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SUMMARY

Heterochromatin formation requires three distinct steps: nucleation, self-propagation (spreading) along the
chromosome, and faithful maintenance after each replication cycle. Impeding any of those steps induces het-
erochromatin defects and improper gene expression. The essential histone chaperone FACT (facilitates
chromatin transcription) has been implicated in heterochromatin silencing, but the mechanisms by which
FACT engages in this process remain opaque. Here, we pinpoint its function to the heterochromatin
spreading process in fission yeast. FACT impairment reduces nucleation-distal H3K9me3 and HP1/Swi6
accumulation at subtelomeres and derepresses genes in the vicinity of heterochromatin boundaries. FACT
promotes spreading by repressing heterochromatic histone turnover, which is crucial for the H3K9me2 to
me3 transition that enables spreading. FACT mutant spreading defects are suppressed by removal of the
H3K9 methylation antagonist Epel. Together, our study identifies FACT as a histone chaperone that pro-
motes heterochromatin spreading and lends support to the model that regulated histone turnover controls

the propagation of repressive methylation marks.

INTRODUCTION

The eukaryotic genome is partitioned into transcriptionally active
euchromatin and transcriptionally silent heterochromatin. Het-
erochromatin is instrumental for genome protection, proper
chromosome segregation, and cell fate maintenance (Becker
etal., 2016; Janssen et al., 2018; Penagos-Puig and Furlan-Mag-
aril, 2020).

Fission yeast (Schizosaccharomyces pombe) is a powerful
model organism to study heterochromatin formation and inheri-
tance (Allshire and Ekwall, 2015; Goto and Nakayama, 2012;
Mizuguchi et al., 2015). S. pombe heterochromatin is present
at distinct chromosomal regions, such as repetitive sequences
at pericentromeres, subtelomeres, and the silent mating-type lo-
cus, and is characterized by the presence of hypoacetylated and
H3K9-methylated nucleosomes, which are bound by the HP1
family chromodomain proteins Swi6é and Chp2 (Allshire and Ek-
wall, 2015). This heterochromatin platform recruits further fac-
tors to safeguard transcriptional and post-transcriptional gene
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silencing (Ekwall et al., 1995; Reyes-Turcu and Grewal, 2012;
Yamada et al., 2005).

Heterochromatin assembly initiates at nucleation sites where
the RNAi machinery, cis-DNA sequences, or the shelterin com-
plex recruit the sole H3K9 methyltransferase, Clr4 (Martienssen
and Moazed, 2015; van Emden et al., 2019; Wang and Moazed,
2017; Wang et al., 2016). While Clr4 modifies H3K?9, it also binds
the K9 methylation mark through its chromodomain. This allows
for a “write” and “read” mechanism of self-propagation of
H3K9me and its re-establishment after each cell division (Chen
et al., 2008; Zhang et al., 2008). Differential affinity of Clr4 and
Swi6 chromodomains toward H3K9me2 and H3K9me3, respec-
tively, is believed to be important for efficient heterochromatin
spreading from nucleation sites (Al-Sady et al., 2013; Jih et al.,
2017; Zhang et al., 2008). While nucleation of heterochromatin
has been extensively studied, the mechanisms of its expansion
remain obscure.

The histone chaperone FACT (facilitates chromatin transcrip-
tion) is an essential and highly conserved dimer composed of
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Figure 1. Transcriptional silencing is impaired in the FACT mutant
(A) Schizosaccharomyces pombe chromosomes with indicated heterochromatin loci. CEN, pericentromere; MAT, mating-type locus; rDNA, ribosomal DNA; TEL,

subtelomere.
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(B) H3K9me2 ChlIP-seq enrichment [normalized log2(ChIP/Input)] at subtelomeres and pericentromeres in WT and pob34 on chromosomes | and Il. Gray in-
dicates WT, and blue indicates pob34. Both (+) and (—) DNA strands are shown with gene coding (MRNA), noncoding (ncRNA), tRNA, and pseudogenes. Dark
gray bars over the graphs point to the localization of H3K9mez2 in the WT strain.
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Spt16 and Pob3/SSRP1. FACT facilitates nucleosome disas-
sembly and reassembly in the wake of RNA polymerase Il (RNAPII)
passage at transcribed genes (Duina et al., 2007; Formosa and
Winston, 2020; Lee et al., 2017; Murawska et al., 2020; Orpha-
nides et al., 1998). In addition, FACT is implicated in numerous
chromatin-associated processes, such as DNA repair and repli-
cation (Herrera-Moyano et al., 2014) or higher-order chromatin
formation (Garcia-Luis et al., 2019; Murawska et al., 2020).

