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In this work we introduce an alternative model for the design and analysis of strategyproof mechanisms that

is motivated by the recent surge of work in “learning-augmented algorithms”. Aiming to complement the

traditional approach in computer science, which analyzes the performance of algorithms based on worst-case

instances, this line of work has focused on the design and analysis of algorithms that are enhanced with

machine-learned predictions regarding the optimal solution. The algorithms can use the predictions as a

guide to inform their decisions, and the goal is to achieve much stronger performance guarantees when these

predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if

these predictions are very inaccurate (robustness). So far, these results have been limited to algorithms, but in

this work we argue that another fertile ground for this framework is in mechanism design.

We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions

regarding the private information of the participating agents. To exhibit the important benefits of this approach,

we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean

space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof

mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness

guarantees. This provides the designer with a menu of mechanism options to choose from, depending on

her confidence regarding the prediction accuracy. Furthermore, we also prove parameterized approximation

results as a function of the prediction error, showing that our mechanisms perform well even when the

predictions are not fully accurate.
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1 INTRODUCTION
For more than half a century, the dominant approach for the mathematical analysis of algorithms

in computer science has been worst-case analysis. On the positive side, a worst-case guarantee

provides a useful signal regarding the robustness of the algorithm. However, it is well-known that

the worst-case analysis can be unnecessarily pessimistic, often leading to uninformative bounds
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or impossibility results that may not reflect the real obstacles that arise in practice. These crucial

shortcomings of worst-case analysis are making it increasingly less relevant, especially in light of

the impressive advances in machine learning that give rise to very effective algorithms, most of

which do not admit any non-trivial worst-case guarantees.

Motivated by this tension between worst-case analysis and machine learning algorithms, a

surge of recent work is aiming for the best of both worlds by designing robust algorithms that are

guided by machine-learned predictions. The goal of this exciting new literature on “algorithms with

predictions” is to combine the robustness of worst-case guarantees with consistency guarantees,

which prove stronger bounds on the performance of an algorithm whenever the prediction that it

is provided with is accurate.

A lot of this work has focused on dynamic settings, where the input arrives over time and the

algorithm needs to make irrevocable decisions before observing the whole input. In contrast to

traditional online algorithms, which are assumed to have no information regarding the remaining

input, learning-augmented algorithms are provided with a prediction regarding this input. An ideal

algorithm is one that performs very well if this prediction is accurate, i.e., it has good consistency,

but that also achieves a near-optimal worst-case guarantee, even when the prediction is (arbitrarily)

inaccurate, i.e., it has good robustness. A flurry of papers published during the last four years have

proposed novel algorithms that achieve non-trivial trade-offs between robustness and consistency

(see [20] for a survey of some of the initial results).

In this paper, we argue that another fertile ground for the use of predictions is in mechanism

design. In contrast to online algorithms, whose information limitations are regarding the future,

the main obstacle in mechanism design is the fact that part of the input is private information that

only the agents know. To overcome this obstacle, a mechanism can ask the agents to report this

information but, since they are strategic, they can misreport it if this leads to an outcome that they

prefer. The field of mechanism design has proposed solutions to this problem, but their worst-case

guarantees are often underwhelming from a practical perspective. However, if these mechanisms

are provided with some predictions regarding (part of) the missing information, this could allow

the designer to reach more efficient outcomes despite the incentives of the participants.

In this paper, we propose a model for designing and evaluating strategyproof mechanisms that are

enhanced with predictions, which has the potential to transform the mechanism design literature.

At the core of this research agenda lies the following fundamental question:

Can learning-augmented mechanisms achieve good robustness and consistency trade-offs?

Given a mechanism equipped with a prediction, we can parameterize the worst-case performance

guarantee of the mechanism, using the error 𝜂 of the prediction. When the prediction is accurate,

i.e., 𝜂 = 0, then the resulting guarantee is called the consistency of the mechanism. The worst case

guarantee irrespective of the error, i.e., the worst-case over all values of 𝜂, is called the robustness
of the mechanism. An ideal mechanism would yield guarantees that gracefully transition from

optimal performance when the prediction is correct (perfect consistency) to the best-known worst-

case performance as the error increases (perfect robustness), thus capturing the best of both worlds.

However, this is impossible in many settings: to achieve perfect consistency a mechanism needs

to “trust” the prediction, in the sense that it always outputs a solution that is optimal according

to the prediction. Yet, if the prediction is incorrect, this solution might be arbitrarily bad, causing

unbounded robustness. Our goal is to evaluate how close to this ideal mechanism we can get, i.e.,

to achieve the best possible trade-off between robustness and consistency.

To exhibit the important benefits of adapting this framework to mechanism design and to gain

some insights regarding how predictions could be used by strategyproof mechanisms, we focus on

the canonical problem of facility location. Apart from the fact that this problem has been the focus
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of a very long line of literature (e.g., see [1, 9, 10, 12, 13, 23, 27, 28] and the recent survey by [6]), it

has also been previously used as a natural application domain for exhibiting the potential benefits

of new mechanism design models [23, 24].

In an instance of the facility location problem in R2, we are given a set of 𝑛 agents, with each

agent 𝑖 having a preferred location 𝑝𝑖 ∈ R2, and we need to choose at which location 𝑓 ∈ R2 to
build a facility that will be serving the agents. Once the location of the facility has been determined,

each agent suffers a cost that is equal to the Euclidean distance between her preferred location and

𝑓 , and our goal is to choose 𝑓 that minimizes the social cost. In this paper we consider both the

minimization of the egalitarian social cost (i.e., the maximum cost over all agents) and the utilitarian

social cost (i.e., the average cost over all agents), and the main obstacle is that the preferred location

𝑝𝑖 of each agent 𝑖 is private information to the agent and they can choose to misreport it if this could

reduce their cost (e.g., by affecting the facility location choice in their favor). To ensure that the

agents will not lie, this research has restricted its attention to strategyproof mechanisms, limiting

the extent to which the social cost functions can be optimized.

1.1 Our results
Using the facility location problem as a case study, we exhibit the benefits of adapting the learning-

augmented framework in mechanism design. In the facility location problem, the information that

the designer is missing is the preferred location of each agent, so our goal is to design practical

strategyproof mechanisms that are provided with predictions regarding this information. Rather

than assuming that the prediction provides the mechanism with a detailed estimate regarding all

of the private information, i.e., the preferred location of each agent, we instead consider a less

demanding prediction that provides an aggregate signal regarding this information. Specifically, we

assume that the mechanisms are provided with only a single point 𝑜 , corresponding to a prediction

regarding the optimal location for the facility. Note that this point could readily be computed using

the predicted location of each agent, so this prediction requires less information and is easier to

estimate. Our results focus on mechanisms that are deterministic and anonymous (they do not

discriminate among agents based on their identity), which is a well-studied class of mechanisms in

the context of facility location.

Egalitarian social cost. We first focus on the problem of minimizing the egalitarian social cost

and, as a warm-up, on the single-dimensional version of the problem, where all the points lie in

R. For this version of the problem, there exists a deterministic and strategyproof mechanism that

achieves a 2-approximation, and this is the best possible approximation in this class of mechanisms.

Our result for this case is a deterministic strategyproof mechanism, augmented with a prediction

regarding the optimal location for the facility, that achieves the best of both worlds. It returns

the optimal solution whenever the prediction is correct (1-consistency), but without sacrificing

its worst-case guarantee: it always guarantees a 2-approximation irrespectively of the prediction

quality (2-robustness).

We then move on to the two-dimensional version of the problem, for which prior work has

produced an optimal deterministic strategyproof mechanism achieving a 2-approximation [1, 14].

Once again, we are able to achieve perfect consistency, but this time this comes at a small cost in

terms of the worst-case guarantee, as we achieve a robustness of 1 +
√
2. A natural question at this

point is whether this loss in robustness was required for us to get the strong consistency guarantee.

Our next result shows that this is indeed the case: in fact, to achieve any consistency guarantee

better than the trivial 2 bound, any deterministic anonymous and strategyproof mechanism would

have to guarantee robustness no better than 1 +
√
2. Therefore, our proposed mechanism provides

an optimal trade-off between robustness and consistency. Finally, we also provide a more general
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approximation guarantee for our mechanism as a function of the prediction error, proving that it

maintains improved performance guarantees even where the prediction is not fully accurate.

Utilitarian social cost.We then study the problem of minimizing the utilitarian social cost. The

single-dimensional case of this problem can be solved optimally using a deterministic, anonymous,

and strategyproof mechanism, so we proceed directly to two-dimensions. In this case, there is

a deterministic, anonymous, and strategyproof mechanism that achieves a

√
2-approximation,

which is optimal for this class of mechanisms. We provide a family of mechanisms, parameterized

by a “confidence value” 𝑐 ∈ [0, 1) that the designer can choose depending on how much they

trust the prediction. If the designer is confident that the prediction is of high quality, then they

can choose a higher value of 𝑐 , which provides stronger consistency guarantees, at the cost of

deteriorating robustness guarantees. Specifically, we prove that our deterministic and anonymous

mechanism is

√
2𝑐2 + 2/(1 + 𝑐)-consistent and

√
2𝑐2 + 2/(1 − 𝑐)-robust (See Figure 1 for a plot of

the trade-off provided by this mechanism). This result exhibits one of the important advantages

of the learning-augmented framework, which is to provide the user with more control over the

trade-off between worst-case guarantees and more optimistic guarantees when good predictions

are available. In fact, we prove that our mechanisms are optimal: no deterministic, anonymous,

and strategyproof mechanism can achieve a better trade-off between robustness and consistency

guarantees, so our mechanisms exactly capture the Pareto frontier for this problem. Finally, we

once again extend our approximation results as a function of the prediction error, verifying that the

mechanism achieves improved worst-case guarantees even if the prediction is not fully accurate.

1.2 Related work
The learning-augmented mechanism design framework, proposed in this paper, is part of a long

literature on alternative performance measures aiming to avoid the limitations of worst-case

analysis. A detailed overview of such measures can be found in the “Beyond the Worst-case

Analysis of Algorithms" book edited by Roughgarden [26].

Learning-augmented algorithms. Specifically, this framework extends the recent work on

“learning-augmented algorithms” (or “algorithms with predictions”), which focuses on algorithm

design and aims to overcome worst-case bounds by assuming that the algorithm is provided with

predictions regarding the instance at hand (see [20] for a survey of the early work in this area).

Lykouris and Vassilvtiskii [17] introduced consistency and robustness, which are the two primary

metrics used to analyze the performance of algorithms in the learning-augmented design framework.

There is a long list of classic algorithmic problems that have been studied in that framework,

including online paging [17], scheduling [25], and secretary problems [2, 7], optimization problems

with covering [4] and knapsack constraints [15], as well as Nash social welfare maximization [5]

and several graph [3] problems. We note that this line of work has also studied facility location

problems [11, 16]. However, the crucial difference is that these papers are restricted to non-strategic

settings, and the predictions are used to overcome information limitations regarding the future,

rather than limitations regarding privately held information. [18] use bid predictions in auctions to

learn reserve prices and yield revenue guarantees as a function of the prediction error, but provide

no bounded robustness guarantees.

Strategic facility location. The facility location problem in the presence of strategic agents has

been extensively studied and serves as a canonical mechanism design problem. For example, it was

used as the case study that initiated the literature on approximate mechanism design without money

[23]. For single facility location in one dimension, i.e., on the line, the mechanism that places the

facility at the median over all the preferred points reported by the agents is strategyproof, optimal
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for the utilitarian social cost objective, and achieves a 2-approximation for the egalitarian social

cost objective, which is the best approximation achievable by any deterministic and strategyproof

mechanism [23]. In the two-dimensional Euclidean space, a generalization of this mechanism, the

“coordinatewise median” mechanism (defined in Section 2), achieves a

√
2-approximation for the

utilitarian objective [19], and a 2-approximation for the egalitarian objective [14]. These approxi-

mation bounds are both optimal among deterministic and strategyproof mechanisms. Additional

settings that have been studied include general metric spaces [1], 𝑑-dimensional Euclidean spaces

[8, 14, 19, 28], circles [1, 19], and trees [1, 10]. Finally, some fundamental results on strategic facility

location focus on characterizing the space of startegyproof mechanisms. For the single-dimensional

case, the characterization of [21] implies that all deterministic strategyproof mechanisms corre-

spond to the family of “general median mechanisms” (defined in Section 2). For the two-dimensional

case, an analogous characterization was subsequently provided by [22]. A more detailed discussion

regarding prior work on this problem is provided in the recent survey by [6].

2 PRELIMINARIES
In the single facility location problem in the two-dimensional Euclidean space, the goal is to choose a

location 𝑓 ∈ R2 for a facility, aiming to serve a group of𝑛 agents. Each agent 𝑖 has a preferred location

𝑝𝑖 ∈ R2 and, once the facility location is chosen, that agent suffers a cost 𝑑 (𝑓 , 𝑝𝑖 ), corresponding
to the Euclidean distance between her preferred location and the chosen location. Given a set of

preferred locations 𝑃 = {𝑝1, . . . , 𝑝𝑛} for the agents, the two standard social cost functions that

prior works have aimed to minimize are the egalitarian social cost 𝐶𝑒 (𝑓 , 𝑃) = max𝑝∈𝑃 𝑑 (𝑓 , 𝑝) (i.e.,
the maximum cost over all agents) and the utilitarian social cost 𝐶𝑢 (𝑓 , 𝑃) = ∑

𝑝∈𝑃 𝑑 (𝑓 , 𝑝)/𝑛 (i.e.,

the average cost over all agents). Given some social cost function, we denote the optimal facility

location by 𝑜 (𝑃) = (𝑥𝑜 (𝑃), 𝑦𝑜 (𝑃)), or 𝑜 when 𝑃 is clear from the context.

In the strategic version of the facility location problem, the preferred location 𝑝𝑖 of each agent 𝑖

is private information. Therefore, to minimize the social cost a mechanism needs to ask the agents

to report their preferred locations, 𝑃 ∈ R2𝑛 , and then use this information to determine the facility

location 𝑓 (𝑃). However, the goal of each agent is to minimize their own cost, so they can choose

to misreport their preferred location if that can reduce their cost. A mechanism 𝑓 : R2𝑛 → R2 is
strategyproof if truthful reporting is a dominant strategy for every agent, i.e., for all instances 𝑃 ∈
R2𝑛 , every agent 𝑖 ∈ [𝑛], and every deviation 𝑝 ′

𝑖 ∈ R2, we have that 𝑑 (𝑝𝑖 , 𝑓 (𝑃)) ≤ 𝑑 (𝑝𝑖 , 𝑓 (𝑃−𝑖 , 𝑝 ′
𝑖 )).

A strategyproof mechanism that plays a central role in the strategic facility location problem

is the Coordinatewise Median (CM) mechanism. This mechanism takes as input the locations

𝑃 = {(𝑥𝑖 , 𝑦𝑖 )}𝑖∈[𝑛] of the 𝑛 agents and determines the facility location by considering each of the

two coordinates separately. The 𝑥-coordinate of the facility is chosen to be the median of {𝑥𝑖 }𝑖∈[𝑛] ,
i.e., the median of the 𝑥-coordinates of the agents’ locations, and its 𝑦-coordinate is the median of

{𝑦𝑖 }𝑖∈[𝑛] (if 𝑛 is even, we assume the smaller of the two medians is returned). The more general

class of Generalized Coordinatewise Median (GCM) mechanisms take as input the locations 𝑃 of the 𝑛

agents, as well as a multiset 𝑃 ′
of points that are constant and independent of the locations reported

by the agents, and outputs CM(𝑃 ∪ 𝑃 ′). In other words, a GCM mechanism is the coordinatewise

median mechanism over the locations of the agents and the additional constant points 𝑃 ′
chosen

by the designer (often called phantom points). Apart from deterministic and strategyproof, any

GCM mechanism is also anonymous: its outcome does not depend on the identity of the agents, i.e.,

it is invariant under a permutation of the agents.

In the learning-augmented mechanism design framework proposed in this paper, before request-

ing the set of preferred locations 𝑃 from the agents, the designer is provided with a prediction 𝑜

regarding the optimal facility location 𝑜 (𝑃). The designer can use this information to choose the
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rules of the mechanism but, as in the standard strategic facility location problem, the final mech-

anism, denoted 𝑓 (𝑃, 𝑜), needs to be strategyproof. In essence, if there are multiple strategyproof

mechanisms the designer can choose from, the prediction can guide their choice, aiming to achieve

improved guarantees if the prediction is accurate (consistency), but retaining some worst-case

guarantees (robustness).
1
Consistency and robustness are the standard measures in algorithms

with predictions [17]. Given some social cost function 𝐶 , a mechanism is 𝛼-consistent if it achieves

an 𝛼-approximation ratio when the prediction is correct (𝑜 = 𝑜 (𝑃)), i.e.,

max

𝑃

{
𝐶 (𝑓 (𝑃, 𝑜 (𝑃)), 𝑃)

𝐶 (𝑜 (𝑃), 𝑃)

}
≤ 𝛼.

A mechanism is 𝛽-robust if it achieves a 𝛽-approximation ratio even when the predictions can be

arbitrarily wrong, i.e., if

max

𝑃,𝑜

{
𝐶 (𝑓 (𝑃, 𝑜), 𝑃)
𝐶 (𝑜 (𝑃), 𝑃)

}
≤ 𝛽.

Note that any known strategyproof mechanism that guarantees a 𝛾-approximation without predic-

tions directly implies bounds on the achievable robustness and consistency. The designer could just

disregard the prediction and use this mechanism to achieve 𝛾-robustness. However, this mechanism

would also be no better than 𝛾-consistent, since it ignores the prediction. The main challenge is to

achieve improved consistency guarantees, without sacrificing too much in terms of robustness.

For an even more refined understanding of the performance of a learning-augmented mechanism,

one can also prove worst-case approximation ratios as a function of the prediction error 𝜂 ≥ 0.

In facility location, we let the error 𝜂 (𝑜, 𝑃) = 𝑑 (𝑜, 𝑜 (𝑃))/𝐶 (𝑜 (𝑃), 𝑃) be the distance between the

predicted optimal location 𝑜 and the true optimal location 𝑜 (𝑃), normalized by the optimal social

cost. Given a bound 𝜂 on the prediction error, a mechanism achieves a 𝛾 (𝜂)-approximation if

max

𝑃,𝑜 : 𝜂 (𝑜,𝑃 ) ≤𝜂

{
𝐶 (𝑓 (𝑃, 𝑜), 𝑃)
𝐶 (𝑜 (𝑃), 𝑃)

}
≤ 𝛾 (𝜂).

