𝐷,2, 425 

which arises from the different timescales probed by each method. Namely, all systems tend to 426 

subdiffusion at short lag times (measured most accurately via 𝑀𝑆𝐷s) and free diffusion or ballistic 427 

motion at large lag times (accessed only by DDM), so scaling exponents measured at short lag times 428 

should generally be lower than those measured over larger lag times. 429 

Finally, to shed light on the competing contributions from motor-driven dynamics versus confinement 430 

and crowding to transport at larger spatiotemporal scales, we evaluate the dependence of the stretching 431 

exponent 𝛾 on 𝜙𝐴. Fig 5G shows that transport in the inactive network is described by 𝛾 ≃ 0.79, 432 

indicating that confinement dominates over active dynamics (i.e., 𝛾 < 1), whereas all 𝜙𝐴 > 0 433 

composites exhibit 𝛾 > 1, indicative of transport governed largely by active dynamics. Moreover, 𝛾 434 

generally increases as the actomyosin fraction increases, corroborating the dominant role that active 435 

composite dynamics plays in the rich transport phenomena we reveal15.  436 

 437 

4 CONCLUSION 438 

Here, we couple real-space SPT and Fourier-space DDM to characterize particle transport across three 439 

decades in time (~10-1 - 102 s) and two decades in space (~10-1 - 10 μm) in biomimetic composites that 440 

exhibit both pronounced crowding and confinement as well as active motor-driven restructuring and 441 

flow. Using our robust approach, we discover and dissect novel transport properties that arise from the 442 

complex interplay between increasing activity and confinement as the actomyosin fraction increases. 443 

Myosin motors induce ballistic-like contraction, restructuring and flow of the composites, leading 444 

entrained particles to exhibit similar superdiffusive, advective and Gaussian-like transport. Conversely, 445 

steric entanglements, connectivity and slow thermal relaxation of cytoskeletal filaments mediate 446 

heterogeneous, subdiffusive transport of confined particles.  447 

Figure 6 summarizes and compares the key metrics we present in Figs 2-5 that characterize these 448 

complex transport properties. Importantly, as highlighted in Figure 6, while there is clear difference 449 

between the inactive and active networks for nearly all of the transport metrics we present, we 450 

emphasize that there are very few clear monotonic dependences on 𝜙𝐴 for the active composites. This 451 

non-monotonic complexity is a direct result of the competition between motor-driven active dynamics, 452 

crowding and connectivity – all of which increase with increasing actomyosin content. These intriguing 453 

transport characteristics have direct implications in key cellular processes in which actomyosin and 454 

microtubules synergistically interact, such as cell migration, wound healing, cytokinesis, polarization 455 

and mechano-sensing23. Moreover, our robust measurement and analysis toolbox and tunable active 456 

matter platform, along with the complex transport phenomena we present, are broadly applicable to a 457 

wide range of active matter and biomimetic systems of current intense investigation. 458 
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 459 

Figure 6: A robust suite of metrics reveals complex scale-dependent transport resulting from competition between 460 
motor-driven active dynamics, crowding and network connectivity. The 8-variable spider plot shows how the key 461 
metrics we use to characterize transport depend on 𝜙𝐴 (color-code shown in legend). A greater distance from the center 462 
signifies a larger magnitude. 𝛼 values determined from DDM ( 𝛼𝐷𝐷𝑀), SPT 𝑀𝑆𝐷𝑠 ( 𝛼𝑀𝑆𝐷,1,  𝛼𝑀𝑆𝐷,2,  𝛼𝑣𝐻,1,  𝛼𝑣𝐻,2 and SPT 463 
van Hove distributions (𝛼𝑣𝐻,1,  𝛼𝑣𝐻,2) are scaled identically for direct comparison, as are the two timescales determined 464 
from 𝑀𝑆𝐷s (𝛥𝑡1,  𝛥𝑡2). The stretching exponent 𝛾 is scaled independently. The table provides the values with error for each 465 
metric plotted. 466 
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