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Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple
benign tumors impacting the function of vital organs. In TS patients, dominant
negative mutations in TSCI or TSCZ2 increase mTORCL activity. Increased
mMTORC1 activity drives tumor formation, but also severely impacts central
nervous system function, resulting in infantile seizures, intractable epilepsy, and
TS-associated neuropsychiatric disorders, including autism, attention deficits,
intellectual disability, and mood disorders. More recently, TS has also been
linked with frontotemporal dementia. In addition to TS, accumulating evidence
implicates increased mMTORC1 activity in the pathology of other
neurodevelopmental and neurodegenerative disorders. Thus, TS provides a
unique disease model to address whether developmental neural circuit
abnormalities promote age-related neurodegeneration, while also providing
insight into the therapeutic potential of mMTORCL inhibitors for both developing
and degenerating neural circuits. In the following review, we explore the ability
of both mouse and human brain organoid models to capture TS pathology,
elucidate disease mechanisms, and shed light on how neurodevelopmental
alterations may later contribute to age-related neurodegeneration.
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Introduction
Overview of Tuberous Sclerosis

Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign
tumors impacting the function of vital organs (Curatolo et al., 2015). TS is driven by
autosomal dominant negative mutations in either of the Tuberous Sclerosis Complex
(TSC) genes, TSCI or TSC2 (Laplante et al., 2012). A significant portion of patients also
exhibit germline and/or somatic mosaicism, resulting in heterogenous expression of
TSCI1/2 mutations (Verhoef et al., 1999; Giannikou et al., 2019). In most patients, TSC1/
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2 mutations impact central nervous system function, resulting in
infantile seizures, intractable epilepsy, and TS-associated
(TAND),
attention deficits, intellectual disability, and mood disorders
(Shepherd and Stephenson, 1992; de Vries and Watson, 2008;
Chu-Shore et al., 2010; Bolton et al., 2015; de Vries et al., 2015;
Kingswood et al.,, 2017; de Vries et al., 2018; Cervi et al., 2020).
Recently, significant phenotypic overlap between TS and

neuropsychiatric ~ disorders including  autism,

frontotemporal dementia (FTD) has also been described; this
TAND-associated
well as

overlap  includes cognitive-behavioral

alterations, as clinical biomarkers, such as
phosphorylated tau (Olney et al, 2017; Liu et al, 2020a;
Alquezar et al.,, 2021; Liu et al,, 2022). These neuropsychiatric
manifestations significantly affect quality of life for TS patients
and their families, accounting for the majority of disease-
associated morbidity, mortality, and burden of care in the TS
patient population (Curatolo et al., 2015).

Despite this significant burden, the neuropsychiatric component
of TS is the most complex and least understood disease aspect. At a
molecular level, TSC1 and TSC2 form a complex that negatively
regulates mammalian target of rapamycin complex-1 (mTORCI)
-mediated growth pathways (Laplante et al., 2012). Thus, disease-
associated mutations result in increased mTORCI activity and
growth, leading to tumor formation (Laplante et al,, 2012; Lipton
and Sahin, 2014). Not surprisingly, therapeutic approaches have
largely focused on mTORCI inhibitors, such as rapamycin and
rapamycin-derivatives. mMTORCI inhibitors, such as the rapamycin
derivative everolimus, have demonstrated efficacy in preventing
disease-associated tumor growth, including the growth of
subependymal giant cell astrocytomas in the brain (Franz et al.,
2013; Franz et al,, 2015; Lechuga et al., 2019). However, attempts at
treating neurocognitive impairment in T'S have been mixed (Krueger
etal, 2013; Tran et al., 2015; French et al., 2016; Krueger et al., 2017;
Overwater et al, 2019). For example, everolimus fails to treat
intractable epilepsy in at least 50% of patients (French et al,
2016; Overwater et al., 2019), and there is no clinically observed
benefit to TAND (Krueger et al, 2017). This failure of
mTORCI inhibitors suggests tumor-independent mechanisms
contribute to neurocognitive impairment. Tumor-independent
mechanisms in TS pathology are supported by mouse models, in
which pathogenic TSCI and TSC2 mutations give rise to neuron-
autonomous alterations in synapse development (Feliciano et al,
2013/02; Feliciano et al., 2020; Bassetti et al., 2021; Bateup et al,
2013). Understanding how TS-associated synaptic alterations
contribute to neurocognitive impairment and increased risk of
dementia within the TS patient population (Liu et al., 2020a) will
have implications for the larger autism spectrum, where synaptic
alterations are a common pathological feature (Penzes et al., 2011;
Phillips and Pozzo-Miller, 2014). Emerging evidence also suggests
that patients within autism spectrum disorders are at an increased
risk of early onset dementia (Vivanti et al.,, 2021). Thus, it is necessary
to understand how synaptic alterations within developing circuits
may later contribute to synapse loss, neurodegeneration and
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cognitive decline in dementia. This review addresses shared
pathological features linking synaptic dysfunction across TS
patient lifespan with the hope of elucidating mechanisms that
drive age-related cognitive loss within the larger autism patient
spectrum.