Note that for 𝜂 = 0 this bound corresponds to the consistency guarantee and for 𝜂 → ∞ it captures

the robustness guarantee. If this bound does not increase too fast as a function of 𝜂, then the

mechanism may achieve improved guarantees even if the prediction is not fully accurate.

3 MINIMIZING THE EGALITARIAN SOCIAL COST
We start by focusing on the egalitarian social cost function, for which no deterministic and strat-

egyproof mechanism can achieve better than a 2-approximation, even for the one-dimensional

case [23]. As a warm-up, we first provide a deterministic, strategyproof, and anonymous mecha-

nism that is 2-robust, thus matching the best possible worst-case approximation guarantee, but

also 1-consistent, thus combining the best of both worlds. Then, in Section 3.2 we extend this

mechanism to the two-dimensional case and we prove that it is 1-consistent and (1 +
√
2)-robust.

In Section 3.3, we complement this result by showing that our mechanism is Pareto optimal: we

prove that 1 +
√
2 ≈ 2.41 is the best robustness achievable by any deterministic, strategyproof,

and anonymous mechanism that achieves any consistency better than 2 (note that a consistency

of 2 can be trivially achieved by disregarding the predictions and running the coordinatewise

median mechanism). Our last result, in Section 3.4, goes beyond the robustness and consistency

guarantees to provide a more refined bound as a function of the prediction error. Specifically, the

approximation achieved by our mechanism degrades linearly from 1 to 1 +
√
2 as a function of the

prediction error.

1
An alternative interpretation is that there is a single publicly known mechanism that takes as input the prediction and the

agents’ reports, and the agents know what the prediction is prior to reporting their preferred locations.
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3.1 Warm-up: facility location on the line
As a warm-up, we first consider the single-dimensional case of the problem, where 𝑝𝑖 ∈ R for every

agent 𝑖 . For this special case, a simple deterministic mechanism that returns the median of the

points in 𝑃 is strategyproof, as well as a 2-approximation of the egalitarian social welfare, which

is the best possible approximation among deterministic and strategyproof mechanisms [23]. Our

first result in the learning-augmented framework shows that this worst-case guarantee can be

combined with perfect consistency.

Given a prediction𝑜 regarding the optimal facility location, we propose theMinMaxPmechanism,

formally defined as Mechanism 1. This mechanism uses the prediction as the default facility location

choice, unless the prediction lies “on the left” of all the points in 𝑃 or “on the right” of all the points

in 𝑃 . In the former case, the facility is placed at the leftmost point in 𝑃 instead, and in the latter it is

placed at the rightmost point in 𝑃 .

Mechanism 1: MinMaxP mechanism for egalitarian social cost in one dimension.

Input: points (𝑝1, . . . , 𝑝𝑛) ∈ R𝑛 , prediction 𝑜 ∈ R
if 𝑜 ∈ [min𝑖 𝑝𝑖 ,max𝑖 𝑝𝑖 ] then

return 𝑜

else if 𝑜 < min𝑖 𝑝𝑖 then
return min𝑖 𝑝𝑖

else
return max𝑖 𝑝𝑖

We show that MinMaxP is a deterministic, strategyproof, and anonymous mechanism that

is 1-consistent and 2-robust. This mechanism thus achieves the best of both worlds: when the

prediction is correct, it yields an optimal outcome, and when the prediction is incorrect, the

approximation factor never exceeds 2, which is the best-possible worst-case approximation. In

essence, the prediction provides a “focal point” that the mechanism can use, allowing it to achieve

the optimal consistency without compromising strategyproofness.

Theorem 3.1. The MinMaxP mechanism is deterministic, strategyproof, and anonymous, and it is

1-consistent and 2-robust for facility location on the line and the egalitarian objective.

Proof. To show that the mechanism is strategyproof, consider any agent 𝑖 and, without loss of

generality, assume that 𝑝𝑖 ≤ 𝑜 , i.e., that the agent’s true preferred location is weakly on the left

of the prediction. We consider two cases, depending on whether 𝑝𝑖 is weakly greater than all the

locations reported by the other agents or not. If it is, this means that if 𝑖 reported truthfully, the

mechanism would place the facility at 𝑝𝑖 and 𝑖 would clearly have no incentive to lie. If, on the

other hand, 𝑝𝑖 is not weakly greater than all the other reported locations, then the returned location

𝑓 if 𝑖 reported the truth would be on the right of 𝑝𝑖 , i.e., 𝑓 > 𝑝𝑖 . However, it is easy to verify that if

agent 𝑖 reported a false point 𝑝 ′
𝑖 < 𝑝𝑖 , this would not affect the outcome, and if she reported a false

point 𝑝 ′
𝑖 > 𝑝𝑖 , this could only move 𝑓 further away from 𝑝𝑖 . Therefore, it is a dominant strategy for

𝑖 to report the truth. An alternative way to verify the fact that this mechanism is strategyproof

is by observing that it is actually equivalent to a Generalized Coordinatewise Median (defined in

Section 2) with the set 𝑃 ′
of constant points containing 𝑛 − 1 copies of the prediction 𝑜 . To verify

this, note that if 𝑜 ∈ [min𝑖 𝑝𝑖 ,max𝑖 𝑝𝑖 ], then the median of 𝑃 ∪ 𝑃 ′
would be 𝑜 , otherwise it would

be either the leftmost or the rightmost point of 𝑃 , just like theMinMaxP mechanism.

Now, to verify the consistency guarantee, consider any instance where the prediction 𝑜 is

accurate. Since the truly optimal location for the egalitarian social welfare lies halfway between

the leftmost and rightmost point in 𝑃 , then we know that whenever 𝑜 is accurate, it must be that
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𝑜 ∈ [min𝑖 𝑝𝑖 ,max𝑖 𝑝𝑖 ]. As a result, for any such instance the mechanism will place the facility at

the optimal location, 𝑜 , leading to a consistency of 1.

Finally, to verify that this mechanism is 2-robust, note that the facility location 𝑓 that the

mechanism returns always satisfies 𝑓 ∈ [min𝑖 𝑝𝑖 ,max𝑖 𝑝𝑖 ]. As a result, the egalitarian social cost by

the mechanism is at most (max𝑖 𝑝𝑖 − min𝑖 𝑝𝑖 ). On the other hand, the optimal egalitarian social

cost is equal to (max𝑖 𝑝𝑖 −min𝑖 𝑝𝑖 )/2, implying the 2-robustness guarantee. □

3.2 The minimum bounding box mechanism
We now move on to the two-dimensional case, i.e., 𝑝𝑖 ∈ R2 for every agent 𝑖 , which is the main

focus of the paper. We extend the MinMaxP mechanism to this setting by running it separately for

each of the two dimensions (see Mechanism 2). An alternative, more geometric, description of this

mechanism is that it first computes the minimum axis-parallel bounding box of the set 𝑃 of agent

locations and then places the facility at the location within that box that is closest to the predicted

optimal location. We therefore call it theMinimum Bounding Box mechanism.

Mechanism 2: Minimum Bounding Box mechanism for egalitarian social cost in two dimensions.

Input: points ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) ∈ R2𝑛 , prediction (𝑥𝑜 , 𝑦𝑜 ) ∈ R2
𝑥 𝑓 = MinMaxP((𝑥1, . . . , 𝑥𝑛), 𝑥𝑜 )
𝑦𝑓 = MinMaxP((𝑦1, . . . , 𝑦𝑛), 𝑦𝑜 )
return (𝑥 𝑓 , 𝑦𝑓 )

We now show that the Minimum Bounding Box mechanism is strategyproof, that it places the

facility at the optimal location when the prediction is correct (1-consistency), and that it achieves a

1 +
√
2 ≈ 2.41 approximation even when the prediction is arbitrarily incorrect (1 +

√
2-robustness),

which is only a slight drop relative to the best achievable approximation, which is 2.

Theorem 3.2. TheMinimum Bounding Boxmechanism is deterministic, strategyproof, and anony-

mous and it is 1-consistent and (1 +
√
2)-robust for the egalitarian objective.

Proof. There are two ways to verify the strategyproofness of this mechanism. One intuitive way

is to observe that the mechanism treats each dimension separately, running the MinMaxP mecha-

nism for each one, so the strategyproofness of that mechanism also implies the strategyproofness of

Minimum Bounding Box (since agents want the facility to be as close to their coordinate for each

dimension). Alternatively, the strategyproofness can also be verified by the fact that the Minimum

Bounding Box mechanism is equivalent to a Generalized Coordinatewise Median mechanism if

we let 𝑃 ′
contain 𝑛 − 1 copies of the prediction 𝑜 , as we also observed in the proof of Theorem 3.1.

To verify that the mechanism has perfect consistency, we first note that the optimal facility

location is always in the convex hull of the points in 𝑃 (in fact, it is the center of the smallest circle

containing all points in 𝑃 , and the radius of this circle corresponds to the egalitarian social cost).

This point is clearly within the minimum axis-parallel bounding box (which contains the convex

hull), so for any instance where the prediction 𝑜 is correct, this prediction is in the bounding box,

and is thus the location returned by the mechanism, verifying its 1-consistency.

For the robustness, consider any instance with a set of preferred locations 𝑃 , let 𝑜 be the optimal

facility location and 𝐶𝑒 (𝑜, 𝑃) = max𝑝𝑖 ∈𝑃 𝑑 (𝑝𝑖 , 𝑜). We now consider the circle 𝑐 with 𝑜 as its center

and the optimal distance 𝐶𝑒 (𝑜, 𝑃) as its radius. Consider the axis-parallel square that has 𝑐 as

its inscribed circle and note that this square contains all the points in 𝑃 since, by definition of

the egalitarian social cost, it must be that all the points in 𝑃 are contained within the circle 𝑐 ,

contained in the square. As a result, the minimum axis-parallel bounding box of 𝑃 is contained

in this axis-parallel square. Therefore, since 𝑓 , the location returned by the mechanism, is always
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within this axis-parallel square (whose center is 𝑜 and whose edges are all of length 2𝐶𝑒 (𝑜, 𝑃)) we
have 𝑑 (𝑜, 𝑓 ) ≤

√
2 ·𝐶𝑒 (𝑜, 𝑃), because the points of the square furthest away from its center are its

vertices. By the triangle inequality we have that:

max

𝑝𝑖 ∈𝑃
𝑑 (𝑓 , 𝑝𝑖 ) ≤ 𝑑 (𝑓 , 𝑜) +max

𝑝𝑖 ∈𝑃
𝑑 (𝑜, 𝑝𝑖 ) ≤ (1 +

√
2) ·𝐶𝑒 (𝑜, 𝑃). □

3.3 Optimality of the mechanism
Since the coordinatewise median (CM) mechanism achieves a 2-approximation for the egalitarian

social cost over all instances in two dimensions [14], it is 2-consistent and 2-robust. The Minimum

Bounding Box mechanism achieves 1-consistency, but that comes at the cost of the robustness

guarantee, which weakens from 2 to 1 +
√
2 ≈ 2.41. A natural question is whether there exists any

middle-ground between these two results, i.e, whether some mechanism can combine consistency

better than 2 with robustness better than 1 +
√
2.

Our next result, Theorem 3.3, answers this question negatively for deterministic, strategyproof,

and anonymous mechanisms. We show that any deterministic, strategyproof, and anonymous

mechanism that guarantees a consistency better than 2must have a robustness no better than 1+
√
2,

proving the optimality of our mechanism among all the mechanisms that provide consistency

guarantees better than 2. Due to space limitation, we defer the proof to Appendix A.

Theorem 3.3. There is no deterministic, strategyproof, and anonymous mechanism that is (2 − 𝜖)-
consistent and (1 +

√
2 − 𝜖)-robust with respect to the egalitarian objective for any 𝜖 > 0.

3.4 Approximation as a function of the prediction error
We now extend the consistency and robustness results for Minimum Bounding Box to obtain

a refined approximation ratio as a function of the prediction error 𝜂. This result shows that our

mechanism achieves improved approximation guarantees not only when 𝜂 = 0 (which corresponds

to the consistency guarantee), but for any value of 𝜂 less than

√
2. Specifically, our bound degrades

gracefully from the consistency bound of 1 to the robustness bound of (1 +
√
2) as a function of 𝜂.

Theorem 3.4. TheMinimum Bounding Boxmechanism achieves amin{1+𝜂, 1+
√
2} approximation

for the egalitarian objective, where 𝜂 is the prediction error.

To obtain a (1 + 𝜂)-approximation, we aim to bound the distance between the output of the

mechanism with the erroneous prediction and the output of the mechanism if it had been given the

correct prediction, i.e., the optimal location. We first show a helpful lemma to bound this distance.

Due to space limitation, we defer the proof of the lemma to Appendix A.

Lemma 3.5. Given a set of points 𝑃 and two predictions 𝑜 and 𝑜 , let 𝑓 (𝑃, 𝑜) and 𝑓 (𝑃, 𝑜) be the
respective facility locations chosen by the Minimum Bounding Box mechanism. Then, the distance

between these two facility locations is at most the distance between the two predictions, i.e.,

𝑑 (𝑓 (𝑃, 𝑜), 𝑓 (𝑃, 𝑜)) ≤ 𝑑 (𝑜, 𝑜).

Using this lemma, we are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. Theorem 3.2 already shows that the worst-case approximation of Mini-

mum Bounding Box is at most (1 +
√
2), so we just need to prove that it is also at most (1 + 𝜂).

We first note that the error 𝜂 in the prediction is equal to the normalized distance between the

prediction and the actual optimal facility location, i.e., 𝑑 (𝑜, 𝑜)/𝐶𝑒 (𝑜, 𝑃), so 𝑑 (𝑜, 𝑜) = 𝜂 · 𝐶𝑒 (𝑜, 𝑃).
Using Lemma 3.5 and substituting 𝑜 with the actual optimal facility location 𝑜 , i.e., 𝑜 = 𝑜 , we get

𝑑 (𝑓 (𝑃, 𝑜), 𝑓 (𝑃, 𝑜)) ≤ 𝑑 (𝑜, 𝑜) = 𝜂 ·𝐶𝑒 (𝑜, 𝑃). (1)
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However, theMinimum Bounding Box mechanism chooses the optimal facility when provided

with an accurate prediction (it is 1-consistent), so 𝑓 (𝑃, 𝑜) = 𝑜 . We can therefore conclude that

𝐶𝑒 (𝑓 (𝑃, 𝑜), 𝑃) = max

𝑖∈[𝑛]
𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜))

≤ max

𝑖∈[𝑛]
(𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜)) + 𝑑 (𝑓 (𝑃, 𝑜), 𝑓 (𝑃, 𝑜)))

≤ max

𝑖∈[𝑛]
(𝑑 (𝑝𝑖 , 𝑜) + 𝜂 ·𝐶𝑒 (𝑜, 𝑃))

≤ 𝐶𝑒 (𝑜, 𝑃) + 𝜂 ·𝐶𝑒 (𝑜, 𝑃)
= (1 + 𝜂)𝐶𝑒 (𝑜, 𝑃),

where the first equation is by definition of the egalitarian social cost, the first inequality uses the

triangle inequality, the second inequality uses the fact that 𝑓 (𝑃, 𝑜) = 𝑜 and Inequality (1), and the

third inequality uses the definition of the egalitarian social cost. □

4 MINIMIZING THE UTILITARIAN SOCIAL COST
In this section, we focus on minimizing the utilitarian social cost function. For the one-dimensional

case, returning the median of the preferred points in 𝑃 is an optimal solution which is also strate-

gyproof. For the two-dimensional case, it is known that the coordinatewise median mechanism

guarantees a

√
2-approximation, and no deterministic, anonymous, and strategyproof mechanism

can achieve a better guarantee [19]. Our main result in this section is a deterministic, strategyproof,

and anonymous mechanism in the learning-augmented framework that uses predictions to achieve

an optimal trade-off between robustness and consistency. This mechanism is parameterized by a

“confidence value” 𝑐 ∈ [0, 1) (such that 𝑐𝑛 is an integer), which is chosen by the designer, depend-

ing on how much they trust the prediction. Specifically, we prove that for each choice of 𝑐 , the

induced mechanism is

√
2𝑐2 + 2/(1 + 𝑐)-consistent and

√
2𝑐2 + 2/(1 − 𝑐)-robust. If the designer has

no confidence in the prediction, setting 𝑐 = 0 retrieves the optimal robustness guarantee of

√
2,

with a consistency that is also

√
2. For higher values of 𝑐 , the consistency improves beyond

√
2,

gradually approaching 1, at the cost of increased robustness bounds (see Figure 1). In Section 4.2 we

show that this trade-off between robustness and consistency provided by our mechanism is, in fact,

optimal over all deterministic, strategyproof, and anonymous mechanisms. Finally, in Section 4.3

we once again provide a more refined bound regarding the approximation that our mechanism

achieves as a function of the prediction error.

4.1 The coordinatewise median with predictions mechanism
Our Coordinatewise Median with Predictions (CMP) mechanism takes as input the multiset

𝑃 of the preferred locations reported by the agents, a prediction 𝑜 , and a parameter value 𝑐 ∈
[0, 1) which captures the designer’s confidence in the prediction (such that 𝑐𝑛 is an integer). The

mechanism creates a multiset 𝑃 ′
containing 𝑐𝑛 copies of 𝑜 and outputs CM(𝑃 ∪ 𝑃 ′), i.e., the facility

location chosen by the generalized coordinatewise median mechanism whose multiset of constant

points 𝑃 ′
contains 𝑐𝑛 copies of the prediction. This set 𝑃 ′

provides an interesting way for the

designer to introduce a “bias” toward the prediction, which increases as a function of the parameter

𝑐 . Specifically, a larger value of 𝑐 adds more points in 𝑃 ′
, which can move the median with respect

to each coordinate toward the prediction. We use 𝑓 (𝑃, 𝑜, 𝑐) to denote the facility chosen by CMP

with a confidence parameter value of 𝑐 over preferred points 𝑃 and prediction 𝑜 . Note that for the

special case when the confidence parameter is set to 𝑐 = (𝑛 − 1)/𝑛, i.e., when 𝑃 ′
contains exactly

𝑛 − 1 copies of the prediction, then CMP reduces to the Minimum Bounding Box mechanism from

the previous section.
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Fig. 1. On the left, the consistency and robustness achieved by the CMP mechanism as a function of the

confidence parameter 𝑐 . On the right, the optimal trade-off between robustness and consistency, which is

matched by CMP. Both figures are for the utilitarian social cost objective.

To prove the robustness and consistency guarantees achieved by this mechanism, we first show

that we can, without loss of generality, focus on the class of instances that have the following

structure: the outcome of the mechanism is at (0, 0), the optimal outcome is at (0, 1), and every

point of 𝑃 is located either at (0, 1), at (−𝑥, 0), or at (𝑥, 0), for some 𝑥 ≥ 0.

