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Abstract

The cytoskeleton—a composite network of biopolymers, molecular motors, and associated binding
proteins—is a paradigmatic example of active matter. Particle transport through the cytoskeleton can
range from anomalous and heterogeneous subdiffusion to superdiffusion and advection. Yet,
recapitulating and understanding these properties—ubiquitous to the cytoskeleton and other out-of-
equilibrium soft matter systems—remains challenging. Here, we combine light sheet microscopy with
differential dynamic microscopy and single-particle tracking to elucidate anomalous and advective
transport in actomyosin-microtubule composites. We show that particles exhibit multi-mode transport
that transitions from pronounced subdiffusion to superdiffusion at tunable crossover timescales.
Surprisingly, while higher actomyosin content enhances superdiffusivity, it also markedly increases
the degree of subdiffusion at short timescales and generally slows transport. Corresponding
displacement distributions display unique combinations of non-Gaussianity, asymmetry, and non-zero
modes, indicative of directed advection coupled with caged diffusion and hopping. At larger
spatiotemporal scales, particles undergo superdiffusion which generally increases with actomyosin
content, in contrast to normal, yet faster, diffusion without actomyosin. Our specific results shed
important new light on the interplay between non-equilibrium processes, crowding and heterogeneity
in active cytoskeletal systems. More generally, our approach is broadly applicable to active matter
systems to elucidate transport and dynamics across scales.

1 INTRODUCTION

The cytoplasm is a crowded, heterogeneous, out-of-equilibrium material through which
macromolecules and vesicles traverse to perform critical cellular processes such as mitosis,
endocytosis, migration, and regeneration' . Macromolecules and particles diffusing through the
cytoplasm and other similar materials have been shown to exhibit widely varying and poorly
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understood anomalous transport properties that deviate significantly from normal Brownian diffusion.
In particular, the mean-squared displacement, MSD, often does not scale linearly with lag time At, but
is instead better described by MSD~At* where @ < 1 or a > 1 for subdiffusion or superdiffusion,
respectively. The distributions of displacements (i.e., van Hove distributions) also often deviate from
Gaussianity and can display exponential tails at large displacements®®. The cytoskeleton—an active
composite of filamentous proteins including actin, microtubules, and intermediate filaments, along
with their associated motor proteins—plays a key role in these observed anomalous transport
properties”!!. Such anomalous transport phenomena are not just observed in cytoskeleton, but are
ubiquitous in numerous other active and crowded soft matter systems, making their characterization
and understanding of broad interest.

In steady-state, the thermal transport of particles through in vitro cytoskeletal systems exhibit varying
degrees of subdiffusion and non-Gaussianity depending on the types and concentrations of filaments
and crosslinking proteins>®!%!13, For example, single-particle tracking (SPT) of particles in composites
of entangled actin filaments and microtubules, has revealed increasing degrees of subdiffusion («a
decreasing from ~0.95 to ~0.58) as the molar ratio of semiflexible actin filaments to rigid microtubules
increased®. The corresponding SPT van Hove distributions were reported to be non-Gaussian,
displaying larger than expected probabilities for very small and large displacements, indicative of
particles being caged in the filament mesh and hopping between cages.

Differential dynamic microscopy (DDM), which uses Fourier-space analysis to measure the timescales
over which particle density fluctuations decay, has also been used to measure transport and quantify
anomalous characteristics over larger spatiotemporal scales compared to SPT>!*!>. DDM analysis of
a time-series of images provides a characteristic decay time 7 as a function of the wave vector g which
typically follows power-law scaling 7(q)~q~# '>!°, with f8 relating to the anomalous scaling exponent
a via [ =2/a. Specifically, f =2, >2, <2 and 1 correspond to diffusive, subdiffusive,
superdiffusive, and ballistic motion (Figure 1F). DDM analysis of actin-microtubule composites
corroborated the SPT results described above, with subdiffusive 8 values tracking with a values>®.

Similar SPT and DDM experiments demonstrated that crosslinking of actin and/or microtubules
introduced bi-phasic transport with the subdiffusive scaling exponents dropping from a = 0.5 —-0.7 to
a = 0.25 — 0.4 (depending on crosslinker type) after At =3 s, due to strong caging and reduced thermal
fluctuations of filaments. At the same time, van Hove distributions were well fit to a sum of a Gaussian
and exponential, and the non-Gaussianity parameter increased, indicating enhanced
heterogeneity™>¢31217,