Synapse formation in developing neural
circuits

Before we address how synapses are altered in TS, we will first
discuss how they typically form during development. Synapses
are the points of contact between neurons which facilitate
electrochemical communication, giving rise to complex
cognitive functions, such as learning, memory, and social
behavior (Lynch et al, 2007). In humans, synapse formation
begins around mid-fetal gestation (Tau and Peterson, 2010).
Synapses can either be inhibitory, suppressing action potential
formation, or excitatory, promoting action potential formation.
Inhibitory GABAergic synapse formation precedes the formation
of excitatory glutamatergic synapses (Ben-Ari, 2002; Ben-Ari,
2006). However, inhibitory synapses initially exhibit GABA-
induced excitation (Ben-Ari, 2002; Ben-Ari, 2006). This
GABA-elicited depolarization may serve neuroprotective roles
in the fetal development of neural circuitry since the excitatory
transmitter glutamate can be cytotoxic. However, since GABA is
derived from glutamate, this initial GABA-induced excitation
may allow GABA to promote neurite and synapse formation,
while also preventing glutamate-induced neurotoxicity in
vulnerable neural circuits of the developing brain (Ben-Ari,
2002; Ben-Ari, 2006). In immature neural circuits, expression
of the sodium-potassium-chloride importer, NKCCI, is high,
while expression of the potassium chloride exporter, KCC2, is
low (Ben-Ari, 2002; Sernagor et al., 2010; Come et al., 2019). The
ratio of NKCCI to KCC2 affects the reversal potential of GABA
receptors, resulting in Cl™ efflux and depolarization when the
ratio of NKCC1:KCC2 is high (Liu et al, 2020b). However,
KCC2 expression beginning at 18-25 post-conception weeks
in subplate and cortical plate neurons enables GABA-induced
inhibition through chloride influx and hyperpolarization
characteristic of mature circuits (Sedmak et al., 2016).

Corresponding with the developmental shift from GABA-
induced excitation to inhibition, excitatory synapses containing
pre-synaptic vesicular glutamate transporters and post-synaptic
glutamate receptors, begin to form. These excitatory synapses
initially form along dendrites or on finger-like dendritic
projections, known as filopodia-like spine precursors, but after
birth, they are predominantly found on specialized dendritic
projections, known as spines (Wilson and Newell-Litwa, 2018).
In their mature state, these dendritic spines exhibit a polarized
mushroom-shaped structure with a bulbous head atop a thin
spine neck (Newell-Litwa et al., 2015). This morphology helps to
facilitate action potential propagation. The increased surface area
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of the head region increases the number of glutamate receptors
adjacent to the pre-synaptic axon terminal, thus increasing the
likelihood of action potential formation. Furthermore, the
physical properties of the thin spine neck alter resistance, with
length of the spine neck inversely correlating with action
potential formation (Araya et al.,, 2014; Tonnesen and Nigerl,
2016). Unlike inhibitory synapses which form along the dendritic
shaft, the unique morphology of the post-synaptic compartment
of excitatory synapses allows them to be readily visualized in
post-mortem tissue without the use of immunolabeling, which
often requires antigen retrieval in human post-mortem samples.
Furthermore, in transmission electron microscopy, the electron-
dense post-synaptic density of excitatory synapses is also readily
visible (Hahn et al., 2009/04). Because of these attributes, the
of
neuropsychiatric disorders have focused on changes to

majority of post-mortem human brain studies
excitatory synapses. In humans, excitatory synapse formation
lasts until later juvenile stages (~5-6years). Throughout
refines
stable

for

adolescence, synaptic pruning developing neural

circuits, leading to densities

adulthood,
decline

relatively synapse

throughout except cases of age-related

cognitive and neurodegenerative diseases when

synapse numbers once more decline (Penzes et al., 2011).

