
Improved Price of Anarchy via Predictions

VASILIS GKATZELIS, Drexel University, USA
KOSTAS KOLLIAS, Google Research, USA
ALKMINI SGOURITSA, University of Liverpool, UK

XIZHI TAN, Drexel University, USA

A central goal in algorithmic game theory is to analyze the performance of decentralized multiagent systems,

like communication and information networks. In the absence of a central planner who can enforce how these

systems are utilized, the users can strategically interact with the system, aiming to maximize their own utility,

possibly leading to very inefficient outcomes, and thus a high price of anarchy. To alleviate this issue, the

system designer can use decentralized mechanisms that regulate the use of each resource (e.g., using local

queuing protocols or scheduling mechanisms), but with only limited information regarding the state of the

system. These information limitations have a severe impact on what such decentralized mechanisms can

achieve, so most of the success stories in this literature have had to make restrictive assumptions (e.g., by

either restricting the structure of the networks or the types of cost functions).

In this paper, we overcome some of the obstacles that the literature has imposed on decentralized mech-

anisms, by designing mechanisms that are enhanced with predictions regarding the missing information.

Specifically, inspired by the big success of the literature on “algorithms with predictions”, we design decen-

tralized mechanisms with predictions and evaluate their price of anarchy as a function of the prediction

error, focusing on two very well-studied classes of games: scheduling games and multicast network formation

games.

CCS Concepts: • Theory of computation → Quality of equilibria; Network games.

Additional KeyWords and Phrases: mechanism designwith predictions, price of anarchy, cost-sharing protocols

ACM Reference Format:
Vasilis Gkatzelis, Kostas Kollias, Alkmini Sgouritsa, and Xizhi Tan. 2022. Improved Price of Anarchy via

Predictions. In Proceedings of the 23rd ACM Conference on Economics and Computation (EC ’22), July 11–15,

2022, Boulder, CO, USA. ACM, New York, NY, USA, 29 pages. https://doi.org/10.1145/3490486.3538296

1 INTRODUCTION
In this paper we revisit two classic decentralized resource allocation problems, scheduling games

and network formation games, aiming to achieve improved price of anarchy bounds by leveraging

predictions. Like many of the important games in algorithmic game theory, these two classes of

games correspond to special cases of a very general model defined using a network with load-

dependent cost functions. Given a graph𝐺 = (𝑉 , 𝐸) and a set of 𝑛 users 𝑁 , each user 𝑖 needs to use

a path in order to connect from a source vertex 𝑠𝑖 ∈ 𝑉 to a terminal vertex 𝑡𝑖 ∈ 𝑉 . For each edge

𝑒 ∈ 𝐸, if a total load of ℓ players choose to use it, then this generates a cost 𝑐𝑒 (ℓ), which is passed

on to the players using it. The players strategically choose their paths, aiming to minimize their

cost, and the performance of the induced game is evaluated using its price of anarchy: the social

cost in the “worst” Nash equilibria of the game, over the optimal social cost.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’22, July 11–15, 2022, Boulder, CO, USA.

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9150-4/22/07. . . $15.00

https://doi.org/10.1145/3490486.3538296

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

529

https://doi.org/10.1145/3490486.3538296
https://doi.org/10.1145/3490486.3538296
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490486.3538296&domain=pdf&date_stamp=2022-07-13

For example, in the well-studied multicast network formation game [4, 9, 23, 37, 38], all the users

share the same source 𝑠 , and the cost functions are constant (𝑐𝑒 (ℓ) = 𝑐𝑒 for all 𝑒 ∈ 𝐸 and ℓ > 0).

The initial work on this problem assumed that the cost of each edge is divided equally among its

users, but this can give rise to Nash equilibria that are very inefficient, leading to a price of anarchy

that grows linearly with the number of agents. If we knew exactly the set of users in advance (i.e.,

if we knew the set of terminals that would need to be connected to the source), then we could

more carefully determine how to share the cost of each edge among its users, leading to a price of

anarchy of 2 [14]. However, in decentralized systems this information may not be fully known in

advance, so the cost-sharing protocol may need to decide how to share the cost using only limited

information.

To better understand the impact of information limitations on the performance of cost-sharing

protocols, prior work has introduced a range of models, depending on the amount of information

available to the designer: i) oblivious protocols, that are independent of the graph structure and the

set of users, ii) resource-aware protocols, that are aware of the graph structure and its cost functions,

but unaware of the set of users, and iii) omniscient protocols, that know everything about the

instance at hand.
1
For each of these information models, a long list of papers has aimed to design

cost-sharing protocols that are stable (i.e., guarantee the existence of pure Nash equilibria), and

optimize the price of anarchy. However, even for resource-aware cost-sharing protocols, the results

are often very pessimistic, unless we impose significant restrictions on the class of instances.

Although omniscient protocols require a possibly unrealistic amount of information, the as-

sumption that resource-aware protocols have no information regarding the anticipated demand is

unrealistic as well. Given the vast amounts of historical data that is stored and readily available,

even off-the-shelf machine learning algorithms could provide a reasonable estimate regarding

future demand. Therefore the severe information limitations that lead to these impossibility results

may be unnecessarily pessimistic: a decentralized protocol could be augmented with some estimate

regarding the future demand, and it could use this estimate as a guide for its cost-sharing decisions.

To overcome analogous pessimistic results due to information limitations, the online algorithms

literature introduced a model for designing and analyzing “algorithms with predictions” (see, e.g.,

[3, 6, 7, 27, 39, 45]). The goal is to design algorithms, enhanced with a prediction, that perform very

well when the prediction is accurate, yet still maintain some worst-case guarantees even if it is

not. The learning-augmented framework was very recently also adapted to multiagent systems

involving strategic agents, giving rise to a research agenda focusing on the design of (centralized)

“mechanisms with predictions” [2]. In this paper we extend this agenda beyond centralized systems

and study the extent to which predictions can enable the design of more practical protocols for

distributed multiagent systems, leading to improved price of anarchy bounds. The main question

that we focus on is:

Can decentralized protocols, enhanced with predictions, achieve improved price of

anarchy bounds, and how do these bounds depend on the prediction accuracy?

Two central notions in the literature on “algorithms with predictions” are consistency and

robustness. The consistency of an algorithm (or, in our case, a protocol) is the performance guarantee

that it achieves, assuming that the prediction it was provided with is accurate. Its robustness is the

worst-case performance guarantee that it achieves, irrespective of the quality of the prediction.

In some problems, achieving the optimal consistency needs to come at the cost of robustness, i.e.,

it is impossible to also simultaneously achieve the best known worst-case guarantees. Our main

results in this paper provide decentralized protocols that simultaneously achieve the best-possible

consistency and the best known robustness guarantees, up to small constants.

1
Some of the prior work also refers to oblivious protocols as “uniform” and to omniscient ones as “non-uniform.”

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

530

1.1 Our Results
To evaluate the potential impact of predictions on the price of anarchy bounds that we can achieve,

we design learning-augmented cost-sharing protocols that are enhanced with predictions regarding

the demand that they should anticipate. Depending on the setting at hand, these predictions are on

the volume of the demands or the locations of the terminals that they are associated with. Guided

by this information, the protocols carefully adjust the cost share of each user and, even though

they remain oblivious to the actual demand that appears, they achieve bounds that improve as

a function of the prediction quality. In fact, we prove that our protocols simultaneously achieve

the best known worst-case guarantees (robustness) and the best possible guarantees when the

predictions are accurate (consistency), up to small constant factors.

Games with General Cost Functions over Series-Parallel Graphs (Section 3). We first

consider the class of symmetric games (all the agents need to connect the same source to the same

terminal, so they have the same set of strategies) over series-parallel graphs, which generalizes

the classic scheduling games (which can be captured by a simple two-node graph with parallel

edges). For each edge of the graph, we allow its cost function to be an arbitrary non-decreasing

function of the number of agents using it. This is in contrast to most of the prior literature which

imposes some type of structure or parameterization on the allowable cost functions (e.g., concavity,

convexity, or some type of boundedness) (e.g., [17, 26, 46]). For this class of games, the best known

price of anarchy upper bound via a resource-aware protocol is𝑂 (𝑛), and prior work has shown that

without information regarding the number of users, no stable cost-sharing protocol (i.e., a protocol

that admits a pure Nash equilibrium) can achieve a price of anarchy better than𝑂 (
√
𝑛) [17]. In fact

this lower bound holds even for scheduling games with capacitated constant cost functions
2
. To

overcome this obstacle, we consider the design of cost-sharing protocols that are enhanced with a,

possibly erroneous, prediction regarding the total number of agents that will be using the system.

Our main result in this setting is a cost-sharing protocol that uses the prediction, 𝑛̂, on the

number of users to achieve a price of anarchy of 4 when the predictions are correct, i.e., when

𝑛 = 𝑛̂. More surprisingly, we prove that this protocol maintains a good price of anarchy bound even

if the prediction is inaccurate: if 𝛿 = |𝑛 − 𝑛̂ | is the prediction error, we prove a price of anarchy

bound of min{4(𝛿 + 1), 4𝑛}. In other words, when the prediction is accurate, this protocol achieves

a price of anarchy of 4, while simultaneously guaranteeing a price of anarchy of 𝑂 (𝑛), even if the

prediction is arbitrarily inaccurate (which matches the best known worst-case price of anarchy

bound, even for the special case of scheduling games). Furthermore, this bound provides a major

improvement even if the prediction is not perfect, i.e., 𝛿 is positive but not too large.

To achieve this result, we first use an online algorithm to determine how many agents should

be using each edge, assuming the prediction is correct. Then, our cost-sharing protocol applies

carefully chosen penalties if the number of agents using it exceeds this “threshold”. If we made these

penalties arbitrarily high, this would guarantee a good outcome when the prediction is correct (no

agent would want to suffer the penalty). However, such penalties could lead to very bad price of

anarchy bounds if the number of agents was underpredicted, i.e., 𝑛̂ < 𝑛, since some of them would

be forced to suffer these, otherwise unnecessary, penalties. On the other hand, if the penalties

are not high enough, then the agents may end up exceeding the edge usage thresholds anyway,

leading to inefficient outcomes and high price of anarchy, even if the prediction is correct. The

main novelties of our protocol are two-fold: i) First, the way in which it determines the threshold

for each edge as a function of the graph structure and the prediction 𝑛̂, using an online algorithm

2
Given two constants, 𝑐 and 𝑡 , a capacitated constant cost function is equal to 𝑐 as long as its input is at most 𝑡 and infinite

otherwise.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

531

(see Section 3.1 for more details). ii) Second, the way it determines how much to penalize the agents

that exceed this threshold, in order to optimize the aforementioned trade-off.

Multicast Network Formation Games over General Graphs (Section 4). We then also

revisit the well-studied class of multicast network formation games over general graphs. For this

class of games, we know that without any information regarding the set of users, no stable cost-

sharing protocol can achieve a price of anarchy better than𝑂 (log(𝑛)) [21]. Aiming to overcome this

obstacle, we turn to mechanisms that are enhanced with predictions regarding the users. However,

since these are not symmetric games (each agent may want to connect to a different terminal

node in the graph, so their set of strategies can be very different), knowing the number of agents

alone is not sufficient. Therefore we consider the design of cost-sharing protocols equipped with a

prediction on the set of terminals 𝐻 ⊆ 𝑉 , corresponding to the locations in the graph where the

agents’ terminals are expected to appear.

In this setting, we design a cost-sharing protocol that uses the predicted terminals𝐻 and achieves

a price of anarchy of 4 when the predictions are correct. Crucially, as in the previous setting, our

bounds provide good price of anarchy guarantees even if the predictions are inaccurate. First, as a

warm-up, we assume that the set of agents is known and the predictions are regarding the location

of each agent’s terminal. If the distance of each terminal 𝑡𝑖 from its predicted location is 𝑑𝑖 and

the overall prediction error is 𝐷 =
∑

𝑖∈𝑁 𝑑𝑖 , then we achieve a price of anarchy upper bound of

min

{
4 + 6𝐷

OPT , log𝑛
}
, where OPT is the optimal social cost. What is particularly appealing about

this bound is that it maintains the best possible worst-case price of anarchy of𝑂 (log𝑛), even if the

predictions are arbitrarily inaccurate, while simultaneously guaranteeing much stronger bounds

when the prediction error is small. We then move one step further and also consider settings where

even the number of agents that will arrive is unknown. In this case, we define the prediction error

by generalizing a framework recently proposed in the context of online graph algorithms [6]. If 𝑅

is the set of terminals of the agents that actually appear and 𝐻 is the set of predicted terminals

(where |𝑅 | may not be equal to |𝐻 |), then we consider any assignment 𝜂 : 𝑅′→ 𝐻 ′, where 𝑅′ ⊆ 𝑅

is a subset of agent terminals and 𝐻 ′ ⊆ 𝐻 is a subset of predicted locations (not all terminals need

to be assigned to a prediction and multiple terminals could be assigned to the same prediction).

For a given assignment 𝜂 (and the corresponding subsets 𝑅′ and 𝐻 ′), we let 𝛿 be the number of

unassigned terminals and predicted locations (i.e., 𝛿 = |𝐻 \ 𝐻 ′ | + |𝑅 \ 𝑅′ |) and let 𝐷 be the total

distance with respect to the assignment (i.e., the sum over all the terminals 𝑡 ∈ 𝑅′ of their distance
from their assigned prediction 𝜂 (𝑡) ∈ 𝐻 ′). If D is the set of all (𝐷, 𝛿) pairs that correspond to

some assignment 𝜂, our main result on multicast network formation games is a protocol whose

price of anarchy is at most min

{
min(𝐷,𝛿) ∈D

{
4 + 6𝐷

OPT + log𝛿
}
, log𝑛

}
. Note that if |𝐻 | = |𝑅 |, i.e.,

the number of agents is predicted correctly, this bound is at least as good as the bound we achieved

when the set of agents is known: we can just use the minimum weight matching of agents to

predictions as the assignment 𝜂. However, our new bound can be even stronger, since we can also

keep some agents unassigned, or assigned to the same prediction.

The way that our cost-sharing protocol achieves this bound is very different from the approach

used in the symmetric setting of Section 3 (the fact that they both yield a price of anarchy of 4

for perfect predictions is merely a coincidence). Using the predicted terminals, the protocol first

computes the minimum spanning tree that connects these predicted terminals to the source. Then,

based on the structure of this tree, it determines a priority ordering over the predicted terminals,

and this ordering is extended to all other nodes as well, based on their proximity to the predicted

terminals. Once this global priority ordering of all the vertices has been determined, the cost-sharing

protocol is rather straightforward: the whole cost of each edge is charged to the user whose terminal

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

532

has the highest priority. Therefore, the main novelty of the protocol is the way in which this global

ordering is determined, using the graph structure and the predictions as input.

1.2 Related Work
Our work extends the literature on resource-aware cost-sharing protocols for optimizing equilibria,

specifically the Price of Anarchy (PoA) and Price of Stability (PoS) metrics. The PoA measures the

worst-case inefficiency of the worst equilibrium in the game whereas PoS measures the inefficiency

of the best equilibrium in the game. Christodoulou and Sgouritsa [21] were the first to study this

family of mechanisms, focusing on the class of network formation games (like Chen et al. [14] did,

from the perspective of oblivious mechanisms). They showed that, when the graph is outerplanar,

resource-aware mechanisms can outperform oblivious ones, but they also proved that an analogous

separation is not possible for general graphs. In subsequent work, Christodoulou et al. [17] designed

resource-aware mechanisms for the case of scheduling games (which correspond to special case

of parallel-link graphs), and were able to achieve a constant PoA for instances with convex and

concave cost functions. Subsequently, Christodoulou et al. [16] extended many of these results to

graphs, beyond parallel links, including directed acyclic or series parallel graphs, with convex or

concave cost functions on the edges.

