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In this work we introduce an alternative model for the design and analysis of strategyproof mechanisms that
is motivated by the recent surge of work in “learning-augmented algorithms”. Aiming to complement the
traditional approach in computer science, which analyzes the performance of algorithms based on worst-case
instances, this line of work has focused on the design and analysis of algorithms that are enhanced with
machine-learned predictions regarding the optimal solution. The algorithms can use the predictions as a
guide to inform their decisions, and the goal is to achieve much stronger performance guarantees when these
predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if
these predictions are very inaccurate (robustness). So far, these results have been limited to algorithms, but in
this work we argue that another fertile ground for this framework is in mechanism design.

We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions
regarding the private information of the participating agents. To exhibit the important benefits of this approach,
we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean
space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof
mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness
guarantees. This provides the designer with a menu of mechanism options to choose from, depending on
her confidence regarding the prediction accuracy. Furthermore, we also prove parameterized approximation
results as a function of the prediction error, showing that our mechanisms perform well even when the
predictions are not fully accurate.
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1 INTRODUCTION

For more than half a century, the dominant approach for the mathematical analysis of algorithms
in computer science has been worst-case analysis. On the positive side, a worst-case guarantee
provides a useful signal regarding the robustness of the algorithm. However, it is well-known that
the worst-case analysis can be unnecessarily pessimistic, often leading to uninformative bounds
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or impossibility results that may not reflect the real obstacles that arise in practice. These crucial
shortcomings of worst-case analysis are making it increasingly less relevant, especially in light of
the impressive advances in machine learning that give rise to very effective algorithms, most of
which do not admit any non-trivial worst-case guarantees.

Motivated by this tension between worst-case analysis and machine learning algorithms, a
surge of recent work is aiming for the best of both worlds by designing robust algorithms that are
guided by machine-learned predictions. The goal of this exciting new literature on “algorithms with
predictions” is to combine the robustness of worst-case guarantees with consistency guarantees,
which prove stronger bounds on the performance of an algorithm whenever the prediction that it
is provided with is accurate.

A lot of this work has focused on dynamic settings, where the input arrives over time and the
algorithm needs to make irrevocable decisions before observing the whole input. In contrast to
traditional online algorithms, which are assumed to have no information regarding the remaining
input, learning-augmented algorithms are provided with a prediction regarding this input. An ideal
algorithm is one that performs very well if this prediction is accurate, i.e., it has good consistency,
but that also achieves a near-optimal worst-case guarantee, even when the prediction is (arbitrarily)
inaccurate, i.e., it has good robustness. A flurry of papers published during the last four years have
proposed novel algorithms that achieve non-trivial trade-offs between robustness and consistency
(see [20] for a survey of some of the initial results).

In this paper, we argue that another fertile ground for the use of predictions is in mechanism
design. In contrast to online algorithms, whose information limitations are regarding the future,
the main obstacle in mechanism design is the fact that part of the input is private information that
only the agents know. To overcome this obstacle, a mechanism can ask the agents to report this
information but, since they are strategic, they can misreport it if this leads to an outcome that they
prefer. The field of mechanism design has proposed solutions to this problem, but their worst-case
guarantees are often underwhelming from a practical perspective. However, if these mechanisms
are provided with some predictions regarding (part of) the missing information, this could allow
the designer to reach more efficient outcomes despite the incentives of the participants.

In this paper, we propose a model for designing and evaluating strategyproof mechanisms that are
enhanced with predictions, which has the potential to transform the mechanism design literature.
At the core of this research agenda lies the following fundamental question:

Can learning-augmented mechanisms achieve good robustness and consistency trade-offs?

Given a mechanism equipped with a prediction, we can parameterize the worst-case performance
guarantee of the mechanism, using the error 5 of the prediction. When the prediction is accurate,
i.e.,, n = 0, then the resulting guarantee is called the consistency of the mechanism. The worst case
guarantee irrespective of the error, i.e., the worst-case over all values of 7, is called the robustness
of the mechanism. An ideal mechanism would yield guarantees that gracefully transition from
optimal performance when the prediction is correct (perfect consistency) to the best-known worst-
case performance as the error increases (perfect robustness), thus capturing the best of both worlds.
However, this is impossible in many settings: to achieve perfect consistency a mechanism needs
to “trust” the prediction, in the sense that it always outputs a solution that is optimal according
to the prediction. Yet, if the prediction is incorrect, this solution might be arbitrarily bad, causing
unbounded robustness. Our goal is to evaluate how close to this ideal mechanism we can get, i.e.,
to achieve the best possible trade-off between robustness and consistency.

To exhibit the important benefits of adapting this framework to mechanism design and to gain
some insights regarding how predictions could be used by strategyproof mechanisms, we focus on
the canonical problem of facility location. Apart from the fact that this problem has been the focus
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of a very long line of literature (e.g., see [1, 9, 10, 12, 13, 23, 27, 28] and the recent survey by [6]), it
has also been previously used as a natural application domain for exhibiting the potential benefits
of new mechanism design models [23, 24].

In an instance of the facility location problem in R?, we are given a set of n agents, with each
agent i having a preferred location p; € R?, and we need to choose at which location f € R? to
build a facility that will be serving the agents. Once the location of the facility has been determined,
each agent suffers a cost that is equal to the Euclidean distance between her preferred location and
f., and our goal is to choose f that minimizes the social cost. In this paper we consider both the
minimization of the egalitarian social cost (i.e., the maximum cost over all agents) and the utilitarian
social cost (i.e., the average cost over all agents), and the main obstacle is that the preferred location
p; of each agent i is private information to the agent and they can choose to misreport it if this could
reduce their cost (e.g., by affecting the facility location choice in their favor). To ensure that the
agents will not lie, this research has restricted its attention to strategyproof mechanisms, limiting
the extent to which the social cost functions can be optimized.

1.1 Our results

Using the facility location problem as a case study, we exhibit the benefits of adapting the learning-
augmented framework in mechanism design. In the facility location problem, the information that
the designer is missing is the preferred location of each agent, so our goal is to design practical
strategyproof mechanisms that are provided with predictions regarding this information. Rather
than assuming that the prediction provides the mechanism with a detailed estimate regarding all
of the private information, i.e., the preferred location of each agent, we instead consider a less
demanding prediction that provides an aggregate signal regarding this information. Specifically, we
assume that the mechanisms are provided with only a single point 0, corresponding to a prediction
regarding the optimal location for the facility. Note that this point could readily be computed using
the predicted location of each agent, so this prediction requires less information and is easier to
estimate. Our results focus on mechanisms that are deterministic and anonymous (they do not
discriminate among agents based on their identity), which is a well-studied class of mechanisms in
the context of facility location.

Egalitarian social cost. We first focus on the problem of minimizing the egalitarian social cost
and, as a warm-up, on the single-dimensional version of the problem, where all the points lie in
R. For this version of the problem, there exists a deterministic and strategyproof mechanism that
achieves a 2-approximation, and this is the best possible approximation in this class of mechanisms.
Our result for this case is a deterministic strategyproof mechanism, augmented with a prediction
regarding the optimal location for the facility, that achieves the best of both worlds. It returns
the optimal solution whenever the prediction is correct (1-consistency), but without sacrificing
its worst-case guarantee: it always guarantees a 2-approximation irrespectively of the prediction
quality (2-robustness).

We then move on to the two-dimensional version of the problem, for which prior work has
produced an optimal deterministic strategyproof mechanism achieving a 2-approximation [1, 14].
Once again, we are able to achieve perfect consistency, but this time this comes at a small cost in
terms of the worst-case guarantee, as we achieve a robustness of 1 + V2. A natural question at this
point is whether this loss in robustness was required for us to get the strong consistency guarantee.
Our next result shows that this is indeed the case: in fact, to achieve any consistency guarantee
better than the trivial 2 bound, any deterministic anonymous and strategyproof mechanism would
have to guarantee robustness no better than 1 + V2. Therefore, our proposed mechanism provides
an optimal trade-off between robustness and consistency. Finally, we also provide a more general
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approximation guarantee for our mechanism as a function of the prediction error, proving that it
maintains improved performance guarantees even where the prediction is not fully accurate.

Utilitarian social cost. We then study the problem of minimizing the utilitarian social cost. The
single-dimensional case of this problem can be solved optimally using a deterministic, anonymous,
and strategyproof mechanism, so we proceed directly to two-dimensions. In this case, there is
a deterministic, anonymous, and strategyproof mechanism that achieves a V2-approximation,
which is optimal for this class of mechanisms. We provide a family of mechanisms, parameterized
by a “confidence value” ¢ € [0, 1) that the designer can choose depending on how much they
trust the prediction. If the designer is confident that the prediction is of high quality, then they
can choose a higher value of ¢, which provides stronger consistency guarantees, at the cost of
deteriorating robustness guarantees. Specifically, we prove that our deterministic and anonymous
mechanism is V2¢? + 2/(1 + ¢)-consistent and V2¢? + 2/(1 — ¢)-robust (See Figure 1 for a plot of
the trade-off provided by this mechanism). This result exhibits one of the important advantages
of the learning-augmented framework, which is to provide the user with more control over the
trade-off between worst-case guarantees and more optimistic guarantees when good predictions
are available. In fact, we prove that our mechanisms are optimal: no deterministic, anonymous,
and strategyproof mechanism can achieve a better trade-off between robustness and consistency
guarantees, so our mechanisms exactly capture the Pareto frontier for this problem. Finally, we
once again extend our approximation results as a function of the prediction error, verifying that the
mechanism achieves improved worst-case guarantees even if the prediction is not fully accurate.

1.2 Related work

The learning-augmented mechanism design framework, proposed in this paper, is part of a long
literature on alternative performance measures aiming to avoid the limitations of worst-case
analysis. A detailed overview of such measures can be found in the “Beyond the Worst-case
Analysis of Algorithms" book edited by Roughgarden [26].

Learning-augmented algorithms. Specifically, this framework extends the recent work on
“learning-augmented algorithms” (or “algorithms with predictions”), which focuses on algorithm
design and aims to overcome worst-case bounds by assuming that the algorithm is provided with
predictions regarding the instance at hand (see [20] for a survey of the early work in this area).
Lykouris and Vassilvtiskii [17] introduced consistency and robustness, which are the two primary
metrics used to analyze the performance of algorithms in the learning-augmented design framework.
There is a long list of classic algorithmic problems that have been studied in that framework,
including online paging [17], scheduling [25], and secretary problems [2, 7], optimization problems
with covering [4] and knapsack constraints [15], as well as Nash social welfare maximization [5]
and several graph [3] problems. We note that this line of work has also studied facility location
problems [11, 16]. However, the crucial difference is that these papers are restricted to non-strategic
settings, and the predictions are used to overcome information limitations regarding the future,
rather than limitations regarding privately held information. [18] use bid predictions in auctions to
learn reserve prices and yield revenue guarantees as a function of the prediction error, but provide
no bounded robustness guarantees.

Strategic facility location. The facility location problem in the presence of strategic agents has
been extensively studied and serves as a canonical mechanism design problem. For example, it was
used as the case study that initiated the literature on approximate mechanism design without money
[23]. For single facility location in one dimension, i.e., on the line, the mechanism that places the
facility at the median over all the preferred points reported by the agents is strategyproof, optimal

500



Session 5A: Mechanism Design with Learning - EC 22, July 11-15, 2022, Boulder, CO, USA

for the utilitarian social cost objective, and achieves a 2-approximation for the egalitarian social
cost objective, which is the best approximation achievable by any deterministic and strategyproof
mechanism [23]. In the two-dimensional Euclidean space, a generalization of this mechanism, the
“coordinatewise median” mechanism (defined in Section 2), achieves a V2-approximation for the
utilitarian objective [19], and a 2-approximation for the egalitarian objective [14]. These approxi-
mation bounds are both optimal among deterministic and strategyproof mechanisms. Additional
settings that have been studied include general metric spaces [1], d-dimensional Euclidean spaces
[8, 14, 19, 28], circles [1, 19], and trees [1, 10]. Finally, some fundamental results on strategic facility
location focus on characterizing the space of startegyproof mechanisms. For the single-dimensional
case, the characterization of [21] implies that all deterministic strategyproof mechanisms corre-
spond to the family of “general median mechanisms” (defined in Section 2). For the two-dimensional
case, an analogous characterization was subsequently provided by [22]. A more detailed discussion
regarding prior work on this problem is provided in the recent survey by [6].

2 PRELIMINARIES

In the single facility location problem in the two-dimensional Euclidean space, the goal is to choose a
location f € R for a facility, aiming to serve a group of n agents. Each agent i has a preferred location
pi € R? and, once the facility location is chosen, that agent suffers a cost d(f, p;), corresponding
to the Euclidean distance between her preferred location and the chosen location. Given a set of
preferred locations P = {p1,...,p,} for the agents, the two standard social cost functions that
prior works have aimed to minimize are the egalitarian social cost C¢(f, P) = max,ep d(f,p) (ie.,
the maximum cost over all agents) and the utilitarian social cost C*(f, P) = X,epd(f.p)/n (ie.
the average cost over all agents). Given some social cost function, we denote the optimal facility
location by o(P) = (x,(P),yo(P)), or o when P is clear from the context.

In the strategic version of the facility location problem, the preferred location p; of each agent i
is private information. Therefore, to minimize the social cost a mechanism needs to ask the agents
to report their preferred locations, P € R?", and then use this information to determine the facility
location f(P). However, the goal of each agent is to minimize their own cost, so they can choose
to misreport their preferred location if that can reduce their cost. A mechanism f : R¥* — R? is
strategyproof if truthful reporting is a dominant strategy for every agent, i.e., for all instances P €
R?", every agent i € [n], and every deviation p; € R?, we have that d(p;, f(P)) < d(p;, f (P-i, p})).

A strategyproof mechanism that plays a central role in the strategic facility location problem
is the Coordinatewise Median (CM) mechanism. This mechanism takes as input the locations
P = {(x1,Yi) }ie[n] of the n agents and determines the facility location by considering each of the
two coordinates separately. The x-coordinate of the facility is chosen to be the median of {x;};c[n],
i.e., the median of the x-coordinates of the agents’ locations, and its y-coordinate is the median of
{yi}ie[n (if n is even, we assume the smaller of the two medians is returned). The more general
class of Generalized Coordinatewise Median (GCM) mechanisms take as input the locations P of the n
agents, as well as a multiset P’ of points that are constant and independent of the locations reported
by the agents, and outputs CM(P U P’). In other words, a GCM mechanism is the coordinatewise
median mechanism over the locations of the agents and the additional constant points P’ chosen
by the designer (often called phantom points). Apart from deterministic and strategyproof, any
GCM mechanism is also anonymous: its outcome does not depend on the identity of the agents, i.e.,
it is invariant under a permutation of the agents.