We showed previously that FACT is also involved in pericen-
tromeric heterochromatin silencing, acting in a pathway inde-
pendent of the RNAi machinery (Lejeune et al., 2007). A recent
study further showed that FACT interacts with a perinuclear
complex that facilitates FACT loading on the mating-type locus
to suppress histone turnover and promote heterochromatin
maintenance (Holla et al., 2020). However, the exact function
of FACT in heterochromatin formation needs to be established.
Specifically, whether FACT acts during heterochromatin nucle-
ation, spreading, and/or maintenance phases remains unknown.

Here, we demonstrate that transcriptional silencing is impaired
throughout heterochromatin in mutants deficient in FACT but the
heterochromatin structure is particularly affected at heterochro-
matin-euchromatin transitions. We provide further evidence that
FACT limits heterochromatic histone turnover, which is critical
for a productive K9 trimethylation step by Clr4. Deletion of the ju-
moniji protein Epe1 specifically suppresses the spreading de-
fects of FACT by reducing heterochromatic histone turnover
and transcription. Together, our data reveal an unexpected func-
tion of FACT in heterochromatin spreading along chromosomal
arms.

RESULTS

Transcriptional gene silencing is impaired at different
levels at pericentromeres and subtelomeres in the FACT
mutant

In order to understand the functional contribution of FACT to
heterochromatin silencing, we systematically analyzed the het-
erochromatin structure at the genome-wide level in S. pombe
(Figure 1A). We utilized the pob34 mutant, which in contrast to
other model organisms is not lethal but recapitulates many known
FACT defects (Murawska et al., 2020). In agreement with previous
studies, chromatin immunoprecipitation sequencing (ChlP-seq)
revealed only a subtle change of H3K9me2 at pericentromeres
(Figures 1B, 1C, and S1D) (Holla et al., 2020; Lejeune et al.,
2007). This result suggests that heterochromatin domains strictly
depending on RNAI are not impaired when FACT is depleted. In
contrast, there was a substantial reduction of H3K9me2 at the
mating-type locus, in agreement with a previous study (Holla
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et al., 2020) (Figure S1A), and at the subtelomeres (Figure 1B).
Interestingly, H3K9me2 was more affected at the distal subtelo-
meric heterochromatin than at the telomeric ends where hetero-
chromatin nucleation takes place. Moreover, rDNA and several
facultative heterochromatin islands also had reduced H3K9me2
levels in pob34 (Figures S1B and S1C).

Next, we analyzed whether changes in H3K9me2 are accom-
panied by the derepression of heterochromatic transcripts in
pob34. RT-gPCR analysis showed a substantial accumulation
of subtelomeric transcripts but only a small increase in pericen-
tromeric RNAs (Figure 1D). The absence of strong pericentro-
meric defects suggested a role of FACT in transcriptional gene
silencing (TGS) rather than post-TGS. Hence, we analyzed the
abundance of the transcription machinery at heterochromatin
in pob34 using previously published ChlP-seq datasets (Muraw-
ska et al., 2020). At subtelomeres, but not at euchromatin, we
found increased signals of elongating RNAPII (RNAPII Ser2P)
and H2B ubiquitination (H2Bub), a histone mark associated
with active transcription (Figures 1E and S1D). RNAPII Ser2P
and H2Bub were also slightly enriched at pericentromeres, in
agreement with our expression analysis (Figure 1E). Moreover,
deletion of factors involved in transcription elongation (paf7+)
or termination (res2+) alleviated the silencing defects in pob34
(Figures 1F and 1G). Together, our data suggest that TGS is
impaired at the genome-wide scale in pob34 and sites distal
to heterochromatin nucleation sites are most vulnerable to
FACT depletion.

To gain a more comprehensive picture of FACT engagement
with heterochromatin, we examined the genome-wide distribu-
tion of Pob3 and Spt16 (Figure S1E). This analysis showed the
highest levels of FACT at euchromatin, lower levels at subtelo-
meres, and the lowest levels at pericentromeres. This is in
accordance with recent models supporting enhanced FACT
recruitment via distorted nucleosomes, such as at transcribed
regions (Liu et al., 2020). Further, we showed that FACT accu-
mulates at the core centromeres, which are transcribed but
largely void of H3K9me2 (Figure S1F) (Sadeghi et al., 2014).
Thus, we conclude that FACT accumulates only at relatively
low levels at silent regions, which is likely sufficient to maintain
heterochromatin functions.

Altogether, our genome-wide analysis suggests that FACT’s
contribution to heterochromatin maintenance is less critical at
regions containing frequent nucleation sites. However, its role
becomes more important at nucleation-distal regions.

FACT facilitates heterochromatin spreading
Although H3K9me2 was reduced at subtelomeres in the pob34
strain, we found that Cir4 binding was unaltered (Figure S2A).

(C) Box plot of H3K9me2 ChlIP-seq enrichment [normalized log2(ChIP/Input)] calculated in 250-bp bins in WT and pob3 4. The average of two biological replicates

is shown. EU, rest of the genome (euchromatin).