Resource-aware cost-sharing protocols with additional prior information regarding the users

were also part of the model studied by Christodoulou and Sgouritsa [21] for the case of network

formation games. Specifically, rather than assuming that the source vertex of each agent is chosen

adversarially, they assumed that it is drawn from a distribution over all vertices. The cost-sharing

mechanism is aware of this stochastic process, so they designed a mechanism that leverages

this information to achieve a constant PoA. Following-up on this work, Christodoulou et al. [19]

extended the constant PoA to include Bayesian Nash equilibria. Recently, Gkatzelis et al. [26]

showed that with some information about the users the PoA of resource-aware protocols can be

significantly improved for the class of scheduling games with bounded cost functions. In this work,

two different types of information are considered: knowing two of the participating agents’ IDs in

advance, or knowing the probability with which each of the agents appears in the system.

An important characterization of the stability property for oblivious cost-sharing mechanisms

was given in [28]. They proved that these mechanisms correspond to the class of generalized

weighted Shapley values. Leveraging this characterization, Gkatzelis et al. [25] analyzed this family

of cost-sharing protocols and showed that the PoA achieved by the unweighted Shapley value is

optimal for a large family of network cost-sharing games.

Other papers on the design and analysis of cost-sharing protocols include the work of Harks

and von Falkenhausen [31], who focused on capacitated facility location games, Gairing et al.

[24] who proved tight bounds for general cost-sharing mechanisms, Marden and Wierman [40],

who considered a utility maximization model, and Harks et al. [29], who considered a model that

imposes some constraints over the portions of the cost that can be shared among the agents. Also,

Harks and Miller [30] studied the performance of several cost-sharing protocols in a setting where

each player can declare a different demand for each resource.

The PoS has received less attention than the PoA in terms of designing mechanisms that seek to

optimize it by leveraging the network’s structure or information about the participating agents.

Instead, the PoS has been studied for specific classes of omniscient cost-sharing mechanisms,

such as fair cost-sharing and weighted Shapley values. Beginning with the directed network

formation game, Anshelevich et al. [4] proved tight logarithmic bounds for the directed network

formation game with fair cost-sharing. Subsequently, Kollias and Roughgarden [36] showed tight

PoS bounds for the class of weighted Shapley values. Various works study fair cost-sharing in the

more challenging undirected model for network formation games. For broadcast games (where all

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

533

nodes are terminals for players who originate at the same root) a (large) constant upper bound

was given by Bilò et al. [10]. For multicast games (where all players have the same root but not all

nodes are player terminals) the best known upper bound is 𝑂 (log𝑛/log log𝑛) [38], where 𝑛 is the

number of players. In general networks, the upper bound is 𝑂 (log𝑛), which follows by [4]. The

best known lower bounds for the various models are small constants given by Bilò et al. [9]. The

work of Lee and Ligett [37] and Freeman et al. [23] presented evidence that constant upper bounds

are likely in multicast and general games. Going beyond network formation games, Christodoulou

and Gairing [15] prove asymptotically tight bounds on the PoS in games with polynomial edge

cost functions.

Finally, there are several othermodels in which cost-sharing has played a central role. For example,

Moulin and Shenker [44] focused on participation games, while Moulin [43] and Mosk-Aoyama and

Roughgarden [42] studied queueing games. Caragiannis et al. [12] recently also pointed out some

connections between cost-sharing mechanisms and the literature on coordination mechanisms,

which started with the work of Christodoulou et al. [18] and led to several papers focusing on

scheduling games from a designer’s perspective [1, 5, 8, 11, 20, 22, 34, 35]. Just like the research

on cost-sharing mechanisms, most of the work on coordination mechanisms studies how the PoA

varies with the choice of local scheduling policies on each machine (i.e., the order in which to

process jobs assigned to the same machine).

Our work is also related to the design of learning-augmented algorithms which leverage predic-

tions from machine-learned models. The underlying goal is to design algorithms that gracefully

degrade as the prediction error increases and still achieve non-trivial worst-case guarantees. Several

recent papers study optimization problems in this context. Lykouris and Vassilvitskii [39] study

such algorithms for the caching problem, Gollapudi and Panigrahi [27] and Anand et al. [3] focus

on rent or buy, Purohit et al. [45] on scheduling, Bhaskara et al. [7] on online learning, Medina and

Vassilvitskii [41] on reserve price optimization, and Hsu et al. [32] on frequency estimation. More

recently Azar et al. [6] focus on a collection of graph problems and Agrawal et al. [2] on the design

of strategyproof mechanisms with predictions.

2 PRELIMINARIES
We consider two classes of games played on an undirected graph 𝐺 = (𝑉 , 𝐸) by a set of players

𝑁 = {1, . . . , 𝑛}, corresponding to the set of users. In these games, each player 𝑖 ∈ 𝑁 needs to

choose a path in 𝐺 that connects a designated source 𝑠 (which is the same for all players) to a

terminal 𝑡𝑖 (which may be different for each player). Each edge 𝑒 ∈ 𝐸 is characterized by a cost

function 𝑐𝑒 : N → R+, where 𝑐𝑒 (ℓ) is the cost of the edge 𝑒 when the load on the edge, i.e., the

number of player using it, is ℓ . The cost function for every edge 𝑒 satisfies 𝑐𝑒 (0) = 0, i.e., no cost

is induced on 𝑒 unless some player uses it. The first class of games that we consider is symmetric

series parallel network games, where every player 𝑖 ∈ 𝑁 has the same terminal 𝑡 and the graph

𝐺 is series-parallel (series-parallel graphs are defined recursively using two simple composition

operations; see Section 3 for a formal definition.) In this class of games, we allow the cost function

of each edge to be an arbitrary non-decreasing function. Note that this includes the well-studied

class of scheduling games, which can be captured using a multigraph with just two vertices, 𝑠 and

𝑡 , and multiple parallel links connecting them (where each edge corresponds to a machine). The

second class of games that we consider is multicast network formation games, where the graph can

be arbitrary and each agent can have a different terminal 𝑡𝑖 , but the cost 𝑐𝑒 (ℓ) of each edge 𝑒 ∈ 𝐸 is

equal to some edge-specific constant, 𝑐𝑒 , for any load ℓ ⩾ 1.

Strategy Profile In all games, let P𝑖 be the set of all possible strategies for player 𝑖 , i.e., the set
of paths between the vertices that player 𝑖 wants to connect. In the network formation games that

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

534

we consider, this set can be different for each player, but the series-parallel class game is symmetric,

meaning that every player has the same strategy set P𝑖 . In the special case of scheduling games,

the strategies are single edges (singleton games) and P𝑖 = 𝐸 for all 𝑖 . A pure strategy profile is

given by p = (𝑝1, 𝑝2 . . . , 𝑝𝑛), where 𝑝𝑖 ∈ P𝑖 is the path chosen by each player 𝑖 ∈ 𝑁 .

Cost-Sharing Protocol Let 𝑆𝑒 (p) = {𝑖 ∈ 𝑁 : 𝑒 ∈ 𝑝𝑖 } be the set of players using edge 𝑒 under

strategy profile p, and let ℓ𝑒 (p) = |𝑆𝑒 (p) | be the load on edge 𝑒 . The cost of 𝑒 in this allocation is

𝑐𝑒 (ℓ𝑒 (p)), and this cost needs to be covered by the set 𝑆𝑒 (p) of players using it. In this paper we

design cost-sharing methods, i.e. protocols that decide how the cost of each edge will be distributed

among its users. Formally, a cost-sharing protocol Ξ defines, at each strategy profile p, a cost share
𝜉𝑖𝑒 (p) for each 𝑖 ∈ 𝑁 and 𝑒 ∈ 𝐸. For player 𝑖 with 𝑒 ∉ 𝑝𝑖 , we have 𝜉𝑖𝑒 (p) = 0, so only the players

using an edge are responsible for its cost. We denote the total cost share of player 𝑖 in p as:

𝜉𝑖 (p) =
∑︁
𝑒∈𝐸

𝜉𝑖𝑒 (p).

A cost-sharing protocol is budget-balanced if for every edge 𝑒 and profile p we have

∑
𝑖∈𝑁 𝜉𝑖𝑒 (p) =

𝑐𝑒 (ℓ𝑒 (p)), i.e., the cost shares that the protocol distributes to the players using an edge adds up to

exactly the cost of the edge.

Ordered Protocol An ordered protocol is a priority-based cost-sharing protocol that is defined

as follows. Given an ordering 𝜋 of the players and a strategy profile p, the amount that the ordered

protocol charges each player 𝑖 for each edge 𝑒 is

𝜉𝑖𝑒 (p) = 𝑐𝑒 (ℓ<𝑖𝑒 (p) + 1) − 𝑐𝑒 (ℓ<𝑖𝑒 (p)),

where ℓ<𝑖𝑒 (p) is the number of players using 𝑒 that precede player 𝑖 in order 𝜋 . In other words, if

we assumed that the players of 𝑆𝑒 (p) arrive one at a time according to the ordering 𝜋 , each player

𝑖 can be thought of as increasing the cost of edge 𝑒 by 𝑐𝑒 (ℓ<𝑖𝑒 (p) + 1) − 𝑐𝑒 (ℓ<𝑖𝑒 (p)) and is charged

that marginal cost.

Classes of GamesWe aim to design protocols that yield efficient outcomes in all games within a

class of games. Formally, a class of network games Γ = (N ,G, C,Ξ) comprises a universe of players

N , a universe of graph G, whose cost functions are chosen from the set C, and a cost sharing

protocol Ξ. A game Γ ∈ Γ then consists of a graph 𝐺 ∈ G with cost functions from C, a set of
players 𝑁 ∈ N , and the cost sharing protocol Ξ.

Pure Nash Equilibrium (PNE) The goal of every player is to minimize her total cost share.

Therefore, different cost-sharing protocols would lead to different classes of games and possibly

very different outcomes. The efficiency of a game, thus, crucially depends on the choice of the

protocol. To evaluate the performance of a cost-sharing protocol, we measure the quality of the

pure Nash equilibria in the game that it induces. A strategy profile p is a pure Nash equilibrium

(PNE) of a game Γ if for every player 𝑖 ∈ 𝑁 who uses path 𝑝𝑖 in p, and every alternative path

𝑝 ′𝑖 ∈ P𝑖 , we have
𝜉𝑖 (p) = 𝜉𝑖 (𝑝𝑖 , p−𝑖) ⩽ 𝜉𝑖 (𝑝 ′𝑖 , p−𝑖),

where p−𝑖 denotes the vector of strategies for all players other than 𝑖 . This expression suggests

that in a PNE no player can decrease her cost share by unilaterally deviating from path 𝑝𝑖 to 𝑝
′
𝑖 if

all other players’ strategies remain fixed. A PNE is a natural prediction regarding the outcome of

the game, but not all games are guaranteed to possess a PNE. To address this issue, prior work on

cost-sharing (as well as this paper) focuses on the design of stable protocols, i.e., ones that they

induce games with at least one PNE for every possible graph and set of players.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

535

Price of Anarchy (PoA) To evaluate the efficiency of a strategy profile p, we use the total
cost 𝑐 (p) = ∑

𝑒∈𝐸 𝑐𝑒 (ℓ𝑒 (p)), and we quantify the performance of the cost-sharing protocol using

the price of anarchy measure. Given a cost-sharing protocol Ξ, the price of anarchy (PoA) of the

induced class of games Γ = (N ,G, C,Ξ) is defined to be the worst-case ratio of equilibrium cost to

optimal cost over all games in Γ. Let 𝐸𝑞(Γ) be the set of pure Nash equilibria and 𝐹 (Γ) be the set of
all pure strategy profiles of the game Γ, then

PoA(Γ) = sup

Γ∈Γ

maxp∈𝐸𝑞 (Γ) 𝑐 (p)
minp∗∈𝐹 (Γ) 𝑐 (p∗)

.

Overcharging In addition to budget-balanced protocols, we also consider mechanisms that may

use overcharging. In effect, these mechanisms define a modified cost function 𝑐𝑒 (ℓ) ⩾ 𝑐𝑒 (ℓ) for all
𝑒, ℓ and then apply a budget-balanced protocol on these modified functions. As a result, the social

cost of a given strategy profile p may be increased from 𝑐 (p) to 𝑐 (p) = ∑
𝑒∈𝐸 𝑐𝑒 (ℓ𝑒 (p)). For these

protocols, we measure the quality of the equilibria using the new costs, but we still compare their

performance to the optimal solution based on the original cost functions:

PoA(Γ) = sup

Γ∈Γ

maxp∈𝐸𝑞 (Γ) 𝑐 (p)
minp∗∈𝐹 (Γ) 𝑐 (p∗)

.

Informational Assumptions In this paper we focus on the design of resource-aware cost-

sharing protocols with predictions. The prediction is a forecast on the set of players, specifically the

cardinality of 𝑁 for symmetric series parallel network games and the set of terminals for multicast

network games. The information available to the cost-sharing protocol of each edge is: the set of

players using the edge, the structure of the network, the cost functions, and the prediction. The

protocol does not know the realized set of players not using it or the strategies they have selected.

3 GAMES WITH GENERAL COST FUNCTIONS OVER SERIES-PARALLEL NETWORKS
In this section we study the impact of predictions in a class of symmetric games with general

cost functions over series-parallel graphs. The graph has a designated source 𝑠 and a designated

terminal 𝑡 , and all users need to connect from 𝑠 to 𝑡 . This is a significant generalization of the class

of scheduling games, which is captured by a multigraph of just two vertices 𝑠 and 𝑡 connected by

multiple parallel edges (note that for any such multigraph we can construct an equivalent graph

without parallel edges, where for each edge (𝑠, 𝑡) of the original multigraph we introduce a new

vertex 𝑤 and two edges (𝑠,𝑤) and (𝑤, 𝑡)). Even for the special case of scheduling games, prior

work has shown that no budget-balanced cost-sharing mechanism can achieve a PoA better than

𝑂 (log𝑛) [31], even with full information (i.e., if it knows the set of users). Without information

regarding the number of users, no cost-sharing mechanism can achieve a PoA better than 𝑂 (
√
𝑛),

even with overcharging, and the best known PoA upper bound is 𝑂 (𝑛) [17].
Our main result in this section is a resource-aware mechanism with overcharging that does not

know the number of users, but is enhanced with a prediction 𝑛̂ regarding this number. We prove

that the PoA of this mechanism is at most min{4(𝛿 + 1), 4𝑛}, where 𝛿 = |𝑛 − 𝑛̂ | is the prediction
error. This implies a PoA of 4 if the prediction is accurate, it maintains the best known PoA of𝑂 (𝑛)
no matter how bad the prediction is, and it also provides a major improvement if the prediction is

inaccurate but the error is not too large. Notably, in contrast to prior work that imposes structural

restrictions on the types of cost functions considered, our results work for general non-decreasing

cost functions.

To define how our mechanism shares the cost generated on each edge of the series-parallel

graph, we first (in Section 3.1) define an online algorithm that determines how a sequence of

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

536

requests should be directed through the network, if we did not know what the total number of

requests (we provide more details regarding why the use of an online algorithm is desirable in

that section). This algorithm, combined with a prediction 𝑛̂ regarding the number of users, allows

us to define a “threshold” on the number of users that we should expect on each edge of the

network, assuming that the prediction is correct. Then (in Section 3.2), as a warm-up, we start

by focusing on cost-sharing for the special case of parallel-link graphs. We design a cost-sharing

mechanism that applies a penalty if the number of users on an edge exceeds that threshold. Then

(in Section 3.3), we extend this cost-sharing idea to the more demanding class of instances involving

general series-parallel graphs.

Series-Parallel Graphs. A series-parallel graph (SPG) is constructed by performing a (not neces-

sarily unique) sequence of series and parallel compositions of smaller SPGs, starting from the basic

SPG, which is a single edge (𝑠, 𝑡). We refer to 𝑠 as the source and 𝑡 as the sink.

• Given two SPGs 𝐶1 and 𝐶2 with sources 𝑠1, 𝑠2, and sinks 𝑡1, 𝑡2, we form a new SPG 𝐶 by

merging 𝑠1 and 𝑠2 into one source 𝑠 , and merging 𝑡1 and 𝑡2 into a new sink, 𝑡 . This is known

as the parallel composition of 𝐶1 and 𝐶2.

• Given two SPGs 𝐶1 and 𝐶2 with sources 𝑠1, 𝑠2, and sinks 𝑡1, 𝑡2, we form a new SPG 𝐶 by

merging 𝑡1 and 𝑠2 and letting 𝑠 = 𝑠1 be the new source and 𝑡 = 𝑡2 be the new sink. This is

known as the series composition of 𝐶1 and 𝐶2.