In the learning-augmented mechanism design framework proposed in this paper, before request-
ing the set of preferred locations P from the agents, the designer is provided with a prediction 6
regarding the optimal facility location o(P). The designer can use this information to choose the

501



Session 5A: Mechanism Design with Learning - EC 22, July 11-15, 2022, Boulder, CO, USA

rules of the mechanism but, as in the standard strategic facility location problem, the final mech-
anism, denoted f(P, 6), needs to be strategyproof. In essence, if there are multiple strategyproof
mechanisms the designer can choose from, the prediction can guide their choice, aiming to achieve
improved guarantees if the prediction is accurate (consistency), but retaining some worst-case
guarantees (robustness).! Consistency and robustness are the standard measures in algorithms
with predictions [17]. Given some social cost function C, a mechanism is a-consistent if it achieves
an a-approximation ratio when the prediction is correct (6 = o(P)), i.e.,

C(f(P,o(P)),P)
max { ——————~
P C(o(P),P)
A mechanism is f-robust if it achieves a f-approximation ratio even when the predictions can be
arbitrarily wrong, i.e., if

<

{C(f(P, 0), P) }

max { —————— < f.

Po | C(o(P),P)

Note that any known strategyproof mechanism that guarantees a y-approximation without predic-

tions directly implies bounds on the achievable robustness and consistency. The designer could just

disregard the prediction and use this mechanism to achieve y-robustness. However, this mechanism

would also be no better than y-consistent, since it ignores the prediction. The main challenge is to

achieve improved consistency guarantees, without sacrificing too much in terms of robustness.
For an even more refined understanding of the performance of a learning-augmented mechanism,

one can also prove worst-case approximation ratios as a function of the prediction error > 0.

In facility location, we let the error n(6, P) = d(6,0(P))/C(0(P), P) be the distance between the

predicted optimal location 6 and the true optimal location o(P), normalized by the optimal social

cost. Given a bound 7 on the prediction error, a mechanism achieves a y(n)-approximation if

C(f(P,0),P)
max — 1 <y(n).
Po: n(6,P)<p | C(o(P),P)
Note that for = 0 this bound corresponds to the consistency guarantee and for 5 — oo it captures
the robustness guarantee. If this bound does not increase too fast as a function of 7, then the
mechanism may achieve improved guarantees even if the prediction is not fully accurate.

3 MINIMIZING THE EGALITARIAN SOCIAL COST

We start by focusing on the egalitarian social cost function, for which no deterministic and strat-
egyproof mechanism can achieve better than a 2-approximation, even for the one-dimensional
case [23]. As a warm-up, we first provide a deterministic, strategyproof, and anonymous mecha-
nism that is 2-robust, thus matching the best possible worst-case approximation guarantee, but
also 1-consistent, thus combining the best of both worlds. Then, in Section 3.2 we extend this
mechanism to the two-dimensional case and we prove that it is 1-consistent and (1 + V2)-robust.
In Section 3.3, we complement this result by showing that our mechanism is Pareto optimal: we
prove that 1+ V2 ~ 2.41 is the best robustness achievable by any deterministic, strategyproof,
and anonymous mechanism that achieves any consistency better than 2 (note that a consistency
of 2 can be trivially achieved by disregarding the predictions and running the coordinatewise
median mechanism). Our last result, in Section 3.4, goes beyond the robustness and consistency
guarantees to provide a more refined bound as a function of the prediction error. Specifically, the
approximation achieved by our mechanism degrades linearly from 1 to 1+ V2 as a function of the
prediction error.

1 An alternative interpretation is that there is a single publicly known mechanism that takes as input the prediction and the
agents’ reports, and the agents know what the prediction is prior to reporting their preferred locations.
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3.1  Warm-up: facility location on the line

As a warm-up, we first consider the single-dimensional case of the problem, where p; € R for every
agent i. For this special case, a simple deterministic mechanism that returns the median of the
points in P is strategyproof, as well as a 2-approximation of the egalitarian social welfare, which
is the best possible approximation among deterministic and strategyproof mechanisms [23]. Our
first result in the learning-augmented framework shows that this worst-case guarantee can be
combined with perfect consistency.

Given a prediction 6 regarding the optimal facility location, we propose the MINMAXP mechanism,
formally defined as Mechanism 1. This mechanism uses the prediction as the default facility location
choice, unless the prediction lies “on the left” of all the points in P or “on the right” of all the points
in P. In the former case, the facility is placed at the leftmost point in P instead, and in the latter it is
placed at the rightmost point in P.

Mechanism 1: MINMAXP mechanism for egalitarian social cost in one dimension.

Input: points (p1,...,pn) € R”, prediction 6 € R
if 6 € [min; p;, max; p;| then

| returno
else if 6 < min; p; then

| return min; p;

else
| return max; p;

We show that MINMAXP is a deterministic, strategyproof, and anonymous mechanism that
is 1-consistent and 2-robust. This mechanism thus achieves the best of both worlds: when the
prediction is correct, it yields an optimal outcome, and when the prediction is incorrect, the
approximation factor never exceeds 2, which is the best-possible worst-case approximation. In
essence, the prediction provides a “focal point” that the mechanism can use, allowing it to achieve
the optimal consistency without compromising strategyproofness.

THEOREM 3.1. The MINMAXP mechanism is deterministic, strategyproof, and anonymous, and it is
1-consistent and 2-robust for facility location on the line and the egalitarian objective.

Proor. To show that the mechanism is strategyproof, consider any agent i and, without loss of
generality, assume that p; < 6, i.e., that the agent’s true preferred location is weakly on the left
of the prediction. We consider two cases, depending on whether p; is weakly greater than all the
locations reported by the other agents or not. If it is, this means that if i reported truthfully, the
mechanism would place the facility at p; and i would clearly have no incentive to lie. If, on the
other hand, p; is not weakly greater than all the other reported locations, then the returned location
fif i reported the truth would be on the right of p;, i.e., f > p;. However, it is easy to verify that if
agent i reported a false point p; < p;, this would not affect the outcome, and if she reported a false
point p; > p;, this could only move f further away from p;. Therefore, it is a dominant strategy for
i to report the truth. An alternative way to verify the fact that this mechanism is strategyproof
is by observing that it is actually equivalent to a Generalized Coordinatewise Median (defined in
Section 2) with the set P’ of constant points containing n — 1 copies of the prediction 6. To verify
this, note that if 6 € [min; p;, max; p;], then the median of P U P’ would be 6, otherwise it would
be either the leftmost or the rightmost point of P, just like the MINMAXP mechanism.

Now, to verify the consistency guarantee, consider any instance where the prediction 0 is
accurate. Since the truly optimal location for the egalitarian social welfare lies halfway between
the leftmost and rightmost point in P, then we know that whenever 6 is accurate, it must be that
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6 € [min; p;, max; p;]. As a result, for any such instance the mechanism will place the facility at
the optimal location, 6, leading to a consistency of 1.

Finally, to verify that this mechanism is 2-robust, note that the facility location f that the
mechanism returns always satisfies f € [min; p;, max; p;]. As a result, the egalitarian social cost by
the mechanism is at most (max; p; — min; p;). On the other hand, the optimal egalitarian social
cost is equal to (max; p; — min; p;)/2, implying the 2-robustness guarantee. O

3.2 The minimum bounding box mechanism

We now move on to the two-dimensional case, i.e., p; € R? for every agent i, which is the main
focus of the paper. We extend the MINMAXP mechanism to this setting by running it separately for
each of the two dimensions (see Mechanism 2). An alternative, more geometric, description of this
mechanism is that it first computes the minimum axis-parallel bounding box of the set P of agent
locations and then places the facility at the location within that box that is closest to the predicted
optimal location. We therefore call it the MiNIMUM BouNDING Box mechanism.

Mechanism 2: MiNniMum BounDpING Box mechanism for egalitarian social cost in two dimensions.

Input: points ((x1,y1),..., (xn,yn)) € RZn, prediction (x4, ys) € RZ
xp = MINMAXP((x1, .. ., Xn), X5)

Yy = MINMAXP((y1, - - -, Yn), Y5)

return (x7,ys)

We now show that the MiNIMUM BoUNDING Box mechanism is strategyproof, that it places the
facility at the optimal location when the prediction is correct (1-consistency), and that it achieves a
1+ V2 ~ 2.41 approximation even when the prediction is arbitrarily incorrect (1 + V2-robustness),
which is only a slight drop relative to the best achievable approximation, which is 2.

THEOREM 3.2. The MINtMUM BOUNDING Box mechanism is deterministic, strategyproof, and anony-
mous and it is 1-consistent and (1 + V/2)-robust for the egalitarian objective.

Proor. There are two ways to verify the strategyproofness of this mechanism. One intuitive way
is to observe that the mechanism treats each dimension separately, running the MINMAxXP mecha-
nism for each one, so the strategyproofness of that mechanism also implies the strategyproofness of
Minimum BoUNDING Box (since agents want the facility to be as close to their coordinate for each
dimension). Alternatively, the strategyproofness can also be verified by the fact that the MiniMum
BouNDING Box mechanism is equivalent to a Generalized Coordinatewise Median mechanism if
we let P’ contain n — 1 copies of the prediction 4, as we also observed in the proof of Theorem 3.1.

To verify that the mechanism has perfect consistency, we first note that the optimal facility
location is always in the convex hull of the points in P (in fact, it is the center of the smallest circle
containing all points in P, and the radius of this circle corresponds to the egalitarian social cost).
This point is clearly within the minimum axis-parallel bounding box (which contains the convex
hull), so for any instance where the prediction 6 is correct, this prediction is in the bounding box,
and is thus the location returned by the mechanism, verifying its 1-consistency.

For the robustness, consider any instance with a set of preferred locations P, let o be the optimal
facility location and C¢(0, P) = maxy,ep d(p;,0). We now consider the circle ¢ with o as its center
and the optimal distance C¢(o, P) as its radius. Consider the axis-parallel square that has ¢ as
its inscribed circle and note that this square contains all the points in P since, by definition of
the egalitarian social cost, it must be that all the points in P are contained within the circle c,
contained in the square. As a result, the minimum axis-parallel bounding box of P is contained
in this axis-parallel square. Therefore, since f, the location returned by the mechanism, is always
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within this axis-parallel square (whose center is 0 and whose edges are all of length 2C¢ (o, P)) we
have d(o, f) < V2 - C¢(o, P), because the points of the square furthest away from its center are its
vertices. By the triangle inequality we have that:

max d(f,p;) < d(f,0) +maxd(o, p;) < (1+V2) - C(o,P). o
pi€P pi€P

3.3 Optimality of the mechanism

Since the coordinatewise median (CM) mechanism achieves a 2-approximation for the egalitarian
social cost over all instances in two dimensions [14], it is 2-consistent and 2-robust. The MINIMUM
BouNnDpING Box mechanism achieves 1-consistency, but that comes at the cost of the robustness
guarantee, which weakens from 2 to 1+ V2 ~ 2.41. A natural question is whether there exists any
middle-ground between these two results, i.e, whether some mechanism can combine consistency
better than 2 with robustness better than 1 + V2.

Our next result, Theorem 3.3, answers this question negatively for deterministic, strategyproof,
and anonymous mechanisms. We show that any deterministic, strategyproof, and anonymous
mechanism that guarantees a consistency better than 2 must have a robustness no better than 1+v?2,
proving the optimality of our mechanism among all the mechanisms that provide consistency
guarantees better than 2. Due to space limitation, we defer the proof to Appendix A.

THEOREM 3.3. There is no deterministic, strategyproof, and anonymous mechanism that is (2 — €)-
consistent and (1 + V2 — €)-robust with respect to the egalitarian objective for any € > 0.

3.4 Approximation as a function of the prediction error

We now extend the consistency and robustness results for MiNniMmum BouNDING Box to obtain
a refined approximation ratio as a function of the prediction error 7. This result shows that our
mechanism achieves improved approximation guarantees not only when n = 0 (which corresponds
to the consistency guarantee), but for any value of 7 less than V2. Specifically, our bound degrades
gracefully from the consistency bound of 1 to the robustness bound of (1 + V2) as a function of 7.

THEOREM 3.4. The MINMUM BOUNDING Box mechanism achieves amin{ 1+, 1+V2} approximation
for the egalitarian objective, where 1 is the prediction error.

To obtain a (1 + n)-approximation, we aim to bound the distance between the output of the
mechanism with the erroneous prediction and the output of the mechanism if it had been given the
correct prediction, i.e., the optimal location. We first show a helpful lemma to bound this distance.
Due to space limitation, we defer the proof of the lemma to Appendix A.

LeEMMA 3.5. Given a set of points P and two predictions 6 and o, let f(P,6) and f(P,06) be the
respective facility locations chosen by the MINIMuM BOUNDING Box mechanism. Then, the distance
between these two facility locations is at most the distance between the two predictions, i.e.,

d(f(P.0).f(P.6)) < d(6,0).
Using this lemma, we are now ready to prove Theorem 3.4.

ProOOF OF THEOREM 3.4. Theorem 3.2 already shows that the worst-case approximation of MINI-
MUM BOUNDING Box is at most (1 + V2), so we just need to prove that it is also at most (1 + 7).