Definition 4.1 (Clusters-and-OPT-on-Axes Instances). Given a confidence value 𝑐 ∈ [0, 1), consider
the class of all instances with predictions 𝑜 and preferred points 𝑃 (for any number of agents, 𝑛),

such that 𝑓 (𝑃, 𝑜, 𝑐) = (0, 0), 𝑜 (𝑃) = (0, 1), and 𝑝 ∈ {(0, 1), (𝑥, 0), (−𝑥, 0)} for all 𝑝 ∈ 𝑃 and some

𝑥 ∈ R≥0. Let P𝐶
coa

(𝑐) be the subset of these instances where 𝑜 = 𝑜 (𝑃) and P𝑅
coa

(𝑐) be the subset of
these instances where 𝑜 = (0, 0). We refer to these classes of instances as Clusters-and-Opt-on-Axes

(COA) for consistency and robustness, respectively.

Our next result is an important technical lemma showing that, if the CMP mechanism with

confidence parameter 𝑐 is 𝛼-consistent and 𝛽-robust with respect to the classes P𝐶
coa

(𝑐) and P𝑅
coa

(𝑐),
respectively, then it is 𝛼-consistent and 𝛽-robust over all instances. In other words, for any value of 𝑐 ,

there always exists a worst-case instance within these classes. The structure of our proof resembles

an argument used by [14] to analyze the worst-case approximation ratio of the standard coordinate-

wise median mechanism as a function of 𝑛 for instances where 𝑛 is odd (for instances where 𝑛 is

even, a tight bound of

√
2 was already known). However, our argument requires several new ideas

to address the fact that the CMP mechanism also depends on the prediction, and to provide bounds

not only for robustness, but also for consistency. The resulting argument comprises multiple steps,

so we defer the complete proof to Section 4.4. We use 𝑟 (𝑃, 𝑜, 𝑐) to denote the approximation ratio

achieved by CMP with parameter 𝑐 given a multiset of preferred points 𝑃 and a prediction 𝑜 .

Lemma 4.2. For any 𝑐 ∈ [0, 1), the CMP mechanism with confidence 𝑐 is 𝛼-consistent and 𝛽-robust,

where 𝛼 = max𝑃 ∈P𝐶
coa

(𝑐) 𝑟 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) and 𝛽 = max𝑃 ∈P𝑅
coa

(𝑐) 𝑟 (𝑃, 𝑜 = (0, 0), 𝑐).

Note that, the P𝐶
coa

(𝑐) and P𝑅
coa

(𝑐) classes contain instances with an arbitrary number of agents,

yet our robustness and consistency bounds are independent of 𝑛. We henceforth assume, without

loss of generality, that 𝑛 (the total number of agents) and 𝑐𝑛 (the number of points in 𝑃 ′
) are both

multiples of 4 to avoid integrality issues. Indeed, given any parameter value 𝑐 and any instance

where one of these quantities is not a multiple of 4, we can produce another instance that satisfies

both of these conditions and has the same approximation ratio. Specifically, we can achieve this by

making four copies of each point in 𝑃 and 𝑃 ′
; this would not affect the optimal outcome, nor would

it affect the outcome of the mechanism, so the approximation ratio would be the same.
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Next, we show that there exists an instance in P𝐶
coa

(𝑐) such that the CMP mechanism obtains a√
2𝑐2 + 2/(1 + 𝑐)-approximation when the prediction is correct and an instance in P𝑅

coa
(𝑐) where it

obtains a

√
2𝑐2 + 2/(1 − 𝑐)-approximation for some incorrect prediction.

Lemma 4.3. For CMP with confidence 𝑐 ∈ [0, 1), there exists an instance 𝑃 ∈ P𝐶
coa

(𝑐) such that

𝑟 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) =
√
2𝑐2+2
1+𝑐 and an instance 𝑄 ∈ P𝑅

coa
(𝑐) such that 𝑟 (𝑄,𝑜 = (0, 0), 𝑐) =

√
2𝑐2+2
1−𝑐 .

Proof. For the first statement (the consistency bound), consider a multiset of points 𝑃 that

is partitioned into three sets, 𝐿, 𝑅, and 𝑈 , such that 𝑝𝑖 =
(
− 1+𝑐

1−𝑐 , 0
)
for 𝑖 ∈ 𝐿 with |𝐿 | = 1+𝑐

4
𝑛,

𝑝𝑖 =
(
1+𝑐
1−𝑐 , 0

)
for 𝑖 ∈ 𝑅 with |𝑅 | = 1+𝑐

4
𝑛, and 𝑝𝑖 = (0, 1) for 𝑖 ∈ 𝑈 with |𝑈 | = 1−𝑐

2
𝑛. The optimal

location is at (0, 1), i.e., 𝑜 (𝑃) = (0, 1), and the optimal cost is 𝐶𝑢 (𝑜 (𝑃), 𝑃) = 1+𝑐
2
𝑛

√︃
1 +

(
1+𝑐
1−𝑐

)
2

. Since

𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) = (0, 0), we also have 𝐶𝑢 (𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐), 𝑃) = 1+𝑐
2
𝑛 · 1+𝑐

1−𝑐 + 1−𝑐
2
𝑛 · 1. Therefore,

the consistency, 𝑟 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐), of this instance 𝑃 is:

𝑟 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) =
1+𝑐
2

· 1+𝑐
1−𝑐 +

1−𝑐
2

1+𝑐
2

√︃
1 +

(
1+𝑐
1−𝑐

)
2

=

√
2𝑐2 + 2

1 + 𝑐 .

For the second statement (the robustness bound), consider the following multiset of points𝑄 . Let

𝐿, 𝑅, and𝑈 be subsets of agents such that 𝑝𝑖 =
(
− 1−𝑐

1+𝑐 , 0
)
for 𝑖 ∈ 𝐿 with |𝐿 | = 1−𝑐

4
𝑛, 𝑝𝑖 =

(
1−𝑐
1+𝑐 , 0

)
for

𝑖 ∈ 𝑅 with |𝑅 | = 1−𝑐
4
𝑛, and 𝑝𝑖 = (0, 1) for 𝑖 ∈ 𝑈 with |𝑈 | = 1+𝑐

2
𝑛. Note that instances 𝑃 and𝑄 are very

similar, except for the locations of the clusters on the 𝑥-axis and the number of points on each cluster.

Given again 𝑜 (𝑄) = (0, 1) and 𝑓 (𝑄,𝑜 = (0, 0), 𝑐) = (0, 0), we have 𝐶𝑢 (𝑜 (𝑄), 𝑄) = 1−𝑐
2
𝑛

√︃
1 +

(
1−𝑐
1+𝑐

)
2

and 𝐶𝑢 (𝑓 (𝑄,𝑜 = (0, 0), 𝑐), 𝑄) = 1−𝑐
2
𝑛 · 1−𝑐

1+𝑐 + 1+𝑐
2
𝑛, leading to a robustness of

𝑟 (𝑄,𝑜 = (0, 0), 𝑐) =
1−𝑐
2

· 1−𝑐
1+𝑐 + 1+𝑐

2

1−𝑐
2

√︃
1 +

(
1−𝑐
1+𝑐

)
2

=

√
2𝑐2 + 2

1 − 𝑐
. □

We can now combine Lemma 4.2 and Lemma 4.3 to obtain the consistency and robustness bounds

of the CMP mechanism with respect to the utilitarian objective.

Theorem 4.4. The CMPmechanism with parameter 𝑐 ∈ [0, 1) is
√
2𝑐2+2
1+𝑐 -consistent and

√
2𝑐2+2
1−𝑐 -robust

for the utilitarian objective.

Proof. We first argue the consistency guarantee. From Lemma 4.2 we know that for any confi-

dence value 𝑐 ∈ [0, 1) and given any instance, we can always find an instance with weakly worse

consistency in P𝐶
coa

(𝑐), i.e., a multiset 𝑃 such that 𝑜 (𝑃) = (0, 1), 𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) = (0, 0) and
there exist 𝑥 ∈ R≥0 such that 𝑝 ∈ {(0, 1), (𝑥, 0), (−𝑥, 0)} for all 𝑝 ∈ 𝑃 . Note that for any value

of 𝑥 , the consistency is maximized when the number of agents on (0, 1) is maximized. To see

this, note that each agent on (0, 1) suffers no cost according to the optimal solution but a cost of

1 according to the mechanism output, whereas each agent on (𝑥, 0) or (−𝑥, 0) suffers a cost of√
𝑥2 + 1 > 𝑥 according to the optimal solution and a cost of 𝑥 according to the mechanism output.

Since 𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) = (0, 0) and there are 𝑐𝑛 predicted points on (0, 1), the number of agents on

(0, 1) in the worst case should be
1−𝑐
2
𝑛. We can then write the consistency as follows:

𝛼 =
𝐶𝑢 (𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐), 𝑃)

𝐶𝑢 (𝑜 (𝑃), 𝑃) =

1+𝑐
2
𝑛 · 𝑥 + 1−𝑐

2
𝑛

1+𝑐
2
𝑛 ·

√
1 + 𝑥2

=
1 − 𝑐 + (1 + 𝑐)𝑥
(1 + 𝑐)

√
1 + 𝑥2

.
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Taking the first derivative with respect to 𝑥 we get:

𝑑𝛼

𝑑𝑥
=

1 + 𝑐 − (1 − 𝑐)𝑥
(1 + 𝑐) (1 + 𝑥2)

√
1 + 𝑥2

.

Solving
𝑑𝛼
𝑑𝑥

= 0 we get that 𝑥 = 1+𝑐
1−𝑐 . Notice that the denominator of

𝑑𝛼
𝑑𝑥

is always positive and

for any 𝑥 < 1+𝑐
1−𝑐 , the numerator is positive and for any 𝑥 > 1+𝑐

1−𝑐 , the numerator is negative, we

therefore have that 𝛼 is maximized at 𝑥 = 1+𝑐
1−𝑐 . Since the agents on (𝑥, 0) and (−𝑥, 0) are equidistant

from both 𝑜 (𝑃) and 𝑓 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐), the instance is identical to the lower bound instance 𝑃 in

Lemma 4.3. Therefore we have

𝛼 = 𝑟 (𝑃, 𝑜 = 𝑜 (𝑃), 𝑐) =
√
2𝑐2 + 2

1 + 𝑐 .

The proof for the robustness guarantee is similar. From Lemma 4.2 we know that for any

confidence value 𝑐 ∈ [0, 1) and given any instance, we can always find an instance with weakly

worse robustness in P𝑅
coa

(𝑐), i.e., a multiset of points 𝑄 such that 𝑜 (𝑄) = (0, 1), 𝑓 (𝑄,𝑜 = (0, 0), 𝑐) =
(0, 0) and there exist 𝑥 ∈ R≥0 such that 𝑞 ∈ {(0, 1), (𝑥, 0), (−𝑥, 0)} for all 𝑞 ∈ 𝑄 . Note that,by the

exact same reasoning as for consistency, for any value of 𝑥 , the approximation ratio is maximized

when the number of agents on (0, 1) is maximized. Since again 𝑓 (𝑄,𝑜 = (0, 0), 𝑐) = (0, 0) and there

are 𝑐𝑛 predicted points on (0, 0), the number of agents on (0, 1) in the worst case should be
1+𝑐
2
𝑛.

We can then write the robustness as follows:

𝛽 =
𝐶𝑢 (𝑓 (𝑄,𝑜 = (0, 0), 𝑐), 𝑄)

𝐶𝑢 (𝑜 (𝑄), 𝑄) =

1−𝑐
2
𝑛 · 𝑥 + 1+𝑐

2
𝑛

1−𝑐
2
𝑛 ·

√
1 + 𝑥2

=
1 + 𝑐 + (1 − 𝑐)𝑥
(1 − 𝑐)

√
1 + 𝑥2

.

Taking derivative with respect to 𝑥 and setting it to 0 we get

𝑑𝛽

𝑑𝑥
=

1 − 𝑐 − (1 + 𝑐)𝑥
(1 − 𝑐) (1 + 𝑥2)

√
1 + 𝑥2

.

Solving
𝑑𝛽

𝑑𝑥
= 0 we get that 𝑥 = 1−𝑐

1+𝑐 . Notice that the denominator of
𝑑𝛽

𝑑𝑥
is always positive and

for any 𝑥 < 1−𝑐
1+𝑐 , the numerator is positive and for any 𝑥 > 1−𝑐

1+𝑐 , the numerator is negative, we

therefore have that 𝛽 is maximized at 𝑥 = 1−𝑐
1+𝑐 . Since the agents on (𝑥, 0) and (−𝑥, 0) are equidistant

from both 𝑜 (𝑄) and 𝑓 (𝑄,𝑜 = (0, 0), 𝑐), the instance is identical to the lower bound instance 𝑄 in

Lemma 4.3. Therefore we have

𝛽 = 𝑟 (𝑄,𝑜 = (0, 0), 𝑐) =
√
2𝑐2 + 2

1 − 𝑐
. □

4.2 Optimality of the mechanism
The CMP mechanism allows us to achieve consistency better than

√
2, trading it off against robust-

ness. Our next result shows that the trade-off achieved by CMP is optimal. Due to space limitation,

we defer the proof to Appendix B.

Theorem 4.5. For any deterministic, strategyproof, and anonymous mechanism that guarantees

a consistency of

√
2𝑐2+2
1+𝑐 for some constant 𝑐 ∈ (0, 1), its robustness is no better than

√
2𝑐2+2
1−𝑐 for the

utilitarian objective.

4.3 Approximation as a function of the prediction error
We extend the consistency and robustness results for CMP to obtain an approximation ratio as a

function of the prediction error 𝜂. This approximation gracefully degrades from the consistency
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bound

√
2𝑐2+2
1+𝑐 when 𝜂 = 0 to the robustness bound

√
2𝑐2+2
1−𝑐 as a function of 𝜂. Due to space limitation,

we defer the proof of Lemma 4.6 to Appendix B.

Lemma 4.6. Given a multiset of points 𝑃 , two predictions 𝑜 and 𝑜 and the confidence value 𝑐 ∈ [0, 1),
let 𝑓 (𝑃, 𝑜, 𝑐) and 𝑓 (𝑃, 𝑜, 𝑐) be the respective facility locations chosen by the CMP mechanism with

parameter 𝑐 . Then, the distance between these two facility locations is at most the distance between the

two predictions, i.e.,

𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑓 (𝑃, 𝑜, 𝑐)) ≤ 𝑑 (𝑜, 𝑜).

Theorem 4.7. The CMP mechanism with parameter 𝑐 ∈ [0, 1) achieves a min

{√
2𝑐2+2
1+𝑐 + 𝜂,

√
2𝑐2+2
1−𝑐

}
-

approximation, where 𝜂 is the prediction error, for the utilitarian objective.

Proof. Theorem 4.4 already shows that the worst-case approximation of the CMP mechanism

is at most

√
2𝑐2+2
1−𝑐 , so we just need to prove that it is also at most

√
2𝑐2+2
1+𝑐 + 𝜂.

We first note that the error 𝜂 in the prediction is equal to the normalized distance between the

prediction and the actual optimal facility location, i.e., 𝑑 (𝑜, 𝑜)/𝐶𝑢 (𝑜, 𝑃), so 𝑑 (𝑜, 𝑜) = 𝜂 · 𝐶𝑢 (𝑜, 𝑃).
Using Lemma 4.6 and substituting 𝑜 with the actual optimal facility location 𝑜 , i.e., 𝑜 = 𝑜 , we get

𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑓 (𝑃, 𝑜, 𝑐)) ≤ 𝑑 (𝑜, 𝑜) = 𝜂 ·𝐶𝑢 (𝑜, 𝑃). (2)

By Theorem 4.4, we also know that the CMPmechanism is

√
2𝑐2+2
1+𝑐 -consistent, i.e.,𝐶𝑢 (𝑓 (𝑃, 𝑜, 𝑐), 𝑃) ≤

√
2𝑐2+2
1+𝑐 𝐶𝑢 (𝑜, 𝑃). We can therefore conclude that

𝐶𝑢 (𝑓 (𝑃, 𝑜, 𝑐), 𝑃) = 1

𝑛

∑︁
𝑖∈[𝑛]

𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜, 𝑐))

≤ 1

𝑛

∑︁
𝑖∈[𝑛]

(𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜, 𝑐)) + 𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑓 (𝑃, 𝑜, 𝑐)))

≤ 𝐶𝑢 (𝑓 (𝑃, 𝑜, 𝑐), 𝑃) + 𝜂 ·𝐶𝑢 (𝑜, 𝑃)

≤
(√

2𝑐2 + 2

1 + 𝑐 + 𝜂
)
·𝐶𝑢 (𝑜, 𝑃),

where the first equation is by definition of the utilitarian social cost, the first inequality uses the

triangle inequality, the second inequality uses Inequality (2) and the definition of the utilitarian

social cost, and the last inequality uses the consistency guarantee of the mechanism, i.e., that

𝐶𝑢 (𝑓 (𝑃, 𝑜, 𝑐), 𝑃) ≤
√
2𝑐2+2
1+𝑐 𝐶𝑢 (𝑜, 𝑃). □

4.4 Proof of Lemma 4.2
In this section we prove Lemma 4.2, which shows that for any confidence parameter 𝑐 there exists a

worst-case multiset of points 𝑃 for the performance of CMP within the family of Clusters-and-Opt-

on-Axes (COA) instances, defined in Definition 4.1. At a high level, we argue that for any multiset

of points 𝑃 , there exists a multiset of points 𝑄 in COA such that the CMP mechanism achieves an

approximation ratio on 𝑄 that is no better than the approximation it achieves on 𝑃 . We construct

𝑄 via a series of transformations that starts at an arbitrary 𝑃 and moves points in a manner that

weakly increases the approximation ratio (some of the lemma proofs in this section are deferred to

Appendix C, due to space limitation).

This high level approach is similar to the one used by [14] to obtain a

√
2

√
𝑛2+1
𝑛+1 -approximation

for the coordinate-wise median mechanism in R2 and the special case where 𝑛 is odd; the analysis

of several of our lemmas is similar to the analysis of this previous result (e.g., Lemmas 4.14 and 4.16),
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but a crucial difference in our analysis is the impact of the prediction on themechanism. In particular,

as we move points to transform an instance into another instance, this can end up moving the

optimal location as well as the outcome of the CMP mechanism in non-trivial ways. To address

this issue we introduce multiple new ideas (e.g. Lemmas 4.11, 4.13, 4.17, and 4.18).

Fig. 2. Overview of instance transformations used to prove Lemma 4.2.