Numerous studies have also investigated transport in non-equilibrium cytoskeleton networks, in which
activity is introduced via motor proteins, such as actin-associated myosin II and microtubule-associated
kinesin!®2%-10212 These studies have shown evidence of vesicle movement strongly tracking with actin
movement, microtubule-dependent flow, and the simultaneous presence of subdiffusive and ballistic
transport dynamics. While the majority of these active matter studies have been on systems of either
actin or microtubules, recent studies have used DDM and optical tweezers microrheology to
characterize the dynamics of actin-microtubule composites pushed out-of-equilibrium by myosin II
minifilaments straining actin filaments'#*>?}, These studies showed that active actin-microtubule
composites exhibited ballistic-like (¢ = 2) contractile motion, rather than randomly-oriented diffusion
or subdiffusion, with speeds that increased with increasing fraction of actin in the composites, due to
increased composite flexibility!**. Myosin-driven contractile motion and restructuring was also
reported to increase viscoelastic moduli and relaxation timescales and induce clustering and increased
heterogeneity of the initially uniform meshwork 2.
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However, particle transport through active actin-microtubule composites—likely dictated by the
complex combination of active processes, crowding, and interactions between mechanically distinct
filaments — has remained largely unexplored. The majority of studies that have examined the combined
effect of activity and crowding have been in vivo'?*%°, where a large number of conflating variables
that are difficult to tune make teasing out the effect of each contribution and mechanism highly non-
trivial.

Here, we take advantage of the tunability of in vitro reconstituted cytoskeleton composites to
systematically investigate the coupled effects of non-equilibrium activity, crowding, and heterogeneity
on particle transport. We combine fluorescence light sheet microscopy (fLSM) with single-particle
tracking (SPT) and differential dynamic microscopy (DDM) to examine the anomalous transport of
micron-sized particles within active composites of myosin II minifilaments, actin filaments, and
microtubules with varying molar fractions of actin and tubulin (Fig 1A). We leverage the optical
sectioning and low excitation power of fLSM (Fig 1B) to capture particle trajectories with a temporal
resolution of 0.1s for durations up to 400 s (Fig 1C). Using both SPT and DDM provides transport
characterization over a broad spatiotemporal range that spans ~10"! -10> s and ~10! - 10 um. From
measured SPT trajectories, we compute ensemble-averaged MSDs and associated anomalous scaling
exponents a (Fig 1D), as well as corresponding distributions of particle displacements, i.e., van Hove
distributions (Fig 1E), for varying lag times At. To expand the spatiotemporal range of our
measurements and provide an independent measure of transport characteristics, we use DDM to
analyze particle density fluctuations in Fourier space, and evaluate the power-law dependence of
decorrelation times T on wave vector q, i.e., 7(q)~q~# (Figure 1F).
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Figure 1: Combining light sheet microscopy with real-space single-particle tracking (SPT) and reciprocal-space
differential dynamic microscopy (DDM) to characterize particle transport in active cytoskeletal composites. (A) We
create composites of co-entangled microtubules (blue) and actin filaments (purple) driven out-of-equilibrium by myosin II
minifilaments (green). We track the motion of embedded 1 um beads (red) in composites with varying molar fractions of
actomyosin, which we denote by the fraction of actin comprising the combined molar concentration of actin and tubulin
(5.8 uM): ¢, = 0,0.25,0.5,0.75, 1. In all cases, the molar ratio of myosin to actin is fixed at 0.08. (B) Schematic of the
light-sheet microscope we use for data collection, which provides the necessary optical sectioning to capture dynamics in
dense three-dimensional samples. (C) Example frame from time-series of 1 pm beads embedded in a cytoskeleton
composite, used to characterize particle transport in active crowded systems. (D) Cartoon of expected mean-squared
displacements (MSD) of embedded particles versus lag time At, which we compute via single-particle tracking (SPT) and
fit to a power law MSD « At“ to determine the extent to which particles exhibit normal Brownian diffusion (¢ = 1, blue),
subdiffusion (a¢ < 1, red), or superdiffusion (a > 1, green). (E) Cartoon van Hove distribution G of particle displacements
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Ax for a given lag time At computed from SPT trajectories. The distribution shown is described by a sum of a Gaussian
Ax? Ax

and exponential function G (Ax, At) = Ae 202 + B e_l_/ll, as is often seen in crowded and confined systems and those that

display heterogeneous transport. (F) Cartoon of expected characteristic decorrelation times 7(q) as a function of wave

number g, which we compute by fitting the image structure function computed from DDM analysis. We determine the

scaling exponent 8 from the power-law 7(q)~q~# to determine if transport is diffusive (8 = 2, blue), subdiffusive (8 > 2,

green), or ballistic (f = 1, red).

2 MATERIALS AND METHODS

Protein Preparation: We reconstitute rabbit skeletal actin (Cytoskeleton, Inc. AKL99) to 2 mg/ml in
5 mM Tris—HCI (pH 8.0), 0.2 mM CaCl,, 0.2 mM ATP, 5% (w/v) sucrose, and 1% (w/v) dextran;
porcine brain tubulin (Cytoskeleton T240) to 5 mg/ml in 80 mM PIPES (pH 6.9), 2 mM MgCl, 0.5
mM EGTA, and 1 mM GTP; and rabbit skeletal myosin II (Cytoskeleton MY02) to 10 mg/ml in 25
mM PIPES (pH 7.0), 1.25 M KCl, 2.5% sucrose, 0.5% dextran, and 1 mM DTT. We flash freeze all
proteins in experimental-sized aliquots and store at -80°C. We reconstitute the UV-sensitive myosin I
inhibitor, (-)-blebbistatin (Sigma B0560) in anhydrous DMSO and store at -20°C for up to 6 months.
Immediately prior to experiments, we remove enzymatically dead myosin II from aliquots using
centrifugation clarification, as previously described'*?2.