(D) RT-gPCR analysis. Expression of pericentromeric (imr, dg) and subtelomeric (tlh1/2) transcripts in pob34 relative to WT after normalization toact7+.n=5to0 6
biological replicates. Data are presented as the mean + SEM. Statistical analysis (one-way ANOVA) was done on log2-transformed values.
(E) Box plots of RNAPII Ser2P and H2Bub ChiP-seq enrichment [normalized log2(ChlP/Input)] calculated in 250-bp bins in WT and pob34. The average of two

biological replicates is shown. Labeling as in (C).

(F and G) RT-gPCR analysis. Expression of heterochromatin transcripts in pob34, paf14, and pob34paf1 4 (F) or pob34, res2 4, and pob34res24 (G) relative to
WT after normalization to act7+. n = 3 biological replicates. Data are presented as the mean + SEM. Statistical analysis performed as in (D). Different letters denote

significant differences with a Tukey post hoc test at p < 0.05.
See also Figure S1 and Table S3.
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Figure 2. FACT mutants have heterochromatin spreading defects at engineered and endogenous heterochromatin

(A) Heterochromatin spreading sensor (HSS) scheme.

(B) REIIIA reporter scheme. Red bars and red “m” letters denote mutation of the Aft1/Pcr1 binding sites.

(C) Two-dimensional-density hexbin plot showing the red-normalized green and orange fluorescence for WT, clr4 4, and pob34 MAT_REIIIA cells grown at 32°C.
A density bar represents the fraction of the most dense bin. Threshold values for the fully expressed state (“on”) and fully repressed state (“off”) in each color are
indicated by red and blue guide lines, respectively. One (WT, clr44) or four (pob34) independent isolates were analyzed and are shown in a combined plot.
(D) Two-dimensional-density hexbin plot showing the red-normalized green and orange fluorescence for WT and spt716-1 MAT_REIIIA cells grown at 27°C. One
(WT) or four (spt16-1) independent isolates were analyzed and are shown in a combined plot. Labeling as in (C).

(E) RT-gPCR analysis. Expression of transcripts at TEL1L at 27°C in spt16-1 relative to WT after normalization to act7+. The TEL1L gene array scheme is shown
above the graph. n = 4 biological replicates. Data are presented as the mean + SEM.

This suggests that heterochromatin nucleation is not affected in
the FACT mutant. The gradual reduction of H3K9me2 at subtelo-
meres (Figure 1B) prompted us to investigate whether FACT
plays a role instead in heterochromatin spreading.

Precise analysis of heterochromatin spreading requires the
ability to record heterochromatin assembly both at nucleation
and distal sites. We applied a recently developed heterochro-
matin spreading sensor (HSS) assay (Greenstein et al., 2018).

4 Cell Reports 37, 109944, November 2, 2021

In this system, two fluorescent reporters are integrated at
different sites to report on heterochromatin nucleation (green)
and spreading (orange). An additional red reporter in an unre-
lated locus is used to filter for cellular noise (Figure 2A). We
integrated the HSS reporter at the mating-type locus, since
this region has been widely used for studying heterochromatin
spreading (Greenstein et al., 2018; Holla et al., 2020; Shipkoven-
ska et al.,, 2020). We used a genetic background with a
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Figure 3. Deletion of epe1+ suppresses FACT silencing and spreading defects

(A, C, and E) Silencing reporter assay at the mat locus. Five-fold serial dilutions of WT, pob34, and three independent isolates of the specified single and double
mutants were grown on the indicated media.

(legend continued on next page)
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mutationally inactivated REIIl element deficient in recruiting Clr4,
HP1, and histone deacetylases via the transcription factors Atf1
and Pcr1 (Figure 2B) (Jia et al., 2004). Hence, heterochromatin
nucleation and spreading is driven exclusively from the RNAi-
pathway-dependent cenH element at the mat locus. To quantita-
tively assess heterochromatin formation, flow cytometry (FC)
was done on log-phase cells (Greenstein et al., 2018). FC anal-
ysis showed no changes in the cell cycle profiles of mutants defi-
cient in FACT in contrast to the G1/M-arrested ts cdc25 cells,
which served as a control for cell cycle perturbations (Fig-
ure S2B). For the control clr44 strain, in which H3K9me is
completely erased, the HSS assay showed derepression of
both green and orange reporters compared to the wild-type
(WT) strain (Figure 2C). Conversely, in the pob34 strain, the or-
ange reporter was also fully derepressed in the majority of cells,
yet the green reporter remained silenced or mildly derepressed.
This result implies that pob34 cells have a heterochromatin
spreading defect (Figure 2C). We next examined Spt16, the other
FACT subunit. Since spt16 deletions are inviable, we used the ts
spt16-1 allele, which contains several point mutations within the
N terminus and affects FACT stability at the restrictive tempera-
ture (Choi et al., 2012). While spt716-1 cannot grow at 32°C, it is
viable at 27°C but displays a substantial reduction of both
Spt16 and Pob3 protein levels at euchromatin and heterochro-
matin at the nonrestrictive temperature (Figures S2C-S2E).
Hence, we concluded that the spt76-1 mutant is a partial loss-
of-FACT-function allele when grown at 27°C, which provides a
unique opportunity to study the specific functions of this histone
chaperone.