We now provide an overview of the series of transformations (see Figure 2 for an illustration). In

Section 4.4.1, we define the family of CA instances, where the points are all located at four clusters,

one on each half-axis, and then the family of OA instances, where the points and the optimal

location are all located on one of the axes. In Section 4.4.2, we show that an arbitrary instance 𝑃

can be transformed into either an instance in CA or an instance in OA (without improving the

approximation ratio). We then show in Section 4.4.3 that an instance in OA can be transformed

to an instance in COA. The main difficulty is then to transform an instance in CA to an instance

in COA, which we do in Section 4.4.4. Finally we combine all these steps to prove Lemma 4.2 in

Section 4.4.5.

Throughout this section, we consider instances that consist of a multiset of points 𝑃 and a

prediction 𝑜 such that the output of CMP is at the origin and the optimal location lies weakly in the

top right quadrant. To verify that this is without loss of generality, note that given any instance, if

we move all the points and the prediction in the same direction and by the same distance, we get an

instance where both the CMP mechanism and the optimal facility location have also moved along

this same direction and by the same distance. Therefore, the approximation factor is invariant to

such changes. As a result, given any instance, we can always generate a new instance such that the

output of CMP is at the origin, without affecting the approximation factor. Similarly, given any

instance, the points can be reflected across the horizontal and/or the vertical axes to generate a

new “flipped” instance such that the optimal location lies weakly in the top right quadrant without

affecting the approximation factor (e.g., if it lies in the bottom left quadrant originally, we can first

reflect across the horizontal axis and then the vertical one). We also assume that the prediction is

such that 𝑜 = (0, 0) for the robustness analysis. To verify that this is without loss of generality as
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well, first note that we have already restricted our attention to instances such that the output of the

mechanism is at the origin, and then observe that changing the prediction to also be at the origin

does not change the output of the CMP mechanism (if the coordinatewise median of 𝑃 ∪ 𝑃 ′
is the

origin when 𝑜 ≠ (0, 0), it will remain the coordinatewise median if we let 𝑜 = (0, 0)). Therefore,
this does not affect the outcome of the mechanism and, since it also does not affect the optimal

facility location, the robustness remains the same.

4.4.1 The CA and OA families. We define the CA and OA families of points 𝑃 . Let 𝐴+𝑥 = {(𝑥, 0) :
𝑥 ≥ 0} and 𝐴>

+𝑥 = {(𝑥, 0) : 𝑥 > 0} be the set of all points on the positive and strictly-positive 𝑥-axis.

We also define𝐴−𝑥 ,𝐴<
−𝑥 ,𝐴+𝑦 ,𝐴>

+𝑦 ,𝐴−𝑦 ,𝐴<
−𝑦 similarly. We define CA to be the family of instances of

points 𝑃 that satisfy multiple useful properties, the most important of which are that the points are

all located at four clusters, one on each half-axis and that the optimal location is not on an axis. We

denote these families for the consistency and robustness analysis by P𝐶
ca
(𝑐) and P𝑅

ca
(𝑐) respectively.

Note that these two families are different since, for the consistency analysis, the prediction is at

𝑜 = 𝑜 , for the robustness analysis, the prediction is at 𝑜 = (0, 0).

Definition 4.8. Consider, for some confidence 𝑐 , and prediction 𝑜 , the family of multisets of points

𝑃 s.t.

(1) Output at origin: 𝑓 (𝑃, 𝑜, 𝑐) = (0, 0),
(2) Opt in top-right quadrant: 𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) > 0,

(3) No move towards opt: for all 𝑝𝑖 ∈ 𝑃 and 𝜖 ∈ (0, 1], 𝑓 ((𝑃−𝑖 , 𝑝𝑖 + 𝜖 (𝑜 (𝑃) −𝑝𝑖 )), 𝑜, 𝑐) ≠ 𝑓 (𝑃, 𝑜, 𝑐),
(4) there exist 𝑥1, 𝑥2, 𝑦1, 𝑦2 ≥ 0 such that:

(a) Clusters on axes: for all 𝑝 ∈ 𝑃 , 𝑝 ∈ {(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃)},
(b) Less points in left: |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑥 ∪ {𝑜 (𝑃)}}|,

(c) Less points in bottom: |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑦}| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑦 ∪ {𝑜 (𝑃)}}|,
(d) 𝑥-clusters equidistant from opt: if (−𝑥1, 0), (𝑥2, 0) ∈ 𝑃 , then 𝑥𝑜 + 𝑥1 = 𝑥2 − 𝑥𝑜 , and

(e) 𝑦-clusters equidistant from opt: if (−𝑦1, 0), (𝑦2, 0) ∈ 𝑃 , then 𝑦𝑜 + 𝑦1 = 𝑦2 − 𝑦𝑜 .

Let P𝐶
ca
(𝑐) and P𝑅

ca
(𝑐) be this family when 𝑜 = 𝑜 (𝑃) and 𝑜 = (0, 0) respectively. These families are

called the Clusters-on-Axes (CA) families for consistency and robustness.

We define OA to be the family of multisets of points 𝑃 such that all the points are on one of the

two axes (not necessarily in clusters) and the optimal location is on one of the axes (without loss of

generality, the +𝑦 half axis). The main difference between the CA and OA families is the location of

the optimal location, either on an axis or not.

Definition 4.9. Consider, for some confidence 𝑐 , and prediction 𝑜 , the family of multisets of points

𝑃 such that (1) Output at origin: 𝑓 (𝑃, 𝑜, 𝑐) = (0, 0), (2) Opt on +𝑦 axis: 𝑥𝑜 (𝑃) = 0, 𝑦𝑜 (𝑃) > 0, and (3)

Points on axes: for all 𝑝 ∈ 𝑃 , 𝑝 ∈ 𝐴𝑥 ∪𝐴𝑦 . Let P𝐶
oa
(𝑐) and P𝑅

oa
(𝑐) be this family when 𝑜 = 𝑜 (𝑃) and

𝑜 = (0, 0) respectively. These families are called the Optimal-on-Axes (OA) families for consistency

and robustness.

4.4.2 The worst-case instance is in CA or OA. The main lemma in this section shows that an

arbitrary instance of a multiset 𝑃 can be transformed into either an instance in CA or an instance

in OA without improving the approximation ratio of CMP on that instance (Lemma 4.12).

We first show that if two points are at different locations on the same half-axis and the optimal

location is not on an axis, then there is an instance 𝑄 with a strictly worse approximation. This

lemma is used to obtain the clusters on axes property 4.a. for the CA family.

Lemma 4.10. For any points 𝑃 and confidence 𝑐 ∈ [0, 1) s.t. 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), if there are two
non-overlapping points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑃 , 𝑝𝑖 ≠ 𝑝 𝑗 that are on the same half axis, i.e., 𝐴+𝑥 , 𝐴−𝑥 , 𝐴+𝑦, or 𝐴−𝑦 ,
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and 𝑥𝑜 (𝑃), 𝑦𝑜 (𝑃) > 0, then there exists points𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) with predictions
𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄). This inequality also holds with predictions 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).

The next lemma shows that if the points are on the axes and the optimal location, if there are

at least as many points with 𝑥-coordinate that is negative than points with 𝑥-coordinate that is

positive, then there is an instance 𝑄 with a strictly worse approximation. The same property holds

for the 𝑦-coordinate.

Lemma 4.11. For any points 𝑃 and confidence 𝑐 ∈ [0, 1) such that 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), 𝑦𝑜 (𝑃) ≥
𝑥𝑜 (𝑃) > 0, and 𝑝 ∈ 𝐴𝑥 ∪ 𝐴𝑦 ∪ {𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 , if either |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈
𝐴>
+𝑥 ∪{𝑜 (𝑃)}}| or |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑦}| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑦∪{𝑜 (𝑃)}}|, then there exists points𝑄 such

that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) with predictions 𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄). This inequality also
holds with predictions 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).

We combine Lemma 4.10 and Lemma 4.11 to obtain that the instances for which CMP obtains

the worst consistency and robustness guarantees are in the CA and OA families.

Lemma 4.12. For any confidence 𝑐 ∈ [0, 1), let 𝛼 = max

𝑃 ∈P𝐶
oa
(𝑐)∪P𝐶

ca
(𝑐)

𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and let 𝛽 =

max

𝑃 ∈P𝑅
oa
(𝑐)∪P𝑅

ca
(𝑐)

𝑟 (𝑃, (0, 0), 𝑐). CMP with confidence 𝑐 is 𝛼-consistent and 𝛽-robust.

4.4.3 The worst-case instance in OA is also in COA. We show that the worst-case instance in OA is

no worse than the worst-case instance in COA for the consistency and robustness of CMP.

Lemma 4.13. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
oa
(𝑐), there exists 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
coa

(𝑐) and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Similarly,

for any 𝑃 ∈ P𝑅
oa
(𝑐), there exists 𝑄 such that either 𝑟 (𝑄, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅

coa
(𝑐) and

𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐).

4.4.4 The worst-case instance in CA is also in COA. In this section, we show that the worst-case

instance in CA is no worse than the worst-case instance in COA for the consistency (Lemma 4.19)

and robustness (Lemma 4.20) guarantees of CMP.

The next lemma shows that if we have an instance 𝑃 in the CA family, then we can construct

another instance 𝑄 in the CA family without points on the −𝑦 half axis while weakly increasing

the approximation ratio, for both the consistency and robustness guarantees.

Lemma 4.14. For any confidence 𝑐 ∈ [0, 1), and points 𝑃 ∈ P𝐶
ca
(𝑐), there exists points 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
ca
(𝑐), 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪

{𝑜 (𝑄)} for all 𝑞 ∈ 𝑄 . Similarly, for any confidence 𝑐 ∈ [0, 1), and points 𝑃 ∈ P𝑅
ca
(𝑐), there exists

points 𝑄 such that either 𝑟 (𝑄, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅
ca
(𝑐), 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐),

and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑄)} for all 𝑞 ∈ 𝑄 .

Using the above lemma, given an instance in the CA family, we can remove all the points that

are located on the −𝑦 half axis. The following lemma shows that for the consistency guarantee, if

an instance in the CA family does not contain any points on the −𝑦 half axis, then the number of

points on the −𝑥 axis is larger than or equal to the number of points at the optimal location.

Lemma 4.15. For any confidence 𝑐 ∈ [0, 1), consider 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 . Then, |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|.

Consider again an instance 𝑃 in the CA family without any points on the −𝑦 half axis for the

consistency guarantee. Lemma 4.16 shows that we can convert 𝑃 to an instance 𝑄 in the CA family

with weakly worse approximation ratio and points on either the 𝑥-axis or the +𝑦 half axis.

 
Session 5A: Mechanism Design with Learning ∙ EC ’22, July 11–15, 2022, Boulder, CO, USA

513



Lemma 4.16. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 , there exists points 𝑄 such that either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
ca
(𝑐),

𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 for all 𝑞 ∈ 𝑄 .

The next lemma shows that for an instance 𝑃 in the CA family with points only on the 𝑥-axis and

the +𝑦 half axis, there exists another instance in the COA family with weakly worse approximation

ratio than that of 𝑃 for the consistency guarantee.

Lemma 4.17. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪ 𝐴+𝑦 for

all 𝑝 ∈ 𝑃 , there exists either 𝑄 ∈ P𝐶
coa

(𝑐) such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ′
such that

𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).

We now shift our focus back to the robustness guarantee. The next lemma states that, for the

robustness guarantee, if we have an instance 𝑃 in the CA family where points are located only on

the 𝑥-axis, +𝑦 half axis or at the optimal location, then there is another instance𝑄 in the COA family

with weakly worse approximation ratio. Note that such an instance 𝑃 is the result of Lemma 4.14.

Lemma 4.18. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝑅
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 , there exists either 𝑄 ∈ P𝑅
coa

(𝑐) such that 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ′
and

prediction 𝑜 such that 𝑟 (𝑄 ′, 𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐).

Finally, the following two lemmas combine the above lemmas and show how to convert an

instance 𝑃 in the CA family to an instance 𝑄 in the COA family while weakly increasing the

approximation ratio for the consistency and robustness guarantees, respectively.

Lemma 4.19. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐), there exists points 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
coa

(𝑐) and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).

Lemma 4.20. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝑅
ca
(𝑐), there exists points𝑄 and prediction

𝑜 such that either 𝑟 (𝑄,𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅
coa

(𝑐) and 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐).

4.4.5 The worst-case instance is in COA. We are ready to prove our main lemma for this section.

Proof of Lemma 4.2. Let 𝛼 ′ = max𝑃 ∈P𝐶
oa
(𝑐)∪P𝐶

ca
(𝑐) 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), 𝛼 = max𝑃 ∈P𝐶

coa
(𝑐) 𝑟 (𝑃, 𝑜 (𝑃), 𝑐),

𝛽 ′ = max𝑃 ∈P𝑅
oa
(𝑐)∪P𝑅

ca
(𝑐) 𝑟 (𝑃, (0, 0), 𝑐), and 𝛽 = max𝑃 ∈P𝑅

coa
(𝑐) 𝑟 (𝑃, (0, 0), 𝑐). By Lemma 4.12, CMPwith

confidence 𝑐 is 𝛼 ′
-consistent and 𝛽 ′-robust.

By Lemma 4.19 and Lemma 4.13, there exists a multiset of points𝑄 such that either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) >
𝛼 ′

or 𝑄 ∈ P𝐶
coa

(𝑐) and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝛼 ′
. If 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝛼 ′

, this is a contradiction with the

𝛼 ′
-consistency of the mechanism. Otherwise, 𝑄 ∈ P𝐶

coa
(𝑐) and 𝛼 ≥ 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝛼 ′

and CMP is

𝛼-consistent. Similarly, by Lemma 4.20 and Lemma 4.13, there exists a multiset of points 𝑄 and

prediction 𝑜 such that either 𝑟 (𝑄,𝑜, 𝑐) > 𝛽 ′ or𝑄 ∈ P𝑅
coa

(𝑐) and 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝛽 ′. If 𝑟 (𝑄,𝑜, 𝑐) > 𝛽 ′,
this is a contradiction with the 𝛽 ′-robustness of the mechanism. Otherwise, 𝑄 ∈ P𝑅

coa
(𝑐) and

𝛽 ≥ 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝛽 ′ and CMP is 𝛽-robust. □

5 CONCLUSION AND FUTURE DIRECTIONS
Ourmain thesis in this paper is that the learning-augmented design framework, which hasmotivated

a surge of recent work on “algorithms with predictions”, can have a transformative impact on

the design and analysis of mechanisms in multiagent systems. Such mechanisms face crucial

information limitations that hinder the designer from reaching desired outcomes: the most obvious

among them is that the designer does not know the participating agents’ private information, and

these agents may choose to strategically misreport it. Therefore, machine-learned predictions have

the potential to address these information limitations and help mechanisms achieve improved
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performance when the predictions are accurate. To support our thesis, we focused on the canonical

problem of facility location and proposed new mechanisms that leverage predictions to achieve

a trade-off between robustness and consistency. Depending on how confident the designer is

regarding the prediction, our mechanisms provide her with a parameterized menu of options that

yield Pareto optimal robustness and consistency guarantees.

There is a loose connection between the learning-augmented mechanism design framework and

the line of work on Bayesian mechanism design, which assumes that the agents’ private values are

drawn from a distribution. This is analogous to the average case analysis for algorithms, which

assumes that the input is drawn from a distribution, and the crucial difference with the learning-

augmented framework is that it provides no robustness guarantees: in Bayesian mechanism design,

the performance of a mechanism is evaluated in expectation over this randomness and there are

no worst-case performance guarantees in general. This is in contrast to our setting, where we

seek performance guarantees even if the predictions are arbitrarily inaccurate and also provide

approximation guarantees as a function of the prediction error. Another difference comes from

the fact that a lot of the work on Bayesian mechanism design relaxes the notion of incentives and

rather than aiming for strategyproofness, which requires that reporting truthfully is a dominant

strategy, it instead aims for Bayesian incentive compatibility, which requires that truthful reporting

is an optimal strategy in expectation over the randomness, and assuming everyone else also reports

truthfully. Finally, learning these distributions requires a large amount of data about a specific

setting (e.g., data about past agents’ values for the exact same item that is currently being sold in

an auction), whereas machine learning can utilize heterogeneous data (e.g., data about past agents’

values for similar items that were previously sold) to obtain predictions, like the ones used in the

learning-augmented framework.

The impact of the learning-augmented framework on the design of mechanisms is largely unex-

plored, so there are multiple important open problems along this research direction. For example,

one can revisit any mechanism design problem (both with and without monetary payments) for

which we know that strategyproofness leads to impossibility results, aiming to better understand

how predictions could help us overcome these obstacles, without compromising the incentive

guarantees. We therefore anticipate that this framework will give rise to an exciting new literature

that studies classic mechanism design problems from a new perspective.
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A MISSING ANALYSIS FROM SECTION 3
Theorem 3.3. There is no deterministic, strategyproof, and anonymous mechanism that is (2 − 𝜖)-

consistent and (1 +
√
2 − 𝜖)-robust with respect to the egalitarian objective for any 𝜖 > 0.

Proof. First, note that any mechanism 𝑓 with a bounded robustness needs to be unanimous,

i.e., given a set of points 𝑃 where all the points are at the same location (𝑝𝑖 = 𝑝 𝑗 for all 𝑖, 𝑗 ∈ [𝑛]),
the mechanism needs to place the facility at that same location, i.e., 𝑓 (𝑃) = 𝑝𝑖 . If not, then its

cost would be positive, while the optimal cost is zero, by placing the facility at the same location
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as all the points. Therefore, we can restrict our attention to mechanisms that are unanimous.

Using the characterization of [22], we know that any deterministic, strategyproof, anonymous,

and unanimous mechanism in our setting takes the form of a generalized coordinatewise median

(GCM) mechanism with 𝑛 − 1 constant points in 𝑃 ′
. Our proof first shows that in order to achieve a

consistency better than 2, this mechanism needs to use the prediction 𝑜 in place of all these 𝑛 − 1

constant points. Then, we show that if it does use the prediction 𝑜 in place of all these 𝑛−1 constant

points, its robustness is at least 1 +
√
2.