3.1 Online Algorithm
In this section we present an online algorithm for sequentially and myopically allocating players to

paths of a series-parallel network, connecting the source to the sink. This algorithm is a crucial

component for the design of our cost-sharing mechanisms both for scheduling games (parallel-

link) and general series-parallel graphs. Specifically, this centralized algorithm is used as a guide

regarding the outcome that our decentralized cost-sharing mechanisms aim to implement as a Nash

equilibrium. We first provide some intuition regarding the benefits of using an online algorithm as

a guide, rather than directly aiming for the optimal solution.

The Benefits of Using an Online Algorithm. Note that, if we trust that the prediction 𝑛̂ will always

be accurate, we can easily enforce an optimal outcome: since the mechanism knows the graph and

the cost functions, it can compute the optimal strategy profile when 𝑛̂ players are in the system,

which we denote by OPT(𝑛̂), and this strategy profile would determine how many players should

be using each edge of the graph. If we let ℓ∗𝑒 be the predicted optimal load assigned to each edge 𝑒 ,

then the cost-sharing mechanism could penalize any player exceeding the ℓ∗𝑒 threshold on any edge

𝑒 by charging them an arbitrarily large cost. As a result, if the prediction is correct, the optimal

strategy profile would be the only equilibrium, leading to a PoA of 1.

However, what if the prediction was actually inaccurate and the actual number of players 𝑛

is less than the predicted number of players 𝑛̂? In that case, the resulting Nash equilibria of the

mechanism described above can be arbitrarily bad. For example, consider the multigraph with

two vertices 𝑠 and 𝑡 and two parallel edges, connecting these two vertices. Given three constants

𝑎1 ≪ 𝑎2 ≪ 𝑎3, let the cost function of the top edge be 𝑐1 (ℓ) = 𝑎1 if ℓ ⩽ 𝑛̂ − 1 and 𝑐1 (ℓ) = 𝑎3 if ℓ ⩾ 𝑛̂,

and the cost function of the bottom edge be 𝑐2 (ℓ) = 𝑎2 for any ℓ ⩾ 1. Then, the optimal assignment

OPT(𝑛̂) assuming the total number of players is 𝑛̂ would have all players using the bottom edge, but

if the actual number of players 𝑛 is smaller than that, they should all use the top edge. To enforce

the OPT(𝑛̂) outcome and achieve optimal consistency, the aforementioned protocol would heavily

penalize any players using the top edge. As a result, if 𝑛 < 𝑛̂, the players would either be restricted

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

537

to using the bottom edge, or they would be forced to suffer an unnecessary penalty, both of which

would lead to high PoA.

The main difficulty is that the optimal assignment OPT(𝑛), i.e., the way in which the players

are allocated to paths in this assignment, can change a lot even with small changes in 𝑛. As a

result, a mechanism that tries to enforce the optimal assignment is bound to be very sensitive to

prediction errors. To overcome this obstacle, we follow the approach of Gkatzelis et al. [26] and,

rather than aiming to enforce the optimal outcome, we instead aim to enforce the outcome of an

online algorithm which may be suboptimal, but is much more “well-behaved”. Specifically, the

outcome of an online algorithm does not change radically as a function of the number 𝑛 of arriving

users: an online algorithm decides how to assign each arriving user irrevocably, without knowing

how many other users would arrive in the future. Therefore, if ℓ𝑒 (𝑛̂) is the load that the online

algorithm would assign to each edge 𝑒 if 𝑛̂ players arrive, then ℓ𝑒 (𝑛) ⩽ ℓ𝑒 (𝑛̂) for all 𝑛 ⩽ 𝑛̂. This way,

if the actual number of players is less than what was predicted, restricting these users to a load of

no more than ℓ𝑒 (𝑛̂) for each edge 𝑒 would still permit a relatively efficient assignment, namely the

assignment with load ℓ𝑒 (𝑛) on each edge.

In the rest of this subsection we define an online algorithm and prove that the assignment 𝐴(𝑛)
that the algorithm outputs, when 𝑛 users arrive, always approximates the optimal solution within

a factor 4 (Theorem 3.3), i.e., it has competitive ratio max𝐺,𝑛 {𝑐 (𝐴(𝑛))/𝑐 (OPT(𝑛))} = 4.

Online Algorithm Definition. To simplify the description of the online algorithm, without loss

of generality we normalize the cost functions so that the cost of OPT(1) is 1 (this can be achieved

by multiplying all cost functions by the same constant). For each 𝑘 ∈ N, let 𝑛𝑘 = max{𝑞 ∈ N :

𝑐 (OPT(𝑞)) < 2
𝑘 } be the largest number of players such that the optimal social cost for assigning

these players remains less than 2
𝑘
; due to the normalization, 𝑛0 = max{𝑞 ∈ N : 𝑐 (OPT(𝑞)) = 0}.

Using this definition, let ℓ∗
𝑘𝑒

denote the number of players using edge 𝑒 in the optimal allocation

when the total number of players is 𝑛𝑘 .

When the 𝑞𝑡ℎ user arrives, our algorithm finds the smallest value 𝑘 such that for some path 𝑝 ,

for all edges 𝑒 ∈ 𝑝 , the load so far is less than ℓ∗
𝑘𝑒

and assigns one arbitrary of those paths to the

user. The algorithm then increments the loads ℓ𝑒 for every edge 𝑒 on the selected path by one and

moves on to the next player. A formal description is provided as Algorithm 1 below.

ALGORITHM 1: GoWithTheFlow Online Algorithm

𝑞 ← 0 ; // Initialize counter for the number of players

ℓ𝑒 ← 0 for each edge 𝑒 ∈ 𝐺 ; // Initialize all loads to zero

while there exist more unassigned players do
𝑞 ← 𝑞 + 1
𝑘𝑞 ← min{𝑘 ∈ N | ∃𝑝 ∈ P : ℓ𝑒 < ℓ∗

𝑘𝑒
,∀𝑒 ∈ 𝑝}

𝑝𝑞 ← any 𝑝 ∈ P : ℓ𝑒 < ℓ∗
𝑘𝑞𝑒

,∀𝑒 ∈ 𝑝 ; // Choose any path that respects ℓ∗
𝑘𝑞𝑒

ℓ𝑒 ← ℓ𝑒 + 1 for all 𝑒 ∈ 𝑝𝑞 ; // Assign the player to the chosen path

end

This online algorithm, generalizes an algorithm that Gkatzelis et al. [26] introduced in the

context of parallel-link graphs. The main difficulty in generalizing this algorithm beyond parallel-

link graphs is the fact that in series-parallel graphs each path may need to use multiple edges

to connect the source to the sink. Therefore, the feasibility of allocating the paths in an online

fashion becomes significantly more complicated. In fact, as we discuss in Section 5, using the same

approach on a “Braess paradox” graph (which is just slightly more complicated than a series-paralel

graph) can run into trouble. In the rest of this subsection, we first prove Lemma 3.1, which allows

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

538

us to verify the feasibility of the algorithm (Corollary 3.2), and then we prove that the algorithm’s

competitive ratio is 4 (Theorem 3.3). Due to space limitations, we defer the proofs of Lemma 3.1

and Corollary 3.2 to Appendix A.

Lemma 3.1. Given a series-parallel graph and any 𝑘 and 𝑘 ′ (where 𝑘 ⩾ 𝑘 ′ ⩾ 1), let 𝑂 and 𝐴′ be
any two assignments of 𝑘 and 𝑘 ′ players, respectively, to paths from 𝑠 to 𝑡 in the graph. Then, there

always exists an allocation 𝐴 of 𝑘 players such that for any edge 𝑒 ,

• ℓ (𝐴𝑒) ⩾ ℓ (𝐴′𝑒) and
• ℓ (𝐴𝑒) ⩽ max{ℓ (𝐴′𝑒), ℓ (𝑂𝑒)} for any edge 𝑒 ,

where ℓ (𝐴′𝑒), ℓ (𝑂𝑒), and ℓ (𝐴𝑒) are the number of players routed via 𝑒 in 𝐴′, 𝑂 and 𝐴, respectively,

We give the following corollary of Lemma 3.1 with respect to GoWithTheFlow. We then use it

to bound the competitive ratio of GoWithTheFlow.

Corollary 3.2. For any 𝑞 ⩽ 𝑛𝑘 , the 𝑘𝑞 value computed by GoWithTheFlow is at most 𝑘 .

Theorem 3.3. The GoWithTheFlow online algorithm for allocating flows over series parallel

graphs guarantees a competitive ratio of 4.

Proof. Let 𝑛 be the actual number of players, and let 𝑘 ∈ N be the minimum value such that

𝑛 ⩽ 𝑛𝑘 . By Corollary 3.2, we have that

𝑐 (𝐴(𝑛)) ⩽
𝑘∑︁
𝑖=1

OPT(𝑛𝑖) < 2
𝑘+1,

while the optimal cost is OPT(𝑛) ⩾ 2
𝑘−1

, otherwise 𝑘 wouldn’t be minimum, leading to a competitive

ratio of less than 2
𝑘+1/2𝑘−1 = 4. □

3.2 Cost-Sharing Mechanism with Predictions for Games with Parallel-link
We first analyze the class of parallel-link graphs as a warm-up. In a parallel-link graph, there are

two vertices 𝑠 and 𝑡 and multiple parallel edges connecting them. Each player needs to pick one

of these edges and a cost-sharing mechanism determines how the cost induced on each edge is

to be shared among the players that use it. In deciding how to share that cost, a resource-aware

mechanism knows the cost function of every edge in the graph, but not the actual number of users

𝑛. In this subsection, we propose a resource-aware mechanism that is enhanced with a prediction 𝑛̂

regarding the total number of users, which allows us to achieve stronger PoA bounds.

Our cost-sharing mechanism uses the prediction 𝑛̂, along with the GoWithTheFlow algorithm,

to determine the cost that each user is responsible for. It first simulates what the GoWithThe-

Flow algorithm would do if the number of users is, indeed, 𝑛̂, which gives rise to the assignment

𝐴(𝑛̂) with a load of ℓ̂𝑒 on each edge 𝑒 . Then, in any strategy profile where the number of users on

an edge 𝑒 exceeds ℓ̂𝑒 , the mechanism penalizes these users, so that this strategy profile will not be

an equilibrium when the prediction is correct, i.e., 𝑛 = 𝑛̂. Specifically, if the prediction is correct,

then there must exist another edge 𝑒 ′ whose load in this strategy profile is at most ℓ̂𝑒′ − 1, which
means that any penalized user can unilaterally deviate to this edge and avoid the penalty.

Cost-Sharing Mechanism. Let ℓ̂𝑒 be the load assigned to edge 𝑒 in the allocation 𝐴(𝑛̂) and let

𝑊 = 𝑐 (𝐴(𝑛̂)) + 𝜖 for some arbitrarily small 𝜖 > 0. To capture the penalties that the mechanism

imposes, we define the new cost functions 𝑐 for each edge 𝑒 as follows:

• If ℓ𝑒 ⩽ ℓ̂𝑒 (no penalties case), then 𝑐𝑒 (ℓ𝑒) = 𝑐𝑒 (ℓ𝑒).
• If ℓ𝑒 > ℓ̂𝑒 (penalties case), then 𝑐𝑒 (ℓ𝑒) = max{𝑐𝑒 (ℓ𝑒 − 1) +𝑊, 𝑐𝑒 (ℓ𝑒))}.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

539

Then, given this adjusted cost function 𝑐 and an arbitrary ordering 𝜋 over the users, we use the

ordered protocol (see Section 2) to share the adjusted cost of each edge among its users.
3
Note that

for any edge 𝑒 , if ℓ𝑒 ⩽ ℓ̂𝑒 , the protocol is budget-balanced. On the other hand, if ℓ𝑒 > ℓ̂𝑒 , then the

last ℓ𝑒 − ℓ̂𝑒 users of the edge (according to 𝜋) suffer a cost at least𝑊 (because this is defined as the

minimum marginal increase of 𝑐 for additional load beyond ℓ̂𝑒). Due to space limitations, we omit

the proof of the underprediction case, the complete proof is included in Appendix B.

Theorem 3.4. Our cost-sharing mechanism is stable and, given a prediction with error 𝛿 = |𝑛̂ − 𝑛 |,
it guarantees a price of anarchy of at most min{4(𝛿 + 1), 4𝑛}.

Proof. We show that for any PNE p in the game induced by our cost-sharing mechanism:∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)) and

∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)) .

First, note that the stability of themechanism, i.e., the PNE existence guarantee, is directly implied by

the fact that we use an ordered protocol for sharing the modified cost [28]. We now proceed to prove

the price of anarchy bound by considering two cases, depending on whether the predicted number

of players is higher than the ones that actually arrived (overprediction) or lower (underprediction).

In what follows, ℓ𝑒 is the load of edge 𝑒 under p.

Overprediction case: 𝑛̂ > 𝑛. We first show that in p, ℓ𝑒 ⩽ ℓ̂𝑒 for any edge 𝑒 (recall that ℓ̂𝑒 is the

load assigned to edge 𝑒 in the allocation 𝐴(𝑛̂)). Assume for contradiction that for some edge 𝑒 , we

have ℓ𝑒 > ℓ̂𝑒 . This implies that there exists an edge 𝑒 ′ where ℓ𝑒′ < ℓ̂𝑒′ , since 𝑛̂ > 𝑛. Then consider the

highest ranked player 𝑖 on 𝑒 , her payment is at least𝑊 = 𝑐 (𝐴(𝑛̂)) + 𝜖 . However, she can decrease

her cost by moving to edge 𝑒 ′, where her charge is at most

𝑐𝑒 (ℓ𝑒 + 1) ⩽ 𝑐𝑒 (ℓ̂𝑒) ⩽ 𝑐 (𝐴(𝑛̂)) <𝑊 .

Since such unilateral deviation exists, the outcome cannot be a PNE, contradicting our assumption.

Now suppose that in p some player 𝑖 chooses an edge 𝑒 such that ℓ𝑒 > ℓ𝑒 (𝐴(𝑛)). Note that

𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)), otherwise she can reduce her cost by moving to another edge 𝑒 ′ such that

ℓ𝑒′ < ℓ𝑒′ (𝐴(𝑛)) (there is at least one, since at least one user deviated from 𝐴(𝑛)). Now since in any

PNE ℓ𝑒 ⩽ ℓ̂𝑒 , for any edge 𝑒 , there are at most min{𝛿, 𝑛} deviations from 𝐴(𝑛). Therefore the total
cost in p is,∑︁

𝑖∈𝑁
𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)) +

∑︁
𝑖:𝑝𝑖∉𝐴(𝑛)

𝜉𝑖 (p) ⩽ (𝛿 + 1) · 𝑐 (𝐴(𝑛)) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)).

similar arguments give the results of the underprediction case. □

3.3 Cost-Sharing Mechanism with Predictions for Series-Parallel Networks
Now, using the intuition developed in the more tractable case of parallel-link graphs, we extend

our results to general series-parallel graphs. In doing so, we need to overcome a few non-trivial

obstacles. For example, unlike the parallel-link case, the strategies of the users are now not singleton,

i.e., a path may contain more than one edges. As a result, if we apply a penalty on all of the edges

on some user’s path, this can accumulate, leading to PoA bounds that are proportional to the length

of the paths. To avoid this issue, we carefully use the structure of the graph and the flows allocated

by the GoWithTheFlow, and ensure that the penalties are distributed across the network.