We first note that the error 7 in the prediction is equal to the normalized distance between the
prediction and the actual optimal facility location, i.e., d(6,0)/C¢(o, P), so d(6,0) = n - C¢(o, P).
Using Lemma 3.5 and substituting 6 with the actual optimal facility location o, i.e., 6 = 0, we get

d(f(P,0), f(P,0)) < d(6,0) = n-C*(o0,P). (1)
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However, the MINtMUM BoUNDING Box mechanism chooses the optimal facility when provided
with an accurate prediction (it is 1-consistent), so f(P,0) = 0. We can therefore conclude that

C(f(P,0),P) = max d(pi, f (P, 0))

max (d(pi, f(P,0)) +d(f (P, 0), f(P,0)))
max (d(pi,0) +1-C*(0,P))
C%(0,P)+1n-C%0,P)

= (1+n)C*(0,P),

IA

IA

IA

where the first equation is by definition of the egalitarian social cost, the first inequality uses the
triangle inequality, the second inequality uses the fact that f(P, 0) = 0 and Inequality (1), and the
third inequality uses the definition of the egalitarian social cost. O

4 MINIMIZING THE UTILITARIAN SOCIAL COST

In this section, we focus on minimizing the utilitarian social cost function. For the one-dimensional
case, returning the median of the preferred points in P is an optimal solution which is also strate-
gyproof. For the two-dimensional case, it is known that the coordinatewise median mechanism
guarantees a V2-approximation, and no deterministic, anonymous, and strategyproof mechanism
can achieve a better guarantee [19]. Our main result in this section is a deterministic, strategyproof,
and anonymous mechanism in the learning-augmented framework that uses predictions to achieve
an optimal trade-off between robustness and consistency. This mechanism is parameterized by a
“confidence value” ¢ € [0, 1) (such that cn is an integer), which is chosen by the designer, depend-
ing on how much they trust the prediction. Specifically, we prove that for each choice of ¢, the
induced mechanism is V2¢? + 2/(1 + ¢)-consistent and V2¢? + 2/(1 — ¢)-robust. If the designer has
no confidence in the prediction, setting ¢ = 0 retrieves the optimal robustness guarantee of V2,
with a consistency that is also V2. For higher values of ¢, the consistency improves beyond V2,
gradually approaching 1, at the cost of increased robustness bounds (see Figure 1). In Section 4.2 we
show that this trade-off between robustness and consistency provided by our mechanism is, in fact,
optimal over all deterministic, strategyproof, and anonymous mechanisms. Finally, in Section 4.3
we once again provide a more refined bound regarding the approximation that our mechanism
achieves as a function of the prediction error.

4.1 The coordinatewise median with predictions mechanism

Our COORDINATEWISE MEDIAN WITH PREDICTIONS (CMP) mechanism takes as input the multiset
P of the preferred locations reported by the agents, a prediction 6, and a parameter value ¢ €
[0, 1) which captures the designer’s confidence in the prediction (such that cn is an integer). The
mechanism creates a multiset P’ containing cn copies of 6 and outputs CM(P U P’), i.e., the facility
location chosen by the generalized coordinatewise median mechanism whose multiset of constant
points P’ contains cn copies of the prediction. This set P’ provides an interesting way for the
designer to introduce a “bias” toward the prediction, which increases as a function of the parameter
c. Specifically, a larger value of ¢ adds more points in P’, which can move the median with respect
to each coordinate toward the prediction. We use f(P, 9, ¢) to denote the facility chosen by CMP
with a confidence parameter value of ¢ over preferred points P and prediction 6. Note that for the
special case when the confidence parameter is set to ¢ = (n — 1) /n, i.e., when P’ contains exactly
n — 1 copies of the prediction, then CMP reduces to the MiniMum BounDING Box mechanism from
the previous section.
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Fig. 1. On the left, the consistency and robustness achieved by the CMP mechanism as a function of the
confidence parameter c. On the right, the optimal trade-off between robustness and consistency, which is
matched by CMP. Both figures are for the utilitarian social cost objective.

To prove the robustness and consistency guarantees achieved by this mechanism, we first show
that we can, without loss of generality, focus on the class of instances that have the following
structure: the outcome of the mechanism is at (0, 0), the optimal outcome is at (0, 1), and every
point of P is located either at (0, 1), at (—x, 0), or at (x, 0), for some x > 0.

Definition 4.1 (Clusters-and-OPT-on-Axes Instances). Given a confidence value ¢ € [0, 1), consider
the class of all instances with predictions 6 and preferred points P (for any number of agents, n),
such that f(P,4,c) = (0,0), o(P) = (0,1), and p € {(0, 1), (x,0), (—x,0)} for all p € P and some
x € Rx. Let P, (c) be the subset of these instances where 6 = o(P) and PR (c) be the subset of
these instances where 6 = (0, 0). We refer to these classes of instances as Clusters-and-Opt-on-Axes

(COA) for consistency and robustness, respectively.

Our next result is an important technical lemma showing that, if the CMP mechanism with
confidence parameter c is a-consistent and -robust with respect to the classes PS, (c) and PR _(c),
respectively, then it is a-consistent and S-robust over all instances. In other words, for any value of c,
there always exists a worst-case instance within these classes. The structure of our proof resembles
an argument used by [14] to analyze the worst-case approximation ratio of the standard coordinate-
wise median mechanism as a function of n for instances where n is odd (for instances where n is
even, a tight bound of V2 was already known). However, our argument requires several new ideas
to address the fact that the CMP mechanism also depends on the prediction, and to provide bounds
not only for robustness, but also for consistency. The resulting argument comprises multiple steps,
so we defer the complete proof to Section 4.4. We use r(P, 4, ¢) to denote the approximation ratio
achieved by CMP with parameter ¢ given a multiset of preferred points P and a prediction 4.

LEMMA 4.2. Foranyc € [0, 1), the CMP mechanism with confidence c is a-consistent and f-robust,
where a = maXpepC (o) r(P,6 =o(P),c) and p = maxpepR () r(P,6 = (0,0),c¢).

Note that, the S, (c) and PX_(c) classes contain instances with an arbitrary number of agents,
yet our robustness and consistency bounds are independent of n. We henceforth assume, without
loss of generality, that n (the total number of agents) and cn (the number of points in P’) are both
multiples of 4 to avoid integrality issues. Indeed, given any parameter value ¢ and any instance
where one of these quantities is not a multiple of 4, we can produce another instance that satisfies
both of these conditions and has the same approximation ratio. Specifically, we can achieve this by
making four copies of each point in P and P’; this would not affect the optimal outcome, nor would
it affect the outcome of the mechanism, so the approximation ratio would be the same.
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(¢) such that the CMP mechanism obtains a
V2¢% + 2/(1 + c)-approximation when the prediction is correct and an instance in PX_(c) where it

Next, we show that there exists an instance in Pccoa

obtains a V2¢? + 2/(1 — ¢)-approximation for some incorrect prediction.

LEMMA 4.3. For CMP with confidence ¢ € [0,1), there exists an instance P € PS,(c) such that
r(P,6 = o(P),c) = ¥2*2 qnd an instance Q € PR (¢) such that r(Q, 6 = (0,0),c) = —‘CZ”.

1+c coa

Proor. For the first statement (the consistency bound), consider a multiset of points P that
is partitioned into three sets, L, R, and U, such that p; = (-1¥, 0) for i € L W1th IL| = &<n,

pi = (3%, 0) for i € R with |[R| = #<n, and p; = (0,1) for i € U with |U| L¢n. The optimal
location is at (0, 1), i.e., o(P) = (0, 1), and the optimal cost is C*(o(P), P) = nwll + (1+c) Since
f(P,6 =0(P),c) = (0,0), we also have C*(f(P,6 = o(P),c),P) = 1“ . }%2 + %n 1. Therefore,
the consistency, r(P, 6 = o(P), c¢), of this instance P is:

1+c = 1+c 1-c

Ho. e e a2
r(P,6 = o(P),c) = —2—1=¢ zzz e

1+ 1+

1+ (155)

For the second statement (the robustness bound) consider the following multiset of points Q. Let
L, R, and U be subsets of agents such that p; = (—1 e 0) fori € Lwith |[L| = Ln, p; = (1+c’ 0) for
i € Rwith |R| = —n and p; = (0,1) fori € U with |U| = 1“n Note that mstances P and Q are very
similar, except for the locations of the clusters on the x-axis and the number of pomts on each cluster.

Given again o(Q) = (0, 1) andf(Q 6= 1(0,0),¢) = (0,0), we have C*(0(Q), Q) = 155n4/1 + (1+c)2

and C*(f(Q,6 = (0,0),¢),Q) = L¢n - 1=¢ + 1¢p Jeading to a robustness of
1-¢c  1-c 1+c
BEoe+ B Va4
r(Q,6=(0,0),c) = 212 = : : o
- 1—c)2 —-C
e+ (55

We can now combine Lemma 4.2 and Lemma 4.3 to obtain the consistency and robustness bounds
of the CMP mechanism with respect to the utilitarian objective.

V2c V2c‘ +2

THEOREM 4.4. The CMP mechanism with parameterc € [0, 1) is Y22 _consistent and Y2<*2 -robust

for the utilitarian objective.

Proor. We first argue the consistency guarantee. From Lemma 4.2 we know that for any confi-
dence value ¢ € [0, 1) and given any instance, we can always find an instance with weakly worse
consistency in P, (c), i.e., a multiset P such that o(P) = (0,1), f(P,6 = o(P),c) = (0,0) and
there exist x € Ry such that p € {(0,1), (x,0), (—x,0)} for all p € P. Note that for any value
of x, the consistency is maximized when the number of agents on (0, 1) is maximized. To see
this, note that each agent on (0, 1) suffers no cost according to the optimal solution but a cost of
1 according to the mechanism output, whereas each agent on (x,0) or (—x, 0) suffers a cost of
Vx2 + 1 > x according to the optimal solution and a cost of x according to the mechanism output.
Since f(P,6 = o(P),c) = (0,0) and there are cn predicted points on (0, 1), the number of agents on

(0,1) in the worst case should be I_Tcn. We can then write the consistency as follows:

_Cu(f(P,(;:O(P),C),P) 1;cn x+—n 1—c+(1+c)x

C*(o(P),P) Hen - Vi+x? (1+o)Vi+x®
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Taking the first derivative with respect to x we get:
da 1+c—(1-0o)x

dx  (1+0) 1+ Vitx?

Solving % = 0 we get that x = }%‘; Notice that the denominator of Z—z is always positive and
1+c 1+c

for any x < (¥, the numerator is positive and for any x > {*¢, the numerator is negative, we
1+c

therefore have that & is maximized at x = {*7. Since the agents on (x,0) and (—x, 0) are equidistant
from both o(P) and f(P,6 = o(P), ¢), the instance is identical to the lower bound instance P in

Lemma 4.3. Therefore we have

a=r(P,6 =0(P),c) = ﬂ

1+c¢

The proof for the robustness guarantee is similar. From Lemma 4.2 we know that for any
confidence value ¢ € [0, 1) and given any instance, we can always find an instance with weakly
worse robustness in PX_(c), i.e., a multiset of points Q such that o(Q) = (0, 1), f(Q,6 = (0,0),¢) =
(0,0) and there exist x € Ry such that g € {(0,1), (x,0), (—x, 0)} for all ¢ € Q. Note that,by the
exact same reasoning as for consistency, for any value of x, the approximation ratio is maximized
when the number of agents on (0, 1) is maximized. Since again f(Q, 6 = (0,0),c) = (0, 0) and there
are cn predicted points on (0, 0), the number of agents on (0, 1) in the worst case should be I—JZ'Cn
We can then write the robustness as follows:

_CU(f(Q8=(0,010,0Q) _ - x+HEn 14c+(1-o)x

B = = .
C*(0(Q). Q) S Vi+x2 (1-c)V1+x?

Taking derivative with respect to x and setting it to 0 we get

g 1—-c—(1+¢c)x

dx  (1-¢)(1+x2)Vi+x®
Solving % = 0 we get that x = 11% Notice that the denominator of % is always positive and
for any x < i%‘f the numerator is positive and for any x > i%z the numerator is negative, we
therefore have that f is maximized at x = % Since the agents on (x, 0) and (—x, 0) are equidistant

from both 0(Q) and f(Q, 6 = (0,0), ¢), the instance is identical to the lower bound instance Q in
Lemma 4.3. Therefore we have

p=rQo=(00,0= "2 .

c

4.2 Optimality of the mechanism

The CMP mechanism allows us to achieve consistency better than V2, trading it off against robust-
ness. Our next result shows that the trade-off achieved by CMP is optimal. Due to space limitation,
we defer the proof to Appendix B.

THEOREM 4.5. For any deterministic, strategyproof, and anonymous mechanism that guarantees
Y2c*+2 Yec e 21072:2 for the

a consistency of =
utilitarian objective.

for some constant ¢ € (0, 1), its robustness is no better than

4.3 Approximation as a function of the prediction error

We extend the consistency and robustness results for CMP to obtain an approximation ratio as a
function of the prediction error 7. This approximation gracefully degrades from the consistency
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when 1 = 0 to the robustness bound
we defer the proof of Lemma 4.6 to Appendix B.

bound —'211?2 as a function of 1. Due to space limitation,

V2c2+2
1-c

LEMMA 4.6. Given a multiset of points P, two predictions 6 and 6 and the confidence value c € [0, 1),
let f(P,6,c) and f(P,06,c) be the respective facility locations chosen by the CMP mechanism with
parameter c. Then, the distance between these two facility locations is at most the distance between the
two predictions, i.e.,

d(f(P,0,c), f(P,0,c)) < d(6,0).

THEOREM 4.7. The CMP mechanism with parameter ¢ € [0, 1) achieves a min {—M +

Va2c2+2 | _
1+c > 1-c

approximation, where 1) is the prediction error, for the utilitarian objective.

Proor. Theorem 4.4 already shows that the worst-case approximation of the CMP mechanism

is at most —‘216_2:2 so we just need to prove that it is also at most VzliZ:z +7

We first note that the error 7 in the prediction is equal to the normalized distance between the
prediction and the actual optimal facility location, i.e., d(6,0)/C* (o, P), so d(6,0) = n - C*(o, P).
Using Lemma 4.6 and substituting 6 with the actual optimal facility location o, i.e., 6 = 0, we get

d(f(P,é,¢c), f(P,0,¢)) < d(b,0) = n-C*o,P). (2)
By Theorem 4.4, we also know that the CMP mechanism is Vaci+2 -consistent, i.e., C*(f(P,0,c), P) <

1+c
—'Zlizc"zC” (0, P). We can therefore conclude that
. 1 .
CU(f(P,6,c)P) = — > d(pi f(P,6,c)
i€[n]
1 A
<= % [@(pe f(P.0.0)) +d(f(P,0.¢). f(P.6,0)))
ie[n]

< C*(f(P,0,¢),P)+1n-C"(0,P)

V2c? +2
< (fT“? -C%(0,P),
C

where the first equation is by definition of the utilitarian social cost, the first inequality uses the
triangle inequality, the second inequality uses Inequality (2) and the definition of the utilitarian
social cost, and the last inequality uses the consistency guarantee of the mechanism, i.e., that

CY(f(P,o0,c),P) < Y2€£2u(y p). o

1+c

4.4 Proof of Lemma 4.2

In this section we prove Lemma 4.2, which shows that for any confidence parameter ¢ there exists a
worst-case multiset of points P for the performance of CMP within the family of Clusters-and-Opt-
on-Axes (COA) instances, defined in Definition 4.1. At a high level, we argue that for any multiset
of points P, there exists a multiset of points Q in COA such that the CMP mechanism achieves an
approximation ratio on Q that is no better than the approximation it achieves on P. We construct
Q via a series of transformations that starts at an arbitrary P and moves points in a manner that
weakly increases the approximation ratio (some of the lemma proofs in this section are deferred to
Appendix C, due to space limitation).