Composite Network Assembly: We prepare actin-microtubule composites by mixing actin
monomers, tubulin dimers and a trace amount of 1 pum diameter carboxylated microspheres
(Polysciences) in PEM-100 (100 mM PIPES, 2 mM MgCl,, and 2 mM EGTA), 0.1% Tween-20, | mM
ATP, and 1 mM GTP, and incubating at 37°C for 30 minutes to allow for polymerization of actin
filaments and microtubules. We coat microspheres (beads) with AlexaFluor594 BSA (Invitrogen) to
visualize the particles and prevent nonspecific interactions with the composite’®3!. We fix the
combined molar concentration of actin and tubulin to ¢ = ¢4 + ¢y = 5.8 uM and the ratio of myosin
to actin to R = 0.08, and vary the molar fraction of actin in the composite (c,/c = ¢,) from ¢, =0
to 1 in 0.25 increments (Fig 1A). To stabilize actin filaments and microtubules, we add an equimolar
ratio of phalloidin to actin and a saturating concentration of Taxol (5 uM)**33. We add an oxygen
scavenging system (45 pg/ml glucose, 0.005% p-mercaptoethanol, 43 pg/ml glucose oxidase, and 7
pg/ml catalase) to inhibit photobleaching, and add 50 uM blebbistatin to control actomyosin activity.

Sample Preparation and Imaging: We pipet prepared composites into capillary tubing with an inner
diameter of 800 pum, then seal with epoxy. Microspheres are imaged using a custom-built fLSM with
a 10x 0.25NA Nikon Plan N excitation objective, a 20X 1.0 NA Olympus XLUMPIlanFLN detection
objective, and an Andor Zyla 4.2 CMOS camera®. A 561 nm laser is formed into a sheet to image the
microspheres, while a collimated 405 nm laser is used to deactivate the blebbistatin, thereby activating
actomyosin activity. Each acquisition location is at least | mm away from the previous one to ensure
that there is no myosin activity when the image acquisition begins. For SPT, we collect >15 time-
series consisting of >2000 frames, each with a 1000x300 pixel (194x58 um?) field of view (FOV),
at 10 frames per second (fps). For DDM, we collect >3 time-series of =>4000 frames, each with a
768%266 pixel (149x52 um?) FOV, at 10 fps.

Single-Particle Tracking (SPT): We use the Python package Trackpy>* to track particle trajectories
and measure the x- and y- displacements (Ax, Ay) of the beads as a function of lag times At = 0.1 s to
50 s. From the particle displacements, we use a custom-written Python script to calculate the time-
averaged mean-squared displacement of the ensemble, MSD = %(sz + Ay?), from which we
compute an anomalous scaling exponent, a, via MSD~At%. Additionally, we compute van Hove
probability distributions of particle displacements, G (4x, At) (Fig 1E), for 10 different lag times that
span At = 0.1 s to 15 s. Following previous works®~’, we fit each distribution for a given lag time to a
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sum of a Gaussian and exponential function: G(4x) = Ae 2¢%> + Be™ 2 , where A is the amplitude of

the Gaussian term, o2 is the variance, B is the amplitude of the exponential term, and A is the
exponential decay constant.

Differential Dynamic Microscopy (DDM): We obtain the image structure function D(q, At), where
q is the magnitude of the wave vector, following our previously described methods'>*>. We fit each
image structure function, or DDM matrix, to the following function:

D(q,At) = A(q)[1 — exp[—(At/t(@)"P]] + B(q),

where t(q) is the density fluctuation decay time, y is the stretching exponent, A is the amplitude, and
B is the background™S. 7(q) is a measure of the timescale over which particle density fluctuations
decorrelate over a given lengthscale £ = 2m/q. By fitting t(q) to a power-law (i.e., 7(q)~q~#) we
determine the dominant mode of transport, with f = 2, >2, and <2, indicating normal Brownian
diffusion, subdiffusion and superdiffusion, respectively. We also examine the stretching exponent
y that we extract from fitting D(q, At) as another transport metric, with y < 1 indicative of confined
and heterogeneous dynamics™*®3® and y > 1 indicative of active ballistic-like motion1439-41,

3 RESULTS AND DISCUSSION

To elucidate the combined effects of non-equilibrium activity and steric hindrance on particle transport
in crowded active matter, we leverage the tunability of reconstituted cytoskeleton composites*? and the
power of coupling real-space (SPT) and reciprocal space (DDM) transport analysis, to robustly
characterize particle transport as a function of active substrate content. Specifically, we tune the
composition of actomyosin-microtubule composites to display a wide range of transport characteristics
by varying the molar fraction of actomyosin, which we denote by the molar actin fraction ¢,, keeping
the myosin molarity fixed at 8% of ¢, (Fig 1A, Methods).