3
For this we may consider a global ordering 𝜋 over the universe N of players. For any instance of the game with a set of

players 𝑁 ∈ N, this global ordering implies an ordering over the players in 𝑁 that are actually participating. Note that this

ordering 𝜋 can also be chosen at random, or it can be updated periodically to ensure a fair treatment of the players ex-ante,

or in the long run, respectively.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

540

Cost-Sharing Mechanism. Using the GoWithTheFlow algorithm, we derive the allocation 𝐴(𝑛̂)
for 𝑛̂ players. Let 𝑐 (𝐴𝐶 (𝑛̂)) denote the cost of the allocation 𝐴(𝑛̂) restricted to a connected com-

ponent 𝐶 of the graph that forms a series-parallel subgraph. We first define a constant𝑊𝐶 for

each component 𝐶 iteratively by following the decomposition of graph 𝐺 . To start, we define

𝑊𝐺 = 𝑐 (𝐴𝐺 (𝑛̂)) + 𝜀 for an arbitrarily small value 𝜀 > 0. Suppose now that for some component

𝐶 ,𝑊𝐶 > 𝑐 (𝐴𝐶 (𝑛̂)). If 𝐶 is constructed by the parallel composition of 𝐶1 and 𝐶2, then we define

𝑊𝐶1
=𝑊𝐶2

=𝑊𝐶 . And if 𝐶 is constructed by the series composition of 𝐶1 and 𝐶2, then we define

𝑊𝐶𝑖
=𝑊𝐶 · 𝑐 (𝐴𝐶𝑖

(𝑛̂))/𝑐 (𝐴𝐶 (𝑛̂)), for 𝑖 ∈ {1, 2}. The constant𝑊𝐶 for each component𝐶 satisfies the

following two properties:

(1) 𝑊𝐶 > 𝑐 (𝐴𝐶 (𝑛̂)).
(2) For any path 𝑝 connecting the endpoints 𝑠𝐶 , 𝑡𝐶 of 𝐶 ,

∑
𝑒∈𝑝𝑊𝑒 =𝑊𝐶 .

We now update the cost functions with𝑊𝐶 . Let ℓ̂𝐶 be the number of players using component 𝐶

under allocation 𝐴(𝑛̂) (i.e., the number of players whose path contains a sub-path connecting the

source of 𝐶 to the sink of 𝐶), where 𝑛̂ is the prediction. Each edge 𝑒 is a component, so this also

defined the edge load ℓ̂𝑒 . We define the new cost functions 𝑐𝑒 for each edge 𝑒 as follows:

• if ℓ𝑒 ⩽ ℓ̂𝑒 , 𝑐𝑒 (ℓ𝑒) = 𝑐𝑒 (ℓ𝑒)
• if ℓ𝑒 > ℓ̂𝑒 , 𝑐𝑒 (ℓ𝑒) = max(𝑐𝑒 (ℓ𝑒 − 1) +𝑊𝑒 , 𝑐𝑒 (ℓ𝑒)).

We then use the simple ordered protocol with the new cost function by considering an arbitrary

global ordering 𝜋 of players.

For the rest of the section we denote by ℓ𝐶 the actual number of players using component 𝐶

under some PNE. Note that for any component𝐶 , if ℓ𝐶 ⩽ ℓ̂𝐶 , the protocol is budget-balanced, and if

ℓ𝐶 > ℓ̂𝐶 , each extra player using 𝐶 pays at least𝑊𝐶 by definition. Due to space limitations, we omit

the proofs of the lemmas and underprediction case, the complete proof is included in Appendix B.

Theorem 3.5. Our cost-sharing mechanism for series-parallel networks is stable and, given a

prediction error 𝛿 = |𝑛 − 𝑛̂ |, it guarantees a price of anarchy of at most min{4(𝛿 + 1), 4𝑛}.

Proof. We show that for any PNE p in the game induced by our cost-sharing mechanism:∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)) and

∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)) .

First, note again that the stability of the mechanism is directly implied by the fact that we use

an ordered protocol for sharing the modified cost. We now proceed to prove the price of anarchy

bound by considering two cases, depending on whether the predicted number of players is higher

than the ones that actually arrived (overprediction) or lower (underprediction).

Overprediction case: 𝑛̂ ⩾ 𝑛. We first show that for all components 𝐶 , we have ℓ𝐶 ⩽ ℓ̂𝐶 . Assume

for contradiction that this is not the case and, following the decomposition of𝐺 , let 𝐶1 be the first

component such that ℓ𝐶1
> ℓ̂𝐶1

. For this to happen, some component𝐶 is constructed by the parallel

composition of 𝐶1 and some 𝐶2, where ℓ𝐶 ⩽ ℓ̂𝐶 and in turn ℓ𝐶2
< ℓ̂𝐶2

. We use the following two

lemmas to show that at least one player can decrease her cost by deviating from 𝐶1 to 𝐶2.

Lemma 3.6. Consider any two allocations 𝐴 and 𝐴′ with the same number of players, 𝑘 . If for some

component 𝐶 we have ℓ (𝐴𝐶) > ℓ (𝐴′
𝐶
), there exists a path 𝑝 from the source of 𝐶 to its sink, such that

ℓ (𝐴𝑒) > ℓ (𝐴′𝑒) for all 𝑒 ∈ 𝑝 .

Lemma 3.7. For any component 𝐶 , if ℓ𝐶 − ℓ̂𝐶 > 0, then the ℓ𝐶 − ℓ̂𝐶 preceding players according to

the ordering 𝜋 using 𝐶 are charged𝑊𝑒 for every edge 𝑒 that they use in 𝐶 .

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

541

By Lemma 3.7, there exist a player 𝑖 using 𝐶1 that is charged at least𝑊𝐶1
for using 𝐶1 (by

definition of𝑊𝐶1
). By Lemma 3.6, there exists a path 𝑝 in 𝐶2 such that ℓ𝑒 < ℓ̂𝑒 for all 𝑒 ∈ 𝑝 . By the

definition of𝑊𝐶 , we have that𝑊𝐶1
=𝑊𝐶 > 𝑐 (𝐴𝐶 (𝑛̂)) > 𝑐 (𝐴𝐶2

(𝑛̂)). Since player 𝑖 can deviate to

path 𝑝 and pay less, such allocation is not a PNE which is a contradiction.

Having proved that in any PNE, only paths of 𝐴(𝑛̂) are used, we will bound the induced cost by

using the property of the GoWithTheFlow algorithm: that is, if ℓ∗
𝐶
to be the number of players

using some component 𝐶 in 𝐴(𝑛), ℓ̂𝐶 ⩾ ℓ∗
𝐶
. We define 𝛿𝐶 = ℓ̂𝐶 − ℓ∗𝐶 ⩾ 0 to be the additional number

of players in the PNE that are routed via𝐶 in𝐴(𝑛̂) comparing to𝐴(𝑛); note that 𝛿𝐺 = 𝛿 . We further

define 𝑑𝐶 = max{ℓ𝐶 − ℓ∗𝐶 , 0} to be the excess of the players using 𝐶 compared to 𝐴(𝑛) (obviously
𝑑𝐺 = 0), and 𝐷𝐶 to be the set of the 𝑑𝐶 lowest ranked players using 𝐶 (obviously 𝐷𝐺 = ∅). The
following lemma is a key lemma in order to conclude the proof for this case.

Lemma 3.8. For the PNE p, let p𝐶 be the allocation p restricted to component 𝐶 . Then, for any

component 𝐶 ,

𝑐 (p𝐶) ⩽ min{𝛿𝐶 + 1, ℓ𝐶 } · 𝑐 (𝐴𝐶 (𝑛)) +
∑︁
𝑖∈𝐷𝐶

𝜉𝑖 (p𝐶).

Applying Lemma 3.8 to the whole graph 𝐺 , and noticing that 𝐷𝐺 = ∅, 𝛿𝐺 = 𝛿 and ℓ𝐺 = 𝑛∑︁
𝑖∈𝑁

𝜉𝑖 (p) = 𝑐 (p) ⩽ min{𝛿 + 1, 𝑛} · 𝑐 (𝐴(𝑛)) ⩽ 4min{𝛿 + 1, 𝑛} · 𝑐 (OPT(𝑛)),

where the last inequality comes from Theorem 3.3. similar arguments give the results of the

underprediction case. □

4 MULTICAST GAMES: GENERAL NETWORKS AND CONSTANT COST FUNCTIONS
We now move on to study multicast network cost-sharing games which, unlike the games in the

previous section, are not symmetric: each player 𝑖 has a given terminal vertex 𝑡𝑖 which determines

the player’s set of strategies, i.e., the paths from the source 𝑠 to 𝑡𝑖 . In this regard, a complete prediction

does not only forecast the number of players; it also needs to specify where the players will appear,

i.e., their terminal vertices. Prior work has shown that without any information regarding the

players and terminals, the PoA of any budget-balanced resource-aware mechanism is Ω(log𝑛) [21].
In this section, we design cost-sharing mechanisms that are enhanced with predictions regarding

the participating players’ terminal locations. More specifically, the input to the mechanism is the

graph𝐺 = (𝑉 , 𝐸) with edge weights 𝑐𝑒 ,∀𝑒 ∈ 𝐸, and a subset of the vertices 𝐻 ⊆ 𝑉 that corresponds

to the predicted terminals for the players.

Our mechanisms achieve a constant price of anarchy when the prediction is correct (i.e., constant

consistency), while maintaining a worst-case price of anarchy upper bound of 𝑂 (log𝑛) (which
matches the best possible worst-case price of anarchy of any resource-aware mechanism), irrespec-

tive of how imprecise the prediction may be (i.e., asymptotically optimal robustness). In fact, we

prove a general price of anarchy upper bound as a function of the prediction error, showing that

the mechanism’s performance gracefully transitions from a constant to log𝑛 as the error increases.

Our mechanisms process the underlying graph and the prediction and they produce an ordering

over all the vertices in the graph. Then an ordered cost-sharing protocol is used based on this

ordering of the vertices. We remark that any ordered cost-sharing protocol, and therefore ours, is

stable, i.e., it always admits a PNE, [28].

First, as a warm-up, we consider the case where the number of players in the system is known

but their terminal locations are not. However, due to space limitations, we deferred this section to

Appendix C. In this case, the mechanism is provided with a predicted terminal location for each

agent and the error is the aggregate metric distance of each true terminal from the predicted one.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

542

In the rest of this section, we focus on the more demanding case where even the number of players

in the system is unknown.

4.1 Cost-Sharing Mechanism for an Unknown Set of Players
Rather than assuming that the predicted terminals’ cardinality is always correct, as we did in

the warm-up discussion of Appendix C, we now consider predictions with estimates on both the

number of players (terminals) and their possible locations, which may or may not be accurate. That

is, the designer is given a set of 𝐻 corresponding to potential terminals, which may not be the same

as the set of the actual terminals 𝑅 that appear, in terms of both size (i.e., |𝑅 | may not be equal to

|𝐻 |) and terminals’ location. We adopt and generalize the framework for measuring the error in

online graph algorithms defined in [6], which captures both error types: the number of terminals

that may not predicted correctly and the distance between the predicted location and the actual

terminal. In order to compute the error, we have the option to associate each actual terminal with

a predicted point or to keep it “unmatched”. Each terminal may be associated with at most one

predicted point (the one that is the closest to it
4
), but we allow each predicted point to be associated

with more than one terminal (note that this model is more general than the one considered in Azar

et al. [6] where each predicted point may be associated with at most one terminal). Similarly to

actual points, we may keep some predicted points “unmatched".

Formally, let 𝑅′ ⊆ 𝑅 be the set of terminals that are associated with some predicted point and

𝐻 ′ ⊆ 𝐻 be the set of predicted points that are associated with at least one terminal. We denote

by 𝜂 (𝑡) the predicted point for terminal 𝑡 ∈ 𝑅′ and 𝑅′(𝑢) the set of terminals associated with the

predicted point 𝑢 ∈ 𝐻 ′. For a given assignment 𝜂 (and the corresponding subsets 𝑅′ and 𝐻 ′), the
prediction error is defined as a tuple (𝐷, 𝛿). 𝐷 is the distance metric error of 𝑅′ (defined in the

same way as in the previous section) i.e., 𝐷 =
∑

𝑡𝑖 ∈𝑅 𝑑𝑖 , where 𝑑𝑖 = 𝑑 (𝑡𝑖 , 𝜂 (𝑡𝑖)) and 𝑑 (·, ·) denotes
the shortest distance on the weighted graph. 𝛿 is the number of unmatched points (terminals and

predictions), i.e., 𝛿 = |𝑅 \ 𝑅′ | + |𝐻 \𝐻 ′ |, those can be seen as outliers. Note that for any assignment

𝜂 we have a different tuple (𝐷, 𝛿); we remark that our results hold for every assignment 𝜂 and,

therefore, any error pair (𝐷, 𝛿). See Figure 1 below for an illustration of the process.

Note that if |𝐻 | = |𝑅 |, i.e., the number of players is predicted correctly, this bound is at least as

good as the bound we achieved when the set of players is known (Appendix C): we can just use

the minimum weighted matching of players to predictions as the assignment 𝜂. However, our new

bound can be even stronger, since we can also keep some players unassigned, or assigned to the

same prediction.

Cost-Sharing Mechanism. Our cost sharing protocol defines an ordering 𝜋 over all the vertices in

𝐺 , and then uses the ordered cost-sharing protocol implied by this ordering. Therefore, the crucial

aspect of this protocol is the way in which the ordering 𝜋 is defined.

To define the ordering 𝜋 , let𝐺 ′ be the metric closure of the initial graph𝐺 , and let𝐺 ′[𝐻 ∪{𝑠}] be
the subgraph of 𝐺 ′ induced by the predicted set of terminals 𝐻 and the source 𝑠 . Then, let MST(𝐻)
be the minimum spanning tree of𝐺 ′[𝐻 ∪ {𝑠}] and let 𝜋𝐻 be the order in which the vertices in 𝐻

are visited by a depth-first-search traversal of MST(𝐻), starting from the source, 𝑠 . Now, using the

ordering 𝜋𝐻 over the vertices in 𝐻 , we define an ordering 𝜋 over all the vertices in𝐺 as follows.

We first assign each vertex 𝑣 ∈ 𝑉 to the vertex 𝜂 (𝑣) ∈ 𝐻 that is the closest to it (breaking ties

arbitrarily) and we let 𝜋 be any order over all vertices in 𝑉 that respects the order of the assigned

predicted points according to 𝜋𝐻 , i.e., for any two vertices 𝑢,𝑢 ′ ∈ 𝐻 such that 𝑢 precedes 𝑢 ′ in 𝜋𝐻 ,

and any two vertices 𝑣, 𝑣 ′ ∈ 𝑉 such that 𝜂 (𝑣) = 𝑢 and 𝜂 (𝑣 ′) = 𝑢 ′, we have 𝑣 preceding 𝑣 ′ in 𝜋 . The

4
If for some reason we wanted a different association, our result would still follow because the distance from any other

predicted point is bounded by the one to the closest point.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

543

s

1

2 3

45

6

7

8

9

10

11 12 13 14

15

16

17

18

19

20 2122

23

24

25

26

27

28

Fig. 1. An assignment (dashed lines) of all vertices to the predicted vertex (black). The solid lines represent a
minimum spanning tree on the predicted terminals. The order of the vertices that are matched with the same
predicted vertex are arbitrarily assigned.

vertices assigned to the same predicted terminal are arbitrary ordered. The order 𝜋 then yields an

ordered cost-sharing protocol Ξ, where the cost of each edge is charged in full to one of its users:

the one that precedes all of its other users according to 𝜋 .

We are now ready to give our main theorem for this setting by considering the above cost-sharing

mechanism. Due to space limitations we defer the proofs of the lemmas to Appendix D.

Theorem 4.1. If D is the set of all (𝐷, 𝛿) pairs that correspond to some assignment 𝜂, our cost-

sharing mechanism for multicast network formation games guarantees price of anarchy at most

min

{
min

(𝐷,𝛿) ∈D

{
4 + 6𝐷

OPT
+ log𝛿

}
, log𝑛

}
.

Proof. Suppose any assignment 𝜂 along with the corresponding error pair (𝐷, 𝛿). This gives an
order 𝜋 of all vertices. The log𝑛 term follows directly from [33] as in the proof of Theorem C.1.