This high level approach is similar to the one used by [14] to obtain a V2 %-approximation
for the coordinate-wise median mechanism in R? and the special case where n is 0dd; the analysis

of several of our lemmas is similar to the analysis of this previous result (e.g., Lemmas 4.14 and 4.16),
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but a crucial difference in our analysis is the impact of the prediction on the mechanism. In particular,
as we move points to transform an instance into another instance, this can end up moving the
optimal location as well as the outcome of the CMP mechanism in non-trivial ways. To address
this issue we introduce multiple new ideas (e.g. Lemmas 4.11, 4.13, 4.17, and 4.18).
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Fig. 2. Overview of instance transformations used to prove Lemma 4.2.

We now provide an overview of the series of transformations (see Figure 2 for an illustration). In
Section 4.4.1, we define the family of CA instances, where the points are all located at four clusters,
one on each half-axis, and then the family of OA instances, where the points and the optimal
location are all located on one of the axes. In Section 4.4.2, we show that an arbitrary instance P
can be transformed into either an instance in CA or an instance in OA (without improving the
approximation ratio). We then show in Section 4.4.3 that an instance in OA can be transformed
to an instance in COA. The main difficulty is then to transform an instance in CA to an instance
in COA, which we do in Section 4.4.4. Finally we combine all these steps to prove Lemma 4.2 in
Section 4.4.5.

Throughout this section, we consider instances that consist of a multiset of points P and a
prediction 6 such that the output of CMP is at the origin and the optimal location lies weakly in the
top right quadrant. To verify that this is without loss of generality, note that given any instance, if
we move all the points and the prediction in the same direction and by the same distance, we get an
instance where both the CMP mechanism and the optimal facility location have also moved along
this same direction and by the same distance. Therefore, the approximation factor is invariant to
such changes. As a result, given any instance, we can always generate a new instance such that the
output of CMP is at the origin, without affecting the approximation factor. Similarly, given any
instance, the points can be reflected across the horizontal and/or the vertical axes to generate a
new “flipped” instance such that the optimal location lies weakly in the top right quadrant without
affecting the approximation factor (e.g., if it lies in the bottom left quadrant originally, we can first
reflect across the horizontal axis and then the vertical one). We also assume that the prediction is
such that 6 = (0, 0) for the robustness analysis. To verify that this is without loss of generality as
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well, first note that we have already restricted our attention to instances such that the output of the
mechanism is at the origin, and then observe that changing the prediction to also be at the origin
does not change the output of the CMP mechanism (if the coordinatewise median of P U P’ is the
origin when 6 # (0, 0), it will remain the coordinatewise median if we let 6 = (0, 0)). Therefore,
this does not affect the outcome of the mechanism and, since it also does not affect the optimal
facility location, the robustness remains the same.

4.4.1 The CA and OA families. We define the CA and OA families of points P. Let A.x = {(x,0) :
x > 0} and A7, = {(x,0) : x > 0} be the set of all points on the positive and strictly-positive x-axis.
We also define A_,, A%, , Ay, Aiy, A_y, Afy similarly. We define CA to be the family of instances of
points P that satisfy multiple useful properties, the most important of which are that the points are
all located at four clusters, one on each half-axis and that the optimal location is not on an axis. We
denote these families for the consistency and robustness analysis by P (c) and PR (c) respectively.
Note that these two families are different since, for the consistency analysis, the prediction is at

6 = o, for the robustness analysis, the prediction is at 6 = (0, 0).

Definition 4.8. Consider, for some confidence ¢, and prediction 0, the family of multisets of points
Pst.
(1) Output at origin: f(P,6,c) = (0,0),
(2) Opt in top-right quadrant: y,(P) > x,(P) > 0,
(3) No move towards opt: for all p; € Pand € € (0,1], f((P-;, p; +€(0o(P) — p;)),0,¢) # f(P,6,c¢),
(4) there exist x1, X2, Y1, y2 = 0 such that:
(a) Clusters on axes: for all p € P, p € {(—x1,0), (x2,0), (0, —y1), (0, y2), 0o(P)},
(b) Less points inleft: [{pe P:pe AS, }| < {p e P:p € A7, U{o(P)}}],
(c) Less points in bottom: [{p € P: p € A= }| < {p € P: p € A7, U{o(P)}}],
(d) x-clusters equidistant from opt: if (—x1,0), (x2,0) € P, then x, + x; = x2 — X,, and
(e) y-clusters equidistant from opt: if (—yi, 0), (y2,0) € P, then y, + y1 = y2 — Yo.
Let PS (c) and PR (c) be this family when 6 = o(P) and 6 = (0, 0) respectively. These families are
called the Clusters-on-Axes (CA) families for consistency and robustness.

We define OA to be the family of multisets of points P such that all the points are on one of the
two axes (not necessarily in clusters) and the optimal location is on one of the axes (without loss of
generality, the +y half axis). The main difference between the CA and OA families is the location of
the optimal location, either on an axis or not.

Definition 4.9. Consider, for some confidence ¢, and prediction 0, the family of multisets of points
P such that (1) Output at origin: f(P, 6, c) = (0,0), (2) Opt on +y axis: x,(P) = 0, yo(P) > 0, and (3)
Points on axes: forall p € P, p € A, UA,. Let PC (c) and PR (c) be this family when 6 = o(P) and
6 = (0,0) respectively. These families are called the Optimal-on-Axes (OA) families for consistency
and robustness.

4.4.2 The worst-case instance is in CA or OA. The main lemma in this section shows that an
arbitrary instance of a multiset P can be transformed into either an instance in CA or an instance
in OA without improving the approximation ratio of CMP on that instance (Lemma 4.12).

We first show that if two points are at different locations on the same half-axis and the optimal
location is not on an axis, then there is an instance Q with a strictly worse approximation. This
lemma is used to obtain the clusters on axes property 4.a. for the CA family.

LEMMA 4.10. For any points P and confidence c € [0, 1) s.t. f(P,6(P),c) = (0,0), if there are two
non-overlapping points p;, p; € P, p; # p; that are on the same half axis, i.e, Aix, A_x,Ayy, orA_y,
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andx,(P), y,(P) > 0, then there exists points Q such thatr(Q, 6(Q), c) > r(P, 6(P), c) with predictions
6(P) = o(P) and 6(Q) = 0(Q). This inequality also holds with predictions 6(P) = 6(Q) = (0,0).

The next lemma shows that if the points are on the axes and the optimal location, if there are
at least as many points with x-coordinate that is negative than points with x-coordinate that is
positive, then there is an instance Q with a strictly worse approximation. The same property holds
for the y-coordinate.

LEMMA 4.11. For any points P and confidence ¢ € [0, 1) such that f(P,6(P),c) = (0,0), yo(P) >
xo(P) > 0,andp € Ay UA, U {o(P)} forallp € P, ifeither {p € P:p e AS,}| > {peP:pc
AL V{o(P)Horl{p e P:pe AS } = {p € P : p € A7, U{0(P)}}|, then there exists points Q such
that r(Q,6(Q),c) > r(P, 6(P), c) with predictions 6(P) = o(P) and 6(Q) = o(Q). This inequality also
holds with predictions 6(P) = 6(Q) = (0,0).

We combine Lemma 4.10 and Lemma 4.11 to obtain that the instances for which CMP obtains
the worst consistency and robustness guarantees are in the CA and OA families.

LEMMA 4.12. For any confidence ¢ € [0,1), let a = max r(P,o(P),c) and let f =
PePS(c)UPS (c)

max r(P, (0,0),c). CMP with confidence c is a-consistent and f-robust.
PePR(c)UPR(c)
4.4.3 The worst-case instance in OA is also in COA. We show that the worst-case instance in OA is
no worse than the worst-case instance in COA for the consistency and robustness of CMP.

LeEmMMA 4.13. For any confidence ¢ € [0,1) and points P € P (c), there exists Q such that
either r(Q,0(Q),c) > r(P,0(P),c) or Q € PS,(c) and r(Q,0(Q),c) > r(P,o(P),c). Similarly,

for any P € PR (c), there exists Q such that either r(Q, (0,0),¢) > r(P, (0,0),c) or Q € PR (c) and
r(Q,(0,0),¢c) = r(P, (0,0),c).

4.4.4 The worst-case instance in CA is also in COA. In this section, we show that the worst-case
instance in CA is no worse than the worst-case instance in COA for the consistency (Lemma 4.19)
and robustness (Lemma 4.20) guarantees of CMP.

The next lemma shows that if we have an instance P in the CA family, then we can construct
another instance Q in the CA family without points on the —y half axis while weakly increasing
the approximation ratio, for both the consistency and robustness guarantees.

LEMMA 4.14. For any confidence c € [0,1), and points P € PE (c), there exists points Q such that
either r(Q,0(Q),c) > r(P,0(P),c) orQ € PS(c), r(Q,0(Q),c) = r(P,o(P),c), and q € A, U Ay U
{0(Q)} for all q € Q. Similarly, for any confidence c € [0, 1), and points P € PX(c), there exists
points Q such that either r(Q, (0,0),¢) > r(P, (0,0),c) or Q € PX(c), r(Q, (0,0),¢) = r(P, (0,0),c),
andq € Ay UA,, U{o(Q)} forallq € Q.

Using the above lemma, given an instance in the CA family, we can remove all the points that
are located on the —y half axis. The following lemma shows that for the consistency guarantee, if
an instance in the CA family does not contain any points on the —y half axis, then the number of
points on the —x axis is larger than or equal to the number of points at the optimal location.

LEMMA 4.15. For any confidence ¢ € [0, 1), consider P € PS (c) such thatp € A, U Ay U{o(P)}
forallp e P.Then,|{peP:pcA}={peP:p=0(P)}.

Consider again an instance P in the CA family without any points on the —y half axis for the
consistency guarantee. Lemma 4.16 shows that we can convert P to an instance Q in the CA family
with weakly worse approximation ratio and points on either the x-axis or the +y half axis.
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LEMMA 4.16. For any confidence c € [0,1) and points P € P (c) such that p € A, U Ay U{o(P)}
for all p € P, there exists points Q such that either r(Q,0(Q),c) > r(P,o0(P),c) or Q € PS(c),
r(Q,0(Q),c) 2 r(P,0(P),c) and q € Ax U A,y forallqg € Q.

The next lemma shows that for an instance P in the CA family with points only on the x-axis and
the +y half axis, there exists another instance in the COA family with weakly worse approximation
ratio than that of P for the consistency guarantee.

LEMMA 4.17. For any confidence ¢ € [0,1) and points P € PS(c) such that p € A, U Ay for
all p € P, there exists either Q € PS (c) such that r(Q,0(Q),c) > r(P,o(P),c) or Q" such that
r(Q’,0(Q"),c) > r(P,o(P),c).

We now shift our focus back to the robustness guarantee. The next lemma states that, for the
robustness guarantee, if we have an instance P in the CA family where points are located only on
the x-axis, +y half axis or at the optimal location, then there is another instance Q in the COA family
with weakly worse approximation ratio. Note that such an instance P is the result of Lemma 4.14.

LEmMa 4.18. For any confidence c € [0, 1) and points P € PR(c) such that p € A, UA,y U{o(P)}
for all p € P, there exists either Q € PR (c) such that r(Q, (0,0),¢) > r(P,(0,0),c) or Q' and
prediction 6 such that r(Q’,0,c) > r(P, (0,0),c).

Finally, the following two lemmas combine the above lemmas and show how to convert an
instance P in the CA family to an instance Q in the COA family while weakly increasing the
approximation ratio for the consistency and robustness guarantees, respectively.

LeEMMA 4.19. For any confidence c € [0,1) and points P € PE(c), there exists points Q such that
either r(Q,0(Q),c) > r(P,o(P),c) or Q € P (c) andr(Q,0(Q),c) = r(P,o(P),c).

LEmMA 4.20. For any confidencec € [0, 1) and points P € P (c), there exists points Q and prediction
6 such that either r(Q,6,c) > r(P, (0,0),c) or Q € PR _(¢) and r(Q, (0,0),c) > r(P, (0,0),c).

coa

4.4.5 The worst-case instance is in COA. We are ready to prove our main lemma for this section.

PROOF OF LEMMA 4.2. Let @' = maxp.pc upS (o) (P, 0(P),c), @ = maxpepc (o) r(P,o(P),c),
p = MaXpepR (o) UPR (c) r(P,(0,0),c),and § = MaXpepR (¢ r(P, (0,0), c). By Lemma 4.12, CMP with
confidence c is a’-consistent and ’-robust.

By Lemma 4.19 and Lemma 4.13, there exists a multiset of points Q such that either r(Q, 0(Q), ¢) >
a’ or Q € PS.(c) and r(Q,0(Q),¢) = a’. If r(Q,0(Q),c) > o, this is a contradiction with the
a’-consistency of the mechanism. Otherwise, Q € P (c) and a > r(Q,0(Q),¢) > &’ and CMP is
a-consistent. Similarly, by Lemma 4.20 and Lemma 4.13, there exists a multiset of points Q and
prediction 6 such that either r(Q, d,¢) > " or Q € PX_(c) and r(Q, (0,0),¢) > . Ifr(Q,6,c) > B,
this is a contradiction with the ’-robustness of the mechanism. Otherwise, Q € PR (c) and
B =r(Q,(0,0),c) = ' and CMP is S-robust. O

5 CONCLUSION AND FUTURE DIRECTIONS

Our main thesis in this paper is that the learning-augmented design framework, which has motivated
a surge of recent work on “algorithms with predictions”, can have a transformative impact on
the design and analysis of mechanisms in multiagent systems. Such mechanisms face crucial
information limitations that hinder the designer from reaching desired outcomes: the most obvious
among them is that the designer does not know the participating agents’ private information, and
these agents may choose to strategically misreport it. Therefore, machine-learned predictions have
the potential to address these information limitations and help mechanisms achieve improved
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performance when the predictions are accurate. To support our thesis, we focused on the canonical
problem of facility location and proposed new mechanisms that leverage predictions to achieve
a trade-off between robustness and consistency. Depending on how confident the designer is
regarding the prediction, our mechanisms provide her with a parameterized menu of options that
yield Pareto optimal robustness and consistency guarantees.