Next, we assessed heterochromatin spreading in the spt16-1
mutant using the HSS assay. Compared to WT cells grown at
32°C (Figure 2C), the two reporters were fully repressed at
27°C (Figure 2D), which is expected, as heterochromatin
spreading is temperature sensitive (Greenstein et al., 2018). In
contrast, in spt16-1 cells, the spreading reporter was partially
derepressed, while the nucleation reporter remained largely
repressed (Figure 2D), revealing a heterochromatin spreading
defect also in this FACT mutant.

Since H3K9me2 was reduced toward the heterochromatic
boundaries at subtelomeresinpob34, we nextinvestigated poten-
tial spreading defects at these lociin spt76-1. Even though spt16-1
does not display silencing defects at pericentromeres at 27°C (Fig-
ure S2F), we observed derepression of several subtelomeric genes
(Figures 2E and S2G). Remarkably, those derepressed genes are
located close to telomere-distal heterochromatin at TEL1L and
TEL1R, but not telomere-proximal heterochromatin where nucle-
ation is mediated by shelterin and RNAi. Taken together, our
results strongly suggest that FACT has a specific function in het-
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erochromatin spreading at the mating-type and subtelomeric het-
erochromatin loci.

Epe1 pathway specifically counteracts FACT at
heterochromatin

To identify pathways by which FACT contributes to heterochro-
matin spreading, we investigated potential suppressors of the
pob34 mutant. Several factors counteract heterochromatin
spreading, including the histone acetyltransferase Mst2 (Flury
et al., 2017; Georgescu et al., 2020; Wang et al., 2015), the tran-
scription elongation complex Paf1C (Kowalik et al., 2015; Sade-
ghietal., 2015; Verrier et al., 2015), and the jumoniji protein Epe1
that shows homology to histone demethyltransferases and acts
as a heterochromatin boundary factor (Ayoub et al., 2003; Braun
et al., 2011; Zofall and Grewal, 2006). We generated double mu-
tants of those genes with pob34 and monitored silencing by
growth-based silencing reporter assays and RT-gPCR (Figure 3).
Cells lacking pob3+ showed, as expected, silencing defects for
the ura4+ reporter integrated at the mat locus (Figure 3A). Dele-
tions of leo1+ or mst2+ did not suppress pob34 silencing
defects at the mating-type locus, pericentromeres, and subtelo-
meres (Figures 3A-3D). This result is in agreement with the main
functions of these factors in maintaining euchromatin by pre-
venting spreading of heterochromatin or the ectopic assembly
beyond its natural boundaries. In contrast, deletion of epe?+
suppressed the pob34 silencing defects nearly to levels as in
the WT cells at all tested heterochromatic regions (Figures 3E
and 3F). Moreover, epel4 reduced the expression of several
subtelomeric genes in pob34, suggesting that it also counter-
acts heterochromatin spreading (Figure 3G). To test this more
directly, we performed the HSS assay in the double spt16-
1lepe14 mutant. Indeed, heterochromatin spreading was
completely restored (Figure 3H, compare with Figure 2D).
Together, our suppressor analysis revealed that the Epe1
pathway specifically suppresses silencing and spreading de-
fects of FACT mutants, supporting the distinct function of
FACT in heterochromatin spreading.

Epe1 is recruited to heterochromatin via Swi6, which binds to
H3K9me3 (Zofall and Grewal, 2006). The specific suppression of
the FACT spreading defects by epe14 raised the possibility that
Epe1 steady-state levels or abundance at heterochromatin are
increased in the FACT mutants. To test this, we examined
Epe1 turnover, which is mediated by the Cul4-Ddb1-Cdt2 ubig-
uitin ligase complex in S phase (Braun et al., 2011). Although
degradation of Epe1 still occurs in pob34 in S phase, we found
increased steady-state levels of Epel in cycling cells (Fig-
ure S3A). This may suggest that Epe1 accumulates at hetero-
chromatin when FACT is impaired. However, ChIP-gPCR of

(B, D, and F) RT-gPCR analysis. Expression of imr and tlh1/2 transcripts in the indicated strains relative to WT after normalization to act7+.n=3 (B) or 4 (D and F)
biological replicates. Data are presented as the mean + SEM. One-way ANOVA was done on log2-transformed values. Different letters denote significant

differences with a Tukey post hoc test at p < 0.05.

(G) RT-gPCR analysis. Expression of transcripts at TEL1L in pob34, epe14, and pob34epe14 relative to WT after normalization to act7+. n = 4 biological
replicates. Data are presented as the mean + SEM. One-way ANOVA was done on log2-transformed values. Different letters denote significant differences with a

Tukey post hoc test at p < 0.05.