Let p be any PNE induced by our cost-sharing mechanism. For simplicity we denote the cost-

share of each player 𝑖 with terminal 𝑡 as 𝜉𝑡 (p) instead of 𝜉𝑖 (p) and we denote 𝑑𝑡 = 𝑑 (𝑡, 𝜂 (𝑡)).5 In p,
each player 𝑖 would connect their terminal 𝑡 to the component formed by the players preceding

her in 𝜋 via shortest path in order to minimize her cost. If 𝑡 ′ is any terminal preceding 𝑡 in 𝜋 ,

(𝑡, 𝜂 (𝑡), 𝜂 (𝑡 ′), 𝑡 ′) is a path connecting 𝑡 with 𝑡 ′ and therefore with the component containing 𝑠 . We

can bound the cost share of player 𝑖 as follows

𝜉𝑡 (p) ⩽ 𝑑𝑡 + 𝑑 (𝜂 (𝑡), 𝜂 (𝑡 ′)) + 𝑑𝑡 ′ . (1)

Note that our distance error measurement 𝐷 captures the first and last terms in the right hand side.

For the rest of the proof we aim to bound the cost of the second term.

Starting from the MST(𝐻), for each prediction outliers 𝑣 ∈ 𝐻 \𝐻 ′, we remove the edge between

𝑣 and its parent in MST(𝐻). By doing so we separated the minimum spanning tree into at most

|𝐻 \ 𝐻 ′ | connected components disconnected from the source 𝑠 .See Figure 2 for an illustration of

this process. We denote the discounted graph as 𝐺𝐻 ′ .

We first bound the cost of 𝑑 (𝜂 (𝑡), 𝜂 (𝑡 ′)) for those 𝜂 (𝑡) that are not the first according to 𝜋𝐻 inside

the connected component that they belong to (Lemma 4.2). We then would use it to bound the

cost-shares of all players in 𝑅′ that are not the first according to the global ordering of the actual

5
We may assume without loss of generality that there exists at most one player with terminal at each vertex. If more than

one players have their terminal on the same vertex, all players but the first one among them according to 𝜋 would follow the

first one and be charged zero. This means that the outcome would be exactly the same even if those players weren’t there.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

544

s

Fig. 2. The figure shows the construction of 𝐺𝐻 ′ . The red, solid vertices are the set 𝐻 \ 𝐻 ′ and the dashed
lines are the ones that we remove from the MST(𝐻) in order to get the disconnected graph𝐺𝐻 ′ that is formed
by the four shown connected component.

terminals 𝜋 in all connected components (Claim 4.3). For the rest |𝐻 \𝐻 ′ | players who are the first

according to 𝜋 for each of the connected component
6
, we will again use the competitive ratio of

the Online Steiner tree problem [33].

We now focus on 𝜂 (𝑡) that are not the first terminal according to 𝜋𝐻 inside their connected

component. Note that the graph𝐺𝐻 ′ contains all the vertices of 𝐻
′
. For each connected component

𝑋 of 𝐺𝐻 ′ , let 𝐻
′(𝑋) ⊆ 𝐻 ′ be the vertices of 𝑋 that belongs to 𝐻 ′. Moreover, let 𝑓𝐻 ′ (𝑋) ∈ 𝐻 ′(𝑋) be

the vertex in 𝑋 that is first according to 𝜋𝐻 and for every other vertex 𝑣 ∈ 𝐻 ′(𝑋), let 𝑝𝑣 ∈ 𝐻 ′(𝑋)
be the vertex that precedes 𝑣 according to 𝜋𝐻 truncated to the vertices 𝐻 ′(𝑋).

Lemma 4.2.

∑
𝑋 ∈𝐺𝐻 ′

∑
𝑣∈𝐻 ′ (𝑋),𝑣≠𝑓𝐻 ′ (𝑋) 𝑑 (𝑣, 𝑝𝑣) ⩽ 2𝑐 (MST(𝐻 ′)) .

We now bound the cost-share of all players in 𝑅′ that are not the first according to the global

ordering of the actual terminals 𝜋 in all connected components. For each connected component

𝑋 of 𝐺𝐻 ′ , let 𝑅
′(𝑋) ⊆ 𝑅′ be the set of all terminals associated with some vertex in 𝐻 ′(𝑋), i.e.,

𝑅′(𝑋) = ∪𝑣∈𝐻 ′ (𝑋)𝑅′(𝑣) (recall that 𝑅′(𝑣) are the terminals associated with 𝑣 ∈ 𝐻 ′, i.e., that their
closest predicted point is 𝑣). Moreover, let 𝑓𝑅′ (𝑋) be the first terminal among 𝑅′(𝑋) (or equivalent
among 𝑅′(𝑓𝐻 ′ (𝑋))) according to 𝜋 . For every other terminal 𝑡 ∈ 𝑅′(𝑋), let 𝑝𝑡 ∈ 𝑅′(𝑋) be the terminal

that precedes 𝑡 according to 𝜋 truncated to the vertices 𝑅′(𝑋). We now bound the cost-share for all

terminals that are not the first according to 𝜋 in any 𝑅′(𝑋).

Lemma 4.3.

∑
𝑋 ∈𝐺𝐻 ′

∑
𝑡 ∈𝑅′ (𝑋),𝑡≠𝑓𝑅′ (𝑋) 𝜉𝑡 (p) ⩽ 2𝑐 (𝑀𝑆𝑇 (𝐻 ′)) + 2𝐷 .

We now bound the cost-shares of the rest of the terminals in 𝑅′, by using the competitive ratio of

the online Steiner tree problem [33]. Note that the optimum solution for connecting those terminals

is upper bounded by OPT, since those are a subset of the total set of terminals. Given that there are

at most 𝛿𝐻 = |𝐻 \ 𝐻 ′ | connected components in 𝐺𝐻 ′ ,∑︁
𝑋 ∈𝐺𝐻 ′

𝜉 𝑓𝑅′ (𝑋) (p) = log𝛿𝐻 · OPT .

Combining with Lemma 4.3 we get:∑︁
𝑡 ∈𝑅′

𝜉𝑡 (p) ⩽ log𝛿𝐻 · OPT + 2𝑐 (MST(𝐻 ′)) + 2𝐷 . (2)

Note that 𝑐 (MST(𝐻 ′)) ⩽ 2OPT + 2𝐷 . To see this, we compare the minimum Steiner tree of 𝐻 ′,
OPT(𝐻 ′), with the Steiner tree of 𝐻 formed by the union of OPT (the minimum Steiner tree on 𝑅)

6
Note that for the connected component that contains the source, this player is player 0 with terminal on the source.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

545

and the shortest path between 𝑡 and 𝜂 (𝑡) for all 𝑡 ∈ 𝑅′, we get:

𝑐 (MST(𝐻 ′)) ⩽ 2OPT(𝐻 ′) ⩽ 2

(
OPT +

∑︁
𝑡 ∈𝑅′

𝑑 (𝑡, 𝜂 (𝑡))
)
= 2OPT + 2𝐷,

Therefore (2) can be rewritten as:∑︁
𝑡 ∈𝑅′

𝜉𝑡 (p) ⩽ (log𝛿𝐻 + 4)OPT + 6𝐷 . (3)

Similarly, we can use the competitive ratio of the online Steiner tree problem [33] to bound the

cost-shares of the terminals in 𝑅 \ 𝑅′. For 𝛿𝑅 = |𝑅 \ 𝑅′ |, we have that∑︁
𝑡 ∈𝑅\𝑅′

𝜉𝑡 (p) ⩽ log𝛿𝑅 · OPT .

Combining this inequality with (3), implies the theorem. □

5 CONCLUSION AND FUTURE DIRECTIONS
In this work we extend the learning-augmented framework toward the design of decentralized

mechanisms in strategic settings. This framework has recently received a lot of attention in the

algorithm design literature and was very recently also extended to mechanism design. In our setting,

the information that the designer is missing is due to the decentralized nature of the system, and the

goal of this paper is to evaluate the extent to which predictions could overcome this obstacle. Our

main results show that augmenting decentralized mechanisms with predictions can lead to major

improvement in the price of anarchy bounds achievable in both scheduling games and multicast

network formation games. In the first class of games, we allow general cost functions, but restrict

the structure of the graph, while in the latter we allow a general graph structure and restrict the

types of cost functions. The most compelling direction for future research is to bridge this gap and

to evaluate the extent to which resource-aware mechanisms with predictions can achieve good

PoA bounds for more general combinations of graph structures and cost functions.

A first natural direction for future research would be to extend our results on series-parallel

graphs to more general graphs. However, even if we just slightly expand this family of graphs

to include the famous “Braess Paradox” graph, the approach of Section 3.1 runs into trouble. To

explain this obstacle, we provide an example of such a graph in Figure 3, where the notation {1, 𝑘2}
on edge (𝑠, 𝑎) implies that the cost of that edge is 1 if a single player uses it and 𝑘2 if two players use

it, where 𝑘 is some arbitrarily large value (and the costs are defined similarly for all other edges). If

we tried to design an analogous online algorithm with a bounded competitive ration for this graph,

the first player to arrive would need to be assigned to the path 𝑠 → 𝑎 → 𝑏 → 𝑡 for a cost of 3. If

not, then the cost of any alternative path would be at least 𝑘 + 1 and the competitive ratio of the

algorithm for the single player case would be proportional to 𝑘 (and, hence, unbounded). If the

algorithm commits to this assignment and a second player arrives, the algorithm would need to

suffer a cost of at least 𝑘2, no matter what path it chooses (since there will be at least two players

using either edge (𝑠, 𝑎) or (𝑏, 𝑡)). This, once again, would lead to an unbounded competitive ratio,

since the optimal solution for two players would be to schedule one of them through the path

𝑠 → 𝑎 → 𝑡 and the other one through 𝑠 → 𝑏 → 𝑡 , leading to a cost of 2𝑘 + 2.
However, the main reason why we used an online algorithm as a guide to begin with is that it

provided a threshold ℓ̂𝑒 for each edge 𝑒 such that if we enforce this threshold as a capacity constraint

on the number of players that use this edge, we can still achieve a good approximation even if

the true number of agents 𝑛 is less than the predicted number of agents 𝑛̂. The GoWithTheFlow

algorithm goes one step further and commits to a myopic assignment of players to specific paths

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

546

s t

a

b

{
1
, 𝑘
2

}

{𝑘, 𝑘}

{1, 1}

{𝑘, 𝑘}

{
1
, 𝑘
2

}
Fig. 3. An example of the difficulty in extending our results beyond series-parallel networks.

which is useful in our analysis (in identifying unilateral deviations in Lemma 3.6), but may not be

necessary. We could, instead, use the same online algorithm structure to determine these capacities

without myopically committing to an assignment of players to paths. This way we can maintain

the benefits discussed in Section 3.1 without running into the obstacles that we observed for the

Braess Paradox graph, above. Running this algorithm on the graph above for two players would

yield a capacity of 1 on all of its edges, which would be consistent with the optimal assignment.

In fact, this would maintain the competitive ratio of 4 much more broadly, but implementing its

assignment as a Nash equilibrium (as we did in this paper) would require a new argument for the

existence of unilateral deviations, as well as a different way of sharing the edge costs.

An alternative direction for future research would be to extend our results on multicast network

formation games to the multicommodity setting, where each player 𝑖 may also have a different

source 𝑠𝑖 (apart from a different sink 𝑡𝑖). However, we already know from Chen and Roughgarden

[13] that the PoA of any cost-sharing mechanism in this setting is Ω(log𝑛), even if the mechanism

is omniscient, i.e., even if it has full information regarding the agents (which is stronger than a

resource-aware mechanism with predictions). This observation points to an interesting distinction

between the cost-sharing setting that we study in this paper and some recent work on graph

algorithms by Azar et al. [6]: at a high level, the multicast setting that we study here bares some

similarities with the online Steiner tree problem, and the multicommodity setting is analogous to

the online Steiner forest problem. However, although the results of Azar et al. [6] on the online

Steiner tree problem are in line with the guarantees that we achieve in this paper, in their work

they also achieve a constant consistency for the online Steiner forest problem, which is impossible

for a cost-sharing mechanism in the multicommodity problem.

ACKNOWLEDGMENTS
The work of Vasilis Gkatzelis and Xizhi Tan was supported in part by NSF CAREER award CCF-

2047907. The work of Alkmini Sgouritsa was done while she was a Visiting Researcher at Google

Research.

REFERENCES
[1] Fidaa Abed and Chien-Chung Huang. 2012. Preemptive Coordination Mechanisms for Unrelated Machines. In

Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings

(Lecture Notes in Computer Science), Leah Epstein and Paolo Ferragina (Eds.), Vol. 7501. Springer, 12–23.

[2] Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan. 2022. Learning-Augmented Mechanism

Design: Leveraging Predictions for Facility Location. CoRR abs/2204.01120 (2022).

[3] Keerti Anand, Rong Ge, and Debmalya Panigrahi. 2020. Customizing ML Predictions for Online Algorithms. In

Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event

(Proceedings of Machine Learning Research), Vol. 119. PMLR, 303–313.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

547

[4] Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva Tardos, Tom Wexler, and Tim Roughgarden. 2008. The

Price of Stability for Network Design with Fair Cost Allocation. SIAM J. Comput. 38, 4 (2008), 1602–1623.

[5] Yossi Azar, Lisa Fleischer, Kamal Jain, Vahab S. Mirrokni, and Zoya Svitkina. 2015. Optimal Coordination Mechanisms

for Unrelated Machine Scheduling. Operations Research 63, 3 (2015), 489–500.

[6] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. 2022. Online Graph Algorithms with Predictions. In Proceedings

of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, January 9 - 12, 2022, Joseph (Seffi) Naor and Niv

Buchbinder (Eds.). SIAM, 35–66.

[7] Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Manish Purohit. 2020. Online Learning with Imperfect Hints.

In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event

(Proceedings of Machine Learning Research), Vol. 119. PMLR, 822–831.

[8] Sayan Bhattacharya, Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. 2014. Coordination mechanisms from

(almost) all scheduling policies. In Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January

12-14, 2014. 121–134.

[9] Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, and Gianpiero Monaco. 2013. Improved Lower Bounds on the Price

of Stability of Undirected Network Design Games. Theory Comput. Syst. 52, 4 (2013), 668–686.

[10] Vittorio Bilò, Michele Flammini, and Luca Moscardelli. 2013. The Price of Stability for Undirected Broadcast Network

Design with Fair Cost Allocation Is Constant. In 54th Annual IEEE Symposium on Foundations of Computer Science,

FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. 638–647.

[11] Ioannis Caragiannis. 2013. Efficient coordination mechanisms for unrelated machine scheduling. Algorithmica 66, 3

(2013), 512–540.

[12] Ioannis Caragiannis, Vasilis Gkatzelis, and Cosimo Vinci. 2017. Coordination Mechanisms, Cost-Sharing, and Ap-

proximation Algorithms for Scheduling. In Web and Internet Economics - 13th International Conference, WINE 2017,

Bangalore, India, December 17-20, 2017, Proceedings (Lecture Notes in Computer Science), Nikhil R. Devanur and Pinyan

Lu (Eds.), Vol. 10660. Springer, 74–87.

[13] Ho-Lin Chen and Tim Roughgarden. 2009. Network Design with Weighted Players. Theory Comput. Syst. 45, 2 (2009),

302–324.

[14] Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. 2010. Designing Network Protocols for Good Equilibria. SIAM

J. Comput. 39, 5 (2010), 1799–1832.

[15] George Christodoulou and Martin Gairing. 2016. Price of Stability in Polynomial Congestion Games. ACM Trans.

Economics and Comput. 4, 2 (2016), 10:1–10:17.

[16] George Christodoulou, Vasilis Gkatzelis, Mohamad Latifian, and Alkmini Sgouritsa. 2020. Resource-Aware Protocols

for Network Cost-Sharing Games. In EC ’20: The 21st ACM Conference on Economics and Computation, Virtual Event,

Hungary, July 13-17, 2020, Péter Biró, Jason D. Hartline, Michael Ostrovsky, and Ariel D. Procaccia (Eds.). ACM, 81–107.

[17] Giorgos Christodoulou, Vasilis Gkatzelis, and Alkmini Sgouritsa. 2017. Cost-Sharing Methods for Scheduling Games

under Uncertainty. In Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge, MA,

USA, June 26-30, 2017. 441–458.

[18] George Christodoulou, Elias Koutsoupias, and Akash Nanavati. 2009. Coordination mechanisms. Theoret. Comput. Sci.

410, 36 (2009), 3327–3336.