There is a loose connection between the learning-augmented mechanism design framework and
the line of work on Bayesian mechanism design, which assumes that the agents’ private values are
drawn from a distribution. This is analogous to the average case analysis for algorithms, which
assumes that the input is drawn from a distribution, and the crucial difference with the learning-
augmented framework is that it provides no robustness guarantees: in Bayesian mechanism design,
the performance of a mechanism is evaluated in expectation over this randomness and there are
no worst-case performance guarantees in general. This is in contrast to our setting, where we
seek performance guarantees even if the predictions are arbitrarily inaccurate and also provide
approximation guarantees as a function of the prediction error. Another difference comes from
the fact that a lot of the work on Bayesian mechanism design relaxes the notion of incentives and
rather than aiming for strategyproofness, which requires that reporting truthfully is a dominant
strategy, it instead aims for Bayesian incentive compatibility, which requires that truthful reporting
is an optimal strategy in expectation over the randomness, and assuming everyone else also reports
truthfully. Finally, learning these distributions requires a large amount of data about a specific
setting (e.g., data about past agents’ values for the exact same item that is currently being sold in
an auction), whereas machine learning can utilize heterogeneous data (e.g., data about past agents’
values for similar items that were previously sold) to obtain predictions, like the ones used in the
learning-augmented framework.

The impact of the learning-augmented framework on the design of mechanisms is largely unex-
plored, so there are multiple important open problems along this research direction. For example,
one can revisit any mechanism design problem (both with and without monetary payments) for
which we know that strategyproofness leads to impossibility results, aiming to better understand
how predictions could help us overcome these obstacles, without compromising the incentive
guarantees. We therefore anticipate that this framework will give rise to an exciting new literature
that studies classic mechanism design problems from a new perspective.

ACKNOWLEDGMENTS

The work of Vasilis Gkatzelis and Xizhi Tan was supported in part by NSF CAREER award CCF-
2047907.

REFERENCES

[1] Noga Alon, Michal Feldman, Ariel D Procaccia, and Moshe Tennenholtz. 2010. Strategyproof approximation of the
minimax on networks. Mathematics of Operations Research 35, 3 (2010), 513-526.

[2] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. 2020. Secretary and Online Matching Problems
with Machine Learned Advice. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (Eds.). 7933-7944.

[3] Yossi Azar, Debmalya Panigrahi, and Noam Touitou. 2022. Online Graph Algorithms with Predictions. Proceedings of
the Thirty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (2022).

[4] Etienne Bamas, Andreas Maggiori, and Ola Svensson. 2020. The Primal-Dual method for Learning Augmented
Algorithms. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (Eds.). 20083-20094.

[5] Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. 2022. Online Nash Social Welfare Maximization
with Predictions. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM.

[6] Hau Chan, Aris Filos-Ratsikas, Bo Li, Minming Li, and Chenhao Wang. 2021. Mechanism Design for Facility Location
Problems: A Survey. arXiv preprint arXiv:2106.03457 (2021).

515



(7]

8

—

(9]

[10]

[11

—

[12]
[13]
[14]
[15]

[16

—

[17

—

(18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26
[27

—

[28]

A

Session 5A: Mechanism Design with Learning - EC 22, July 11-15, 2022, Boulder, CO, USA

Paul Diitting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. 2021. Secretaries with advice. In Proceedings
of the 22nd ACM Conference on Economics and Computation. 409-429.

El-Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, and Lé-Nguyén Hoang. 2021. On the strategyproofness
of the geometric median. arXiv preprint arXiv:2106.02394 (2021).

Bruno Escoffier, Laurent Gourves, Nguyen Kim Thang, Fanny Pascual, and Olivier Spanjaard. 2011. Strategy-proof
mechanisms for facility location games with many facilities. In International Conference on Algorithmic Decision Theory.
Springer, 67-81.

Michal Feldman and Yoav Wilf. 2013. Strategyproof facility location and the least squares objective. In Proceedings of
the fourteenth ACM conference on Electronic commerce. 873-890.

Dimitris Fotakis, Evangelia Gergatsouli, Themis Gouleakis, and Nikolas Patris. 2021. Learning Augmented Online
Facility Location. CoRR abs/2107.08277 (2021). https://arxiv.org/abs/2107.08277

Dimitris Fotakis and Christos Tzamos. 2014. On the power of deterministic mechanisms for facility location games.
ACM Transactions on Economics and Computation (TEAC) 2, 4 (2014), 1-37.

Dimitris Fotakis and Christos Tzamos. 2016. Strategyproof facility location for concave cost functions. Algorithmica
76, 1 (2016), 143-167.

Sumit Goel and Wade Hann-Caruthers. 2021.  Coordinate-wise Median: Not Bad, Not Bad, Pretty Good.
arXiv:cs.GT/2007.00903

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. 2021. Online Knapsack with Frequency
Predictions. Advances in Neural Information Processing Systems 34 (2021).

Shaofeng H-C Jiang, Erzhi Liu, You Lyu, Zhihao Gavin Tang, and Yubo Zhang. 2021. Online facility location with
predictions. arXiv preprint arXiv:2110.08840 (2021).

Thodoris Lykouris and Sergei Vassilvtiskii. 2018. Competitive caching with machine learned advice. In International
Conference on Machine Learning. PMLR, 3296-3305.

Andrés Muiioz Medina and Sergei Vassilvitskii. 2017. Revenue optimization with approximate bid predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems. 1856—-1864.

Reshef Meir. 2019. Strategyproof facility location for three agents on a circle. In International Symposium on Algorithmic
Game Theory. Springer, 18-33.

Michael Mitzenmacher and Sergei Vassilvitskii. 2020. Algorithms with predictions. arXiv preprint arXiv:2006.09123
(2020).

H. Moulin. 1980. On Strategy-Proofness and Single Peakedness. Public Choice (1980).

Hans Peters, Hans van der Stel, and Ton Storcken. 1993. Range convexity, continuity, and strategy-proofness of voting
schemes. ZOR Methods Model. Oper. Res. 38, 2 (1993), 213-229.

Ariel D. Procaccia and Moshe Tennenholtz. 2013. Approximate Mechanism Design without Money. ACM Trans.
Economics and Comput. 1, 4 (2013), 18:1-18:26.

Ariel D. Procaccia, David Wajc, and Hanrui Zhang. 2018. Approximation-Variance Tradeoffs in Facility Location
Games. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. Mcllraith and Kilian Q. Weinberger
(Eds.). AAAI Press, 1185-1192.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algorithms via ML Predictions. In Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Eds.). Curran Associates, Inc.

Tim Roughgarden. 2021. Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press.

Paolo Serafino and Carmine Ventre. 2016. Heterogeneous facility location without money. Theoretical Computer Science
636 (2016), 27-46.

Toby Walsh. 2020. Strategy Proof Mechanisms for Facility Location in Euclidean and Manhattan Space. arXiv preprint
arXiv:2009.07983 (2020).

MISSING ANALYSIS FROM SECTION 3

THEOREM 3.3. There is no deterministic, strategyproof, and anonymous mechanism that is (2 — €)-
consistent and (1 + V2 — €)-robust with respect to the egalitarian objective for any e > 0.

Proor. First, note that any mechanism f with a bounded robustness needs to be unanimous,
i.e., given a set of points P where all the points are at the same location (p; = p; for all i, j € [n]),
the mechanism needs to place the facility at that same location, i.e., f(P) = p;. If not, then its
cost would be positive, while the optimal cost is zero, by placing the facility at the same location

516


https://arxiv.org/abs/2107.08277
http://arxiv.org/abs/cs.GT/2007.00903

Session 5A: Mechanism Design with Learning - EC 22, July 11-15, 2022, Boulder, CO, USA

as all the points. Therefore, we can restrict our attention to mechanisms that are unanimous.
Using the characterization of [22], we know that any deterministic, strategyproof, anonymous,
and unanimous mechanism in our setting takes the form of a generalized coordinatewise median
(GCM) mechanism with n — 1 constant points in P’. Our proof first shows that in order to achieve a
consistency better than 2, this mechanism needs to use the prediction 6 in place of all these n — 1
constant points. Then, we show that if it does use the prediction 6 in place of all these n— 1 constant
points, its robustness is at least 1 + V2.

For the first part of the proof, consider any GCM mechanism for which the multiset of constant
points P’ contains at least one point that is not the same as the prediction point, 6. Without loss of
generality, assume that this point lies strictly below 4, i.e., that its y-coordinate is strictly smaller
than y, (if this point is strictly on the left, strictly on the right, or strictly above the prediction point,
we can directly adjust the argument below to prove the same result). Let § = maxpep.y,<y; Yp
be the maximum y-coordinate among the points in P’ that are strictly below the prediction, and
€ = ys — 7 (there exists at least one point in P’ that is strictly below the prediction, so € > 0). Then,
consider the instance where the set of actual agent points P has n — 1 points at location (xg, ys — €)
and 1 point at location (x4, ys + €), i.e., € below the prediction and € above it, respectively. For this
instance, 0 is the correct prediction, as it achieves the optimal egalitarian social cost of €. However,
the median of the points in P U P’ with respect to the y-axis is ys — €, since there are at least n
points in P U P’ with y-coordinate equal to y; — € (n — 1 points in P and at least one point in P’)
out of a total of 2n — 1 points in P U P’. Therefore, the egalitarian social cost of the mechanism
would be at least 2¢, since the y coordinate of the facility location would be y; — €, but there is an
actual agent point on (x5, ys + €). Therefore, any such mechanism would have a consistency no
better than 2.

Now, we conclude the proof by showing that the robustness of the GCM mechanism that uses
the prediction point 6 for all the n — 1 constant points in P’ is no better than 1 + V2. Assume that
the prediction 6 is located at (1, 1) and consider an instance with n = 3 points in P located at (0, 1),
(1,0), and (=1/v2,—1/v2). In that case, the optimal facility location would be at (0, 0) and all the
three points in P would have distance 1 from it. However, the set P’ contains n — 1 = 2 points at
(1,1), so the GCM mechanism would place the facility at (1, 1), because three of the five points in
P U P’ have x-coordinate 1 and three of the five points in P U P’ have y-coordinate 1. The distance
of this facility location from (—1/ V2, -1 / \/5) is 1+ V2, which concludes the proof. O

LEMMA 3.5. Given a set of points P and two predictions 6 and o, let f(P,6) and f(P,06) be the
respective facility locations chosen by the MINIMuM BOUNDING Box mechanism. Then, the distance
between these two facility locations is at most the distance between the two predictions, i.e.,

d(f(P,0), f(P,0)) < d(6,0).

ProOOF. Let (x, yf) = f(P,6) and (x yf) = f(P, 0) be facility locations returned by the MINI-
MUM BOUNDING Box mechanism given predictions 6 and 0, respectively, and let dxy = |x = f|
and dyr = |y Y fl be the difference of their x and y coordinates. Similarly, let dx, = |x; — x;5|
and dy, = |ys — ys| be the corresponding differences for the coordinates of the two predictions. To
prove this lemma, we argue that dx; < dx, and dys < dy,, implying the desired inequality, since

d(f(P,6), f(P,5)) = /dx]%+dyj% < \Jdx2+dy? = d(5,6).

We first focus on the x-coordinate and, without loss of generality, we assume that x; < x5, i.e.,
that the first prediction is weakly on the left of the second one. To verify that dx¢ < dx,, we proceed
with a simple case analysis. If x; > max; p; or x5 < min; p;, i.e., if the predictions are both on the left
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of all points in P or both on the right of all points in P, then the call to MINMAXP mechanism would
return the same x-coordinate for both cases, i.e., dxy = 0 < dx,. Otherwise, x = max{min; p;, x}
and Xp= min{max; p;, x5}. This implies that even in this case dxy < x5 — x5 = dx,. Using the same
sequence of arguments for the y-coordinate implies that dyr < dy, and concludes the proof. O

B MISSING ANALYSIS FROM SECTION 4.2 AND 4.3

THEOREM 4.5. For any deterministic, strategyproof, and anonymous mechanism that guarantees

a consistency of 5<% “ZC = ‘ZC *2 for the
utilitarian objectlve

for some constant ¢ € (0,1), its robustness is no better than

Proor. We first note that any mechanism f with a bounded robustness needs to be unanimous,
i.e., given a set of points P where all the points are at the same location (p; = p; for all i, j € [n]),
the mechanism needs to place the facility at that same location, i.e., f(P) = p;. If not, then its
cost would be positive, while the optimal cost is zero, by placing the facility at the same location
as all the points. Therefore, we can restrict our attention to mechanisms that are unanimous.
Using the characterization of [22], we know that any deterministic, strategyproof, anonymous,
and unanimous mechanism in our setting takes the form of a generalized coordinatewise median
(GCM) mechanism with a set P’ of n — 1 constant points. The rest of our proof first shows that in

order to achieve a consistency of <<= \/ﬁ for some constant ¢ € (0, 1), the set of n — 1 points P’ used
by the GCM mechanism would need to satisfy the following condition: the number of points in P’

that are weakly above 6 (i.e., their y-coordinate is at least ys) need to be at least cn more than the
number of points in P’ that are strictly below it (i.e., their y-coordinate is less than y;). Then, we

show that if P’ satisfies this condition, then the robustness is no better than '?C :2.