For the first part of the proof, consider any GCM mechanism for which the multiset of constant

points 𝑃 ′
contains at least one point that is not the same as the prediction point, 𝑜 . Without loss of

generality, assume that this point lies strictly below 𝑜 , i.e., that its 𝑦-coordinate is strictly smaller

than 𝑦𝑜 (if this point is strictly on the left, strictly on the right, or strictly above the prediction point,

we can directly adjust the argument below to prove the same result). Let 𝑦 = max𝑝∈𝑃 ′
:𝑦𝑝<𝑦𝑜̂ 𝑦𝑝

be the maximum 𝑦-coordinate among the points in 𝑃 ′
that are strictly below the prediction, and

𝜖 = 𝑦𝑜 − 𝑦 (there exists at least one point in 𝑃 ′
that is strictly below the prediction, so 𝜖 > 0). Then,

consider the instance where the set of actual agent points 𝑃 has 𝑛 − 1 points at location (𝑥𝑜 , 𝑦𝑜 − 𝜖)
and 1 point at location (𝑥𝑜 , 𝑦𝑜 + 𝜖), i.e., 𝜖 below the prediction and 𝜖 above it, respectively. For this

instance, 𝑜 is the correct prediction, as it achieves the optimal egalitarian social cost of 𝜖 . However,

the median of the points in 𝑃 ∪ 𝑃 ′
with respect to the 𝑦-axis is 𝑦𝑜 − 𝜖 , since there are at least 𝑛

points in 𝑃 ∪ 𝑃 ′
with 𝑦-coordinate equal to 𝑦𝑜 − 𝜖 (𝑛 − 1 points in 𝑃 and at least one point in 𝑃 ′

)

out of a total of 2𝑛 − 1 points in 𝑃 ∪ 𝑃 ′
. Therefore, the egalitarian social cost of the mechanism

would be at least 2𝜖 , since the 𝑦 coordinate of the facility location would be 𝑦𝑜 − 𝜖 , but there is an

actual agent point on (𝑥𝑜 , 𝑦𝑜 + 𝜖). Therefore, any such mechanism would have a consistency no

better than 2.

Now, we conclude the proof by showing that the robustness of the GCM mechanism that uses

the prediction point 𝑜 for all the 𝑛 − 1 constant points in 𝑃 ′
is no better than 1 +

√
2. Assume that

the prediction 𝑜 is located at (1, 1) and consider an instance with 𝑛 = 3 points in 𝑃 located at (0, 1),
(1, 0), and (−1/

√
2,−1/

√
2). In that case, the optimal facility location would be at (0, 0) and all the

three points in 𝑃 would have distance 1 from it. However, the set 𝑃 ′
contains 𝑛 − 1 = 2 points at

(1, 1), so the GCM mechanism would place the facility at (1, 1), because three of the five points in
𝑃 ∪ 𝑃 ′

have 𝑥-coordinate 1 and three of the five points in 𝑃 ∪ 𝑃 ′
have 𝑦-coordinate 1. The distance

of this facility location from (−1/
√
2,−1/

√
2) is 1 +

√
2, which concludes the proof. □

Lemma 3.5. Given a set of points 𝑃 and two predictions 𝑜 and 𝑜 , let 𝑓 (𝑃, 𝑜) and 𝑓 (𝑃, 𝑜) be the
respective facility locations chosen by the Minimum Bounding Box mechanism. Then, the distance

between these two facility locations is at most the distance between the two predictions, i.e.,

𝑑 (𝑓 (𝑃, 𝑜), 𝑓 (𝑃, 𝑜)) ≤ 𝑑 (𝑜, 𝑜).

Proof. Let (𝑥 ˆ𝑓
, 𝑦 ˆ𝑓

) = 𝑓 (𝑃, 𝑜) and (𝑥 ˜𝑓
, 𝑦 ˜𝑓

) = 𝑓 (𝑃, 𝑜) be facility locations returned by theMini-

mum Bounding Box mechanism given predictions 𝑜 and 𝑜 , respectively, and let 𝑑𝑥 𝑓 = |𝑥 ˆ𝑓
− 𝑥 ˜𝑓

|
and 𝑑𝑦𝑓 = |𝑦 ˆ𝑓

− 𝑦 ˜𝑓
| be the difference of their 𝑥 and 𝑦 coordinates. Similarly, let 𝑑𝑥𝑜 = |𝑥𝑜 − 𝑥𝑜 |

and 𝑑𝑦𝑜 = |𝑦𝑜 − 𝑦𝑜 | be the corresponding differences for the coordinates of the two predictions. To

prove this lemma, we argue that 𝑑𝑥 𝑓 ≤ 𝑑𝑥𝑜 and 𝑑𝑦𝑓 ≤ 𝑑𝑦𝑜 , implying the desired inequality, since

𝑑 (𝑓 (𝑃, 𝑜), 𝑓 (𝑃, 𝑜)) =

√︃
𝑑𝑥2

𝑓
+ 𝑑𝑦2

𝑓
≤

√︃
𝑑𝑥2𝑜 + 𝑑𝑦2𝑜 = 𝑑 (𝑜, 𝑜).

We first focus on the 𝑥-coordinate and, without loss of generality, we assume that 𝑥𝑜 ≤ 𝑥𝑜 , i.e.,

that the first prediction is weakly on the left of the second one. To verify that 𝑑𝑥 𝑓 ≤ 𝑑𝑥𝑜 , we proceed

with a simple case analysis. If 𝑥𝑜 ≥ max𝑖 𝑝𝑖 or 𝑥𝑜 ≤ min𝑖 𝑝𝑖 , i.e., if the predictions are both on the left
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of all points in 𝑃 or both on the right of all points in 𝑃 , then the call toMinMaxPmechanism would

return the same 𝑥-coordinate for both cases, i.e., 𝑑𝑥 𝑓 = 0 ≤ 𝑑𝑥𝑜 . Otherwise, 𝑥 ˆ𝑓
= max{min𝑖 𝑝𝑖 , 𝑥𝑜 }

and 𝑥 ˜𝑓
= min{max𝑖 𝑝𝑖 , 𝑥𝑜 }. This implies that even in this case 𝑑𝑥 𝑓 ≤ 𝑥𝑜 −𝑥𝑜 = 𝑑𝑥𝑜 . Using the same

sequence of arguments for the 𝑦-coordinate implies that 𝑑𝑦𝑓 ≤ 𝑑𝑦𝑜 and concludes the proof. □

B MISSING ANALYSIS FROM SECTION 4.2 AND 4.3
Theorem 4.5. For any deterministic, strategyproof, and anonymous mechanism that guarantees

a consistency of

√
2𝑐2+2
1+𝑐 for some constant 𝑐 ∈ (0, 1), its robustness is no better than

√
2𝑐2+2
1−𝑐 for the

utilitarian objective.

Proof. We first note that any mechanism 𝑓 with a bounded robustness needs to be unanimous,

i.e., given a set of points 𝑃 where all the points are at the same location (𝑝𝑖 = 𝑝 𝑗 for all 𝑖, 𝑗 ∈ [𝑛]),
the mechanism needs to place the facility at that same location, i.e., 𝑓 (𝑃) = 𝑝𝑖 . If not, then its

cost would be positive, while the optimal cost is zero, by placing the facility at the same location

as all the points. Therefore, we can restrict our attention to mechanisms that are unanimous.

Using the characterization of [22], we know that any deterministic, strategyproof, anonymous,

and unanimous mechanism in our setting takes the form of a generalized coordinatewise median

(GCM) mechanism with a set 𝑃 ′
of 𝑛 − 1 constant points. The rest of our proof first shows that in

order to achieve a consistency of

√
2𝑐2+2
1+𝑐 for some constant 𝑐 ∈ (0, 1), the set of 𝑛 − 1 points 𝑃 ′

used

by the GCM mechanism would need to satisfy the following condition: the number of points in 𝑃 ′

that are weakly above 𝑜 (i.e., their 𝑦-coordinate is at least 𝑦𝑜 ) need to be at least 𝑐𝑛 more than the

number of points in 𝑃 ′
that are strictly below it (i.e., their 𝑦-coordinate is less than 𝑦𝑜 ). Then, we

show that if 𝑃 ′
satisfies this condition, then the robustness is no better than

√
2𝑐2+2
1−𝑐 .

Consider any GCM mechanism that uses a set 𝑃 ′
of 𝑛 − 1 points and let 𝑞𝑎 be the number of

these points that are weakly above 𝑜 (i.e., their 𝑦-coordinate is at least 𝑦𝑜 ) and 𝑞𝑏 be the number of

points that are strictly below 𝑜 (i.e., their 𝑦-coordinate is less than 𝑦𝑜 ). Assume that 𝑞𝑎 − 𝑞𝑏 = 𝑘𝑛

where 𝑘 < 𝑐 and let 𝜖 > 0 be a constant such that the maximum 𝑦-coordinate among the 𝑞𝑏 points

that are strictly below the prediction is 𝑦𝑜 − 𝜖 . Then, consider the instance where the set of actual

agent points 𝑃 has (1 − 𝑘)𝑛/2 points at 𝑜 , and the remaining (1 + 𝑘)𝑛/2 points are divided equally

between points (𝑥𝑜 − (1−𝑘)𝜖
1+𝑘 , 𝑦𝑜 − 𝜖) and (𝑥𝑜 + (1−𝑘)𝜖

1+𝑘 , 𝑦𝑜 − 𝜖)2. Using the same steps that we used

in the proof of Lemma 4.3, we can verify that the optimal facility location in this case would be at 𝑜

(so the prediction is correct). However, the location where the mechanism places this facility has a

𝑦-coordinate at most 𝑦𝑜 − 𝜖 . This is because the number of constant and actual agent points (i.e.,

points in 𝑃 ∪𝑃 ′
) whose 𝑦-coordinate is at most 𝑦𝑜 −𝜖 are 𝑞𝑏 + (1+𝑘)𝑛/2, while the remaining points

are 𝑞𝑎 + (1 − 𝑘)𝑛/2. Using the fact that 𝑞𝑎 −𝑞𝑏 = 𝑘𝑛, the median with respect to the 𝑦-coordinate is

at most 𝑦𝑜 − 𝜖 . This leads to a consistency of

√
2𝑘2+2
1+𝑘 which is worse than

√
2𝑐2+2
1+𝑐 (since 𝑘 < 𝑐 and

the latter is an decreasing function of 𝑐 on [0, 1)). Therefore, to achieve a consistency of

√
2𝑐2+2
1+𝑐 , the

mechanism needs to have 𝑞𝑎 − 𝑞𝑏 ≥ 𝑐𝑛.

We now consider any GCM mechanism with 𝑞𝑎 − 𝑞𝑏 = 𝑘𝑛 where 𝑘 > 𝑐 and show that its

robustness is going to be worse than

√
2𝑐2+2
1−𝑐 . To verify this, consider the instance whose set of actual

agent points 𝑃 contains (1 +𝑘)/2 points on (𝑥𝑜 , 𝑦𝑜 − 1) and the remaining (1−𝑘)/2 points divided
equally between (𝑥𝑜 − 1−𝑘

1+𝑘 , 𝑦𝑜 ) and (𝑥𝑜 + 1−𝑘
1+𝑘 , 𝑦𝑜 ). Using the same steps that we used in the proof

of Lemma 4.3, we can verify that the optimal facility location in this case would be at (𝑥𝑜 , 𝑦𝑜 − 1)
2
We assume 𝑘𝑛 is a multiple of 4 to avoid integrality issues. If 𝑘𝑛 is not multiple of 4, we can modify the instance such that

there are ⌊ (1 − 𝑘)𝑛/2⌋ agents at 𝑜 and the remaining agents are divided between the given two points such that each point

has at least one agent. It is easy to verify that the optimal facility location would be at 𝑜 and the mechanism output would

have a 𝑦-coordinate at most 𝑦𝑜̂ − 𝜖 . A similar argument also holds for robustness.
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(so the prediction is incorrect), but the outcome of the mechanism will have a 𝑦 coordinate of at

least 𝑦𝑜 , leading to a robustness of

√
2𝑘2+2
1−𝑘 , which is worse than

√
2𝑐2+2
1−𝑐 (since 𝑘 > 𝑐 and the latter is

an increasing function of 𝑐).

Therefore, the only way to achieve the two desired guarantees is to have 𝑞𝑎 − 𝑞𝑏 = 𝑐𝑛 which

(running through the same argument and replacing 𝑘 with 𝑐) gives you consistency no better than√
2𝑐2+2
1+𝑐 and robustness no better than

√
2𝑐2+2
1−𝑐 . □

Lemma 4.6. Given a multiset of points 𝑃 , two predictions 𝑜 and 𝑜 and the confidence value 𝑐 ∈ [0, 1),
let 𝑓 (𝑃, 𝑜, 𝑐) and 𝑓 (𝑃, 𝑜, 𝑐) be the respective facility locations chosen by the CMP mechanism with

parameter 𝑐 . Then, the distance between these two facility locations is at most the distance between the

two predictions, i.e.,

𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑓 (𝑃, 𝑜, 𝑐)) ≤ 𝑑 (𝑜, 𝑜).
Proof. Let (𝑥 ˆ𝑓

, 𝑦 ˆ𝑓
) = 𝑓 (𝑃, 𝑜, 𝑐) and (𝑥 ˜𝑓

, 𝑦 ˜𝑓
) = 𝑓 (𝑃, 𝑜, 𝑐) be facility locations returned by the

CMP mechanism with parameter 𝑐 given predictions 𝑜 and 𝑜 , respectively. Let 𝑑𝑥 𝑓 = |𝑥 ˆ𝑓
− 𝑥 ˜𝑓

|
and 𝑑𝑦𝑓 = |𝑦 ˆ𝑓

− 𝑦 ˜𝑓
| be the difference of their 𝑥 and 𝑦 coordinates, respectively. Similarly, let

𝑑𝑥𝑜 = |𝑥𝑜 − 𝑥𝑜 | and 𝑑𝑦𝑜 = |𝑦𝑜 − 𝑦𝑜 | be the corresponding differences for the coordinates of the two

predictions. To prove this lemma, we argue that 𝑑𝑥 𝑓 ≤ 𝑑𝑥𝑜 and 𝑑𝑦𝑓 ≤ 𝑑𝑦𝑜 , implying the desired

inequality, since

𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑓 (𝑃, 𝑜, 𝑐)) =

√︃
𝑑𝑥2

𝑓
+ 𝑑𝑦2

𝑓
≤

√︃
𝑑𝑥2𝑜 + 𝑑𝑦2𝑜 = 𝑑 (𝑜, 𝑜).

We first focus on the 𝑥-coordinate and, without loss of generality, we assume that 𝑥𝑜 ≤ 𝑥𝑜 , i.e.,

that the first prediction is weakly on the left of the second one. When the prediction is 𝑜 , we have

at least half points (including the phantom points) with 𝑥-coordinate smaller than or equal to 𝑥 ˆ𝑓
.

As we move the prediction to 𝑜 , we just move the phantom points by 𝑑𝑥𝑜 to the right, so again

we have at least half points with 𝑥-coordinate smaller than or equal to 𝑥 ˆ𝑓
+ 𝑑𝑥𝑜 . This implies that

𝑥 ˜𝑓
≤ 𝑥 ˆ𝑓

+ 𝑑𝑥𝑜 . Thus, we have 𝑑𝑥 𝑓 = |𝑥 ˜𝑓
− 𝑥 ˆ𝑓

| ≤ 𝑑𝑥𝑜 . Using the same sequence of argument for the

𝑦-coordinate implies that 𝑑𝑦𝑓 ≤ 𝑑𝑦𝑜 and concludes the proof. □

C MISSING ANALYSIS FROM SECTION 4.4
Before we present the missing analysis from Section 4.4, we introduce some helpful lemmas. The

following lemma from [14] states that moving a point either away or towards the optimal location

(without going past it) does not change the optimal location.

Lemma C.1 ([14]). For any multiset of points 𝑃 and 𝑝𝑖 ∈ 𝑃 , if 𝑝𝑖 ≠ 𝑜 (𝑃) and 𝑝 ′
𝑖 ∈ {𝑜 (𝑃) + 𝑡 (𝑝𝑖 −

𝑜 (𝑃)) |𝑡 ∈ 𝑅≥0}, then 𝑜 (𝑃−𝑖 , 𝑝 ′
𝑖 ) = 𝑜 (𝑃).

The next lemma uses Lemma C.1 to show that moving a point towards the optimal location

strictly worsens the approximation ratio if this movement does not cause the mechanism’s output

to change and if this output is not optimal. This lemma is used to move points at arbitrary locations

to one of the axes.

Lemma C.2. For any multiset of points 𝑃 , prediction 𝑜 and confidence 𝑐 ∈ [0, 1), let 𝑝𝑖 ∈ 𝑃 and

𝑝 ′
𝑖 ∈ (𝑝𝑖 , 𝑜 (𝑃)]. If 𝑓 (𝑃, 𝑜, 𝑐) = 𝑓 ((𝑃−𝑖 , 𝑝 ′

𝑖 ), 𝑜, 𝑐) and 𝑟 (𝑃, 𝑜, 𝑐) > 1, then 𝑟 ((𝑃−𝑖 , 𝑝 ′
𝑖 ), 𝑜, 𝑐) > 𝑟 (𝑃, 𝑜, 𝑐).

Proof. Let 𝑄 = (𝑃−𝑖 , 𝑝 ′
𝑖 ). From 𝑃 to 𝑄 , we only move one point towards 𝑜 (𝑃) (but not going

past it) without changing the output of the mechanism. By definition, 𝑓 (𝑃, 𝑜, 𝑐) = 𝑓 (𝑄,𝑜, 𝑐), and
𝑜 (𝑃) = 𝑜 (𝑄) by Lemma C.1.

Since the 𝑜, 𝑓 locations are not changed, the amount of decrease in the sum of the costs with

respect to the optimal location is𝑑 (𝑝𝑖 , 𝑝 ′
𝑖 ) > 0. If the sum of the costs with respect to themechanism’s
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output does not change or increase, then we have 𝑟 (𝑄,𝑜, 𝑐) > 𝑟 (𝑃, 𝑜, 𝑐). If the sum of the costs with

respect to the mechanism’s output decreases, then the amount of decrease is |𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑝 ′
𝑖 ) −

𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑝𝑖 ) |. By triangle inequality, 𝑑 (𝑝𝑖 , 𝑝 ′
𝑖 ) ≥ |𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑝 ′

𝑖 ) − 𝑑 (𝑓 (𝑃, 𝑜, 𝑐), 𝑝𝑖 ) |. This means

that the decrease in social cost with respect to the optimal location is larger than or equal to

the decrease with respect to the mechanism’s output location. If 𝑟 (𝑃, 𝑜, 𝑐) > 1, then we have

𝑟 (𝑄,𝑜, 𝑐) > 𝑟 (𝑃, 𝑜, 𝑐). □

The next lemma uses the convexity of the distance function to show that if two points move

closer to each other, then the sum of their distance to a third point decreases.