[19] George Christodoulou, Stefano Leonardi, and Alkmini Sgouritsa. 2019. Designing Cost-Sharing Methods for Bayesian

Games. Theory Comput. Syst. 63, 1 (2019), 4–25.

[20] George Christodoulou, Kurt Mehlhorn, and Evangelia Pyrga. 2014. Improving the Price of Anarchy for Selfish Routing

via Coordination Mechanisms. Algorithmica 69 (2014), 619–640.

[21] George Christodoulou and Alkmini Sgouritsa. 2019. Designing Networks with Good Equilibria under Uncertainty.

SIAM J. Comput. 48, 4, 1364–1396.

[22] Richard Cole, José R. Correa, Vasilis Gkatzelis, Vahab S. Mirrokni, and Neil Olver. 2015. Decentralized utilitarian

mechanisms for scheduling games. Games and Economic Behavior 92 (2015), 306–326.

[23] Rupert Freeman, Samuel Haney, and Debmalya Panigrahi. 2016. On the Price of Stability of Undirected Multicast

Games. In Web and Internet Economics - 12th International Conference, WINE 2016, Montreal, Canada, December 11-14,

2016, Proceedings (Lecture Notes in Computer Science), Yang Cai and Adrian Vetta (Eds.), Vol. 10123. Springer, 354–368.

[24] Martin Gairing, Konstantinos Kollias, and Grammateia Kotsialou. 2015. Tight Bounds for Cost-Sharing in Weighted

Congestion Games. In International Colloquium on Automata, Languages, and Programming. Springer, 626–637.

[25] Vasilis Gkatzelis, Konstantinos Kollias, and Tim Roughgarden. 2016. Optimal Cost-Sharing in General Resource

Selection Games. Operations Research 64, 6 (2016), 1230–1238.

[26] Vasilis Gkatzelis, Emmanouil Pountourakis, and Alkmini Sgouritsa. 2021. Resource-Aware Cost-Sharing Mechanisms

with Priors. In EC ’21: The 22nd ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021,

Péter Biró, Shuchi Chawla, and Federico Echenique (Eds.). ACM, 541–559.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

548

[27] Sreenivas Gollapudi and Debmalya Panigrahi. 2019. Online Algorithms for Rent-Or-Buy with Expert Advice. In

Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,

USA (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR,

2319–2327.

[28] Ragavendran Gopalakrishnan, Jason R. Marden, and Adam Wierman. 2014. Potential games are necessary to ensure

pure Nash equilibria in cost sharing games. Mathematics of Operations Research (2014).

[29] Tobias Harks, Martin Hoefer, Anja Huber, and Manuel Surek. 2018. Efficient Black-Box Reductions for Separable Cost

Sharing. In 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018,

Prague, Czech Republic (LIPIcs), Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella

(Eds.), Vol. 107. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 154:1–154:15.

[30] Tobias Harks and Konstantin Miller. 2011. The worst-case efficiency of cost sharing methods in resource allocation

games. Operations Research 59, 6 (2011), 1491–1503.

[31] Tobias Harks and Philipp von Falkenhausen. 2014. Optimal cost sharing for capacitated facility location games. Eur. J.

Oper. Res. 239, 1 (2014), 187–198.

[32] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-Based Frequency Estimation Algorithms. In 7th

International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

[33] Makoto Imase and Bernard M. Waxman. 1991. Dynamic Steiner Tree Problem. SIAM J. Discrete Math. 4, 3 (1991),

369–384.

[34] Nicole Immorlica, Li Erran Li, Vahab S. Mirrokni, and Andreas S. Schulz. 2009. Coordination mechanisms for selfish

scheduling. Theoretical Computer Science 410, 17 (2009), 1589–1598.

[35] Konstantinos Kollias. 2013. Nonpreemptive coordination mechanisms for identical machines. Theory of Computing

Systems 53, 3 (2013), 424–440.

[36] Konstantinos Kollias and Tim Roughgarden. 2015. Restoring Pure Equilibria to Weighted Congestion Games. ACM

Trans. Economics and Comput. 3, 4 (2015), 21:1–21:24.

[37] Euiwoong Lee and Katrina Ligett. 2013. Improved bounds on the price of stability in network cost sharing games. In

Proceedings of the fourteenth ACM Conference on Electronic Commerce, EC 2013, Philadelphia, PA, USA, June 16-20, 2013,

Michael J. Kearns, R. Preston McAfee, and Éva Tardos (Eds.). ACM, 607–620.

[38] Jian Li. 2009. An O(log(n)/log(log(n))) upper bound on the price of stability for undirected Shapley network design

games. Inf. Process. Lett. 109, 15 (2009), 876–878.

[39] Thodoris Lykouris and Sergei Vassilvitskii. 2018. Competitive Caching with Machine Learned Advice. In Proceedings

of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,

2018 (Proceedings of Machine Learning Research), Jennifer G. Dy and Andreas Krause (Eds.), Vol. 80. PMLR, 3302–3311.

[40] Jason R. Marden and Adam Wierman. 2013. Distributed Welfare Games. Oper. Res. 61, 1 (2013), 155–168.

[41] Andres Muñoz Medina and Sergei Vassilvitskii. 2017. Revenue Optimization with Approximate Bid Predictions. In

Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems

2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,

Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 1858–1866.

[42] Damon Mosk-Aoyama and Tim Roughgarden. 2009. Worst-case efficiency analysis of queueing disciplines. In

International Colloquium on Automata, Languages and Programming. Springer, 546–557.

[43] Hervé Moulin. 2008. The price of anarchy of serial, average and incremental cost sharing. Economic Theory 36, 3

(2008), 379–405.

[44] Hervé Moulin and Scott J. Shenker. 2001. Strategyproof sharing of submodular costs: budget balance versus efficiency.

Economic Theory 18, 3 (2001), 511–533.

[45] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algorithms via ML Predictions. In Advances

in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS

2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,

Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 9684–9693.

[46] Philipp von Falkenhausen and Tobias Harks. 2013. Optimal Cost Sharing for Resource Selection Games. Mathematics

of Operations Research 38, 1 (2013), 184–208.

A MISSING ANALYSIS FROM SECTION 3.1
Lemma 3.1. Given a series-parallel graph and any 𝑘 and 𝑘 ′ (where 𝑘 ⩾ 𝑘 ′ ⩾ 1), let 𝑂 and 𝐴′ be

any two assignments of 𝑘 and 𝑘 ′ players, respectively, to paths from 𝑠 to 𝑡 in the graph. Then, there

always exists an allocation 𝐴 of 𝑘 players such that for any edge 𝑒 ,

• ℓ (𝐴𝑒) ⩾ ℓ (𝐴′𝑒) and

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

549

• ℓ (𝐴𝑒) ⩽ max{ℓ (𝐴′𝑒), ℓ (𝑂𝑒)} for any edge 𝑒 ,

where ℓ (𝐴′𝑒), ℓ (𝑂𝑒), and ℓ (𝐴𝑒) are the number of players routed via 𝑒 in 𝐴′, 𝑂 and 𝐴, respectively,

Proof. Consider𝐶 be any connected component of the original graph that forms a series-parallel

subgraph, and let ℓ (𝐴′
𝐶
), ℓ (𝑂𝐶), and ℓ (𝐴𝐶) be the number of players that the allocations of 𝐴′, 𝑂 ,

and 𝐴, respectively, route through𝐶 (i.e., the total number of players whose assigned paths contain

a sub-path connecting the source of 𝐶 to the sink of 𝐶). We will define ℓ (𝐴𝐶) for every component

𝐶 (and hence for all edges) iteratively starting from the series parallel graph𝐺 and following its

decomposition. For 𝐺 , we define ℓ (𝐴𝐺) = ℓ (𝑂𝐺) = 𝑘 ⩾ 𝑘 ′ = ℓ (𝐴′
𝐺
). Suppose now that the lemma’s

statements are true for some component 𝐶 , i.e., ℓ (𝐴𝐶) ⩾ ℓ (𝐴′
𝐶
) and ℓ (𝐴𝐶) ⩽ max{ℓ (𝐴′

𝐶
), ℓ (𝑂𝐶)},

and let 𝐶1 and 𝐶2 be the two components whose composition led to 𝐶 .

• If𝐶 is constructed by the series composition of𝐶1 and𝐶2, we set ℓ (𝐴𝐶1
) = ℓ (𝐴𝐶2

) = ℓ (𝐴𝐶). It
is a property of series-parallel graphs that if a path passes through 𝐶 it should pass through

both𝐶1 and𝐶2. Therefore, ℓ (𝐴′𝐶1

) = ℓ (𝐴′
𝐶2

) = ℓ (𝐴′
𝐶
) and ℓ (𝑂𝐶1

) = ℓ (𝑂𝐶2
) = ℓ (𝑂𝐶). Hence, if

the two statements were true for 𝐶 , they should also be true for 𝐶1 and 𝐶2.

• If 𝐶 is constructed by the parallel composition of 𝐶1 and 𝐶2, ℓ (𝐴𝐶1
) and ℓ (𝐴𝐶2

) are chosen
such that

ℓ (𝐴′𝐶1

) ⩽ ℓ (𝐴𝐶1
) ⩽ max{ℓ (𝐴′𝐶1

), ℓ (𝑂𝐶1
)},

ℓ (𝐴′𝐶2

) ⩽ ℓ (𝐴𝐶2
) ⩽ max{ℓ (𝐴′𝐶2

), ℓ (𝑂𝐶2
)},

ℓ (𝐴𝐶1
) + ℓ (𝐴𝐶2

) = ℓ (𝐴𝐶).

To verify that such values exist, we first clarify that it is a property of series-parallel graphs

that if a path passes through 𝐶 it should pass through either 𝐶1 or 𝐶2. Therefore, ℓ (𝐴′𝐶) =
ℓ (𝐴′

𝐶1

) + ℓ (𝐴′
𝐶2

) and ℓ (𝑂𝐶) = ℓ (𝑂𝐶1
) + ℓ (𝑂𝐶2

). Then, note that

ℓ (𝐴′𝐶1

) + ℓ (𝐴′𝐶2

) = ℓ (𝐴′𝐶) ⩽ ℓ (𝐴𝐶),

by the lemma’s first statement on 𝐶 . Additionally,

max{ℓ (𝐴′𝐶1

), ℓ (𝑂𝐶1
)} +max{ℓ (𝐴′𝐶2

), ℓ (𝑂𝐶2
)} ⩾ max{ℓ (𝐴′𝐶1

) + ℓ (𝐴′𝐶2

), ℓ (𝑂𝐶1
) + ℓ (𝑂𝐶2

)}
= max{ℓ (𝐴′𝐶), ℓ (𝑂𝐶)}
⩾ ℓ (𝐴𝐶) ,

by the lemma’s second statement on 𝐶 . So, there exist values ℓ (𝐴𝐶1
) and ℓ (𝐴𝐶1

) that are
between the extreme values ℓ (𝐴′

𝐶1

),max{ℓ (𝐴′
𝐶1

), ℓ (𝑂𝐶1
)} and ℓ (𝐴′

𝐶2

),max{ℓ (𝐴′
𝐶2

), ℓ (𝑂𝐶2
)},

respectively that sum up to ℓ (𝐴𝐶). □.

Corollary 3.2. For any 𝑞 ⩽ 𝑛𝑘 , the 𝑘𝑞 value computed by GoWithTheFlow is at most 𝑘 .

Proof. Let𝐴′ be the allocation of GoWithTheFlow on 𝑞− 1 players and and𝑂 be the optimum

allocation for 𝑛𝑘 players. Lemma 3.1 states there exist an allocation 𝐴 of 𝑛𝑘 ⩾ 𝑞 players with

ℓ (𝐴𝑒′) ⩾ ℓ (𝐴′
𝑒′) for all edges 𝑒 ′. This means that in 𝐴 there exist 𝑛𝑘 − (𝑞 − 1) ⩾ 1 paths for which

each edge 𝑒 has load ℓ (𝐴𝑒) > ℓ (𝐴′𝑒). By Lemma 3.1 ℓ (𝐴𝑒) ⩽ max{ℓ (𝐴′𝑒), ℓ (𝑂𝑒)} = ℓ (𝑂𝑒). Note that
it cannot be that max{ℓ (𝐴′𝑒), ℓ (𝑂𝑒)} = ℓ (𝐴′𝑒) because this would mean that ℓ (𝐴𝑒) = ℓ (𝐴′𝑒). Overall,
we have that, given allocation 𝐴′, there exists at least one path 𝑝 such that ℓ (𝐴′𝑒) < ℓ (𝑂𝑒) for all
𝑒 ∈ 𝑝 , resulting in 𝑘𝑞 ⩽ 𝑘 . □

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

550

B COMPLETE PROOFS OF THEOREM 3.4 ANND THEOREM 3.5
Theorem 3.4. Our cost-sharing mechanism is stable and, given a prediction with error 𝛿 = |𝑛̂ − 𝑛 |,

it guarantees a price of anarchy of at most min{4(𝛿 + 1), 4𝑛}.

Proof. We will show that for any PNE p in the game induced by our cost-sharing mechanism, it

holds that: ∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)) and

∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)) .

First, note that the stability of themechanism, i.e., the PNE existence guarantee, is directly implied by

the fact that we use an ordered protocol for sharing the modified cost [28]. We now proceed to prove

the price of anarchy bound by considering two cases, depending on whether the predicted number

of players is higher than the ones that actually arrived (overprediction) or lower (underprediction).

In what follows, ℓ𝑒 is the load of edge 𝑒 under p.

Overprediction case: 𝑛̂ > 𝑛. We first show that in p, ℓ𝑒 ⩽ ℓ̂𝑒 for any edge 𝑒 (recall that ℓ̂𝑒 is the

load assigned to edge 𝑒 in the allocation 𝐴(𝑛̂)). Assume for contradiction that for some edge 𝑒 , we

have ℓ𝑒 > ℓ̂𝑒 . This implies that there exists an edge 𝑒 ′ where ℓ𝑒′ < ℓ̂𝑒′ , since 𝑛̂ > 𝑛. Then consider the

highest ranked player 𝑖 on 𝑒 , her payment is at least𝑊 = 𝑐 (𝐴(𝑛̂)) + 𝜖 . However, she can decrease

her cost by moving to edge 𝑒 ′, where her charge is at most

𝑐𝑒 (ℓ𝑒 + 1) ⩽ 𝑐𝑒 (ℓ̂𝑒) ⩽ 𝑐 (𝐴(𝑛̂)) <𝑊 .

Since such unilateral deviation exists, the outcome can not be a PNE, which contradicts our

assumption.

Now suppose that in p some player 𝑖 chooses an edge 𝑒 such that ℓ𝑒 > ℓ𝑒 (𝐴(𝑛)). Note that

𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)), otherwise she can reduce her cost by moving to another edge 𝑒 ′ such that

ℓ𝑒′ < ℓ𝑒′ (𝐴(𝑛)) (there is at least one, since at least one user deviated from 𝐴(𝑛)). Now since in any

PNE ℓ𝑒 ⩽ ℓ̂𝑒 , for any edge 𝑒 , there are at most min{𝛿, 𝑛} deviations from 𝐴(𝑛). Therefore the total
cost in p is,∑︁

𝑖∈𝑁
𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)) +

∑︁
𝑖:𝑝𝑖∉𝐴(𝑛)

𝜉𝑖 (p) ⩽ (𝛿 + 1) · 𝑐 (𝐴(𝑛)) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)).

Underprediction case: 𝑛̂ < 𝑛. Analogously, we first show that in p, 𝐴(𝑛̂) is fully utilized, i.e.,

ℓ𝑒 ⩾ ℓ̂𝑒 for all 𝑒 . Assume for contradiction, that for some edge 𝑒 , we have ℓ𝑒 < ℓ̂𝑒 . This implies that

there is an edge 𝑒 ′ such that ℓ𝑒′ > ℓ̂𝑒′ , since 𝑛 > 𝑛̂. Then consider the lowest ranked player 𝑖 on 𝑒 ′,
her current payment is at least𝑊 , whereas if she were to move to edge 𝑒 , her new cost would be

𝑐𝑒 (ℓ𝑒 + 1) ⩽ 𝑐𝑒 (ℓ̂𝑒) ⩽ 𝑐 (𝐴(𝑛̂)) <𝑊 .