Synaptic pathology in TS

In TS mouse models, synapse formation is initially impaired, but
synaptic overgrowth is observed later in development (Tavazoie
etal,, 2005; Phillips and Pozzo-Miller, 2014; Tang et al., 2014; Yasuda
et al, 2014). In TS mice, the initial defect in synapse formation
corresponds with immature filopodia-like spine precursors
(Tavazoie et al, 2005; Yasuda et al, 2014) However, later in
mTORC1 activity
macroautophagy of excitatory synapses, resulting in synaptic

development, increased impairs
overgrowth (Tang et al, 2014). Consistent with these temporal
differences in synaptic pathology, mTORCI inhibition fails to
rescue the emergence of TS-associated deficits in synapse
formation but restores synaptic pruning later in synapse
development (Tavazoie et al, 2005; Phillips and Pozzo-Miller,
2014; Tang et al, 2014; Yasuda et al, 2014). Defective
macroautophagy may also contribute to the observed increase in
excitatory synapses in the temporal lobe of autism patients aged
13-19 years (Tang et al,, 2014). Notably, a similar increase is not
observed in autism patients of ages 3-9 years, suggesting that TSC-
mediated inhibition of mMTORCI is necessary for synaptic pruning to
occur at later adolescent stages (Tang et al., 2014). Intriguingly, one
might suspect that this synaptic overgrowth might protect TS
individuals from age-related FTD (Olney et al, 2017; Liu et al,
2020a). Similar to other neurodegenerative diseases, FTD exhibits
synapse loss within the temporal lobe (Clare et al., 2010). However, if
the TS-associated mTORCI1 hyperactivation prevents synaptic
pruning, what are the mechanisms that drive synapse loss and
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cognitive decline of TS patients later in life? Here, we will explore
two potential hypotheses by which developmental TS synaptic
pathology later disrupts neural circuits, resulting in their eventual
degradation (Figure 1). In the following section, we will first address
the mechanisms by which developmental synaptic pathology may
contribute to later neurodegeneration and then examine potential
therapeutic strategies.

Potential synaptic mechanisms
linking neurodevelopmental and
neurodegenerative pathology

Altered NKCC1:KCC2 in
neurodevelopmental and
neurodegenerative disorders

As previously mentioned, the ratio of NKCCI to
KCC2 underlies GABA-mediated currents, with developing
exhibiting higher NKCCI1:KCC2
resulting in GABA-induced depolarization and excitation.

neural circuits ratios
Intriguingly, TS patients exhibit increased expression of
NKCC1 and decreased expression of KCC2, perpetuating
GABA-induced excitation as observed in the immature
developing brain (Talos et al., 2012; Ruffolo et al,, 2016). A
human neuronal model of TS recapitulates elevated SLCI2A2
(NKCC1) and decreased SLC12A5 (KCC2) expression (Costa
etal., 2016). The elevated NKCC1:KCC2 ratio may in part be a
compensatory mechanism in response to TS-elevated
mTORC1 since NKCC1 suppresses mTORCI1 activity
(Demian et al., 2019). Similar NKCC1:KCC2 alterations are
observed in other neurodevelopmental disorders, such as Rett
Syndrome (Tang et al, 2016). Neurodegenerative diseases,
such as Huntington’s Disease (HD) and possibly Alzheimer’s
(AD), exhibit NKCC1
KCC2 expression that resemble immature neural circuits
(Tang, 2020; Dargaei et al., 2018; Yin et al., 2019/01; Lam
et al., 2022; Virtanen et al., 2021). Furthermore, in a human

Disease alterations in and

induced pluripotent model of tauopathies, introducing
common FTDP-17 mutations (FTD with parkinsonism
linked with chromosome 17) reduced KCC2 expression in
differentiated neurons (Garcia-Leén et al., 2018), further
that reduced KCC2 is a of
neurodegenerative  disease pathology, particularly in
tauopathies, such as AD and FTD.