Consider any GCM mechanism that uses a set P’ of n — 1 points and let g, be the number of
these points that are weakly above 6 (i.e., their y-coordinate is at least y;) and g, be the number of
points that are strictly below 6 (i.e., their y-coordinate is less than y;). Assume that ¢, — qp = kn
where k < ¢ and let € > 0 be a constant such that the maximum y-coordinate among the g, points
that are strictly below the prediction is y; — €. Then, consider the instance where the set of actual
agent points P has (1 — k)n/2 points at 6, and the remaining (1 + k)n/2 points are divided equally
between points (x5 — (11 Ji)e, ys — €) and (xp + (11 +1;<)e’ ys — €)%. Using the same steps that we used
in the proof of Lemma 4.3, we can verify that the optimal facility location in this case would be at 6
(so the prediction is correct). However, the location where the mechanism places this facility has a
y-coordinate at most y; — €. This is because the number of constant and actual agent points (i.e.,
points in PU P’) whose y-coordinate is at most y; — € are qp + (1+k)n/2, while the remaining points

are ¢, + (1 — k)n/2. Using the fact that g, — g, = kn, the median with respect to the y-coordinate is
\/2k2+2 V2c +2

which is worse than (since k < ¢ and

VZc +2 the

at most y; — €. This leads to a consistency of

the latter is an decreasing function of ¢ on [0, 1)) Therefore to achieve a c0n51stency of Ye&*=
mechanism needs to have g, — q, > cn.

We now consider any GCM mechanism with g, — q» = kn where k > ¢ and show that its
robustness is going to be worse than Vac* C+ To verify this, consider the instance whose set of actual
agent points P contains (1+k)/2 pomts on (xo, ys — 1) and the remaining (1 — k)/2 points divided
equally between (x5 — %’;, ys) and (x5 + 1 +k, Ys). Using the same steps that we used in the proof
of Lemma 4.3, we can verify that the optimal facility location in this case would be at (x5, ys — 1)
2We assume kn is a multiple of 4 to avoid integrality issues. If kn is not multiple of 4, we can modify the instance such that
there are | (1 — k)n/2] agents at 6 and the remaining agents are divided between the given two points such that each point

has at least one agent. It is easy to verify that the optimal facility location would be at 6 and the mechanism output would
have a y-coordinate at most ys — €. A similar argument also holds for robustness.
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(so the prediction is incorrect), but the outcome of the mechanism will have a y coordinate of at
least y;, leading to a robustness of —*2152,:2 which is worse than —‘216_2:2
an increasing function of c).

Therefore, the only way to achieve the two desired guarantees is to have g, — g, = cn which

(running through the same argument and replacing k with c) gives you consistency no better than

(since k > ¢ and the latter is

4202 V202
% and robustness no better than % O

LEmMMA 4.6. Given a multiset of points P, two predictions 6 and 6 and the confidence value c € [0, 1),
let f(P,6,c) and f(P,0,c) be the respective facility locations chosen by the CMP mechanism with
parameter c. Then, the distance between these two facility locations is at most the distance between the
two predictions, i.e.,

d(f(P,é,c), f(P,0,c)) < d(6,0).

PrOOF. Let (x4 y];) = f(P,6,c) and (x3 y];) = f(P,0,c) be facility locations returned by the
CMP mechanism with parameter ¢ given predictions 6 and 0, respectively. Let dxy = [x; — x f|
and dyy = |y =Y f~| be the difference of their x and y coordinates, respectively. Similarly, let
dx, = |x5 — x5| and dy, = |ys — ys| be the corresponding differences for the coordinates of the two
predictions. To prove this lemma, we argue that dx; < dx, and dyy < dy,, implying the desired
inequality, since

d(f(P,é,c), f(P,6,c)) = ,/dx}zc+dyjzc < AJdx2+dy?: = d(6,0).

We first focus on the x-coordinate and, without loss of generality, we assume that x5 < x, i.e.,
that the first prediction is weakly on the left of the second one. When the prediction is 6, we have
at least half points (including the phantom points) with x-coordinate smaller than or equal to x -
As we move the prediction to 0, we just move the phantom points by dx, to the right, so again
we have at least half points with x-coordinate smaller than or equal to x 7t dx,. This implies that
Xp<Xpt dx,. Thus, we have dxy = |xf - xf| < dx,. Using the same sequence of argument for the
y-coordinate implies that dys < dy, and concludes the proof. O

C MISSING ANALYSIS FROM SECTION 4.4

Before we present the missing analysis from Section 4.4, we introduce some helpful lemmas. The
following lemma from [14] states that moving a point either away or towards the optimal location
(without going past it) does not change the optimal location.

Lemma C.1 ([14]). For any multiset of points P and p; € P, if p; # o(P) and p; € {o(P) + t(p; —
o(P))|t € R}, then o(P_;, p;) = o(P).

The next lemma uses Lemma C.1 to show that moving a point towards the optimal location
strictly worsens the approximation ratio if this movement does not cause the mechanism’s output
to change and if this output is not optimal. This lemma is used to move points at arbitrary locations
to one of the axes.

Lemma C.2. For any multiset of points P, prediction 6 and confidence ¢ € [0,1), let p; € P and
p; € (pi,o(P)]. If f(P,0,c) = f((P-i,p}),0,c) and r(P,6,c) > 1, thenr((P_;, p;),0,c) > r(P,0,c).

Proor. Let Q = (P_;, p;). From P to Q, we only move one point towards o(P) (but not going
past it) without changing the output of the mechanism. By definition, f(P,d,c) = f(Q, 6,c), and
o(P) = 0(Q) by Lemma C.1.

Since the o, f locations are not changed, the amount of decrease in the sum of the costs with
respect to the optimal locationis d(p;, p;) > 0.If the sum of the costs with respect to the mechanism’s
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output does not change or increase, then we have r(Q, 6,¢) > r(P, 4, c). If the sum of the costs with
respect to the mechanism’s output decreases, then the amount of decrease is |d(f(P,0,¢), p;) —
d(f(P,6,c), pi)|. By triangle inequality, d(p;, p;) > |d(f(P,0,c), p;) — d(f(P,0,c), p;)|. This means
that the decrease in social cost with respect to the optimal location is larger than or equal to
the decrease with respect to the mechanism’s output location. If r(P,46,¢) > 1, then we have
r(Q,6,c) > r(P,0,c). ]

The next lemma uses the convexity of the distance function to show that if two points move
closer to each other, then the sum of their distance to a third point decreases.

LemmMma C.3. Consider three distinct points pq, ps, and ps, then for any € € (0,1), d(p1,ps) +
d(pa, p3) = d(p1+e(p2—p1), p3) +d(pz2 + €(p1 — p2), p3). Moreover, if py, p2, and ps are not collinear,
d(p1, p3) +d(p2, p3) > d(p1 + €(pz — p1), p3) +d(p2 + €(p1 — p2), p3).

Proor. Note that d(p; + €(p2 — p1), p3) = d((1 — €)p1 + €pa, p3) < (1 — €)d(p1, p3) + €d(pa2, p3)
where the inequality is by the convexity of the distance function and is strict if py, p,, and ps are
not collinear. Similarly, d(pz + €(p1 — p2), p3) < (1 —€)d(p2, p3) + €d(p1, p3) and we conclude that
d(pr1+e(pz—p1), p3) +d(pa+e(p1 —p2), p3) = d(p1, p3) +d(p2, p3) (with the inequality being strict
if p1, p2, and ps are not collinear). O

Now we present the missing analysis of the section.

LEMMA 4.10. For any points P and confidence c € [0, 1) s.t. f(P,6(P),c) = (0,0), if there are two
non-overlapping points p;, p; € P, p; # p; that are on the same half axis, i.e, Aix, A_x,Ayy, orA_y,
and x,(P), y,(P) > 0, then there exists points Q such thatr(Q, 6(Q),c) > r(P, 6(P), ¢) with predictions
6(P) = o(P) and 6(Q) = o(Q). This inequality also holds with predictions 6(P) = 6(Q) = (0, 0).

ProoF. Assume p;, p; € A,y are two non-overlapping points on the +x-axis, i.e., p; = (x;,0)
and p; = (x;,0) with x; > x; > 0. Let O be the instance obtained by moving p; and p; towards
each other by a distance of €(x; — x;) where € is sufficiently small so that the optimal location
remains strictly in the top-right quadrant, i.e., x,(Q), yo(Q) > 0. Since p; and p; are on the same
half-axis, they remain on this same half-axis when we move them towards each other. Since p; and
p;j remain in the same half-axis and the optimal location remains in the same quadrant, we have
that the output of the mechanism does not change, i.e., f(P,6(P),c) = f(Q,6(Q), c) both when the
predictions are 6(P) = o(P) and 6(Q) = 0(Q) and when they are 6(P) = 6(Q) = (0,0).

Since p; has distance to the origin which increases by € and p; has distance to the origin that de-
creases by € and since the output of the mechanism does not change, we have C*(f(Q, 6(Q),¢), Q) =
C*(f(P,6(P),c), P) both when the predictions are 6(P) = o(P) and 6(Q) = 0(Q) and when they
are 6(P) = 6(Q) = (0,0).

Since o(P) is not on one of the axes, p;, p;, and o(P) are not collinear. By Lemma C.3, we get
that d(p;, 0(P)) +d(pj,0(P)) > d(pi+€e(pj — pi),o(P)) +d(p; + e(p; — p;), o(P)). This implies that
C*(o(P),P) > C*(o(P), Q) = C*(0(Q), Q). Since C*(f(Q,6(Q),¢), Q) = C*(f(P,6(P),c),P) and
C*(0(Q),Q) < C*(o(P),P), r(Q,6(Q),c) > r(P,6(P),c). The cases where p; and p; are both on
one of the three other half axis follow identically by symmetry. O

LEMMA 4.11. For any points P and confidence ¢ € [0, 1) such that f(P,6(P),c) = (0,0), yo(P) >
xo(P) > 0, andp € Ay UA, U{o(P)} forallp € P, ifeither {p € P: p € A5, }| > [{peP:pc
A7 . U{o(P)}} or{peP:pe Afy}| >N{peP:pe AiyU{o(P)}}l, then there exists points Q such
that r(Q,6(Q),c) > r(P, 6(P), c) with predictions 6(P) = o(P) and 6(Q) = o(Q). This inequality also
holds with predictions 6(P) = 6(Q) = (0,0).
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Proor. Assume P = {py, ..., p,} is a multiset of n points that satisfies the lemma assumptions
andis alsosuchthat [{p e P: p € AS }| = {p € P: p € A7, U {o(P)}}|. Note that the points are
either on the axes or on the optimal location, which is in the top-right quadrant. We consider the
instance Q = {q1,9z,...,¢n} such that if p; € A, then we have gq; = p; and if p; ¢ A,, we have
qi = pi — (€,0) for a small enough € such that the optimal locations remains in top-right quadrant
(Yo (P), x,(P) > 0) and such that e < min;.p.¢a, ;.

Since 0(Q) stays in the top-right quadrant as o(P) and the points g; remain on the same half-
axes as p;, we have f(Q,6(Q),c) = f(P,6(P),c) = (0,0) both when the predictions are 6(P) =
0(P), 6(Q) = 0(Q) and when they are 6(P) = 6(Q) = (0,0).

We now consider the location ¢* = o(P) — (e, 0). First, note that ZpﬁAy,PiEp d(pi,0(P)) =
Dqi¢A,.q:<0 4(qi ¢°) because every point that is not on the y axis has been moved to the left by
€, and ¢* is also obtained from moving o(P) to the left by e. Additionally, note that we have
DipicAypicP d(pi,o(P)) > DiqicAyqi€0 d(qi, q*) because the points on the y axis are not moved
while g* moves closer to the y axis. Therefore, we obtain that C*(q*, Q) < C*(o(P), P), and we
have C*(0(Q), Q) < C*(q",Q) < C*(o(P),P).

Now we look at the sum of the costs with respect to the mechanism’s output location, which
is the same for P and Q. Note that there is the assumption that [{p € P : p € A5 }| > [{p €
P:pe A7, U{o(P)}}|- Weletns, ={peP:pec A}, n;, ={peP:pe A} and
no = {p € P : p = o(P)}|. Then we have n=, > n3, + n,. For the points on the y axis, those
points do not move at all when we create Q from P, so their costs remain the same. On the left
hand side of y axis, we have increased the total cost of the mechanism by n=_e. On the right
hand side of y axis, the total cost of the points is decreased by at most (n3, + n,)e because the
movement of each point to the left by an € distance can improve the mechanism’s cost by at most €.
Therefore, because we have n=, > nJ, + n,, the total cost with respect to the mechanism’s output
location does not decrease, so we have C*(f(Q, 6(Q),c), Q) = C*(f(P,6(P),c), P). Combined with
C*(0(Q), Q) < C*(o(P), P), we get that r(Q, 6(Q),c) > r(P,6(P), c) both when the predictions are
6(P) = o(P), 6(Q) = 0(Q) and when they are 6(P) = 6(Q) = (0, 0). By symmetry, the case where

{peP:peAZ} = {p e P:pe A7, U{o(P)}}| follows from the same argument. O
LEMMA 4.12. For any confidence ¢ € [0,1), let a = max r(P,o(P),c) and let f =
PePS(c)UPS (c)

max r(P, (0,0),c). CMP with confidence c is a-consistent and f-robust.
PePR(c)UPE(c)

Proor. Let P and 6(P) be an arbitrary instance of a multiset of n points and a prediction and
let ¢ € [0, 1). Note that 6(P) is not a function of P; the notation is to make it clear that 6(P) is the
input prediction to the mechanism along with the points P. We assume without loss of generality
that f(P,6(P),c) = (0,0) and y,(P) > x,(P) > 0. First, note that since f(P,6(P),c) = (0,0), we
also have that f(P, (0,0),c) = (0,0). Thus, r(P,6(P),c) = r(P, (0,0),c). If there exists a point p € P
such that p ¢ A, UA, U {0(P)}, then p can be moved towards o(P) without changing the outcome
of the mechanism. Thus, by Lemma C.2, either r(P, 6(P), c) = 1 or there exists points Q such that
r(Q,6(Q),c) > r(P,6(P),c) both when the predictions are 6(Q) = 0(Q),6(P) = o(P) and when
they are 6(Q) = 6(P) = (0,0).