Since such unilateral deviation exist, the outcome again cannot be a PNE which is a contradiction.

We now consider the cost of any player 𝑖 with an edge 𝑒 such that ℓ𝑒 > ℓ𝑒 (𝐴(𝑛̂)). Since 𝐴(𝑛̂) is
fully used, we know that there are exactly 𝛿 such users. Consider any such user 𝑖 and the edge

they pick 𝑒 . If ℓ𝑒 ⩽ ℓ𝑒 (𝐴(𝑛)), we have 𝜉𝑖 (p) ⩽ max(𝑊,𝑐 (𝐴(𝑛))) ⩽ 𝑐 (𝐴(𝑛)) + 𝜖 . If ℓ𝑒 > ℓ𝑒 (𝐴(𝑛)),
then there exist another edge 𝑒 ′ such that ℓ𝑒′ < ℓ𝑒′ (𝐴(𝑛)), since

∑
𝑒∈𝐸 ℓ𝑒 (𝐴(𝑛)) = 𝑛. Then, we also

have 𝜉𝑖 (p) ⩽ max(𝑊,𝑐 (𝐴(𝑛))) ⩽ 𝑐 (𝐴(𝑛)) + 𝜖 , otherwise player 𝑖 can deviate to 𝑒 ′ and pay at most

max(𝑊,𝑐 (𝐴(𝑛))). Since we can make 𝜖 arbitrarily small, for notational simplicity we henceforth

assume that 𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)). Therefore the total cost of any PNE is,∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛̂)) +
∑︁

𝑖,𝑝𝑖∉𝐴(𝑛̂)
𝜉𝑖 (p) ⩽ (𝛿 + 1) · 𝑐 (𝐴(𝑛)) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)) ,

where the last inequality comes from Theorem 3.3.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

551

At the same time, since there are only 𝑛 users and we showed that each user pays less than

𝑐 (𝐴(𝑛)) for any strategy she picks, we also have:∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 𝑛 · 𝑐 (𝐴(𝑛)) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)). □

Theorem 3.5. Our cost-sharing mechanism for series-parallel networks is stable and, given a

prediction error 𝛿 = |𝑛 − 𝑛̂ |, it guarantees a price of anarchy of at most min{4(𝛿 + 1), 4𝑛}.

Proof. We will show that for any PNE p in the game induced by our cost-sharing mechanism, it

holds that: ∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)) and

∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)) .

First, note again that the stability of the mechanism is directly implied by the fact that we use

an ordered protocol for sharing the modified cost. We now proceed to prove the price of anarchy

bound by considering two cases, depending on whether the predicted number of players is higher

than the ones that actually arrived (overprediction) or lower (underprediction).

Overprediction case: 𝑛̂ ⩾ 𝑛. We first show that, for all components 𝐶 , we have ℓ𝐶 ⩽ ℓ̂𝐶 . Assume

for contradiction that this is not the case and following the decomposition of 𝐺 , let 𝐶1 be the first

component such that ℓ𝐶1
> ℓ̂𝐶1

. For this to happen, some component𝐶 is constructed by the parallel

composition of 𝐶1 and some 𝐶2, where ℓ𝐶 ⩽ ℓ̂𝐶 and in turn ℓ𝐶2
< ℓ̂𝐶2

. We use the following two

lemmas to show that there exist at least one player that can decrease her cost by deviating from 𝐶1

to 𝐶2.

Lemma 3.6. Consider any two allocations 𝐴 and 𝐴′ with the same number of players, 𝑘 . If for some

component 𝐶 we have ℓ (𝐴𝐶) > ℓ (𝐴′
𝐶
), there exists a path 𝑝 from the source of 𝐶 to its sink, such that

ℓ (𝐴𝑒) > ℓ (𝐴′𝑒) for all 𝑒 ∈ 𝑝 .

Proof. First note that if 𝐶 is a basic SPG, i.e., if 𝐶 is an edge, then the statement is trivially true.

Now we use mathematical induction by following the construction of𝐶 . Suppose that the statement

holds for SPG 𝐶1 and 𝐶2, and consider the new SPG 𝐶 constructed by them:

• If 𝐶 is constructed by the series composition of 𝐶1 and 𝐶2, it holds that ℓ (𝐴𝐶1
) = ℓ (𝐴𝐶2

) =
ℓ (𝐴𝐶) and ℓ (𝐴′

𝐶1

) = ℓ (𝐴′
𝐶2

) = ℓ (𝐴′
𝐶
). If ℓ (𝐴𝐶) > ℓ (𝐴′

𝐶
) it must be that ℓ (𝐴𝐶1

) > ℓ (𝐴′
𝐶1

) and
ℓ (𝐴𝐶2

) > ℓ (𝐴′
𝐶2

). By our induction hypothesis, there exist a path from 𝑠1 to 𝑡1 (the source

and sink, respectively, of 𝐶1) and a path from 𝑠2 to 𝑡2 (the source and sink, respectively, of

𝐶2). Furthermore, since the series composition merges vertex 𝑡1 with 𝑠2, we therefore have a

path 𝑝 from 𝑠 to 𝑡 such that ℓ (𝐴𝑒) > ℓ (𝐴′𝑒) for all 𝑒 ∈ 𝑝 .
• If 𝐶 is constructed by the parallel composition of 𝐶1 and 𝐶2, it holds that ℓ (𝐴𝐶1

) + ℓ (𝐴𝐶2
) =

ℓ (𝐴𝐶) and ℓ (𝐴′𝐶1

) + ℓ (𝐴′
𝐶2

) = ℓ (𝐴′
𝐶
). If ℓ (𝐴𝐶) > ℓ (𝐴′

𝐶
), it cannot be that both ℓ (𝐴𝐶1

) ⩽ ℓ (𝐴′
𝐶1

)
and ℓ (𝐴𝐶2

) ⩽ ℓ (𝐴′
𝐶2

). W.l.o.g. ℓ (𝐴𝐶1
) > ℓ (𝐴′

𝐶1

), and by our induction hypothesis there exist

path 𝑝 from 𝑠1 to 𝑡1 such that ℓ (𝐴𝑒) > ℓ (𝐴′𝑒) for all 𝑒 ∈ 𝑝 , which is also connecting the source

and sink for the new SPG 𝐶 by parallel construction. □

Lemma 3.7. For any component 𝐶 , if ℓ𝐶 − ℓ̂𝐶 > 0, then the ℓ𝐶 − ℓ̂𝐶 preceding players according to

the ordering 𝜋 using 𝐶 are charged𝑊𝑒 for every edge 𝑒 that they use in 𝐶 .

Proof. Recall that ℓ𝐶 and ℓ̂𝐶 are the number of players using component 𝐶 in some PNE and

under 𝐴(𝑛̂), respectively. First note that if 𝐶 is a basic SPG, i.e., if 𝐶 is an edge, then the statement

is trivially true. Now we use mathematical induction by following the construction of 𝐶 . Suppose

that the statement hold for SPG 𝐶1 and 𝐶2 and consider the new SPG 𝐶 constructed by them:

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

552

• If 𝐶 is constructed by the series composition of 𝐶1 and 𝐶2, then the same set of players are

using both 𝐶1 and 𝐶2 and ℓ𝐶1
= ℓ𝐶2

= ℓ𝐶 . So the induction hypothesis holds for 𝐶 .

• If 𝐶 is constructed by the parallel composition of 𝐶1 and 𝐶2, then each player that is charged

by𝑊𝑒 for at least one edge in𝐶 is charged𝑊𝑒 for all edges he uses in𝐶 . Suppose that a player

𝑖 that is not one of the ℓ𝐶 − ℓ̂𝐶 lowest priority players using 𝐶 is charged𝑊𝑒 for each edge

of his path in 𝐶 . Then, the number of players that have higher priority than 𝑖 is strictly less

than ℓ̂𝐶 and therefore, by Lemma 3.6, there exists a path 𝑝 in𝐶 where for each edge 𝑒 ∈ 𝑝 the

number of those players is strictly less than ℓ̂𝑒 . If player 𝑖 deviates to 𝑝 he would avoid any

high charge𝑊𝑒 , which contradicts the fact that ℓ𝐶 is the load in some PNE. So, the induction

hypothesis holds for 𝐶 as well. □

By Lemma 3.7, there exist a player 𝑖 using 𝐶1 that is charged at least𝑊𝐶1
for using 𝐶1 (by

definition of𝑊𝐶1
). By Lemma 3.6, there exists a path 𝑝 in 𝐶2 such that ℓ𝑒 < ℓ̂𝑒 for all 𝑒 ∈ 𝑝 . By the

definition of𝑊𝐶 , we have that𝑊𝐶1
=𝑊𝐶 > 𝑐 (𝐴𝐶 (𝑛̂)) > 𝑐 (𝐴𝐶2

(𝑛̂)). Since player 𝑖 can deviate to

path 𝑝 and pay less, such allocation is not a PNE which is a contradiction.

Having proved that in any PNE, only paths of 𝐴(𝑛̂) are used, we will bound the induced cost by

using the property of the GoWithTheFlow algorithm: that is, if ℓ∗
𝐶
to be the number of players

using some component 𝐶 in 𝐴(𝑛), ℓ̂𝐶 ⩾ ℓ∗
𝐶
. We define 𝛿𝐶 = ℓ̂𝐶 − ℓ∗𝐶 ⩾ 0 to be the additional number

of players in the PNE that are routed via𝐶 in𝐴(𝑛̂) comparing to𝐴(𝑛); note that 𝛿𝐺 = 𝛿 . We further

define 𝑑𝐶 = max{ℓ𝐶 − ℓ∗𝐶 , 0} to be the excess of the players using 𝐶 compared to 𝐴(𝑛) (obviously
𝑑𝐺 = 0), and 𝐷𝐶 to be the set of the 𝑑𝐶 lowest ranked players using 𝐶 (obviously 𝐷𝐺 = ∅). The
following lemma is a key lemma in order to conclude the proof for this case.

Lemma 3.8. For the PNE p, let p𝐶 be the allocation p restricted to component 𝐶 . Then, for any

component 𝐶 ,

𝑐 (p𝐶) ⩽ min{𝛿𝐶 + 1, ℓ𝐶 } · 𝑐 (𝐴𝐶 (𝑛)) +
∑︁
𝑖∈𝐷𝐶

𝜉𝑖 (p𝐶).

Proof. We will show the claim by mathematical induction by composing the graph𝐺 . First note

the following two properties:

(1) If a component 𝐶 is constructed by the series composition of 𝐶1 and 𝐶2, ℓ𝐶 = ℓ𝐶1
= ℓ𝐶2

,

𝛿𝐶 = 𝛿𝐶1
= 𝛿𝐶2

, 𝑑𝐶 = 𝑑𝐶1
= 𝑑𝐶2

and 𝐷𝐶 = 𝐷𝐶1
= 𝐷𝐶2

.

(2) If a component 𝐶 is constructed by the parallel composition of 𝐶1 and 𝐶2, ℓ𝐶 = ℓ𝐶1
+ ℓ𝐶2

,

𝛿𝐶 = 𝛿𝐶1
+ 𝛿𝐶2

.

The statement of the lemma is true for the base case which is any single edge because for any

edge 𝑒 , 𝑐 (p𝑒) = 𝑐𝑒 (ℓ𝑒) ⩽ 𝑐𝑒 (ℓ∗𝑒) +
∑𝑑𝑒

𝑖=1
(𝑐𝑒 (ℓ∗𝑒 + 𝑖) − 𝑐𝑒 (ℓ∗𝑒 + (𝑖 − 1))) = 𝑐𝑒 (ℓ∗𝑒) +

∑
𝑖∈𝐷𝑒

𝜉𝑖 (p𝑒) ⩽
min{𝛿𝑒 + 1, ℓ𝑒 } · 𝑐 (𝐴𝑒 (𝑛)) +

∑
𝑖∈𝐷𝑒

𝜉𝑖 (p𝑒). Suppose that the statement holds for two components 𝐶1

and 𝐶2.

• If𝐶 is constructed by the series composition of𝐶1 and𝐶2, then by using the above properties,

𝑐 (p𝐶) = 𝑐 (p𝐶1
) + 𝑐 (p𝐶2

)
⩽ min{𝛿𝐶 + 1, ℓ𝐶 } · (𝑐 (𝐴𝐶1

(𝑛)) + 𝑐 (𝐴𝐶2
(𝑛))) +

∑︁
𝑖∈𝐷𝐶

(𝜉𝑖 (p𝐶1
) + 𝜉𝑖 (p𝐶2

))

= min{𝛿𝐶 + 1, ℓ𝐶 } · 𝑐 (𝐴𝐶 (𝑛)) +
∑︁
𝑖∈𝐷𝐶

𝜉𝑖 (p𝐶).

• If𝐶 is constructed by the parallel composition of𝐶1 and𝐶2, suppose that 𝑖 ∈ 𝐷𝐶1
and 𝑖 ∉ 𝐷𝐶 ,

meaning that player 𝑖 is not one of the 𝑑𝐶 lowest ranked players using𝐶 . Then, the number of

players that have higher priority than 𝑖 and use 𝐶2 is strictly less than ℓ∗
𝐶2

, otherwise 𝑖 ∈ 𝐷𝐶 .

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

553

Therefore, by Lemma 3.6, there exists a path 𝑝 ′ in 𝐶2 where for each edge 𝑒 ∈ 𝑝 ′ the number

of those players is strictly less than ℓ∗𝑒 . If player 𝑖 deviated from 𝑝𝐶 to 𝑝 ′ he would be charged
at most 𝑐 (𝐴𝐶2

(𝑛)) for this segment (for notational simplicity we omit 𝜀 here). Since p is a

PNE 𝜉𝑖 (p𝐶1
) ⩽ 𝑐 (𝐴𝐶2

(𝑛)).
Similarly for every player 𝑖 with 𝑖 ∈ 𝐷𝐶2

and 𝑖 ∉ 𝐷𝐶 , it holds 𝜉𝑖 (p𝐶2
) ⩽ 𝑐 (𝐴𝐶1

(𝑛)). Note that
𝑑𝐶1
⩽ 𝛿𝐶1

since ℓ𝐶1
⩽ ℓ̂𝐶1

, and 𝑑𝐶1
⩽ ℓ𝐶1

. Similarly 𝑑𝐶2
⩽ 𝛿𝐶2

and 𝑑𝐶2
⩽ ℓ𝐶2

. Overall,

𝑐 (p𝐶) = 𝑐 (p𝐶1
) + 𝑐 (p𝐶2

)
⩽ min{𝛿𝐶1

+ 1, ℓ𝐶1
} · 𝑐 (𝐴𝐶1

(𝑛)) + 𝑑𝐶1
𝑐 (𝐴𝐶2

(𝑛)) +
∑︁

𝑖∈𝐷𝐶
1
∩𝐷𝐶

𝜉𝑖 (p𝐶1
)

+min{𝛿𝐶2
+ 1, ℓ𝐶2

} · 𝑐 (𝐴𝐶2
(𝑛)) + 𝑑𝐶2

𝑐 (𝐴𝐶1
(𝑛)) +

∑︁
𝑖∈𝐷𝐶

2
∩𝐷𝐶

𝜉𝑖 (p𝐶2
)

⩽ min{𝛿𝐶1
+ 𝛿𝐶2

+ 1, ℓ𝐶1
+ ℓ𝐶2
} · 𝑐 (𝐴𝐶1

(𝑛))
+min{𝛿𝐶2

+ 𝛿𝐶1
+ 1, ℓ𝐶2

+ ℓ𝐶1
} · 𝑐 (𝐴𝐶2

(𝑛)) +
∑︁
𝑖∈𝐷𝐶

𝜉𝑖 (p𝐶)

= (min{𝛿𝐶 + 1, ℓ𝐶 } · 𝑐 (𝐴𝐶 (𝑛)) +
∑︁
𝑖∈𝐷𝐶

𝜉𝑖 (p𝐶).