Altered NKCC1:KCC2 expression can impact both synaptic

suggesting driver

formation and function, potentially contributing to disease-
Acute
pharmacological reductions in KCC2 are sufficient to drive
hyperexcitability
depolarizing  GABA currents (Sivakumaran et al, 2015).
However, KCC2 also functions independent of GABA at
excitatory glutamatergic synapses, where KCC2 is necessary

associated  hyperexcitability ~and synapse loss.

and  epileptiform  activity  through
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FIGURE 1

Synaptic Alterations Linking Neurodevelopmental and Neurodegenerative Pathology in TS. Under physiological conditions, TSC1/2 inhibit
mTORC1 activity through Rheb-GTPase. mTORC1 promotes synapse formation, but prevents macroautophagy-mediated synaptic pruning later in
development. Thus under pathological conditions in TS, mTORC1 activity is increased, resulting in defective synaptic pruning in adolescence.
Increased mTORCI1 also promotes tau aggregation through acetylation and phosphorylation. Furthermore, impaired autophagy prevents the
clearance of tau aggregates, ultimately driving synapse loss. Additionally, TS patients exhibit alterations in NKCC1:KCC2 that resemble immature
neural circuits. These changes may in part be driven by tau accumulation. Increased NKCC1:KCC2 can alter GABA polarization at inhibitory synapses,
but also impairs AMPAR recruitment at excitatory synapses which is necessary for synaptic plasticity associated with learning and memory. Thus, early
developmental synaptic alterations likely lead to the accumulation of neurotoxic tau aggregates, impair synaptic plasticity necessary for learning and
memory, and alter neuronal excitability, thus driving synapse loss in neurodegenerative disorders. Created with Biorender.com.

for both dendritic spine maturation and clustering of AMPA
receptors (Li et al., 2007; Gauvain et al., 2011). At the dendritic
spines of excitatory synapses, reduced KCC2 expression results in
immature filopodia-like protrusions and impairs glutamatergic
2007),
impairment initially observed in TS (Yasuda et al,

synapse formation (Li et al, similar to synaptic
2014).
Later in development, TS synapse density increases due to
mTORCI-mediated inhibition of autophagy (Tang et al,
2014). However, consistent with KCC2-mediated trafficking of
AMPARSs, Tscl knockout hippocampal neurons have reduced
expression of AMPAR subunits, GluA1/R2 and GluA2/R2
2013). GluAl/2 are specifically added to
synapses during periods of plasticity that underlie learning
and memory (Shi et al., 2001).

How might early alterations in NKCC1:KCC2 contribute to
synaptic alterations in neurodegenerative disorders? Due to the

(Bateup et al,

NKCCI1:KCC2 regulation of synapse formation and function,
GABA-mediated depolarization could contribute to the observed
increase in neuronal excitability in neurodegenerative disorders,
including FTD (Wishart et al., 2006; Clare et al., 2010; Beagle
et al,, 2015; Cepeda et al.,, 2019; Subramanian et al., 2020; Targa
2022). Furthermore, GluAl subunit
decreased

Dias Anastacio et al,

expression s in neurodegenerative disorders,
including AD and FTD, consistent with learning and memory
deficits in these disorders (Benussi et al., 2019; Qu et al., 2021).

Thus developmental disruptions in synaptic plasticity and
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activity could predispose individuals to early-onset dementia.
Further studies are needed to identify synapse-specific proteomic
changes in TS and corresponding synaptic changes in
FTD. Identification of synaptic alterations shared between TS
and FTD could be used for therapeutic intervention in early
development, thus preventing synaptic alterations that likely
contribute to later age-related cognitive decline.

Restoring KCC2 expression in TS patients may be
complicated as mTORCI inhibition does not restore the
developmental shift in GABA-induced activity; rather,
KCC2
increasing seizure susceptibility in a juvenile, but not adult,
2012). Thus, while the rapamycin
reduces patient
expression could contribute

rapamycin  treatment  decreased expression,
rat model (Huang et al,,
derivative everolimus tumor burden,
decreased KCC2 the
persistence of epileptic seizures in ~50% of treated patients
(French et al., 2016; Overwater et al., 2019). Notably, however,

these studies were conducted in a chemically-induced seizure

to

model and not in a TS model, where mTORCI1 is elevated.
Thus, further studies of the effect of mTORCI inhibition on
KCC2 and epilepsy in TS are needed. Nonetheless, the
development of KCC2-enhancing drugs may hold promise
for restoring GABA-induced inhibition and AMPAR-
mediated synaptic plasticity in affected neurodevelopmental
and neurodegenerative disorders (Tang et al., 2019; Tang,