Lemma C.3. Consider three distinct points 𝑝1, 𝑝2, and 𝑝3, then for any 𝜖 ∈ (0, 1), 𝑑 (𝑝1, 𝑝3) +
𝑑 (𝑝2, 𝑝3) ≥ 𝑑 (𝑝1 + 𝜖 (𝑝2 − 𝑝1), 𝑝3) +𝑑 (𝑝2 + 𝜖 (𝑝1 − 𝑝2), 𝑝3). Moreover, if 𝑝1, 𝑝2, and 𝑝3 are not collinear,

𝑑 (𝑝1, 𝑝3) + 𝑑 (𝑝2, 𝑝3) > 𝑑 (𝑝1 + 𝜖 (𝑝2 − 𝑝1), 𝑝3) + 𝑑 (𝑝2 + 𝜖 (𝑝1 − 𝑝2), 𝑝3).

Proof. Note that 𝑑 (𝑝1 + 𝜖 (𝑝2 − 𝑝1), 𝑝3) = 𝑑 ((1 − 𝜖)𝑝1 + 𝜖𝑝2, 𝑝3) ≤ (1 − 𝜖)𝑑 (𝑝1, 𝑝3) + 𝜖𝑑 (𝑝2, 𝑝3)
where the inequality is by the convexity of the distance function and is strict if 𝑝1, 𝑝2, and 𝑝3 are

not collinear. Similarly, 𝑑 (𝑝2 + 𝜖 (𝑝1 − 𝑝2), 𝑝3) ≤ (1 − 𝜖)𝑑 (𝑝2, 𝑝3) + 𝜖𝑑 (𝑝1, 𝑝3) and we conclude that

𝑑 (𝑝1 +𝜖 (𝑝2 −𝑝1), 𝑝3) +𝑑 (𝑝2 +𝜖 (𝑝1 −𝑝2), 𝑝3) ≥ 𝑑 (𝑝1, 𝑝3) +𝑑 (𝑝2, 𝑝3) (with the inequality being strict

if 𝑝1, 𝑝2, and 𝑝3 are not collinear). □

Now we present the missing analysis of the section.

Lemma 4.10. For any points 𝑃 and confidence 𝑐 ∈ [0, 1) s.t. 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), if there are two
non-overlapping points 𝑝𝑖 , 𝑝 𝑗 ∈ 𝑃 , 𝑝𝑖 ≠ 𝑝 𝑗 that are on the same half axis, i.e., 𝐴+𝑥 , 𝐴−𝑥 , 𝐴+𝑦, or 𝐴−𝑦 ,
and 𝑥𝑜 (𝑃), 𝑦𝑜 (𝑃) > 0, then there exists points𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) with predictions
𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄). This inequality also holds with predictions 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).

Proof. Assume 𝑝𝑖 , 𝑝 𝑗 ∈ 𝐴+𝑥 are two non-overlapping points on the +𝑥-axis, i.e., 𝑝𝑖 = (𝑥𝑖 , 0)
and 𝑝 𝑗 = (𝑥 𝑗 , 0) with 𝑥𝑖 > 𝑥 𝑗 > 0. Let 𝑄 be the instance obtained by moving 𝑝𝑖 and 𝑝 𝑗 towards

each other by a distance of 𝜖 (𝑥𝑖 − 𝑥 𝑗 ) where 𝜖 is sufficiently small so that the optimal location

remains strictly in the top-right quadrant, i.e., 𝑥𝑜 (𝑄), 𝑦𝑜 (𝑄) > 0. Since 𝑝𝑖 and 𝑝 𝑗 are on the same

half-axis, they remain on this same half-axis when we move them towards each other. Since 𝑝𝑖 and

𝑝 𝑗 remain in the same half-axis and the optimal location remains in the same quadrant, we have

that the output of the mechanism does not change, i.e., 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = 𝑓 (𝑄,𝑜 (𝑄), 𝑐) both when the

predictions are 𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄) and when they are 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).
Since 𝑝 𝑗 has distance to the origin which increases by 𝜖 and 𝑝𝑖 has distance to the origin that de-

creases by 𝜖 and since the output of the mechanism does not change, we have𝐶𝑢 (𝑓 (𝑄,𝑜 (𝑄), 𝑐), 𝑄) =
𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃) both when the predictions are 𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄) and when they

are 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).
Since 𝑜 (𝑃) is not on one of the axes, 𝑝𝑖 , 𝑝 𝑗 , and 𝑜 (𝑃) are not collinear. By Lemma C.3, we get

that 𝑑 (𝑝𝑖 , 𝑜 (𝑃)) +𝑑 (𝑝 𝑗 , 𝑜 (𝑃)) > 𝑑 (𝑝𝑖 + 𝜖 (𝑝 𝑗 − 𝑝𝑖 ), 𝑜 (𝑃)) +𝑑 (𝑝 𝑗 + 𝜖 (𝑝𝑖 − 𝑝 𝑗 ), 𝑜 (𝑃)). This implies that

𝐶𝑢 (𝑜 (𝑃), 𝑃) > 𝐶𝑢 (𝑜 (𝑃), 𝑄) ≥ 𝐶𝑢 (𝑜 (𝑄), 𝑄). Since 𝐶𝑢 (𝑓 (𝑄,𝑜 (𝑄), 𝑐), 𝑄) = 𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃) and
𝐶𝑢 (𝑜 (𝑄), 𝑄) < 𝐶𝑢 (𝑜 (𝑃), 𝑃), 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). The cases where 𝑝𝑖 and 𝑝 𝑗 are both on

one of the three other half axis follow identically by symmetry. □

Lemma 4.11. For any points 𝑃 and confidence 𝑐 ∈ [0, 1) such that 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), 𝑦𝑜 (𝑃) ≥
𝑥𝑜 (𝑃) > 0, and 𝑝 ∈ 𝐴𝑥 ∪ 𝐴𝑦 ∪ {𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 , if either |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈
𝐴>
+𝑥 ∪{𝑜 (𝑃)}}| or |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑦}| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑦∪{𝑜 (𝑃)}}|, then there exists points𝑄 such

that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) with predictions 𝑜 (𝑃) = 𝑜 (𝑃) and 𝑜 (𝑄) = 𝑜 (𝑄). This inequality also
holds with predictions 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).
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Proof. Assume 𝑃 = {𝑝1, . . . , 𝑝𝑛} is a multiset of 𝑛 points that satisfies the lemma assumptions

and is also such that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑥 ∪ {𝑜 (𝑃)}}|. Note that the points are
either on the axes or on the optimal location, which is in the top-right quadrant. We consider the

instance 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑛} such that if 𝑝𝑖 ∈ 𝐴𝑦 , then we have 𝑞𝑖 = 𝑝𝑖 and if 𝑝𝑖 ∉ 𝐴𝑦 , we have

𝑞𝑖 = 𝑝𝑖 − (𝜖, 0) for a small enough 𝜖 such that the optimal locations remains in top-right quadrant

(𝑦𝑜 (𝑃), 𝑥𝑜 (𝑃) > 0) and such that 𝜖 ≤ min𝑖:𝑝𝑖∉𝐴𝑦
|𝑥𝑖 |.

Since 𝑜 (𝑄) stays in the top-right quadrant as 𝑜 (𝑃) and the points 𝑞𝑖 remain on the same half-

axes as 𝑝𝑖 , we have 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0) both when the predictions are 𝑜 (𝑃) =

𝑜 (𝑃), 𝑜 (𝑄) = 𝑜 (𝑄) and when they are 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0).
We now consider the location 𝑞∗ = 𝑜 (𝑃) − (𝜖, 0). First, note that

∑
𝑝𝑖∉𝐴𝑦 ,𝑝𝑖 ∈𝑃 𝑑 (𝑝𝑖 , 𝑜 (𝑃)) =∑

𝑞𝑖∉𝐴𝑦 ,𝑞𝑖 ∈𝑄 𝑑 (𝑞𝑖 , 𝑞∗) because every point that is not on the 𝑦 axis has been moved to the left by

𝜖 , and 𝑞∗ is also obtained from moving 𝑜 (𝑃) to the left by 𝜖 . Additionally, note that we have∑
𝑝𝑖 ∈𝐴𝑦 ,𝑝𝑖 ∈𝑃 𝑑 (𝑝𝑖 , 𝑜 (𝑃)) >

∑
𝑞𝑖 ∈𝐴𝑦 ,𝑞𝑖 ∈𝑄 𝑑 (𝑞𝑖 , 𝑞∗) because the points on the 𝑦 axis are not moved

while 𝑞∗ moves closer to the 𝑦 axis. Therefore, we obtain that 𝐶𝑢 (𝑞∗, 𝑄) < 𝐶𝑢 (𝑜 (𝑃), 𝑃), and we

have 𝐶𝑢 (𝑜 (𝑄), 𝑄) ≤ 𝐶𝑢 (𝑞∗, 𝑄) < 𝐶𝑢 (𝑜 (𝑃), 𝑃).
Now we look at the sum of the costs with respect to the mechanism’s output location, which

is the same for 𝑃 and 𝑄 . Note that there is the assumption that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑥 }| ≥ |{𝑝 ∈

𝑃 : 𝑝 ∈ 𝐴>
+𝑥 ∪ {𝑜 (𝑃)}}|. We let 𝑛<−𝑥 = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }|, 𝑛>+𝑥 = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑥 }| and

𝑛𝑜 = |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|. Then we have 𝑛<−𝑥 ≥ 𝑛>+𝑥 + 𝑛𝑜 . For the points on the 𝑦 axis, those

points do not move at all when we create 𝑄 from 𝑃 , so their costs remain the same. On the left

hand side of 𝑦 axis, we have increased the total cost of the mechanism by 𝑛<−𝑥𝜖 . On the right

hand side of 𝑦 axis, the total cost of the points is decreased by at most (𝑛>+𝑥 + 𝑛𝑜 )𝜖 because the

movement of each point to the left by an 𝜖 distance can improve the mechanism’s cost by at most 𝜖 .

Therefore, because we have 𝑛<−𝑥 ≥ 𝑛>+𝑥 + 𝑛𝑜 , the total cost with respect to the mechanism’s output

location does not decrease, so we have𝐶𝑢 (𝑓 (𝑄,𝑜 (𝑄), 𝑐), 𝑄) ≥ 𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃). Combined with

𝐶𝑢 (𝑜 (𝑄), 𝑄) < 𝐶𝑢 (𝑜 (𝑃), 𝑃), we get that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) both when the predictions are

𝑜 (𝑃) = 𝑜 (𝑃), 𝑜 (𝑄) = 𝑜 (𝑄) and when they are 𝑜 (𝑃) = 𝑜 (𝑄) = (0, 0). By symmetry, the case where

|{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑦}| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑦 ∪ {𝑜 (𝑃)}}| follows from the same argument. □

Lemma 4.12. For any confidence 𝑐 ∈ [0, 1), let 𝛼 = max

𝑃 ∈P𝐶
oa
(𝑐)∪P𝐶

ca
(𝑐)

𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and let 𝛽 =

max

𝑃 ∈P𝑅
oa
(𝑐)∪P𝑅

ca
(𝑐)

𝑟 (𝑃, (0, 0), 𝑐). CMP with confidence 𝑐 is 𝛼-consistent and 𝛽-robust.

Proof. Let 𝑃 and 𝑜 (𝑃) be an arbitrary instance of a multiset of 𝑛 points and a prediction and

let 𝑐 ∈ [0, 1). Note that 𝑜 (𝑃) is not a function of 𝑃 ; the notation is to make it clear that 𝑜 (𝑃) is the
input prediction to the mechanism along with the points 𝑃 . We assume without loss of generality

that 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0) and 𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) ≥ 0. First, note that since 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), we
also have that 𝑓 (𝑃, (0, 0), 𝑐) = (0, 0). Thus, 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) = 𝑟 (𝑃, (0, 0), 𝑐). If there exists a point 𝑝 ∈ 𝑃

such that 𝑝 ∉ 𝐴𝑥 ∪𝐴𝑦 ∪ {𝑜 (𝑃)}, then 𝑝 can be moved towards 𝑜 (𝑃) without changing the outcome

of the mechanism. Thus, by Lemma C.2, either 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) = 1 or there exists points 𝑄 such that

𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) both when the predictions are 𝑜 (𝑄) = 𝑜 (𝑄), 𝑜 (𝑃) = 𝑜 (𝑃) and when

they are 𝑜 (𝑄) = 𝑜 (𝑃) = (0, 0).
We now assume that 𝑝 ∈ 𝐴𝑥 ∪ 𝐴𝑦 ∪ {𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 . If 𝑥𝑜 (𝑃) = 0, then note that 𝑝 ∈

𝐴𝑥 ∪ 𝐴𝑦 ∪ {𝑜 (𝑃)} = 𝐴𝑥 ∪ 𝐴𝑦 for all 𝑝 ∈ 𝑃∗
. Thus 𝑃 ∈ P𝐶

oa
(𝑐) when 𝑜 (𝑃) = 𝑜 (𝑃) and 𝑃 ∈ P𝑅

oa
(𝑐)

when 𝑜 (𝑃) = (0, 0). We now assume that 𝑥𝑜 (𝑃) > 0, so 𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) > 0. If there is a point 𝑝

that can be moved towards 𝑜 (𝑃) without changing the outcome of the mechanism, then, again, by

Lemma C.2, either 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) = 1 or there exists 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Next,
we consider the five subproperties of property (4) for the CA family.
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Assume that there is no 𝑥1, 𝑥2, 𝑦1, 𝑦2 ≥ 0 such that 𝑝 ∈ {(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃)}
for all 𝑝 ∈ 𝑃 . Since 𝑝 ∈ 𝐴𝑥 ∪ 𝐴𝑦 ∪ {𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 , there are two points 𝑝𝑖 , 𝑝 𝑗 on the same

half-axis and by Lemma 4.10, there exists points 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) both
when the predictions are 𝑜 (𝑄) = 𝑜 (𝑄), 𝑜 (𝑃) = 𝑜 (𝑃) and when they are 𝑜 (𝑄) = 𝑜 (𝑃) = (0, 0). Next,
assume that 𝑝 ∈ {(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 . If |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| ≥
|{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑥 ∪ {𝑜 (𝑃)}}| or |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑦}| ≥ |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑦 ∪ {𝑜 (𝑃)}}|, then by

Lemma 4.11 there exists 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) both when the predictions are

𝑜 (𝑄) = 𝑜 (𝑄), 𝑜 (𝑃) = 𝑜 (𝑃) and when they are 𝑜 (𝑄) = 𝑜 (𝑃) = (0, 0).
For the fourth subcondition, assume that there is a pair of points 𝑝𝑖 = (−𝑥1, 0) ∈ 𝑃 and 𝑝 𝑗 =

(𝑥2, 0) ∈ 𝑃 such that 𝑥𝑜 + 𝑥1 ≠ 𝑥2 − 𝑥𝑜 . Without loss of generality, we assume 𝑥𝑜 + 𝑥1 < 𝑥2 − 𝑥𝑜 .

Then we construct a multiset of points 𝑄 by moving this pair of points in 𝑃 to the left by 𝜖 . That

is, we let 𝑞𝑖 = (−𝑥1 − 𝜖, 0) and 𝑞 𝑗 = (𝑥2 − 𝜖, 0) for 𝜖 small enough so that the optimal location

remains in the top right quadrant, and let 𝑞𝑘 = 𝑝𝑘 for any 𝑘 ≠ 𝑖, 𝑗 . This improves the optimal

cost. Meanwhile, the mechanism’s output and social cost remain unchanged. Therefore, we have

found a multiset of points 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) both when the predictions are

𝑜 (𝑄) = 𝑜 (𝑄), 𝑜 (𝑃) = 𝑜 (𝑃) and when they are 𝑜 (𝑄) = 𝑜 (𝑃) = (0, 0). The fifth subcondition follows

identically by symmetry.

We conclude that for any multiset of points 𝑃 and prediction 𝑜 (𝑃) = 𝑜 (𝑃) such that 𝑃 ∉

P𝐶
oa
(𝑐) ∪ P𝐶

ca
(𝑐), we have found 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), i.e., 𝑄 has a worse

approximation ratio. Thus the worst-case instance 𝑃 for the consistency of CMP is such that

𝑃 ∈ P𝐶
oa
(𝑐) ∪ P𝐶

ca
(𝑐), which implies that 𝛼 = max𝑃 ∈P𝐶

oa
(𝑐)∪P𝐶

ca
(𝑐) 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Similarly, for any

instance 𝑃 and prediction 𝑜 (𝑃) such that 𝑃 ∉ P𝑅
oa
(𝑐) ∪ P𝑅

ca
(𝑐), we have found an instance 𝑄 such

that 𝑟 (𝑄, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) = 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), thus 𝛽 = max𝑃 ∈P𝑅
oa
(𝑐)∪P𝑅

ca
(𝑐) 𝑟 (𝑃, (0, 0), 𝑐). □

Lemma 4.13. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
oa
(𝑐), there exists 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
coa

(𝑐) and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Similarly,

for any 𝑃 ∈ P𝑅
oa
(𝑐), there exists 𝑄 such that either 𝑟 (𝑄, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅

coa
(𝑐) and

𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐).

Proof. Let 𝑐 ∈ [0, 1) and consider an instance 𝑃 ∈ P𝐶
oa
(𝑐) with 𝑛 points, so 𝑦𝑜 (𝑃) > 0 and

𝑝 ∈ 𝐴𝑥 ∪𝐴𝑦 for all 𝑝 ∈ 𝑃 . Let 𝑑𝑥 =
∑

(𝑥𝑖 ,0) ∈𝑃∩𝐴𝑥
|𝑥𝑖 |/|𝑃 ∩𝐴𝑥 | be the average distance of the points

on the𝐴𝑥 axis from the origin. Consider the instance𝑄 = (𝑞1, . . . , 𝑞𝑛) where the points 𝑝𝑖 ∈ 𝑃 ∩𝐴𝑥

are replaced by two clusters, one at (−𝑑𝑥 , 0) and one at (𝑑𝑥 , 0), each containing |𝑃 ∩𝐴𝑥 |/2 points
𝑞𝑖 . For the remaining points 𝑝 𝑗 ∈ 𝑃 ∩𝐴𝑦 \ {(0, 0)}, we maintain their positions and set 𝑞 𝑗 = 𝑝 𝑗 .