In Figure 2A, we plot the ensemble-averaged MSD as a function of lag time At for particles diffusing
in composites of varying ¢,. While ¢, = 0 (no actomyosin) exhibits subdiffusive transport across the
entire At range, with a ~ 0.67, all ¢4, > 0 composites display biphasic transport which is subdiffusive
(a < 1) at short At and superdiffusive (a¢ > 1) at long At. To more clearly show the transition from
subdiffusion to superdiffusion, we plot MSD /At versus At (Fig 2B), which is a horizontal line for
normal Brownian diffusion with the At-independent magnitude proportional to the diffusion
coefficient. Positive and negative slopes correspond to superdiffusion and subdiffusion, respectively,
with MSD /At ~ At? indicating ballistic motion. Corresponding MSD /At magnitudes are proportional
to At-dependent transport coefficients. While all ¢, > 0 composites exhibit similar general trends with
At, the lag time at which the dynamics transition from subdiffusive to superdiffusive, along with the
degree to which a deviates from a = 1 in each regime, depend non-trivially on ¢,. Moreover, as
clearly seen in Fig 2C, while a values for active composites (¢, > 0) transition to superdiffusive at
longer lag times, the magnitudes of the transport coefficients remain nearly an order of magnitude
smaller than that of the inactive network (¢, = 0) at any given At.

To evaluate the ¢p,-dependence of the biphasic behavior, we first compute the lag times at which each
composite transitions out of subdiffusive scaling, denoted as At;, and transitions into superdiffusive
scaling, denoted as At,. Note that for some composites there is an extended plateau regime between
the two timescales such that At; and At, are substantially separated. To quantify At;, we compute the
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largest lag time for which linear regression of log MSD versus log At over the range At € [0.1 s, At ]
A o

ta

= 0

0.25

101 « 0.5

10714

0 0.25 05 095 1

Pa

10714 .

MSD (um?)
© MSD/At (um?/s)

(1L 102
g 28! A DY
10-2 ‘G_.""' m At
1071 10° 10! :,; s =
Lag Time (s) < 10% -
—
B 100 i
<
==
° e e =*
0.25 0.5 0.75 1

)
t E "
107t E ]
3 Lsof o - *
E 1254 W a:
a
% a—1Dx s FOTTTTTTTT P
=
0.75 T
lD—Z-
0.50
s
T T 0‘25- T T |# T f
101 10° 10! 0 0.25 05 0.75 1
Lag Time (s) ®a

Figure 2: Actomyosin activity in actin-microtubule composites endows biphasic particle transport marked by
pronounced subdiffusion at short lag times and superdiffusion at long lag times. (A) Mean-squared displacements
(MSD) plotted versus lag time At for myosin-driven actin-microtubule composites with molar actin fractions of ¢, = 0
(blue), 0.25 (gold), 0.50 (green), 0.75 (red), and 1 (purple). Fits of the data to MSD~At*, shown in (B), determine the
anomalous scaling exponent « that describes the dynamics (see Fig 1). (B) Mean-squared displacements scaled by lag time
(MSD/At) plotted versus lag time At delineate regions of subdiffusion (negative slopes) and superdiffusion (positive
slopes). Black lines indicate fits to MSD~At® over the short (At < At;) and long (At > At,) time regimes where each
curve is well-fit by a single power law. (C) Data shown in B plotted versus actin fraction ¢, , with all MSD /At values for
each ¢4 plotted along the same vertical, with the gradient indicating increasing At from light to dark. The magnitude of
each data point is proportional to a transport rate, with higher values indicating faster motion. (D) Lag times at which each
composite transitions out of subdiffusive transport (At,) and transitions into superdiffusivity (At,). (E) Anomalous scaling
exponent a derived from fits shown in (B) for At < At; (a;) and At > At, (a,). Dashed line at o = 1 represents scaling
indicative of normal Brownian diffusion. Values above and below the line indicate superdiffusion and subdiffusion,
respectively. For both (C) and (D) error bars indicate standard error of the mean. Color-coding in all subfigures matches
the legend in A.
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yields R% > 0.99. Likewise, we define At as the shortest At for which the same linear regression yields
R? > 0.99 for the range At € [At,, 50 s] (Fig 2C). We find that both timescales generally decrease
with increasing ¢, as does the separation between the timescales (4t, — At;), suggesting that the rate
of particle motion mediated by directed motor-driven network dynamics increases with increasing ¢ 4.
In other words, the time it takes for the active dynamics to be ‘felt’ by the particles, driving them out
of their confined subdiffusive motion, decreases with increasing ¢ 4.

To understand this phenomenon, we consider that active ballistic transport would only be detectable at
timescales in which the network motion can move a bead more than the minimum resolvable
displacement: At, =~ (100 nm)/(network speed). Using reported speed values of v = 2.2 — 85
nm/s for similar myosin-driven composites 23, we compute At, ~ (100 nm)/v ~ 1 — 50 s, aligning
with our At; and At, values, and thus corroborating that the deviation from sub-diffusion and transition
to superdiffusion is due to myosin-driven ballistic motion. Moreover, the previously reported speeds
generally decreased with decreasing ¢,4, such that At, should increase to values that are beyond our
experimental range for ¢p, < 0.75, just as we see in Fig 2B in which ¢4, < 0.75 composites do not
display a clear uptick to superdiffusive dynamics.