2020).
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mMTORC1-driven tau post-translational
modifications drive pathological
accumulation

Since tauopathies, such as AD and FTD, exhibit synapse loss
and hyperexcitability, we will next explore how tau pathology
both
neurodegenerative diseases. Pathogenic tau impairs synaptic

may contribute to neurodevelopmental — and
transmission by binding to the synaptic vesicle protein,
synaptogyrin-3, ultimately resulting in the loss of excitatory
glutamatergic synapses (Largo-Barrientos et al., 2021). Notably,
TS is a tauopathy that exhibits similar pathology to FTD brains,
which do not contain amyloid plaques (Liu et al., 2022). Thus,
TS is a good model to assess the role of tau aggregation
independent of amyloid plaques. Accumulating evidence also
suggests that tau aggregation plays an underappreciated role in
other neurodevelopmental disorders (Rankovic and
Zweckstetter, 2019). Intriguingly, TSCI haploinsufficiency
increases tau acetylation and accumulation (Alquezar et al,
2021). This is likely through increased mTORCI activity since
mTORC1 directly activates p300 acetyltransferase, which is
responsible for tau acetylation (Wan et al, 2017; Alquezar
et al, 2021). In addition to acetylation, mTORCI also
regulates tau aggregation through phosphorylation (Caccamo
etal., 2013). Since elevated mTORCI in TS prevents autophagy-
mediated clearance of pathogenic tau aggregates (Alquezar
et al.,, 2021), early post-translational tau modifications may
progressively lead to the accumulation of tau aggregates and
early-onset dementia and neurodegeneration, especially since
hyperphosphorylated tau promotes the self-assembly of tau
neurofibrillary tangles (Igbal et al., 2010). Thus, increased
tau phosphorylation and acetylation leading to accumulation
are likely early biomarkers of neurodevelopmental disorders
that contribute to the increased patient susceptibility to
neurodegenerative disorders. As previously noted, increased
excitability in tauopathies may be driven in part by
decreased KCC2 introduction of FID-

associated tau mutations decrease KCC2 levels in a human

expression  as

neuronal model (Garcia-Leén et al., 2018). Furthermore, loss of
tau reduces network hyperexcitability in AD and seizure models
(Holth et al., 2013). However, this rescue is likely driven by
multiple factors since tau loss reduces hyperexcitability in the
absence of KCC2 function (Holth et al., 2013). Finally,
rapamycin reduces tau aggregate burden in mice and human
neurons by activating autophagy (Ozcelik et al., 2013; Silva
et al,, 2020). Additionally, this reduction in tau burden reduces
astrogliosis (Ozcelik et al,, 2013), which is associated with
neuroinflammation (Fleeman and Proctor, 2021), although
tau was recently shown to drive synapse loss through pre-

of
2021).
Intriguingly, preventing association of tau with the synaptic

synaptic vesicle association independent

neuroinflammation  (Largo-Barrientos et  al,

vesicle protein, synaptogyrin-3, restores synaptic plasticity and
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could potentially serve as an additional therapeutic strategy for
reducing tau neurotoxicity (Largo-Barrientos et al., 2021).

Concluding remarks

Accumulating evidence suggests that neurodevelopmental
disorders, such as TS, place the affected individual at an
increased susceptibility to neurodegeneration. In the present
piece, we explored potential synaptic mechanisms driving this
association (Figure 1). We first examined how persistent
alterations in potassium chloride channels may alter neuronal
excitability and synaptic plasticity in developing and degenerating
networks. Next, we discussed how early mTORCI-driven post-
translational modifications to tau promote accumulation and
pathological ~ aggregation synapse The
accumulated evidence links early impairment in synaptic

leading  to loss.
plasticity with later synapse loss in neurodegeneration, while also
highlighting the need for future studies to identify developmental
synaptic alterations that drive age-related synapse loss and
neurodegeneration. Insights from future studies of TS and FTD
will likely have ramifications for other neurodevelopmental and
neurodegenerative disorders, where increased mTORCI signaling is
observed (Negraes et al., 2021).
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