(H) Two-dimensional-density hexbin plot showing the red-normalized green and orange fluorescence for spt16-1epe1A MAT_REIIIA cells grown at 27°C. Three
independent isolates were analyzed and are shown in a combined plot. Labeling as in Figure 2C.

See also Figure S3 and Table S3.
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Figure 4. FACT facilitates H3K9me2 to H3Kme3 transition by suppressing histone turnover
(A, B, and D) H3K9me2 (A), H3K9me3 (B), and Swi6 (D) ChIP-gPCR at pericentromeres and TEL1L in WT and spt16-1. The TEL1L gene array is shown above the
graphs. ChIP was normalized to the average of three euchromatic regions. n = 3 biological replicates. Data are presented as the mean + SEM. The p values were
obtained by linear mixed effect regression (*p < 0.05; **p < 0.01; ***p < 0.001). ns, not significant (p > 0.05).
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Epelin pob34 and spt16-1 showed no increased signal of Epe1
at pericentromeres or subtelomeres (Figure S3B). Instead, we
found decreased levels of Epel at subtelomeres in pob34,
consistent with reduced H3K9me?2 at those loci. Based on these
findings, we reasoned that the spreading defect in FACT mutants
is likely not due to increased Epe1 accumulation at heterochro-
matin. However, it is possible that heterochromatin alterations
in FACT mutants promote transient Epe1 binding that cannot
be captured by ChIP assays.

FACT promotes the transition of H3K9me2 to H3K9me3
through histone turnover suppression

Having established a function of FACT in heterochromatin
spreading, we sought to elucidate the underlying mechanism
and inspected the heterochromatin structure in the spt76-1
mutant. H3K9me2 and H3K9me3 have distinct heterochromatic
functions. H3K9me2 domains are transcriptionally active and suf-
ficient for RNAi-dependent cotranscriptional gene silencing (Jih
et al., 2017). Conversely, H3K9me3-marked chromatin is refrac-
tory to transcription, directs RNAi-independent gene silencing,
and preferentially retains Swi6 (Jih et al., 2017; Schalch et al.,
2009; Yamada et al., 2005). Intriguingly, while H3K9me2 levels
were unaltered in spt16-1, H3K9me3 levels were reduced at
several loci at the TEL1L subtelomeric region (i.e., SPAC212.09c,
SPAC212.08c, and SPAC212.06¢; compare Figure 4B with 4A).
This was not seen at pericentromeres, which are mainly cotran-
scriptionally repressed through RNAIi. This was also different
from pob34 cells, which showed a significant decrease of
H3K9me2 at subtelomeres (Figure 1B), suggesting that pob34
displays broader phenotypes, possibly due to pleiotropic and/
or indirect effects. Next, we combined the spt16-1 allele with a
clra™4%Y mutant impaired in the transition from H3K9me2 to
H3K9me3 (Jih et al., 2017) and observed a synthetic defect in
the silencing of dg and tlh1/2 transcripts (Figure 4C). Since effi-
cient heterochromatin spreading requires a self-propagating
loop of H3K9 methylation and Swi6 binding, we also monitored
Swi6 and found reduced Swi6 binding in spt16-1 at subtelomeric
genes close to the heterochromatin boundary (SPAC212.12,
SPAC212.06c; Figure 4D). Together, our results suggest that
the H3K9me2/me3 transition is impaired in spt16-1, which likely
impairs the heterochromatin spreading process.

How can a histone chaperone facilitate the transition of
H3K9me2 to H3K9me3? In contrast to mono- and dimethylation,
the methylation rate of H3K9me3 by Clr4 is very slow (Al-Sady
et al., 2013). The molecular mechanism of this reaction step is
not fully understood. Histone turnover rates are critical for estab-
lishing methylation states (Chory et al., 2019), and an increased
histone turnover was shown in pob34 for the mating-type locus
(Holla et al., 2020). Thus, we hypothesized that increased histone
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turnover in the absence of FACT impairs H3K9 trimethylation by
Clr4. Indeed, both pob34 and spt16-1 strains showed synthetic
genetic interactions with two factors known to repress histone
turnover at heterochromatin, the histone deacetylase CIr3 (Aygun
etal., 2013) and the chromatin remodeler Fft3 (Taneja et al., 2017)
(Figure 4E). Histone H3 ChlP-seq revealed a small but reproduc-
ible reduction of H3 at subtelomeres in pob34 (Figures
S4A-S4C). This subtle histone change may indicate increased
nucleosome instability due to elevated histone turnover. To test
this further, we used the recombination-induced tag exchange
(RITE) approach (Svensson et al., 2015) to monitor incorporation
of new H3 histones tagged with a T7 epitope (Figure 4F). Both WT
and pob34 strains displayed similar tag switch recombination
rates (76.5% for WT versus 73.4% for pob34) and H3-T7 signals
were not increased at a control euchromatic gene (Figure S4D).
Nonetheless, the pob34 mutant exhibited increased incorpora-
tion of H3-T7 at the TEL1L region (Figure 4G), implying that the
H3 turnover rate is increased at subtelomeric heterochromatin.
Since Epel was implicated in promoting histone turnover
(Aygunetal., 2013), we tested whether epe?+ deletion suppresses
elevated histone turnover in the FACT mutant. Using the RITE
approach, we found that histone turnover was partially decreased
in the double pob34epe1 4 mutant compared to pob34 at various
subtelomeric loci (th1-5prime and SPAC212.12; Figures 4G and
S4D), which correlated with reduced RNAPII levels at this region
(Figure S4E). We concluded that suppression of heterochromatin
spreading by epe14 in the FACT mutants is related to the role of
Epe1 in promoting histone turnover, likely through heterochromat-
in transcription (Aygun et al., 2013; Bao et al., 2019; Zofall and
Grewal, 2006). Altogether, our data indicate that FACT regulates
heterochromatin spreading by promoting the transition of
H3K9me2 to H3K9me3 by histone turnover suppression.