To determine the extent to which motor-driven transport and confinement contribute to the particle
dynamics, we next evaluate the anomalous scaling exponent in the short and long At regimes by
performing power-law fits to the MSDs in each regime (Figure 2D). Surprisingly, the scaling exponents
in the At < At; regime for all active composites (¢4 > 0) are markedly smaller (more subdiffusive)
than the inactive composite (¢p4 = 0), with ¢p4-dependent values of @ =~ 0.29 — 0.39 compared to a =~
0.67 for the ¢, = 0 network. To understand the decrease in a with increasing ¢, for the active
composites, as well as the unexpected ~2-fold reduction in a for active composites, we turn to previous
studies™S, that reported that, in the absence of any crosslinking, steady-state actin-microtubule
composites exhibit subdiffusion with scaling exponents that decrease from a =~ 0.82 to a = 0.56 as
¢, increases from 0 to 1. This monotonic ~30% decrease with increasing ¢,, similar to the ~25%
decrease we observe with increasing ¢4, was suggested to arise from increased composite mobility
that entrains the bead motion as rigid microtubules are replaced with semiflexible actin filaments®!2.
This mobility is paired with a decreasing mesh size as ¢, increases, which, in turn, increases composite
viscoelasticity and particle confinement, both of which contribute to decreasing a®.

To understand the lower a values we measure, compared to those previously reported for steady-state
composites, we look to previous studies on ¢, = 0.5 actin-microtubule composites with varying types
of static crosslinking. In these studies, subdiffusion is much more extreme (@ =~ 0.33) when actin
filaments are crosslinked to each other versus when there is no crosslinking (@ ~ 0.64) °. Taken
together, our results suggest that the ~2-fold reduction in @ between ¢, = 0 and ¢, > 0 composites
likely arises from myosin motors acting as static crosslinkers on timescales shorter than the timescale
over which they can actively translate the composite. As described above, myosin acting as a static
crosslinker for At < At, is consistent with previously reported speeds for myosin-driven composites™,
as well as reported actomyosin turnover rates**. The weak decrease in a with increasing ¢, likely
arises from the decreasing mesh size and increasing mobility of the network as ¢, increases®, as
described above.

Finally, examining the long-time regime, At > At,, our results show that higher actomyosin fractions
correspond to higher a values, increasing ~2-fold from ~0.73 for ¢, = 0.25 to ~1.47 for ¢p, = 1.
Moreover, only ¢4, > 0.5 composites exhibit an uptick to superdiffusive dynamics (¢ > 1) over our
measurement window, suggesting that the extent to which myosin-driven dynamics contribute to
particle transport scales with the fraction of active substrate. Moreover, the timescale at which its
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contribution dominates particle transport is determined by the network speed, which increases with
increasing ¢, as described above?’.
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Figure 3: Asymmetric non-Gaussian van Hove distributions reveal a combination of heterogeneous subdiffusion and
advective transport of particles in active composites. (A) van Hove distributions G (4x, At) of particle displacements
Ax, measured via SPT, for lag times At = 0.1,0.2,0.3,0.5,1, 2,3,5,10, 15 s denoted by the color gradient going from light
to dark for increasing At. Each panel corresponds to a different composite demarked by their ¢p, value with color-coding
as in Fig 2. (B) The square of the full width at half-maximum (FWHM)? versus lag time At for each composite shown in
A. Solid lines are fits to (FWHM)?~At“. For ¢, > 0 composites we fit short (At < 1 s) and long (At > 1 s) lag time
regimes separately. (C) The scaling exponents a as functions of ¢, determined from the fits shown in B, where a (stars)
and a, (triangles) correspond to scalings for the short and long At regimes, respectively. The dashed horizontal line denotes
scaling for normal Brownian diffusion. (D) A sample G(4x, At) distribution (¢, = 0.75 at At = 10s) showing the
asymmetry about the mode value 4xpq;. We divide each distribution into a leading edge (dark grey, displacements of the
same sign as Ax,.qx and greater in magnitude) and the trailing edge (light grey, the remaining part of the distribution). To
clearly demonstrate the asymmetry, we mirror each edge about Ax,, using dashed lines. (E) The fractional difference of
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the half-width at half maximum HWHM of the trailing (-) edge from the leading (+) edge, (Azyw = HWHM_ —
HWHM,)/ HWHM,), for each ¢, and At. Color coding and gradient indicate ¢p, and At, respectively, as in A. Horizontal
bars through each distribution denote the mean.