Since the points are perfectly symmetric with respect to the 𝑦 axis, we have 𝑥𝑜 (𝑄) = 0 = 𝑥𝑜 (𝑃).
Since the 𝑦-coordinate of the points are identical in 𝑃 and 𝑄 and since 𝑥𝑜 (𝑄) = 𝑥𝑜 (𝑃), we also
have 𝑦𝑜 (𝑄) = 𝑦𝑜 (𝑃). Thus, 𝑜 (𝑄) = 𝑜 (𝑃). Let 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (𝑥 𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑦𝑓 (𝑃, 𝑜 (𝑃), 𝑐)), and
𝑓 (𝑄,𝑜 (𝑄), 𝑐) = (𝑥 𝑓 (𝑄,𝑜 (𝑄), 𝑐), 𝑦𝑓 (𝑄,𝑜 (𝑄), 𝑐)). Since 𝑥𝑜 (𝑄) = 0 and |{(𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑄 : 𝑥𝑖 < 0}| =
|{(𝑥𝑖 , 𝑦𝑖 ) ∈ 𝑄 : 𝑥𝑖 > 0}|, 𝑥 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = 0, and this also holds with 𝑜 (𝑄) = (0, 0). Since the

𝑦-coordinate of the points are identical in 𝑃 and 𝑄 and since 𝑦𝑜 (𝑄) = 𝑦𝑜 (𝑃), 𝑦𝑓 (𝑄,𝑜 (𝑄), 𝑐) =

𝑦𝑓 (𝑃, 𝑜 (𝑃), 𝑐). Thus, 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), and this also holds with 𝑜 (𝑄) = (0, 0).
In addition, the social cost of the mechanism does not change, because the average distance of the

points on the 𝑥 axis from the origin remained the same, 𝑑𝑥 . On the other hand, using the convexity

of the distance measure, the optimal social cost weakly improves, so 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐),
and this is also the case with 𝑜 (𝑄) = (0, 0). If 𝑦 = 𝑦𝑜 (𝑄) for all (0, 𝑦) ∈ 𝑄 , then by scaling 𝑄 to 𝑄 ′

so that 𝑦𝑜 (𝑄 ′) = 1, we get 𝑄 ′ ∈ P𝐶
coa

(𝑐) such that 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).
Since 𝑥𝑜 (𝑄) = 0, if there exists (0, 𝑦) ∈ 𝑄 with 𝑦 ≠ 𝑦𝑜 (𝑄), this point can be moved towards

𝑦𝑜 (𝑄) by an arbitrary small 𝜖 and this would strictly worsens the approximation factor (so there
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exists 𝑄 ′
such that 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐)) because it either improves both the social cost of

the mechanism and the optimal social cost by 𝜖 or it improves the optimal cost by 𝜖 and worsens

the cost of the mechanism by 𝜖 .

Thus, we have shown that there exists𝑄 ′
such that 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or𝑄 ′ ∈ P𝐶

coa
(𝑐)

and 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). The analysis for 𝑃 ∈ P𝑅
oa
(𝑐) follows identically. □

Lemma 4.14. For any confidence 𝑐 ∈ [0, 1), and points 𝑃 ∈ P𝐶
ca
(𝑐), there exists points 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
ca
(𝑐), 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪

{𝑜 (𝑄)} for all 𝑞 ∈ 𝑄 . Similarly, for any confidence 𝑐 ∈ [0, 1), and points 𝑃 ∈ P𝑅
ca
(𝑐), there exists

points 𝑄 such that either 𝑟 (𝑄, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅
ca
(𝑐), 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐),

and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑄)} for all 𝑞 ∈ 𝑄 .

Proof. Let 𝑃 ∈ P𝐶
ca
(𝑐) be a multiset of 𝑛 points. First of all, if 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪{𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 ,

then let𝑄 = 𝑃 and we are done. Now we consider the case where there is some 𝑝 ∈ 𝑃 such that 𝑝 ∉

𝐴𝑥∪𝐴+𝑦∪{𝑜 (𝑃)}, which means that there exists 𝑝 ∈ 𝑃 such that 𝑝 ∈ 𝐴<
−𝑦 . Because 𝑃 ∈ P𝐶

ca
(𝑐), there

exist 𝑥1, 𝑥2, 𝑦1, 𝑦2 ≥ 0 such that for all 𝑝 ∈ 𝑃 , we have 𝑝 ∈ {(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃)}.
Additionally, we have |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑥 ∪ {𝑜 (𝑃)}| and that |{𝑝 ∈ 𝑃 :

𝑝 ∈ 𝐴<
−𝑦}| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑦 ∪ {𝑜 (𝑃)}}| from the definition of P𝐶
ca
(𝑐). We now create another

instance 𝑃∗
from 𝑃 by moving one point (0,−𝑦1) to (−𝑦1, 0) in 𝑃 , and keeping all other points in 𝑃

the same. Note that the optimal location of 𝑃∗
can move elsewhere and it may or may not satisfy

𝑦𝑜 (𝑃∗) ≥ 𝑥𝑜 (𝑃∗) > 0. But we can still show that 𝑓 (𝑃∗, 𝑜 (𝑃∗), 𝑐) = 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0).
Because 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), we know that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑥 ∪ {𝑜 (𝑃)}}| ≤ (1 + 𝑐)𝑛/2 − 𝑐𝑛.

Therefore, |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<
−𝑥 }| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑥 ∪ {𝑜 (𝑃)}}| ≤ (1 + 𝑐)𝑛/2 − 𝑐𝑛. Even if the

the 𝑐𝑛 points on the predicted location are now to the left of the 𝑦-axis in 𝑃∗
, we would still have

|{𝑝∗ ∈ 𝑃∗
: 𝑝∗ ∈ 𝐴<

−𝑥 }| +𝑐𝑛 < (1+𝑐)𝑛/2. Thus, the 𝑥-coordinate of the mechanism’s output location

would still be zero on 𝑃∗
. Using a similar argument and the condition of P𝐶

ca
(𝑐) that {𝑝 ∈ 𝑃 : 𝑝 ∈

𝐴<
−𝑦}| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>

+𝑦 ∪ {𝑜 (𝑃)}|, we can show that the 𝑦-coordinate of the mechanism’s

output location is still zero in 𝑃∗
. Thus we conclude that 𝑓 (𝑃∗, 𝑜 (𝑃∗), 𝑐) = 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), and

𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃) = 𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃∗) = 𝐶𝑢 (𝑓 (𝑃∗, 𝑜 (𝑃∗), 𝑐), 𝑃∗).
Now consider the optimal location 𝑜 (𝑃) of the instance 𝑃 , and note that 𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) > 0

because 𝑃 ∈ P𝐶
ca
(𝑐). We have 𝑑 ((0,−𝑦1), 𝑜 (𝑃)) ≥ 𝑑 ((−𝑦1, 0), 𝑜 (𝑃)) because 𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) > 0.

Therefore, we have 𝐶𝑢 (𝑜 (𝑃∗), 𝑃∗) ≤ 𝐶𝑢 (𝑜 (𝑃), 𝑃∗) ≤ 𝐶𝑢 (𝑜 (𝑃), 𝑃). We discuss two cases based on

whether the optimal location moves when we create 𝑃∗
from 𝑃 .

We first discuss the case where 𝑜 (𝑃∗) ≠ 𝑜 (𝑃). In this case, we would simply have𝐶𝑢 (𝑜 (𝑃∗), 𝑃∗) <
𝐶𝑢 (𝑜 (𝑃), 𝑃∗) ≤ 𝐶𝑢 (𝑜 (𝑃), 𝑃) and that 𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Therefore, once the optimal

location moves, we can find an instance with strictly worse approximation ratio.

We now discuss the remaining case where 𝑜 (𝑃∗) = 𝑜 (𝑃). Then, from the above we already

have that 𝑦𝑜 (𝑃∗) ≥ 𝑥𝑜 (𝑃∗) > 0 and that 𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). If we further have 𝑦1 ≠ 𝑥1,

then there are points (−𝑥1, 0), (−𝑦1, 0) ∈ 𝑃∗
and we can apply Lemma 4.10 on the instance 𝑃∗

to

find an instance 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Otherwise, we have
𝑦1 = 𝑥1. In this case, because we are only moving a point from a cluster to another cluster, we have

𝑝∗ ∈ {(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃∗)} for each 𝑝∗ ∈ 𝑃∗
. Now the instance 𝑃∗

has satisfied

the first two properties of the CA family that 𝑓 (𝑃∗, 𝑜 (𝑃∗), 𝑐) = (0, 0) and that 𝑦𝑜 (𝑃∗) ≥ 𝑥𝑜 (𝑃∗) > 0.

If we do not satisfy property (3) of the CA family, then by Lemma C.2 we can construct an instance

𝑄 by moving some point 𝑝 ∈ 𝑃∗
towards 𝑜 (𝑃) without changing the mechanism’s output location

and achieve 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). We now verify the five subproperties

of property (4) of the CA family. Since we just move one point from the cluster on the −𝑦 half

axis to the cluster on the −𝑥 half axis, all the five subconditions clearly hold true except for the

second one, which we will verify now. Because 𝑃 ∈ P𝐶
ca
(𝑐), we have that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| <
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|{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑥 ∪ {𝑜 (𝑃)}|. Therefore, after moving one point from the −𝑦 half axis to the −𝑥 half

axis, we would clearly have |{𝑝∗ ∈ 𝑃∗
: 𝑝∗ ∈ 𝐴<

−𝑥 }| ≤ |{𝑝∗ ∈ 𝑃∗
: 𝑝∗ ∈ 𝐴>

+𝑥 ∪ {𝑜 (𝑃∗)}|. If we end
up with an equality, then we can apply Lemma 4.11 and find an instance 𝑄 with 𝑟 (𝑄,𝑜 (𝑄), 𝑐) >
𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Thus, the second subcondition is also verified. We then conclude

that in this case when 𝑜 (𝑃∗) = 𝑜 (𝑃), either 𝑃∗ ∈ P𝐶
ca
(𝑐) with 𝑟 (𝑃∗, 𝑜 (𝑃∗), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), or

we can find 𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Therefore, if the optimal location doesn’t

move, moving a point from the −𝑦 half axis cluster to the −𝑥 half axis cluster will create a new

instance again in the CA family with weakly worse approximation ratio, or we can simply find an

instance 𝑄 with strictly worse approximation ratio. While the optimal location doesn’t move, we

can iteratively move points from the −𝑦 axis cluster to the −𝑥 axis cluster while weakly increasing

the approximation ratio, until we have no points to move on the −𝑦 axis, i.e. we end up with points

𝑄 ∈ P𝐶
ca
(𝑐), 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), and 𝑞 ∈ 𝐴𝑥 ∪ 𝐴+𝑦 ∪ {𝑜 (𝑄)} for all 𝑞 ∈ 𝑄 . Therefore we

have proved the lemma when 𝑃 ∈ P𝐶
ca
(𝑐). If 𝑃 ∈ P𝑅

ca
(𝑐), the proof follows almost identically. □

Lemma 4.15. For any confidence 𝑐 ∈ [0, 1), consider 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 . Then, |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|.

Proof. Let 𝑐 ∈ [0, 1) and 𝑃 ∈ P𝐶
ca
(𝑐) be a multiset of 𝑛 points such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 . Let 𝑘 = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }|. Since 𝑃 ∈ P𝐶
ca
(𝑐), moving any 𝑝 ∈ 𝑃 towards 𝑜 (𝑃) would

move the output of the mechanism. Thus, |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 ∪𝐴+𝑥 }| = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 ∪𝐴+𝑦}| =
⌈(1 + 𝑐)𝑛/2⌉ and we get that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴+𝑥 }| = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴+𝑦}| = ⌈(1 + 𝑐)𝑛/2⌉ − 𝑘 and

|{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}| = 𝑛 − 2(⌈(1 + 𝑐)𝑛/2⌉ − 𝑘) − 𝑘 = 𝑛 − 2⌈(1 + 𝑐)𝑛/2⌉ + 𝑘 . Finally, note that

𝑛 − 2⌈(1 + 𝑐)𝑛/2⌉ + 𝑘 ≤ 𝑛 − 2(𝑛/2) + 𝑘 = 𝑘 = |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| and we get the desired result. □

Lemma 4.16. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 , there exists points 𝑄 such that either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
ca
(𝑐),

𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 for all 𝑞 ∈ 𝑄 .

Proof. The main idea is that we can move one point from 𝑜 (𝑃) to the +𝑦 axis, while also moving

one point from the −𝑥 axis to the +𝑥 axis. The new instance will either have a strictly worse

approximation ratio, or the ratio is weakly worse but the instance remains in the CA family, so we

can apply this paired movement iteratively until there are no points on the optimal location (which

means all points are on the axes).

Also, note that by Lemma 4.15, we have |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|, so there are

enough points on −𝑥 axis for us to perform the paired movement and remove all points on the

optimal location.

We now formalize the above argument. Let 𝑃 = {𝑝1, . . . , 𝑝𝑛} ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪

{𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 . By Lemma 4.15 we have |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|. To
simplify notation, we let 𝑥𝑜 = 𝑥𝑜 (𝑃) and 𝑦𝑜 = 𝑦𝑜 (𝑃). We now define another multiset of points

𝑄 = {𝑞1, . . . , 𝑞𝑛} such that for some 𝑥 ≥ 0 and 𝑖1, 𝑖2 ∈ [𝑛], we have
• 𝑝𝑖1 = (−𝑥, 0) and 𝑞𝑖1 = (𝑥 + 2𝑥𝑜 , 0),
• 𝑝𝑖2 = 𝑜 (𝑃) = (𝑥𝑜 , 𝑦𝑜 ) and 𝑞𝑖2 = (0,

√︁
𝑥2𝑜 + 𝑦2𝑜 ), and

• for 𝑖 ≠ 𝑖1, 𝑖2, 𝑝𝑖 = 𝑞𝑖 .

We will now argue that either 𝑄 ∈ P𝐶
ca
(𝑐) with 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and 𝑞 ∈ 𝐴𝑥 ∪ 𝐴+𝑦

for all 𝑞 ∈ 𝑄 , or we can find an instance with strictly worse approximation ratio than that of 𝑃 .

We first claim that 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = (0, 0). Since 𝑃 ∈ P𝐶
ca
(𝑐), we have 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0),

𝑦𝑜 (𝑃) ≥ 𝑥𝑜 (𝑃) > 0, and that there exist 𝑥1, 𝑥2, 𝑦1, 𝑦2 ≥ 0 such that for all 𝑝 ∈ 𝑃 , we have 𝑝 ∈
{(−𝑥1, 0), (𝑥2, 0), (0,−𝑦1), (0, 𝑦2), 𝑜 (𝑃)}. Additionally, we have |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑥 }| < |{𝑝 ∈ 𝑃 :

𝑝 ∈ 𝐴>
+𝑥 ∪ {𝑜 (𝑃)}}| and |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴<

−𝑦}| < |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴>
+𝑦 ∪ {𝑜 (𝑃)}}|. This means that
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|{𝑝 = (𝑥𝑝 , 𝑦𝑝 ) ∈ 𝑃 : 𝑥𝑝 < 0}| < |{𝑝 = (𝑥𝑝 , 𝑦𝑝 ) ∈ 𝑃 : 𝑥𝑝 > 0}| ≤ (1 + 𝑐)𝑛/2 − 𝑐𝑛. Otherwise,

after we count the 𝑐𝑛 points at the predicted location 𝑜 (𝑃), the output location of the mechanism

𝑓 (𝑃, 𝑜 (𝑃), 𝑐) will have a positive 𝑥-coordinate. Note that the instances 𝑃 and 𝑄 only differ at 𝑖1, 𝑖2.

If 𝑜 (𝑄) stays in the top-right quadrant, then it’s clear that 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = (0, 0). However, even if

𝑜 (𝑄) moves to the left of the 𝑦-axis, we have |{𝑞 = (𝑥𝑞, 𝑦𝑞) ∈ 𝑄 : 𝑥𝑞 < 0}| + 𝑐𝑛 < (1 + 𝑐)𝑛/2. Thus,
the algorithm’s output 𝑓 (𝑄) must have its 𝑥-coordinate equal to zero. By a similar argument, we

can prove that 𝑓 (𝑄,𝑜 (𝑄), 𝑐) has its 𝑦-coordinate equal to zero as well. Therefore we conclude that

𝑓 (𝑄,𝑜 (𝑄), 𝑐) = 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), even if the location of 𝑜 (𝑄) can be different from that of 𝑜 (𝑃).
Next, we prove that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Let 𝐴 =

∑
𝑖≠𝑖1

𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) and 𝐵 =∑𝑛
𝑖=1 𝑑 (𝑝𝑖 , 𝑜 (𝑃)) =

∑
𝑖≠𝑖2

𝑑 (𝑝𝑖 , 𝑜 (𝑃)). The approximation ratio of CMP with a correct prediction

(𝑜 = 𝑜 (𝑃)) is at least as good as the approximation of the coordinatewise median mechanism

(without predictions), so at most

√
2. Thus, 𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) ≤

√
2𝐵. Therefore,

[𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))]𝑑 (𝑞𝑖2 , 𝑜 (𝑃)) ≤
√
2𝐵𝑑 (𝑞𝑖2 , 𝑜 (𝑃)). (3)

But we have 𝑦𝑜 ≥ 𝑥𝑜 , so 𝑑 (𝑞𝑖2 , 𝑜 (𝑃)) ≤
√
2𝑥𝑜 . Therefore, from inequality (3) we have

[𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))]𝑑 (𝑞𝑖2 , 𝑜 (𝑃)) ≤ 2𝐵𝑥𝑜

≤ 𝐵(𝑑 (𝑞𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) − 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))). (4)

Using inequality (4), we have

[𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))] [𝐵 + 𝑑 (𝑞𝑖2 , 𝑜 (𝑃))]
= 𝐴𝐵 + 𝐵𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) + [𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))]𝑑 (𝑞𝑖2 , 𝑜 (𝑃))
≤ 𝐴𝐵 + 𝐵𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) + 𝐵(𝑑 (𝑞𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) − 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)))
= 𝐴𝐵 + 𝐵𝑑 (𝑞𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))
= (𝐴 + 𝑑 (𝑞𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)))𝐵. (5)

Note that 𝐴 =
∑

𝑖≠𝑖1
𝑑 (𝑝𝑖 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐)) =

∑
𝑖≠𝑖1

𝑑 (𝑞𝑖 , 𝑓 (𝑄,𝑜 (𝑄), 𝑐)) because 𝑓 (𝑃, 𝑜 (𝑃), 𝑐) =

𝑓 (𝑄,𝑜 (𝑄), 𝑐) and 𝑑 (𝑝𝑖2 , 𝑓 (𝑄,𝑜 (𝑄), 𝑐)) = 𝑑 (𝑞𝑖2 , 𝑓 (𝑄,𝑜 (𝑄), 𝑐)). Additionally, 𝐵 =
∑

𝑖≠𝑖2
𝑑 (𝑝𝑖 , 𝑜 (𝑃)) =∑

𝑖≠𝑖1,𝑖2
𝑑 (𝑞𝑖 , 𝑜 (𝑃)) + 𝑑 (𝑝𝑖1 , 𝑜 (𝑃)) =

∑
𝑖≠𝑖1,𝑖2

𝑑 (𝑞𝑖 , 𝑜 (𝑃)) + 𝑑 (𝑞𝑖1 , 𝑜 (𝑃)) =
∑

𝑖≠𝑖2
𝑑 (𝑞𝑖 , 𝑜 (𝑃)).