We now assume that p € A, UA, U {o(P)} forall p € P.If x,(P) = 0, then note that p €
Ay UA,U{o(P)} = A UA, forallp € P*. Thus P € PE (c) when 6(P) = o(P) and P € PR (¢)
when 6(P) = (0,0). We now assume that x,(P) > 0, so y,(P) = x,(P) > 0. If there is a point p
that can be moved towards o(P) without changing the outcome of the mechanism, then, again, by
Lemma C.2, either r(P,6(P), c) = 1 or there exists Q such that r(Q, 6(Q),c) > r(P,6(P), c). Next,
we consider the five subproperties of property (4) for the CA family.
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Assume that there is no x1, X3, Y1,y > 0 such that p € {(—x1,0), (x2,0), (0,—y1), (0,72),0(P)}
forall p € P. Since p € Ay UA, U {o(P)} for all p € P, there are two points p;, p; on the same
half-axis and by Lemma 4.10, there exists points Q such that r(Q,6(Q),c) > r(P,6(P),c) both
when the predictions are 6(Q) = 0(Q), 6(P) = o(P) and when they are 6(Q) = 6(P) = (0, 0). Next,
assume that p € {(—x1,0), (x2,0), (0, —y1), (0,y2),0(P)} forall p € P.If[{p € P: p € A5, }| >
KpeP:peAl,U{o(P)}}orl[{peP:pe A} > {peP:peA7 U{o(P)}} then by
Lemma 4.11 there exists Q such that r(Q, 6(Q),c) > r(P,6(P), c) both when the predictions are
6(Q) = 0(Q),6(P) = o(P) and when they are 6(Q) = 6(P) = (0,0).

For the fourth subcondition, assume that there is a pair of points p; = (—x;,0) € P and p; =
(x2,0) € P such that x, + x1 # X3 — x,. Without loss of generality, we assume x, + x; < X2 — Xo.
Then we construct a multiset of points Q by moving this pair of points in P to the left by €. That
is, we let ¢; = (—=x1 — €,0) and q; = (x; — ¢,0) for € small enough so that the optimal location
remains in the top right quadrant, and let gx = px for any k # i, j. This improves the optimal
cost. Meanwhile, the mechanism’s output and social cost remain unchanged. Therefore, we have
found a multiset of points Q such that r(Q, 6(Q),c) > r(P, 6(P), c) both when the predictions are
6(Q) = 0(Q), 6(P) = o(P) and when they are 6(Q) = 6(P) = (0, 0). The fifth subcondition follows
identically by symmetry.

We conclude that for any multiset of points P and prediction 6(P) = o(P) such that P ¢
PE (c) U PS(c), we have found Q such that r(Q,0(Q),c) > r(P,o(P),c), i.e, Q has a worse
approximation ratio. Thus the worst-case instance P for the consistency of CMP is such that
P € PS (c) U PE(c), which implies that a = MaXpepC (o)upC (o) TP, 0(P), ¢). Similarly, for any
instance P and prediction 6(P) such that P ¢ PR (c) U PX (¢), we have found an instance Q such
that r(Q, (0,0),¢c) > r(P,(0,0),c) = r(P,6(P),c), thus f = MaXpepR (o) UPR (c) r(P, (0,0),c¢). m]

LEMMA 4.13. For any confidence ¢ € [0,1) and points P € PS(c), there exists Q such that
either r(Q,0(Q),c) > r(P,0(P),c) or Q € PE.(c) and r(Q,0(Q),c) > r(P,o(P),c). Similarly,
for any P € PR (c), there exists Q such that either r(Q, (0,0),¢) > r(P, (0,0),c) orQ € PR (c) and
r(Q,(0,0),¢c) = r(P,(0,0),c).

Proor. Let ¢ € [0,1) and consider an instance P € P (c) with n points, so y,(P) > 0 and
p €A UAy forall p € P.Let dx = X (x,0)epna, 1Xil/|P N Ax| be the average distance of the points
on the A, axis from the origin. Consider the instance Q = (qu, . . ., ¢n) Where the points p; € PN A,
are replaced by two clusters, one at (—dy, 0) and one at (dy, 0), each containing |P N Ax|/2 points
g;. For the remaining points p; € PN A, \ {(0,0)}, we maintain their positions and set g; = p;.

Since the points are perfectly symmetric with respect to the y axis, we have x,(Q) = 0 = x, (P).
Since the y-coordinate of the points are identical in P and Q and since x,(Q) = x,(P), we also
have y,(Q) = yo(P). Thus, 0(Q) = o(P). Let f(P,0(P),c) = (xr(P,0(P),c),ys(P,0(P),c)), and
f(Q,0(Q),¢) = (x£(Q,0(Q), ), yr(Q,0(Q), ¢)). Since x,(Q) = 0 and [{(x;,y:) € Q : x; < 0} =
H(xi,yi) € Q : xi > 0}], xp(Q,0(Q),c) = 0, and this also holds with 6(Q) = (0,0). Since the
y-coordinate of the points are identical in P and Q and since yo(Q) = yo(P), yr(Q,0(Q),c) =
yr(P,0(P),c). Thus, f(Q,0(Q),c) = f(P,0(P),c) = (0,0), and this also holds with 6(Q) = (0,0).

In addition, the social cost of the mechanism does not change, because the average distance of the
points on the x axis from the origin remained the same, d. On the other hand, using the convexity
of the distance measure, the optimal social cost weakly improves, so r(Q, 0(Q),c) > r(P,o(P),c),
and this is also the case with 6(Q) = (0,0). If y = y,(Q) for all (0,y) € Q, then by scaling Q to Q’
so that y,(Q") = 1, we get Q" € PS, (c) such that r(Q’,0(Q’),¢) > r(P,0(P),c).

Since x,(Q) = 0, if there exists (0,y) € Q with y # y,(Q), this point can be moved towards
Yo (Q) by an arbitrary small € and this would strictly worsens the approximation factor (so there
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exists Q” such that r(Q’, 0(Q’),c) > r(P,0(P), c)) because it either improves both the social cost of
the mechanism and the optimal social cost by € or it improves the optimal cost by € and worsens
the cost of the mechanism by e.

Thus, we have shown that there exists Q’ such that r(Q’,0(Q’), ¢) > r(P,0(P),c) or Q" € P&, (c)
and r(Q’,0(Q’),¢) > r(P,0(P),c). The analysis for P € PR (c) follows identically. O

LEMMA 4.14. For any confidence ¢ € [0, 1), and points P € PE(c), there exists points Q such that
either r(Q,0(Q),c) > r(P,0(P),c) orQ € PS(c), r(Q,0(Q),c) > r(P,o(P),c), and q € A, U Ay U
{0(Q)} for all g € Q. Similarly, for any confidence ¢ € [0,1), and points P € PR(c), there exists
points Q such that either r(Q, (0,0),c) > r(P, (0,0),c) orQ € Pg(c), r(Q,(0,0),c) = r(P,(0,0),c¢),
andq € Ay UA,y; U{o(Q)} forallq € Q.

ProoF. Let P € P& (c) be a multiset of n points. First of all, if p € Ay UA,, U{o(P)} forallp € P,
then let Q = P and we are done. Now we consider the case where there is some p € P such that p ¢
AxUA,yU{o(P)}, which means that there exists p € P such thatp € A~,. Because P € PE (c), there
exist x1, X2, Y1, Y2 = 0 such that for all p € P, we have p € {(—x3,0), (x2,0), (0, —y1), (0,y2), o(P)}.
Additionally, we have |[{p e P : p € AS .} < {peP:p e A7, U{o(P)}| and that [{p € P :
pE Afy}| <|{peP:pe Aiy U {o(P)}}| from the definition of P& (c). We now create another
instance P* from P by moving one point (0, —y1) to (—y;,0) in P, and keeping all other points in P
the same. Note that the optimal location of P* can move elsewhere and it may or may not satisfy
Yo(P*) = x,(P*) > 0. But we can still show that f(P* o(P*),c) = f(P,0(P),c) = (0,0).

Because f(P,0(P),c) = (0,0), we know that |[{p € P : p € A7, U{o(P)}}| < (1+¢c)n/2 —cn.
Therefore, {p e P:p e AS,} < {p e P:p e A7, U{o(P)}}| £ (1+¢c)n/2 — cn. Even if the
the cn points on the predicted location are now to the left of the y-axis in P*, we would still have
[{p* € P*: p* € A5} +cn < (1+c)n/2. Thus, the x-coordinate of the mechanism’s output location
would still be zero on P*. Using a similar argument and the condition of PS (c) that {p e P: p €
Afy}| <H{peP:pec Aiy U {o(P)}|, we can show that the y-coordinate of the mechanism’s
output location is still zero in P*. Thus we conclude that f(P*, o(P*),c) = f(P,0(P),c) = (0,0), and
Cu(f(P,0(P),¢), P) = CU(f(P,0(P),c), P*) = C*(f(P*,0(P"), ), P*).

Now consider the optimal location o(P) of the instance P, and note that y,(P) > x,(P) > 0

because P € PS (c). We have d((0, —y1),0(P)) > d((-yi,0),0(P)) because y,(P) > x,(P) > 0.
Therefore, we have C*(o(P*), P*) < C*(o(P), P*) < C*(0o(P), P). We discuss two cases based on
whether the optimal location moves when we create P* from P.

We first discuss the case where o(P*) # o(P). In this case, we would simply have C*(o(P*), P*) <
C*(o(P),P*) < C*(o(P),P) and that r(P*,0(P*),c) > r(P,o(P),c). Therefore, once the optimal
location moves, we can find an instance with strictly worse approximation ratio.

We now discuss the remaining case where o(P*) = o(P). Then, from the above we already
have that y, (P*) > x,(P*) > 0 and that r(P*,0(P*),c) > r(P,o(P), c). If we further have y; # xi,
then there are points (—x1, 0), (—y;,0) € P* and we can apply Lemma 4.10 on the instance P* to
find an instance Q such that r(Q,0(Q),c) > r(P*,0(P*),c) = r(P,o(P),c). Otherwise, we have
y; = x;. In this case, because we are only moving a point from a cluster to another cluster, we have
p* € {(—x1,0), (x2,0), (0, —y1), (0,y2), 0(P*)} for each p* € P*. Now the instance P* has satisfied
the first two properties of the CA family that f(P*, 0(P*),c) = (0,0) and that y,(P*) > x,(P*) > 0.
If we do not satisfy property (3) of the CA family, then by Lemma C.2 we can construct an instance
Q by moving some point p € P* towards o(P) without changing the mechanism’s output location
and achieve r(Q,0(Q),c) > r(P*,0(P*),c) = r(P,o(P),c). We now verify the five subproperties
of property (4) of the CA family. Since we just move one point from the cluster on the —y half
axis to the cluster on the —x half axis, all the five subconditions clearly hold true except for the
second one, which we will verify now. Because P € P (c), we have that [{p € P: p € A= }| <
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{p € P:p e A7, U{o(P)}|. Therefore, after moving one point from the —y half axis to the —x half
axis, we would clearly have |{p* € P* : p* € AS }| < [{p* € P* : p* € A7, U {o(P*)}|. If we end
up with an equality, then we can apply Lemma 4.11 and find an instance Q with r(Q,0(Q),c¢) >
r(P*,0(P*),c) = r(P,o(P),c). Thus, the second subcondition is also verified. We then conclude
that in this case when o(P*) = o(P), either P* € P& (c) with r(P*,0(P*),c) > r(P,o(P),c), or
we can find Q such that r(Q,0(Q),c) > r(P,o(P),c). Therefore, if the optimal location doesn’t
move, moving a point from the —y half axis cluster to the —x half axis cluster will create a new
instance again in the CA family with weakly worse approximation ratio, or we can simply find an
instance Q with strictly worse approximation ratio. While the optimal location doesn’t move, we
can iteratively move points from the —y axis cluster to the —x axis cluster while weakly increasing
the approximation ratio, until we have no points to move on the —y axis, i.e. we end up with points
Q € PE(c), r(Q,0(Q),¢) = r(P,0(P),c), and q € A, U Ay U {0(Q)} for all g € Q. Therefore we
have proved the lemma when P € P& (c). If P € P& (¢), the proof follows almost identically. O

LEMMA 4.15. For any confidence ¢ € [0, 1), consider P € PS(c) such thatp € A, U Ay U{o(P)}
forallp e P.Then, |{peP:pcA}={peP:p=0(P)}

Proor. Let ¢ € [0,1) and P € P& (c) be a multiset of n points such that p € A, U Ay U{o(P)}
forallp € P.Letk = |{p € P: p € A_,}|. Since P € PS (c), moving any p € P towards o(P) would
move the output of the mechanism. Thus, [{p € P:p € A ,UA L} ={peP:peA  UA } =
[(1+c)n/2] and we getthat [{p € P:p € A} = [{p € P:p € Ay}l = [(1+¢c)n/2] — k and
{peP:p=o(P)} =n-2([(1+c)n/2] —k) —k = n—2[(1 + c)n/2] + k. Finally, note that
n=2[(1+c)n/2]+k <n-2n/2)+k=k=|{p € P: p € A_,}| and we get the desired result. O

LEMMA 4.16. For any confidence c € [0,1) and points P € P (c) such that p € A, U Ay U{o(P)}
for all p € P, there exists points Q such that either r(Q,0(Q),c) > r(P,o0(P),c) or Q € PS(c),
r(Q,0(Q),c) 2 r(P,0(P),c) and q € Ax U A,y forallq € Q.

Proor. The main idea is that we can move one point from o(P) to the +y axis, while also moving
one point from the —x axis to the +x axis. The new instance will either have a strictly worse
approximation ratio, or the ratio is weakly worse but the instance remains in the CA family, so we
can apply this paired movement iteratively until there are no points on the optimal location (which
means all points are on the axes).

Also, note that by Lemma 4.15, we have [{p e P: p € A_}| > [{p € P : p = 0(P)}, so there are
enough points on —x axis for us to perform the paired movement and remove all points on the
optimal location.

We now formalize the above argument. Let P = {p, ..., pn} € P& (c) such that p € A, UA,, U
{o(P)} for all p € P. By Lemma 4.15 we have [{p e P: p € A_,}| =2 |[{p € P : p = o(P)}|. To
simplify notation, we let x, = x,(P) and y, = y,(P). We now define another multiset of points
QO ={q1,...,qn} such that for some x > 0 and iy, iz € [n], we have

o p;, = (—x,0) and q;, = (x + 2x,,0),
® pi, = 0(P) = (x0,Yo) and g;, = (0, Yx +y3), and
e fori # il,iz,pi =q;-

We will now argue that either Q € P (c) with r(Q,0(Q),c) > r(P,o0(P),c) and q € A, U Ayy
for all g € Q, or we can find an instance with strictly worse approximation ratio than that of P.