To shed further light on the mechanisms underlying the anomalous transport shown in Fig 2, we
compute van Hove distributions G (4x, At) for two decades of lag times (4t = 0.1 — 15 5) (Fig 3A).
From the distributions, we first compute anomalous scaling exponents «, to corroborate our MSD
analysis, by recalling that the full width at half maximum, FWHM, for a Gaussian distribution scales

with the standard deviation ¢ as FWHM = 2v2In2 ¢. Because o%~Ax?, by definition, and
MSD~Ax?~At%*, we determine a by computing FWHM for each distribution and fitting the At-
dependent values to the power-law FWHM (At)~(At)*/? (Fig 3B)"*. As shown in Figs 3B,C,
FWHM (At) for ¢, = 0 fits well to a single power-law, with @ = 0.7, nearly indistinguishable from
that computed from the MSD, across the entire At range. Conversely, informed by the biphasic MSD
scaling we observe for active composites (Fig 2C), we fit FWHM (At) for each active composite to
separate power-law functions over short (0.15s < At < 2 s) and long (2 s < At < 15 s) lag times,
relative to the average At; we determine from MSD fits. Further, similar to the ¢4-dependence of
a, and a, values determined from MSDs, the scaling exponents determined from FWHM, increase
with increasing ¢4, with a, (for At < 2 s) increasing from ~0.62 to ~0.85, similar to values reported
for steady-state actin-microtubule composites®, and a, (for At > 2 s) spanning from subdiffusive to
superdiffusive. Higher a; values compared to those determined via MSDs are likely due to the lower
At resolution in FWHM fitting and the single At value used to divide the two regimes.

While our analysis described above assumes Gaussian distributions, Fig 3A shows that nearly all
distributions have distinct non-Gaussian features similar to those reported for steady-state actin-
microtubule composites™’. In particular, G(4x, At) distributions for the inactive network (¢, = 0)
exhibit pronounced exponential tails at large displacements. This non-Gaussianity, seen in other
crowded and confined soft matter systems’, is a signature of heterogeneous transport and can also
indicate caging and hopping between cages.

The distributions for active composites are even more complex, with asymmetries and peaks at Ax #
0 (Fig 3A), not readily predictable from our MSD analysis. The first interesting feature we investigate
is the non-zero mode value Ax,, .4 that increases in magnitude with increasing At, indicating directed
ballistic-like motion, thereby corroborating our superdiffusive scaling exponents. Perhaps less intuitive
is the robust asymmetry between the ‘leading (+) edge’ and ‘trailing (-) edge’ of each distribution,
which we define by splitting each distribution about its peak, Ax,.qx. Specifically, the leading edge is
the part of the distribution that has displacements of the same sign as Ax,q, and greater in magnitude,
while the remaining part is the trailing edge (Figure 3D). We observe that for most distributions the
leading edge appears more Gaussian-like while the trailing edge exhibits pronounced large-
displacement ‘tails’. To broadly quantify this asymmetry, we evaluate the half-width at half-maximum
(HWHM) for the leading (+) and trailing (-) edges of each distribution and compute the percentage
increase in HWHM for the trailing versus leading edge: Ay = (HWHM_ — HWHM,)/ HWHM,
(Fig 3E). We find that Agyy, is positive for all active composites and increases with increasing ¢,
demonstrating that the asymmetry is a direct result of active composite dynamics which contribute
more to the transport as the actomyosin content increases.

To more quantitatively characterize the rich transport phenomena revealed in Fig 3, we first fit each
G(A4x,At) to a sum of a Gaussian and an exponential (see Methods), as done for steady-state
cytoskeleton composites®”’. Fig 4A compares the distributions and their fits for all composite
formulations at At = 0.3 s (top panel) and 10 s (bottom panel), and Fig 4B displays zoom-ins of the
corresponding leading and trailing edges. As shown, while this sum describes the inactive network
distributions reasonably well, it overestimates leading edge displacements and underestimates trailing
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edge displacements of the active networks (Fig 4B). This asymmetry suggests that the leading edges
are more Gaussian-like and the trailing edges are more exponential-like. To account for this
asymmetry, we fit each half of each distribution separately to a one-sided sum of a Gaussian and
exponential and evaluate the relative contributions from the Gaussian and exponential terms. As
detailed in the Methods, we denote the amplitude of the Gaussian term and exponential term as A and
B, respectively, such that their relative contributions are a = A/(A + B) and b = B/(A + B).

As shown in Fig 4C,D, in which a and b are normalized by the corresponding ¢, = 0 value and plotted
for each ¢4, active composites are more Gaussian-like (a/a(¢p4 = 0) > 1) and less exponential
(b/b(¢p4 = 0) < 1) than the inactive system for both leading and trailing edges, suggesting that the
active processes that induce contraction and flow of the composites, likewise reduce transport
heterogeneity and intermittent hopping, possibly by promoting mixing and advection. Consistent with
this interpretation is the observation that the Gaussian contribution a increases with increasing ¢4 and
is consistently larger for the leading edge, which consists of displacements oriented with the direction
of the myosin-driven composite motion (Fig 4D).
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Figure 4: Actomyosin activity reduces heterogeneous non-Gaussian diffusivity and endows Gaussian-like advective
transport. (A) Comparing van Hove distributions of composites with different ¢, (see legend) at lag times of At = 0.3 s
(top) and At = 10 s (bottom). Color-coded solid lines are fits of each distribution to the sum of a Gaussian and an
Ax? Ax