DISCUSSION

The involvement of FACT in heterochromatin silencing has been
appreciated for a long time; however, the underlying mecha-
nisms have been unclear (Holla et al., 2020; Lejeune et al.,
2007). One limiting factor of previous studies was the usage of
the pob34 strain, which due to its strong silencing and pleio-
tropic effects likely masked specific roles of FACT in heterochro-
matin formation. Here, by using a partial loss of function, the
spt16-1 ts allele, we were able to show that FACT specifically
promotes heterochromatin spreading. First, we show with the
HSS assay that the spreading reporter is derepressed, while
the nucleation reporter remains largely silenced in both the
pob34 and spt16-1 mutants. Second, genes distal from nucle-
ation sites at subtelomeric heterochromatin are derepressed in
spt16-1. Third, H3K9me3 and Swi6 binding, but not H3K9me2,

(C and E) RT-gPCR analysis. Expression of dg and tlh1/2 transcripts in the indicated strains relative to WT after normalization to act?+. The spt16-1, fft34, spt16-
11ft34, and corresponding WT were shifted to 37°C for 1.5 h. n = 3 biological replicates. Data are presented as the mean + SEM. One-way ANOVA was done on
log2-transformed values. Different letters denote significant differences with a Tukey post hoc test at p < 0.05.

(F) Histone turnover assay scheme.

(G) ChIP-gPCR of the new histone (H3-T7) at TEL1L in WT, pob34, and pob34epe1 4. Input-normalized ChlP signals from the uninduced samples (0 h) were
subtracted from the input-normalized signals from the B-estradiol-induced samples (4 h). Error bars represent + SEM from three independent experiments. One-
way ANOVA was done on log2-transformed values. Different letters denote significant differences with a Tukey post hoc test at p < 0.05.

See also Figure S4 and Table S3.
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is reduced in spt16-1 at subtelomeric heterochromatin. Fourth,
FACT acts synergistically with the Clr4 H3K9me2/me3 transition
mutant. Finally, deletion of epe7+, which counteracts hetero-
chromatin spreading, suppresses most of the silencing and
spreading defects of the FACT mutants. Based on our results,
we propose that FACT maintains a low level of histone turnover,
which enables a productive H3K9 trimethylation step by Cir4 and
heterochromatin spreading.

Our studies are in agreement with the idea that the histone
turnover rate is crucial for determination of the genome methyl-
ation states (Becker et al., 2016; Chory et al., 2019). Particularly
low histone turnover may be important for enzymes with slow ki-
netic rates, like Clr4 that generates H3K9me3 roughly 10 times
slower than H3K9me1 and H3K9me2 (Al-Sady et al., 2013).
Similar slow kinetic properties are found for the human K9 and
K27 methyltransferases, G9a (Patnaik et al., 2004) and EZH2
(Alabert et al., 2020; Chory et al., 2019), respectively. Thus, low
histone turnover emerges as a critical factor for the establish-
ment of repressive chromatin domains.