This completes the proof. □

Applying Lemma 3.8 to the whole graph 𝐺 , and noticing that 𝐷𝐺 = ∅, 𝛿𝐺 = 𝛿 and ℓ𝐺 = 𝑛∑︁
𝑖∈𝑁

𝜉𝑖 (p) = 𝑐 (p) ⩽ min{𝛿 + 1, 𝑛} · 𝑐 (𝐴(𝑛)) ⩽ 4min{𝛿 + 1, 𝑛} · 𝑐 (OPT(𝑛)),

where the last inequality comes from Theorem 3.3.

Underprediction case: 𝑛̂ < 𝑛 . Analogously, we first show that all paths in 𝐴(𝑛̂) are used, i.e., for
all component 𝐶 , we have ℓ𝐶 ⩾ ℓ̂𝐶 . Assume for contradiction that this is not the case and following

the decomposition of𝐺 , let 𝐶1 be the first component such that ℓ𝐶1
< ℓ̂𝐶1

. For this to happen, some

component 𝐶 is constructed by the parallel composition of 𝐶1 and some 𝐶2, where ℓ𝐶 > ℓ̂𝐶 and in

turns ℓ𝐶2
> ℓ̂𝐶2

. By Lemma 3.7 and Lemma 3.6, there exists a player 𝑖 on 𝐶2 and a path 𝑝 in 𝐶1 such

that player 𝑖 can decrease her cost by deviating to path 𝑝 . Therefore the allocation is not a PNE

which is a contradiction.

Then for any PNE p, by Lemma 3.7, the 𝛿 lowest ranked players, let 𝑆 be this set of players, are

charged𝑊𝑒 for every edge 𝑒 they use, and the 𝑛̂ higher ranked players use 𝐴(𝑛̂). Considering any

player 𝑖 ∈ 𝑆 and any component 𝐶 that 𝑖 uses, if ℓ𝑒 ⩽ ℓ∗𝑒 for all edges that 𝑖 uses in 𝐶 , then 𝑖 is

charged at most 𝑐 (𝐴𝐶 (𝑛)) for the edges in component 𝐶 (for notational simplicity we omit 𝜀 here).

Let now 𝐶1 be any maximal component that 𝑖 uses such that ℓ𝐶1
> ℓ∗

𝐶1

. For this to happen, some

component 𝐶 is constructed by the parallel composition of 𝐶1 and some 𝐶2, where ℓ𝐶 ⩽ ℓ∗
𝐶
and in

turns ℓ𝐶2
< ℓ∗

𝐶2

. By Lemma 3.6, there exists a path 𝑝 ′ in 𝐶2 such that ℓ𝑒 < ℓ∗𝑒 for all 𝑒 ∈ 𝑝 ′. If any
player deviated from 𝐶1 to 𝑝 ′, he would be charged at most 𝑐 (𝐴𝐶2

(𝑛)). Since p is a PNE, overall,

𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛)). Summing over all players,∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 𝑐 (𝐴(𝑛̂)) +
∑︁
𝑖∈𝑆

𝜉𝑖 (p) ⩽ (𝛿 + 1) · 𝑐 (𝐴(𝑛)) ⩽ 4(𝛿 + 1) · 𝑐 (OPT(𝑛)).

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

554

At the same time, since there are only 𝑛 users and we showed that each user pays less than

𝑐 (𝐴(𝑛)) for any strategy she picks, we also have:∑︁
𝑖∈𝑁

𝜉𝑖 (p) ⩽ 𝑛 · 𝑐 (𝐴(𝑛)) ⩽ 4𝑛 · 𝑐 (OPT(𝑛)). □

C WARM-UP: COST-SHARING MECHANISM FOR A KNOWN SET OF PLAYERS
We first consider the setting where the designer is aware of the graph, the edge costs, and the

player identities, however, she only has a prediction on the location of the terminal for each player.

That is, for each player 𝑖 , the designer has a prediction 𝜂 (𝑡𝑖) ∈ 𝑉 regarding what player 𝑖’s terminal

is (this prediction may be incorrect, i.e., 𝜂 (𝑡𝑖) could be different than 𝑡𝑖). Let 𝐻 be the set of the

predicted vertices and 𝑅 be the set of the actual terminals, i.e. 𝐻 = {𝜂 (𝑡𝑖) | 𝑡𝑖 ∈ 𝑅}. To simplify

our presentation, we assume that there will always be one player, player 0, on the source 𝑠 who is

correctly predicted. Note that this has no impact on the cost of any solution. When the number

of players is correctly predicted, the main source of error is the fact that the predicted location of

each player can be far away from the actual location. One natural way to quantify this error is to

sum up the metric distances between the predicted and the actual location. Let 𝑑 (·, ·) denotes the
shortest distance on the weighted graph and 𝑑𝑖 = 𝑑 (𝑡𝑖 , 𝜂 (𝑡𝑖)). We define the distance metric error

𝐷 =
∑

𝑡𝑖 ∈𝑅 𝑑𝑖 . We further let OPT denote the cost of the optimal solution (which is the minimum

Steiner tree on the set of terminals 𝑅 union the source 𝑠).

Cost-sharing Mechanism. Our cost sharing protocol defines an ordering 𝜋 overall the vertices

in 𝐺 , and then uses ordered cost-sharing protocol implied by this ordering. Therefore, the crucial

aspect of this protocol is the way in which the ordering 𝜋 is defined.

To define the ordering 𝜋 , let𝐺 ′ be the metric closure of the initial graph𝐺 , and let𝐺 ′[𝐻 ∪{𝑠}] be
the subgraph of 𝐺 ′ induced by the predicted set of terminals 𝐻 and the source 𝑠 . Then, let MST(𝐻)
be the minimum spanning tree of𝐺 ′[𝐻 ∪ {𝑠}] and let 𝜋𝐻 be the order in which the vertices in𝐻 are

visited by a depth-first-search traversal of MST(𝐻), starting from the source, 𝑠 . This vertex order 𝜋𝐻
can be mapped to an order 𝜋 of the players, i.e. the first player according to 𝜋 has a terminal 𝑡 such

that 𝜂 (𝑡) is the first vertex according to 𝜋𝐻 . In turn, the order 𝜋 defines an ordered cost-sharing

protocol Ξ where each player is responsible for the cost of an edge if and only if she is the first in 𝜋

among edge’s users. See Figure 4 below for an illustration of the process.

s

1

2

3

4

5 6

7

8

9 10

11

12

Fig. 4. An example of a minimum spanning tree for the set of predicted vertices 𝐻 , vertices are indexed in
order of 𝜋𝐻 .

The following theorem gives an upper bound on the price of anarchy of the above cost-sharing

mechanism in this setting.

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

555

Theorem C.1. Given a prediction with distance error 𝐷 , our cost-sharing mechanism for the

multicast network formation game guarantees a price of anarchy of at most

min

{
4 + 6𝐷

OPT
, log𝑛

}
.

Proof. First note that the log𝑛 term follows directly from the competitive ratio of the greedy

algorithm for the online Steiner tree problem [33]. The greedy algorithm takes as input some

sequence of terminals and connects them one after the other to the already formed component via

shortest paths. The competitive ratio is the comparison of the outcome of the greedy mechanism

for the worst case order with the minimum Steiner tree. Our cost-sharing mechanism (in fact any

ordered cost-sharing protocol) considers some sequence of the terminals given by their order. Then,

it is always in the players’ best interest to connect to the component already formed by previous

players via shortest paths, as the greedy algorithm does. Therefore, the competitive ratio of the

greedy algorithm for the online Steiner tree problem provides an upper bound on the price of

anarchy of any ordered cost-sharing protocol.

We next show that for any PNE p in the game induced by our cost-sharing mechanism, it holds

that: ∑︁
𝑖

𝜉𝑖 (p) ⩽ 2𝐷 + 2(2𝐷 + 2OPT) = 6𝐷 + 4OPT.

For the rest of the section we use the convention that 𝑡0 = 𝜂 (𝑡0) = 𝑠 , and we re-index the players

according to the order 𝜋 computed via our mechanism.

In any PNE p, each player 𝑖 would connect 𝑡𝑖 to the component formed by the players preceding

her in 𝜋 via the shortest path in order to minimize her cost. Since (𝑡𝑖 , 𝜂 (𝑡𝑖), 𝜂 (𝑡𝑖−1), 𝑡𝑖−1) is a path
connecting 𝑡𝑖 with 𝑡𝑖−1 (and therefore it connects 𝑡𝑖 with the component containing 𝑠), we can

bound the cost share of player 𝑖 as follows

𝜉𝑖 (p) ⩽ 𝑑𝑖 + 𝑑 (𝜂 (𝑡𝑖), 𝜂 (𝑡𝑖−1)) + 𝑑𝑖−1 .

Let 𝑇 (𝐻) be an Eulerian tour after doubling the edges of MST(𝐻), summing over all the players we

get: ∑︁
𝑖

𝜉𝑖 (p) ⩽ 2

∑︁
𝑡𝑖 ∈𝑅

𝑑𝑖 +
∑︁
𝑡𝑖 ∈𝑅

𝑑 (𝜂 (𝑡𝑖), 𝜂 (𝑡𝑖−1)) (4)

⩽ 2𝐷 + 𝑐 (𝑇 (𝐻)) (5)

⩽ 2𝐷 + 2𝑐 (MST(𝐻)) , (6)

where the inequalities comes from the fact that the total distance between the predictions are upper

bounded by the cost of the Eulerian tour 𝑐 (𝑇 (𝐻)), which is no more than two times the cost of the

minimum spanning tree 𝑐 (MST(𝐻)).
We use OPT(𝐻) to denote the optimal network, i.e., the minimum Steiner tree on 𝐻 . Recall that

OPT is the minimum Steiner tree on 𝑅. Consider a Steiner tree connecting 𝐻 formed by the union

of OPT and the shortest paths between each 𝑡𝑖 ∈ 𝑅 and 𝜂 (𝑡𝑖). Then, we have:

𝑐 (MST(𝐻)) ⩽ 2OPT(𝐻) ⩽ 2OPT + 2𝐷 , (7)

where the first inequality comes from the fact that any minimum spanning tree is a 2 approximation

to the minimum Steiner tree. After combining (6) with (7) we get that the total cost is∑︁
𝑖

𝜉𝑖 (p) ⩽ 2𝐷 + 2(2𝐷 + 2OPT) = 6𝐷 + 4OPT. □

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

556

Note that, if the predictions are accurate, i.e., 𝑑𝑖 = 0 for all 𝑖 ∈ [𝑛], the price of anarchy is at most

4. If they are inaccurate, our upper bound grows linearly as a function of the total prediction error,

but it never exceeds log𝑛, even if the predictions are arbitrarily bad. Therefore, our results achieve

asymptotically optimal consistency and robustness guarantees, along with a smooth transition

from one to the other.

D MISSING ANALYSIS FROM SECTION 4
Lemma 4.2.

∑
𝑋 ∈𝐺𝐻 ′

∑
𝑣∈𝐻 ′ (𝑋),𝑣≠𝑓𝐻 ′ (𝑋) 𝑑 (𝑣, 𝑝𝑣) ⩽ 2𝑐 (MST(𝐻 ′)) .

Proof. First note that each connected component 𝑋 of 𝐺𝐻 ′ is a tree and more specifically a

subtree of MST(𝐻). Therefore, if we double the edges of 𝑋 , there is an Eulerian tour 𝑇 (𝑋) such that

the first appearance of the vertices coincides with the order 𝜋𝜂 truncated to the vertices 𝐻 ′(𝑋).
Therefore, ∑︁

𝑣∈𝐻 ′
𝑋
,𝑣≠𝑓𝐻 ′ (𝑋)

𝑑 (𝑣, 𝑝𝑣) ⩽ 𝑐 (𝑇 (𝑋)) ⩽ 2𝑐 (𝑋).

Summing over all connected components of 𝐺𝐻 ′ we get∑︁
𝑋 ∈𝐺𝐻 ′

∑︁
𝑣∈𝐻 ′ (𝑋),𝑣≠𝑓𝐻 ′ (𝑋)

𝑑 (𝑣, 𝑝𝑣) ⩽ 2

∑︁
𝑋 ∈𝐺𝐻 ′

𝑐 (𝑋) = 2𝑐 (𝐺𝐻 ′). (8)

Note that the weight of the disconnected graph𝐺𝐻 ′ is at most the weight of the minimum spanning

tree for the set 𝐻 ′ on the metric closure of the graph, MST(𝐻 ′). To see this, let 𝐸 be the set of all

edges connecting each vertex 𝑣 ∈ 𝐻 \𝐻 ′ with its parent in MST(𝐻). Adding 𝐸 to MST(𝐻 ′) forms a

spanning tree on 𝐻 . We have:

𝑐 (𝐺𝐻 ′) + 𝑐 (𝐸) = 𝑐 (MST(𝐻)) ⩽ 𝑐 (MST(𝐻 ′)) + 𝑐 (𝐸),

𝑐 (𝐺𝐻 ′) ⩽ 𝑐 (MST(𝐻 ′)). (9)

Combining (8) and (9) the lemma follows. □

Lemma 4.3.

∑
𝑋 ∈𝐺𝐻 ′

∑
𝑡 ∈𝑅′ (𝑋),𝑡≠𝑓𝑅′ (𝑋) 𝜉𝑡 (p) ⩽ 2𝑐 (𝑀𝑆𝑇 (𝐻 ′)) + 2𝐷 .

Proof. Consider any connected component 𝑋 of𝐺𝐻 ′ , and apply inequality (1) for each terminal

𝑡 ∈ 𝑅′(𝑋) with 𝑡 ≠ 𝑓𝑅′ (𝑋) by considering 𝑝𝑡 as the terminal that appears before 𝑡 in 𝜋 . That is,

𝜉𝑡 (p) ⩽ 𝑑𝑡 + 𝑑 (𝜂 (𝑡), 𝜂 (𝑝𝑡)) + 𝑑𝑝𝑡 . (10)

Note that each predicted point 𝑣 ∈ 𝐻 ′(𝑋) may be associated with many terminals, 𝑅′(𝑣). For
all those terminals but the first one in 𝜋 , 𝑑 (𝜂 (𝑡), 𝜂 (𝑝𝑡)) = 0 because 𝜂 (𝑡) and 𝜂 (𝑝𝑡) are both 𝑣 .

Moreover, if 𝑡 is the first terminal in 𝑅′(𝑣) according to 𝜋 , then 𝑝𝑡 is the last terminal in 𝑅′(𝑝𝑣)
according to 𝜋 . Therefore by summing over all terminals in 𝑅′(𝑋) but 𝑓𝑅′ (𝑋) , we get:∑︁

𝑡 ∈𝑅′ (𝑋),𝑡≠𝑓𝑅′ (𝑋)

𝑑 (𝜂 (𝑡), 𝜂 (𝑝𝑡)) =
∑︁

𝑣∈𝐻 ′ (𝑋),𝑣≠𝑓𝐻 ′ (𝑋)

𝑑 (𝑣, 𝑝𝑣) .

Since in inequality (10) the distance of each terminal 𝑡 ∈ 𝑅′(𝑋) from 𝜂 (𝑡) appears at most twice,

we therefore have ∑︁
𝑡 ∈𝑅′ (𝑋),𝑡≠𝑓𝑅′ (𝑋)

𝜉𝑡 (p) ⩽ 2

∑︁
𝑡 ∈𝑅′ (𝑋)

𝑑𝑡 +
∑︁

𝑣∈𝐻 ′ (𝑋),𝑣≠𝑓𝐻 ′ (𝑋)

𝑑 (𝑣, 𝑝𝑣) .

The lemma follows after summing over all connected components of𝐺𝐻 ′ and using Lemma 4.2. □

Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

557

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Games with General Cost Functions over Series-Parallel Networks
	3.1 Online Algorithm
	3.2 Cost-Sharing Mechanism with Predictions for Games with Parallel-link
	3.3 Cost-Sharing Mechanism with Predictions for Series-Parallel Networks

	4 Multicast Games: General Networks and Constant Cost Functions
	4.1 Cost-Sharing Mechanism for an Unknown Set of Players

	5 Conclusion and Future Directions
	Acknowledgments
	References
	A Missing Analysis from Section 3.1
	B Complete Proofs of Theorem 3.4 annd Theorem 3.5
	C Warm-Up: Cost-Sharing Mechanism for a Known Set of Players
	D Missing Analysis from Section 4