exponential: G(4x) = Ae 20?2 + B e_%. Black rectangles indicate regions of the distributions that are shown zoomed-in
in (B). (C) Fractional amplitude of the Gaussian term in each fit, a = A/(A + B), normalized by the corresponding value
for ¢, = 0. Fits are performed separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution.
Data shown are the averages and standard deviations across all lag times for each ¢,. (D) Fractional amplitude of the
exponential term in each fit, b = A/(A + B), normalized by the corresponding value for ¢, = 0. Fits are performed
separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution. Data shown are the averages and
standard deviations across all lag times for each ¢,.
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Conversely, the increased contribution from the exponential term for the trailing edge, implies that
displacements comprising these exponential tails are dominated by heterogeneous transport modes
such as hopping between heterogeneously distributed cages ®’. To better understand this effect, we
recall that particle displacements comprising the trailing edge are lagging behind the bulk translational
motion of the composite. As the composite moves and restructures, a fraction of the particles remain
caged in the moving composite and thus move along with it, corresponding to displacements
comprising the leading edge, whereas a fraction of the particles are squeezed out or hop out of
composite cages and into new ‘trailing’ cages. It is also likely that as the composite contracts and forms
more heterogeneous structures and larger open voids that characteristic ‘hopping’ displacements, as
well as displacements within cages, may increase and become more heterogeneous, thereby enhancing
exponential tails.

To expand the range of length and time scales over which we probe the non-equilibrium transport, and
provide an independent measure of the dynamics, we complement our real-space SPT analysis with
Fourier-space DDM analysis, as described in the Methods and previously %! Briefly, we compute
the radially-averaged image structure function D(q, 4t) of the Fourier transform of image differences
as a function of wavevector q and lag time At. From fits of D(q, At) to a function with a stretched
exponential term (see Methods, Fig 5A), we determine the g-dependent characteristic decay time 7(q)
and stretching exponent y for each composite (Fig 5), which characterize the dynamics. 7(q) typically
exhibits power-law scaling 7(q)~q~# where f is related to the anomalous scaling exponent a via § =
2/a, such that § > 2, =2, f <2andf =1 correspond to, respectively, subdiffusive, normal
diffusive, superdiffusive, and ballistic motion. Similarly, stretching exponents y are typically 1 for
normal Brownian motion, while y < 1 is a signature of crowded and confined systems!>** and y > 1
indicates active transport! %

As shown in Fig 5B, 7(q) curves for all active composites follow scaling indicative of superdiffusive
or ballistic transport while the ¢p, = 0 system more closely follows diffusive scaling. Further, 7(q)
for ¢, = 0 is an order of magnitude lower than for all active composites, indicating that particle
transport is faster for the inactive composite, in line with our results shown in Fig 2C, despite the
displacements exhibiting diffusive rather than ballistic-like motion. This effect can be more clearly
seen in Fig 5D, which displays the g-dependent distribution of 7(q)~! values, a measure of dynamic
decorrelation rates, for each ¢4. As shown, 7! values for ¢p, = 0 are an order of magnitude larger
than those for ¢p, > 0 composites. Fig 5D also shows that decorrelation rates in active composites
increase modestly with increasing ¢, suggesting that transport is dictated primarily by active
restructuring and flow, rather than crowding and confinement, which increases as actomyosin content
increases. The lack of subdiffusive scaling or crossovers from sub- to super-diffusive dynamics for
active composites (as our SPT analysis shows) can be understood as arising from the larger length
and time scales DDM probes. Namely, DDM spans lengthscales of 2w /q =~ 1.6 — 6.28 um and
timescales of T =~ 20 — 100 s (Fig SA) compared to the ~0.1 — 1.5 pm and ~0.1 — 50 s length and
timescales accessible to SPT.

To better visualize differences in 7(q) scaling between composites we plot 7(g) X g2 normalized by
T(Gmax) X (Gmax)? (Fig 5C). Diffusive transport manifests as a horizontal line, as we see for ¢, =
0, while ballistic-like motion follows a power-law scaling of 1, which roughly describes the ¢p, > 0
curves. To quantify the DDM scaling exponent f that describes the dynamics, we fit each 7(q) curve
to a power-law (i.e., 7(q)~q~#) (Fig 5C,E). For the active composites, we restrict our fitting range to
g > 1.5 um™1, in which a single power-law is observed. For smaller g values (larger length and time
scales), we note that ¢, = 0.25 and 1 composites exhibit roughly ballistic motion whereas ¢, = 0.5
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and 0.75 exhibit roughly diffusive dynamics (Fig 5B)!>!6. However, we restrict further quantification
and interpretation of this small-q regime as it comprises relatively few data points and low statistics.
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Figure 5: DDM analysis reveals ballistic-like transport of particles entrained in active composites at mesoscopic
spatiotemporal scales. (A) Sample image structure functions D (q, At) for composites with actin fractions ¢, indicated in
the legend. All curves shown are evaluated at ¢ = 3.92 pm™?, and solid black lines are fits to the data to determine
corresponding g-dependent decay times t(q) and stretching exponents y, as described in Methods. (B) Decay times 7(q)
for each composite shown in (A). Dashed and dotted black lines show scaling 7(q)~q~# for ballistic (8 = 1) and diffusive
(B = 2) transport. (C) t(q) X g%, normalized by T(qmax) X (Gmax)?, for the data shown in (B). Horizontal dotted line and
unity-sloped dashed line correspond to scaling indicative of normal diffusion (¢ = 2/ = 1) and ballistic motion (a =
2/ = 2). Color-coded solid lines correspond to power-law fits, with the corresponding exponents f and a shown in (E)
and (F). For ¢, > 0 composites, the fitting range is truncated to ¢ > 1.5 pm™~! where a single power-law is observed. (D)
Scatter plot of 1/7(q), a measure of the transport rate, for all measured g values for each ¢4. Color coding and gradient
indicate ¢, and q, respectively, with light to dark shades of each color indicating increasing g values. (E) DDM scaling
exponents 5 determined from fits shown in (C). (F) Anomalous scaling exponents a, determined from t(q) fits (filled
circles, appy = 2/f), as well as the large-At regime fits of the MSDs (open triangles, aysp ») and van Hove distributions
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(open triangles, @,y ») measured via SPT (see Figs 2,3). Error bars indicate 95% confidence intervals of fits. (G) Stretching
exponent y(q), averaged over all g values, for each composite ¢4, with error bars indicating standard error.