How is FACT involved in H3K9me3 maintenance and low
histone turnover? The efficiency of adjacent nucleosome methyl-
ation by Clr4, and thus heterochromatin spreading, likely
depends on the retention of the enzyme on the already methyl-
ated substrate. FACT could, as at euchromatin, passively
maintain methylated histones by preventing heterochromatin
“scrambling” (Jeronimo et al., 2019; Svensson et al., 2015). In
this scenario, impaired euchromatic and heterochromatic histone
reassembly in the FACT mutants would lead to an increased pool
of soluble histones, which could be randomly incorporated into
the genome, including heterochromatin. This would result in
increased histone replacement and reduced H3K9me, which in
turn could open a window of opportunity for the transcription ma-
chinery to bind to heterochromatin. Alternatively, transcription it-
self could contribute to the increased histone turnover in the
FACT mutants. In that case, FACT would maintain low histone
turnover by blocking access of RNAPII to heterochromatic re-
gions. This notion is supported by results from our RNAPII
ChlP-seq analysis and identification of suppressors linked to
transcription elongation or termination (paf1, res2) or to promo-
tion of heterochromatin transcription (epe7). This suggests that
FACT protects heterochromatin from illegitimate transcription
and likely transcription-induced histone turnover. A recent study
revealed that FACT is recruited to heterochromatin via an interac-
tion with the chromoshadow domain of Swi6 (Takahata et al.,
2021). It is thus tempting to speculate that this interaction keeps
FACT in the vicinity of heterochromatin and together with other
silencing factors creates a physical barrier for RNAPII and histone
replacement, which would promote the H3K9me3 state. In this
scenario, FACT would have a more “active” role in maintaining
low heterochromatic histone turnover. Our results cannot unam-
biguously distinguish between those two models and further
studies are needed to clarify this.

Histone turnover is linked to heterochromatin inheritance and
heritable changes in gene expression patterns (Aygun et al.,
2013; Greenstein et al., 2018; Holla et al., 2020; Shan et al.,
2020; Tanejaetal., 2017). Our results support the findings that his-
tone chaperones that guide heterochromatic histone turnover
may be involved in controlling cell fate (Brumbaugh et al., 2019;
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Cheloufietal.,2015; Kolundzic et al., 2018). Future studies should
address whether FACT function in heterochromatin spreading is
conserved in metazoan development and cell fate maintenance.

Limitations of study

Our analysis revealed important differences between the two
FACT mutants. While H3K9me2 levels are gradually reduced
from the subtelomeric nucleation sites in pob34, H3K9me2 is
not changed in spt716-1. In contrast to pob34, which has strong
silencing defects throughout heterochromatin, spt76-1 shows
derepression of genes primarily at heterochromatin boundaries
that are distal from nucleation sites, in agreement with its defects
in heterochromatin spreading. One limitation of the study is that
due to strong silencing defects of the pob34 allele, we cannot
exclude that some of the observed phenotypes are indirect.
However, the specific spreading defect seen in the partial loss-
of-function spt16-71 mutant suggests that heterochromatin
spreading regulation is indeed the main function of FACT at het-
erochromatin. Thus, our results highlight the importance of
hypomorphic mutants for studying abundant and pleiotropic
protein complexes.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

anti-H3K9me2 Abcam Ab1220; RRID:AB_449854
anti-H3K9me3 Merck Cat#07-442; RRID:AB_310620
anti-Swi6 Abcam Ab188276

anti-H3 clone 1B1-B2 Active Motif Cat#61475; RRID:AB_2687473
anti-H2Bub clone 56 Active Motif Cat#39623; RRID:AB_2793279
anti-Pol 1ISer2 clone 3E10 Dirk Eick Lab N/A

anti-Pob3 Murawska et al. (2020) N/A

anti-Spt16 Murawska et al. (2020) N/A

anti-PCNA (PC10) Santa Cruz sc-56; RRID:AB_628110

anti-HA Sigma H6908; RRID:AB_260070
anti-Flag Sigma F7425; RRID:AB_439687

anti-T7 Merck 69522-3; RRID:AB_11211744
anti-rabbit IgG HRP conjugate BioRad Cat#1706515; RRID:AB_2617112
anti-mouse IgG HRP conjugate BioRad Cat#1706516; RRID:AB_11125547
anti-rabbit IgG, highly cross-adsorbed, Sigma SAB4600200

CF™ 680

anti-mouse IgG, highly cross-adsorbed Sigma SAB4600199; RRID:AB_2819153

CF™ 680

Bacterial and virus strains

Escherichia coli XL1-blue Ladurner Lab N/A
Chemicals, peptides, and recombinant proteins

TRIzol Reagent ThermoFisher Cat#15596026
Superscript Il Reverse Transcriptase Invitrogen 18080085
PowerUp SYBR® Green Master Mix ThermoFisher A25742
PowerTrack SYBR® Green Master Mix ThermoFisher A46109
NEBNext® Poly(A) mRNA Magnetic New England Biolabs E7490S
Isolation Module

Zymolyase 100T Nacalai Tesque, Japan 07665-55
Proteinase K Sigma Cat#3115801001
Agencourt AMPure XP beads BeckmanCoulter A63880
Dynabeads Protein G ThermoFisher Cat#10009D
Phiusion HF DNA polymerase New England Biolabs MO0530S