Thus, using inequality (5), we have

𝑟 (𝑃, 𝑜 (𝑃), 𝑐) =
𝐴 + 𝑑 (𝑝𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))

𝐵

≤
𝐴 + 𝑑 (𝑞𝑖1 , 𝑓 (𝑃, 𝑜 (𝑃), 𝑐))

𝐵 + 𝑑 (𝑞𝑖2 , 𝑜 (𝑃))
by (5)

=

∑
𝑖≠𝑖1

𝑑 (𝑞𝑖 , 𝑓 (𝑄,𝑜 (𝑄), 𝑐)) + 𝑑 (𝑞𝑖1 , 𝑓 (𝑄,𝑜 (𝑄), 𝑐))∑
𝑖≠𝑖2

𝑑 (𝑞𝑖 , 𝑜 (𝑃)) + 𝑑 (𝑞𝑖2 , 𝑜 (𝑃))

=
𝐶𝑢 (𝑓 (𝑄), 𝑄)
𝐶𝑢 (𝑜 (𝑃), 𝑄)

≤ 𝐶𝑢 (𝑓 (𝑄), 𝑄)
𝐶𝑢 (𝑜 (𝑄), 𝑄) (6)

= 𝑟 (𝑄,𝑜 (𝑄), 𝑐) . (7)

The inequality (6) is strict unless 𝑜 (𝑃) = 𝑜 (𝑄). Therefore, if 𝑜 (𝑃) ≠ 𝑜 (𝑄) we immediately have

𝑟 (𝑃, 𝑜 (𝑃), 𝑐) < 𝑟 (𝑄,𝑜 (𝑄), 𝑐), and we are done. Otherwise, we have 𝑜 (𝑃) = 𝑜 (𝑄), so the instance

𝑄 now already satisfies the first two properties of the CA family that 𝑓 (𝑄,𝑜 (𝑄), 𝑐) = (0, 0) and
𝑜 (𝑄) = 𝑜 (𝑃) = (𝑥𝑜 , 𝑦𝑜 ) with 𝑦𝑜 ≥ 𝑥𝑜 > 0. If property (3) of the CA family does not hold true,

then we have a point 𝑞 ∈ 𝑄 such that moving it towards 𝑜 (𝑄) would not change the output
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location of the mechanism. Then by Lemma C.2 we can move 𝑞 towards 𝑜 (𝑄) to create an instance

𝑄 ′
with 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐), and we are done again. We now verify

the five subproperties of property (4) for the CA family. If the points are not clustered anymore

on the axes in 𝑄 after the paired movements, we can apply Lemma 4.10 to find an instance 𝑄 ′

such that 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Therefore, we can assume that the paired

movements move points from an existing cluster to another cluster, so the first, the fourth and the

fifth subconditions clearly hold true. The second and the third subconditions can also be verified

easily because we only reduce the number of points with negative 𝑥-coordinate, and we do not

change the number of points with negative𝑦-coordinate. Therefore, we conclude that by performing

the paired movements, we can find an instance 𝑄 either with 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑄), 𝑐) or we
have𝑄 ∈ P𝐶

ca
(𝑐) with 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑄), 𝑐). We can then iteratively remove points from the

optimal location and will finally reach an instance 𝑄 ∈ P𝐶
ca
(𝑐) such that there are no points on the

optimal location, i.e. we find an instance𝑄 ∈ P𝐶
ca
(𝑐), 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦

for all 𝑞 ∈ 𝑄 . Note that we have enough points on the −𝑥 half axis to eliminate all points on the

optimal location because we have argued before that |{𝑝 ∈ 𝑃 : 𝑝 ∈ 𝐴−𝑥 }| ≥ |{𝑝 ∈ 𝑃 : 𝑝 = 𝑜 (𝑃)}|,
and this concludes the proof of the lemma. □

Lemma 4.17. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪ 𝐴+𝑦 for

all 𝑝 ∈ 𝑃 , there exists either 𝑄 ∈ P𝐶
coa

(𝑐) such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ′
such that

𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).

Proof. Let 𝑃 ∈ P𝐶
ca
(𝑐) be a multiset of 𝑛 points such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 for all 𝑝 ∈ 𝑃 , so the points

are all on (−𝑥, 0), (0, 𝑥 ′′), or (𝑥 ′, 0) for some 𝑥, 𝑥 ′, 𝑥 ′′ > 0. Without loss of generality, by rescaling,

assume that 𝑥 ′′ = 1. Let 𝐿, 𝑅,𝑈 ⊆ 𝑃 be the points on (−𝑥, 0), (0, 1), and (𝑥 ′, 0) respectively. Since
𝑓 (𝑃, 𝑜 (𝑃), 𝑐) = (0, 0), we have |𝐿 | = 𝑐𝑛, |𝑈 | = |𝑅 | = 1−𝑐

2
𝑛. Let 𝑄 be the instance that is the same as

𝑃 for all 𝑖 ∉ 𝑈 , has 𝑞𝑖 = 𝑜 (𝑃) for all 𝑖 ∈ 𝑈 .

First note that by Lemma C.1 we have 𝑜 (𝑄) = 𝑜 (𝑃). By Lemma 4.3 we know that for any 𝑐 ∈ [0, 1)
there exists an instance 𝑄 ′

such that 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) ≥
√
2𝑐2+2
1+𝑐 . If 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) <

√
2𝑐2+2
1+𝑐 , then we

have 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). Now assume 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) ≥
√
2𝑐2+2
1+𝑐 . Let Δ𝑓 denote the total cost

decrease of the algorithm, i.e., Δ𝑓 = 𝑛[𝐶𝑢 (𝑓 (𝑃, 𝑜 (𝑃), 𝑐), 𝑃)) −𝐶𝑢 (𝑓 (𝑄,𝑜 (𝑄), 𝑐), 𝑄)], similarly, we

let Δ𝑜 = 𝑛[𝐶𝑢 (𝑜 (𝑃), 𝑃)) −𝐶𝑢 (𝑜 (𝑄), 𝑄)] . Showing that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) is equivalent to
showing that

√
2𝑐2+2
1+𝑐 − Δ𝑓

Δ𝑜
≥ 0. To simplify the presentation of the lemma, we let (1 − 𝑦𝑜 ) denote

the points movement on 𝑦-axis and 𝜆(1 − 𝑦𝑜 ) denote the points movement on 𝑥-axis. Then

Δ𝑓 =
1 − 𝑐

2

𝑛 · 𝜆(1 − 𝑦𝑜 ) − 𝑐𝑛𝜆(1 − 𝑦𝑜 ) +
1 − 𝑐

2

𝑛(1 − 𝑦𝑜 )

Δ𝑜 =
1 − 𝑐

2

𝑛
√︁
(𝜆(1 − 𝑦𝑜 ))2 + (1 − 𝑦𝑜 )2 =

1 − 𝑐

2

𝑛
√
1 + 𝜆2 (1 − 𝑦𝑜 )

Let 𝑔(𝑐, 𝜆) =
√
2𝑐2+2
1+𝑐 − Δ𝑓

Δ𝑜
=

√
2𝑐2+2
1+𝑐 − (1−3𝑐)𝜆+(1−𝑐)

(1−𝑐)
√
1+𝜆2

. Taking the first and second derivative w.r.t 𝜆 we

get

𝑑𝑔

𝑑𝜆
= − 𝑐𝜆 − 𝜆 + 1 − 3𝑐

(1 − 𝑐) (𝜆2 + 1)
√
𝜆2 + 1

and

𝑑2𝑔

𝑑𝜆2
= −−2𝑐𝑥2 + 2𝑥2 + 9𝑐𝑥 − 3𝑥 + 𝑐 − 1

(−𝑐 + 1) (𝑥2 + 1)
5

2

.

Solving
𝑑𝑔

𝑑𝑥
= 0 we get that 𝜆 = 1−3𝑐

1−𝑐 . If 𝑐 > 1

3
, we have 𝜆 < 0 and since second derivative at

𝜆 = 1−3𝑐
1−𝑐 is positive we get that for any 𝑐 > 1

3
, 𝑔(𝑐, 𝜆) is minimized at 𝜆 = 0. Which means that the

movement on x-axis is 0. In this case, we have 𝑥𝑜 (𝑃) = 0 and thus 𝑃 ∈ P𝐶
oa
(𝑐). By Lemma 4.13,

we then get that there exists 𝑄 ′
such that either 𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ′ ∈ P𝐶

coa
(𝑐) and

𝑟 (𝑄 ′, 𝑜 (𝑄 ′), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).
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Now if 𝑐 < 1

3
, we have 𝜆 > 0, and the second derivative of 𝑔(𝑐, 𝜆) is positive, therefore given a

specific 𝑐 , 𝜆 = 1−3𝑐
1−𝑐 is the minimizer. We then rewrite the function:

𝑔(𝑐) =
√
2𝑐2 + 2

1 + 𝑐 −
√
10𝑐2 − 8𝑐 + 2

1 − 𝑐
.

Again we take the derivative and set it to 0,

𝑑𝑔

𝑑𝑐
=

2𝑐 − 2

(1 + 𝑐)2
√
2 + 2𝑐2

− 6𝑐 − 2

(1 − 𝑐)2
√
10𝑐2 − 8𝑐 + 2

= 0 ⇒ 𝑐 = 0, 𝑐 = 0.301263

Again checking the second derivative we get that 𝑐 = 0 is a minimizer and 𝑐 = 0.301263 is a

maximizer. Plug in 𝑐 = 0 we get that

𝑔(0) =
√
2

1

−
√
2

1

= 0 ⇒
Δ𝑓

Δ𝑜

≤
√
2𝑐2 + 2

1 + 𝑐 .

and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). By shifting all the points by (−𝑥𝑜 (𝑃), 0) to have 𝑥 𝑓 (𝑄) = 𝑥𝑜 (𝑄) =
0, we obtain that 𝑄 ∈ P𝐶

coa
(𝑐). □

Lemma 4.18. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝑅
ca
(𝑐) such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)}

for all 𝑝 ∈ 𝑃 , there exists either 𝑄 ∈ P𝑅
coa

(𝑐) such that 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ′
and

prediction 𝑜 such that 𝑟 (𝑄 ′, 𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐).

Proof. Let 𝑃 ∈ P𝑅
ca
(𝑐) be a multiset of 𝑛 points such that 𝑝 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑃)} for all 𝑝 ∈ 𝑃 ,

so the points are all on (−𝑥, 0), (0, 𝑥 ′′), (𝑥 ′, 0), or 𝑜 (𝑃) for some 𝑥, 𝑥 ′, 𝑥 ′′ > 0. Without loss of

generality, by rescaling, assume that 𝑥 ′′ = 1. Let 𝐿, 𝑅,𝑈 ,𝑂 ⊆ 𝑃 be the points on (−𝑥, 0), (0, 1),
(𝑥 ′, 0), and 𝑜 (𝑃) respectively. Let 𝑘 ∈ [0, 1] be such that |𝑂 | = 𝑘𝑛. Since 𝑓 (𝑃, (0, 0), 𝑐) = (0, 0), we
have |𝑈 | = |𝑅 | = ( 1+𝑐

2
− 𝑘)𝑛 and |𝐿 | = (𝑘 − 𝑐)𝑛. Let 𝑄 be the instance that is the same as 𝑃 for all

𝑖 ∉ 𝑈 , and has 𝑞𝑖 = 𝑜 (𝑃) for all 𝑖 ∈ 𝑈 .

First note that by Lemma C.1 we have 𝑜 (𝑄) = 𝑜 (𝑃). By Lemma 4.3 we know that for any 𝑐 ∈ [0, 1)
there exists an instance 𝑄 ′

and prediction 𝑜 such that 𝑟 (𝑄 ′, 𝑜, 𝑐) ≥
√
2𝑐2+2
1−𝑐 . If 𝑟 (𝑃, (0, 0), 𝑐) <

√
2𝑐2+2
1−𝑐 ,

then we have 𝑟 (𝑄 ′, 𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐). Now assume 𝑟 (𝑃, (0, 0, 𝑐) ≥
√
2𝑐2+2
1−𝑐 . let Δ𝑓 denote the total

cost decrease of the algorithm, i.e., Δ𝑓 = 𝑛[𝐶𝑢 (𝑓 (𝑃, (0, 0), 𝑐), 𝑃) −𝐶𝑢 (𝑓 (𝑄, (0, 0), 𝑐), 𝑄)], similarly,

we let Δ𝑜 = 𝑛[𝐶𝑢 (𝑜 (𝑃), 𝑃) −𝐶𝑢 (𝑜 (𝑄), 𝑄)]. The lemma statement is equivalent to

√
2𝑐2+2
1−𝑐 ≥ Δ𝑓

Δ𝑜
. To

simplify the presentation of the lemma, we let 𝑑 denote the points movement on the 𝑦-axis. Then

Δ𝑓 = ( 1 + 𝑐
2

− 𝑘)𝑛 · 𝑑 + ( 1 + 𝑐
2

− 𝑘)𝑛 · 𝑥𝑜 − (𝑘 − 𝑐)𝑛 · 𝑥𝑜

Δ𝑜 = ( 1 + 𝑐
2

− 𝑘)𝑛
√︃
𝑥2𝑜 + 𝑑2

Note that since Manhattan distance is a

√
2 approximation of the Euclidean distance, we have

𝑟 + 𝑑 ≤
√
2 ·

√︁
𝑥2𝑜 + 𝑑2. We get:
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Δ𝑓

Δ𝑜

=
( 1+𝑐

2
− 𝑘)𝑛 · (𝑑 + 𝑟 ) − (𝑘 − 𝑐)𝑛 · 𝑥𝑜

( 1+𝑐
2

− 𝑘)𝑛
√︁
𝑥2𝑜 + 𝑑2

≤
( 1+𝑐

2
− 𝑘)𝑛 ·

√
2(

√︁
𝑥2𝑜 + 𝑑2) − (𝑘 − 𝑐)𝑛 · 𝑥𝑜

( 1+𝑐
2

− 𝑘)𝑛
√︁
𝑥2𝑜 + 𝑑2

≤
√
2 − (𝑘 − 𝑐)𝑛 · 𝑥𝑜

( 1+𝑐
2

− 𝑘)𝑛
√︁
𝑥2𝑜 + 𝑑2

≤
√
2

Since 𝑟 (𝑃, (0, 0), 𝑐) ≥
√
2𝑐2+2
1−𝑐 ≥

√
2, we get that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). By shifting all the

points by (−𝑥𝑜 (𝑃), 0) to have 𝑥 𝑓 (𝑄) = 𝑥𝑜 (𝑄) = 0, we obtain that 𝑄 ∈ P𝑅
coa

(𝑐). □

Lemma 4.19. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝐶
ca
(𝑐), there exists points 𝑄 such that

either 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or 𝑄 ∈ P𝐶
coa

(𝑐) and 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐).

Proof. Let 𝑐 ∈ [0, 1). Consider an instance 𝑃 ∈ P𝐶
ca
(𝑐) of 𝑛 points. By Lemma 4.14, there exists

𝑄1 such that either 𝑟 (𝑄1, 𝑜 (𝑄1), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or𝑄1 ∈ P𝐶
ca
(𝑐) and 𝑟 (𝑄1, 𝑜 (𝑄1), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐),

and 𝑞 ∈ 𝐴𝑥 ∪ 𝐴+𝑦 ∪ {𝑜 (𝑄1)} for all 𝑞 ∈ 𝑄1. By Lemma 4.16, there exists 𝑄2 such that either

𝑟 (𝑄2, 𝑜 (𝑄2), 𝑐) > 𝑟 (𝑄1, 𝑜 (𝑄1), 𝑐) or 𝑄2 ∈ P𝐶
ca
(𝑐) and 𝑟 (𝑄2, 𝑜 (𝑄2), 𝑐) ≥ 𝑟 (𝑄1, 𝑜 (𝑄1), 𝑐) and 𝑞 ∈ 𝐴𝑥 ∪

𝐴+𝑦 for all 𝑞 ∈ 𝑄2. By Lemma 4.17, there exists𝑄3 such that either 𝑟 (𝑄3, 𝑜 (𝑄3), 𝑐) > 𝑟 (𝑄2, 𝑜 (𝑄2), 𝑐)
or𝑄3 ∈ P𝐶

coa
(𝑐) and 𝑟 (𝑄3, 𝑜 (𝑄3), 𝑐) ≥ 𝑟 (𝑄2, 𝑜 (𝑄2), 𝑐). Thus, we have that there either exists 𝑛 points

𝑄 such that 𝑟 (𝑄,𝑜 (𝑄), 𝑐) > 𝑟 (𝑃, 𝑜 (𝑃), 𝑐) or that max𝑄 ∈P𝐶
coa

(𝑐) 𝑟 (𝑄,𝑜 (𝑄), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐). □

Lemma 4.20. For any confidence 𝑐 ∈ [0, 1) and points 𝑃 ∈ P𝑅
ca
(𝑐), there exists points𝑄 and prediction

𝑜 such that either 𝑟 (𝑄,𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄 ∈ P𝑅
coa

(𝑐) and 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐).

Proof. Let 𝑐 ∈ [0, 1). Consider an instance 𝑃 ∈ P𝑅
ca
(𝑐) of 𝑛 points. By Lemma 4.14, there exists

𝑄1 such that either 𝑟 (𝑄1, (0, 0), 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or 𝑄1 ∈ P𝑅
ca
(𝑐) and 𝑟 (𝑄1, (0, 0), 𝑐) ≥ 𝑟 (𝑃, 𝑜 (𝑃), 𝑐),

and 𝑞 ∈ 𝐴𝑥 ∪𝐴+𝑦 ∪ {𝑜 (𝑄1)} for all 𝑞 ∈ 𝑄1. By Lemma 4.18, there exists 𝑄2 and prediction 𝑜 such

that either 𝑟 (𝑄2, 𝑜, 𝑐) > 𝑟 (𝑄1, (0, 0), 𝑐) or 𝑄2 ∈ P𝑅
coa

(𝑐) and 𝑟 (𝑄2, (0, 0), 𝑐) ≥ 𝑟 (𝑄1, (0, 0), 𝑐). Thus,
we have that there either exists 𝑛 points 𝑄 and prediction 𝑜 such that 𝑟 (𝑄,𝑜, 𝑐) > 𝑟 (𝑃, (0, 0), 𝑐) or
that max𝑄 ∈P𝑅

coa
(𝑐) 𝑟 (𝑄, (0, 0), 𝑐) ≥ 𝑟 (𝑃, (0, 0), 𝑐). □
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