Over the range that we fit our data, we find that § =~ 1.92 for the inactive composite, indicative of
diffusive dynamics, whereas active composites exhibit near-ballistic values of f =~ 1.03 — 1.26. To
directly compare [ values to the anomalous scaling exponents a that we determine from SPT (Figs 2E,
3B), we plot appy = 2/ (Fig 5C,F) with the a values we determined from the MSDs and van Hove
distributions in the large At regime, which we denote as aysp, and a,y,. Scaling exponents
determined from all three methods follow similar trends with ¢, with active composites displaying
larger a values than the ¢, = 0 system. Generally, for each ¢4, we find that appy > ayy 2 > Apysp 2,
which arises from the different timescales probed by each method. Namely, all systems tend to
subdiffusion at short lag times (measured most accurately via MSDs) and free diffusion or ballistic
motion at large lag times (accessed only by DDM), so scaling exponents measured at short lag times
should generally be lower than those measured over larger lag times.

Finally, to shed light on the competing contributions from motor-driven dynamics versus confinement
and crowding to transport at larger spatiotemporal scales, we evaluate the dependence of the stretching
exponent ¥ on ¢4. Fig 5G shows that transport in the inactive network is described by y = 0.79,
indicating that confinement dominates over active dynamics (i.e.,y < 1), whereas all ¢, >0
composites exhibit y > 1, indicative of transport governed largely by active dynamics. Moreover, y
generally increases as the actomyosin fraction increases, corroborating the dominant role that active
composite dynamics plays in the rich transport phenomena we reveal'’.

4 CONCLUSION

Here, we couple real-space SPT and Fourier-space DDM to characterize particle transport across three
decades in time (~107! - 10? s) and two decades in space (~107' - 10 um) in biomimetic composites that
exhibit both pronounced crowding and confinement as well as active motor-driven restructuring and
flow. Using our robust approach, we discover and dissect novel transport properties that arise from the
complex interplay between increasing activity and confinement as the actomyosin fraction increases.
Myosin motors induce ballistic-like contraction, restructuring and flow of the composites, leading
entrained particles to exhibit similar superdiffusive, advective and Gaussian-like transport. Conversely,
steric entanglements, connectivity and slow thermal relaxation of cytoskeletal filaments mediate
heterogeneous, subdiffusive transport of confined particles.

Figure 6 summarizes and compares the key metrics we present in Figs 2-5 that characterize these
complex transport properties. Importantly, as highlighted in Figure 6, while there is clear difference
between the inactive and active networks for nearly all of the transport metrics we present, we
emphasize that there are very few clear monotonic dependences on ¢, for the active composites. This
non-monotonic complexity is a direct result of the competition between motor-driven active dynamics,
crowding and connectivity —all of which increase with increasing actomyosin content. These intriguing
transport characteristics have direct implications in key cellular processes in which actomyosin and
microtubules synergistically interact, such as cell migration, wound healing, cytokinesis, polarization
and mechano-sensing?*. Moreover, our robust measurement and analysis toolbox and tunable active
matter platform, along with the complex transport phenomena we present, are broadly applicable to a
wide range of active matter and biomimetic systems of current intense investigation.
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Figure 6: A robust suite of metrics reveals complex scale-dependent transport resulting from competition between
motor-driven active dynamics, crowding and network connectivity. The 8-variable spider plot shows how the key
metrics we use to characterize transport depend on ¢4 (color-code shown in legend). A greater distance from the center
signifies a larger magnitude. a values determined from DDM ( appy), SPT MSDs ( aysp,1, @msp,2r Xpr 1» Aypz and SPT
van Hove distributions (a,y 1, @,y ) are scaled identically for direct comparison, as are the two timescales determined
from MSDs (4t;, At,). The stretching exponent y is scaled independently. The table provides the values with error for each
metric plotted.
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