We first claim that £(Q,0(Q),c) = (0,0). Since P € PS(c), we have f(P,0(P),c) = (0,0),
Yo(P) > x,(P) > 0, and that there exist x1, x5, y1,y2 > 0 such that for all p € P, we have p €
{(=x1,0), (x2,0), (0, —y1), (0,y2), o(P) }. Additionally, we have [{p € P: p € AS }| < [{p € P:
peALU{o(P)}}and|[{peP:pe A} <|{peP:pe€ Afy U {0(P)}}|. This means that
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Hp = (xp,yp) € P:xp <0} < {p = (xp,yp) € P: x5, > 0}| < (1+c¢)n/2— cn. Otherwise,
after we count the cn points at the predicted location o(P), the output location of the mechanism
f(P,0(P),c) will have a positive x-coordinate. Note that the instances P and Q only differ at iy, i,.
If 0(Q) stays in the top-right quadrant, then it’s clear that f(Q, 0(Q), c) = (0,0). However, even if
0(Q) moves to the left of the y-axis, we have [{g = (x¢,y4) € Q : x4 < 0}| +cn < (1+c)n/2. Thus,
the algorithm’s output f(Q) must have its x-coordinate equal to zero. By a similar argument, we
can prove that f(Q, 0(Q), ¢) has its y-coordinate equal to zero as well. Therefore we conclude that
£(Q,0(Q),¢c) = f(P,0(P),c) = (0,0), even if the location of 0(Q) can be different from that of o(P).

Next, we prove that 7(Q,0(Q),c) 2 r(P,o(P),c). Let A = 3,.; d(pi, f(P,0(P),c)) and B =

iz1 d(pi,o(P)) = ¥z, d(pi,0(P)). The approximation ratio of CMP with a correct prediction
(6 = o(P)) is at least as good as the approximation of the coordinatewise median mechanism
(without predictions), so at most V2. Thus, A + d(pi,, f(P,0(P),c)) < V2B. Therefore,

[A+d(pi,, f(P,0(P),c))]d(gi,, o(P)) < V2Bd(qs,, 0(P)). 3)
But we have y, > x,, so d(g;,,0(P)) < V2x,. Therefore, from inequality (3) we have
[A+d(pi,, f(P,o(P),c))]d(gi,, 0(P)) < 2Bx,
< B(d(qi,, f(P,0(P),c)) —d(pi,, f(P,o(P),c))).  (4)
Using inequality (4), we have
[A+d(piy, (P, o(P), )] [B+d(gi,, o (P))]
= AB+Bd(pi,, f(P,0(P), ) + [A +d(py,, f(P,o(P), 0))1d(g,, o(P))
< AB + Bd(py,, f(P,0(P), ) + B(d(gi, f(P,0(P),)) — d(py,, (P, 0(P),c)))
= AB + Bd(qy,, f(P, 0(P), )
= (A+d(qi,, f(P,0(P),c)))B. (5)
Note that A = },.; d(pi, f(P,0(P),c)) = Xz, d(qi, f(Q,0(Q),c)) because f(P,0(P),c) =
f(Q.,0(Q),c) and d(pi,, f(Q,0(Q),¢)) = d(gi,, f(Q,0(Q), ). Additionally, B = 3, d(pi,0(P)) =
Diini, 4(qi 0(P)) + d(piy, 0(P)) = Xjni, 4, d(qi, 0(P)) +d(qiy, 0(P)) = Xjni, d(gis 0(P)).

Thus, using inequality (5), we have

r(P,0(P),c) = A +d(pil’f;P’O(P)’ )

_ A+d(g, f(Po(P).0)
- B +d(qi,, 0(P))
 2izi, 4(qi, £(Q,0(Q), ¢)) +d(qi,, f(Q,0(Q),¢))
- 2izi, 4(gi, 0(P)) +d(qi, o(P))

by (5)

_CU(f(9.0)
C4(0(P), Q)

_ (9.0 ©
C(0(Q), Q)

= r(Q.0(Q),0). 7)

The inequality (6) is strict unless o(P) = 0(Q). Therefore, if 0(P) # 0(Q) we immediately have
r(P,o(P),c) < r(Q,0(Q),c), and we are done. Otherwise, we have o(P) = 0(Q), so the instance
Q now already satisfies the first two properties of the CA family that f(Q, 0(Q),c) = (0,0) and
0(Q) = o(P) = (x0,yo) wWith y, > x, > 0. If property (3) of the CA family does not hold true,
then we have a point ¢ € Q such that moving it towards 0(Q) would not change the output
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location of the mechanism. Then by Lemma C.2 we can move g towards o(Q) to create an instance
Q' with r(Q’,0(Q’),c) > r(Q,0(Q),c) = r(P,o(P),c), and we are done again. We now verify
the five subproperties of property (4) for the CA family. If the points are not clustered anymore
on the axes in Q after the paired movements, we can apply Lemma 4.10 to find an instance Q’
such that r(Q’,0(Q’),c) > r(Q,0(Q),c) = r(P,o(P),c). Therefore, we can assume that the paired
movements move points from an existing cluster to another cluster, so the first, the fourth and the
fifth subconditions clearly hold true. The second and the third subconditions can also be verified
easily because we only reduce the number of points with negative x-coordinate, and we do not
change the number of points with negative y-coordinate. Therefore, we conclude that by performing
the paired movements, we can find an instance Q either with r(Q, 0(Q),¢) > r(P,0(Q),c) or we
have Q € P& (c) with r(Q, 0(Q),¢) = r(P,0(Q), c). We can then iteratively remove points from the
optimal location and will finally reach an instance Q € P (c) such that there are no points on the
optimal location, i.e. we find an instance Q € P& (c), r(Q, 0(Q),c) > r(P,o(P),c) and q € A, UAyy
for all g € Q. Note that we have enough points on the —x half axis to eliminate all points on the
optimal location because we have argued before that [{p e P: p e A_s}| = |{p € P: p = o(P)}|,
and this concludes the proof of the lemma. O

LemMa 4.17. For any confidence ¢ € [0,1) and points P € P (c) such that p € A, U A,y for
all p € P, there exists either Q € PS,(c) such that r(Q,0(Q),c) > r(P,o(P),c) or Q" such that
r(Q",0(Q"),c) > r(P,o(P),c).

Proor. Let P € P& (c) be a multiset of n points such that p € A, UA,, forall p € P, so the points
are all on (—x,0), (0,x"), or (x’,0) for some x, x’, x”" > 0. Without loss of generality, by rescaling,
assume that x” = 1. Let L, R, U C P be the points on ( x,0), (0,1), and (x’, 0) respectively. Since
f(P,0(P),c) =(0,0), we have |L| = cn, |U| = |R| = 5£n. Let Q be the instance that is the same as
Pforalli¢ U, hasq; =o(P)forallieU.

First note that by Lemma C.1 we have 0(Q) = o(P). By Lemma 4.3 we know that for any ¢ € [0,1)

there exists an instance Q’ such that r(Q’,0(Q’),c) > ‘Zcq Ifr(P,o(P),c) < —'26?2 then we

1+
have r(Q’,0(Q’),c) > r(P,0(P), c). Now assume r (P, o(P), c) > ZICTZ: Let A denote the total cost
decrease of the algorithm, i.e., Ay = n[C*(f(P, 0(P),c), P)) — C*(f(Q,0(Q),c), Q)], similarly, we
let Ay = n[C*(o(P), P)) — C*(0(Q), Q)]. Showing that r(Q,0(Q),c) = r(P,o(P),c) is equivalent to
showing that 'ZC +2 Af > 0. To simplify the presentation of the lemma, we let (1 — y,) denote

the points movement on y-axis and A(1 — y,) denote the points movement on x-axis. Then

Ap = S0 A1 = o) — enA(1 - o) + (1 = yo)
o= VAT =502+ (1= 0% = —nV1+ 22(1 - y,)

A Ny - - . L.
- A_f = Mo+ (1-30)+(1-c) Taking the first and second derivative w.r.t A we

_ V2c2+2
Let g(c, 1) = ¥t e (oo Vil

1+c

get
dg _ cA-A+1-3c and d’g _ —2cx® +2x" + 9cx — 3x+c—1
A (1-0)(A2+1)VAZ+1 dA? (—c+1) (x2+1)?
Solving Z = 0 we get that 1 = =3¢ If ¢ > 3. we have A < 0 and since second derivative at

A= 1 3C is positive we get that for any ¢ > 1, g(c,A) is minimized at A = 0. Which means that the
movement on x-axis is 0. In this case, we have x,(P) = 0 and thus P € PS (c). By Lemma 4.13,
we then get that there exists Q” such that either r(Q’, 0(Q"),c) > r(P,o(P),c) or Q" € PS,(c) and

r(Q’,0(Q"),c) = r(P,o(P),c).

coa
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Now if ¢ < %, we have A > 0, and the second derivative of g(c, A) is positive, therefore given a

specificc, A =

V2¢2+2  V10c2 — 8¢ +2
1+c¢ 1-c¢ ’

g(c) =

Again we take the derivative and set it to 0,

dg 2c—2 6c — 2
= = — =0 =¢=0,c=0.301263

de. (1+¢)?V2+2¢2  (1-¢)>V10c? - 8c+2

Again checking the second derivative we get that ¢ = 0 is a minimizer and ¢ = 0.301263 is a
maximizer. Plug in ¢ = 0 we get that

2c2 +2
< —.
1+c

=0 =

V2 V2
T 1

gty

and r(Q,0(Q),c) = r(P,o(P),c). By shifting all the points by (—x,(P),0) to have x¢(Q) = x,(Q) =
0, we obtain that Q € P, (c). O

LEMMA 4.18. For any confidence c € [0, 1) and points P € PR (c) such that p € A, UA,y U{o(P)}
for all p € P, there exists either Q € PR (c) such that r(Q, (0,0),¢) > r(P,(0,0),c) or Q" and
prediction 6 such that r(Q’,6,¢) > r(P,(0,0),c).

Proor. Let P € PR (c) be a multiset of n points such that p € A, U A+y U {o(P)} forall p € P,
so the points are all on (—x,0), (0,x”), (x’,0), or o(P) for some x,x’,x” > 0. Without loss of
generality, by rescaling, assume that x”” = 1. Let L, R,U,O C P be the points on (—x,0), (0,1),
(x’,0), and o(P) respectively. Let k € [0, 1] be such that |O| = kn. Since f(P, (0,0),c) = (0,0), we
have |U| = |R| = (1—’2'6 —k)nand |L| = (k — ¢)n. Let Q be the instance that is the same as P for all
i¢ U,and has q; = o(P) foralli € U.

First note that by Lemma C.1 we have 0(Q) = o(P). By Lemma 4.3 we know that for any ¢ € [0, 1)

there exists an instance Q' and prediction 6 such that r(Q’,6,¢c) > 'Zcz Ifr(P,(0,0),¢) < “%c: ,
then we have r(Q’,6,c) > r(P, (0,0), c). Now assume r(P, (0,0,c) > —'?6_26 let Ay denote the total
cost decrease of the algorithm, i.e., Ay = n[C*(f(P, (0,0),¢),P) — C*(f(Q, (0,0),¢), Q)], similarly,
we let A, = n[C*(0(P),P) — C*(0(Q), Q)]. The lemma statement is equivalent to Y2¢ :2 i—i. To

simplify the presentation of the lemma, we let d denote the points movement on the y-axis. Then

1+c

1
A= (= =R d+ (== = kmx, = (k= on - x,
1
(i—k)n,/onrdz

Note that since Manhattan distance is a V2 approximation of the Euclidean distance, we have

r+dS\/§~\/x§+d2.Weget:
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Ar (%—k)n-(d+r)—(k—c)n-x0
Ao (1 — kynyl + &2
B (¢ —kn-V2(yxZ+d?) — (k—c)n-x,

B (B¢ — k)nyxz + d?

(k-=¢c)n-x,
<V2-
(5< - k)nyxZ + d?
<V2
Since r(P, (0,0),¢c) > % > /2, we get that r(Q, 0(Q), ¢) > r(P,o(P), c). By shifting all the
points by (=x,(P), 0) to have xr(Q) = x,(Q) = 0, we obtain that Q € PR (). O

LEMMA 4.19. For any confidence c € [0,1) and points P € PE(c), there exists points Q such that
either r(Q,0(Q),c) > r(P,o(P),c) or Q € P (c) andr(Q,0(Q),c) > r(P,o(P),c).

Proor. Let ¢ € [0, 1). Consider an instance P € PS (c) of n points. By Lemma 4.14, there exists
Q; such that either r(Qy,0(Q1), ¢) > r(P,0(P),c) or Q; € PS (c) and r(Qy,0(Q1),¢) = r(P,0(P),c),
and ¢ € A, UA,, U{0(Q1)} for all ¢ € Q;. By Lemma 4.16, there exists Q, such that either
r(Q2,0(Q2),¢) > r(Q1,0(Q1), ¢) or Qz € PG (c) and r(Qs,0(Q2),¢) = r(Q1,0(Q1),¢) and g € A, U
A,y for all g € Q;. By Lemma 4.17, there exists Q3 such that either r(Qs3, 0(Q3), ¢) > r(Q2,0(Qz),¢)
or Q3 € P&, (c) and r(Q3,0(Q3), ¢) = r(Qs,0(Q3), ¢). Thus, we have that there either exists n points
Q such that r(Q, 0(Q),c) > r(P,0(P),c) or that maxgepc () 1(Q,0(Q),¢) = r(P,0(P),c). O

LEMMA 4.20. For any confidencec € [0, 1) and points P € PR (c), there exists points Q and prediction
6 such that either r(Q, 6,¢) > r(P,(0,0),c) orQ € PR (c) and r(Q, (0,0),c) > r(P, (0,0),c).

PROOF. Let ¢ € [0,1). Consider an instance P € PX (¢) of n points. By Lemma 4.14, there exists
Q; such that either r(Q, (0,0),¢) > r(P, (0,0),c) or Q; € PR(c) and r(Qy, (0,0),¢) > r(P,o(P),¢c),
and g € Ay UA,, U{0(Q1)} for all g € Q;. By Lemma 4.18, there exists Q, and prediction 6 such
that either r(Qy,6,¢) > r(Q1, (0,0),¢) or Q, € PR (c) and r(Qs, (0,0),¢) > r(Q1, (0,0),c). Thus,
we have that there either exists n points Q and prediction 6 such that r(Q, é,c) > r(P, (0,0),¢c) or
that maxgcpr () 7(Q, (0,0),¢) > (P, (0,0),c). O
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