Zymo Research ChIP DNA Clean & Zymo Research Cat#D2505
Concentrator

Immobilon Western HRP Substrate Millipore WBKLS0500
cOmplete™ Protease Inhibitor Cocktalil Roche Cat#11697498001
Benzonase® Nuclease Sigma Cat#E1014
Hydroxyurea Sigma Cal#H8627
B-estradiol Sigma Cal#E8875
Hygromycin B ThermoFisher Cat#10687010
Immobilon-FL PVDF Merck Cat#IPFL0O0005
Roti®PVDF Roth Cat#T830.1
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Critical commercial assays

TURBO DNA-free Kit ThermoFisher AM1907
NEBNext® Ultra [| DNA Library New England Biolabs E7645S
Prep Kit for lllumina®

NEBNext® Multiplex Oligos New England Biolabs E7500S

for lllumina® (Index Primers Set 2)

Qubit dsDNA HS Assay Kit ThermoFisher Q32851
High Sensitivity DNA Assay Agilent Cat#5067-4627
NEB Golden Gate Assembly New England Biolabs Cat#E1601S

Kit (Bsal-HFv2)

Deposited Data

H3K9me2 ChlIP-seq in pob34 This study GEO: GSE174641

Raw western blot images This study N/A

Code for the data analysis This study https://doi.org/10.5281/zenodo.5564796
Experimental models: Organisms/strains

S. pombe This study Table S1

Oligonucleotides

RT-QPCR, ChIP-QPCR, cloning This study Table S2

Recombinant DNA

pLSB Torres-Garcia et al. (2020) N/A

Software and algorithms

bowtie2 (version 2.2.9)

csaw R/Bioconductor (version 1.18.0)

edgeR package (version 3.26.8)

GenomicRanges package (version 1.38.0)

rtracklayer package (version 1.44.4)

zoo package (version 1.8.9)
Homer

R (version 4.0.5)

RStudio (version 1.4.1103)
flowCore_2.2.0

ggplot2
Ime4 (version 1.1-27)

ImerTest (version 3.1-3)

tidyverse_1.3.1
hexbin_1.28.2

gridExtra_2.3

CRISPR4P

Langmead and Salzberg (2012)

Lun and Smyth (2016)

Robinson et al. (2010)

Lawrence et al. (2013)

Lawrence et al. (2009)

Cran.R

Heinz et al. (2010)
Cran.R

RStudio
Bioconductor

Cran.R
Cran.R

Cran.R

Cran.R
GitHub

Cran.R

Torres-Garcia et al. (2020)

http://bowtie-bio.sourceforge.net/bowtie2/
index.shtml

https://bioconductor.org/packages/
release/bioc/html/csaw.html

https://bioconductor.org/packages/
release/bioc/html/edgeR.html

https://bioconductor.org/packages/
release/bioc/html/GenomicRanges.html

https://www.bioconductor.org/packages/
release/bioc/html/rtracklayer.html

https://cran.r-project.org/
http://homer.ucsd.edu/homer/
https://cran.r-project.org/
https://www.rstudio.com/

https://bioconductor.org/packages/
release/bioc/html/flowCore.html

https://ggplot2.tidyverse.org/

https://cran.r-project.org/web/packages/
Ime4/index.html

https://cran.r-project.org/web/packages/
ImerTest/index.html

https://tidyverse.tidyverse.org/

https://cran.r-project.org/web/packages/
hexbin/index.html

https://cran.r-project.org/web/packages/
gridExtra/index.html

http://bahlerweb.cs.ucl.ac.uk/cgi-bin/
crisprdp/webapp.py

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad Prism GraphPad Software Inc. https://www.graphpad.com/
scientific-software/prism/

QuantStudio™ Design and Analysis ThermoFisher https://www.thermofisher.com/us/en/

Software home/technical-resources/
software-downloads/ab-quantstudio-3-
and-5-real-time-pcr-system.html

Image Studio™ Lite LI-COR Biosciences https://www.licor.com/bio/

image-studio-lite/

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sigurd
Braun (sigurd.braun@gen.bio.uni-giessen.de) or the Corresponding Contact, Magdalena Murawska (magdalena.murawska@bmc.
med.Imu.de).

Materials availability
Yeast strains generated in this study are available upon request.

Data and code availability

® H3K9me2 ChlIP-seq data in wild-type and pob34 strains have been deposited at GEO and are publicly available as of the date
of publication. Accession numbers are listed in the key resources table.

o All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key
resources table.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

S. pombe strains used in this study are listed in Table S1. Strains were generated with standard procedures using yeast transforma-
tion and validated by colony PCR. Point mutants were generated using a CRISPR/Cas9 system according to the published method
(Torres-Garcia et al., 2020). All CRISPR/Cas9 generated strains were sequenced to confirm the presence of the mutation. Strains
used for RITE assay were generated by crossing out the cdc25-22 allele using random spore analysis. Strains were grown in rich
media (YES) at 32°C, 30°C or at 27°C as indicated. For temperature sensitive alleles, strains were grown at 26°C overnight and
then they were shifted to 36°C for 1.5 hours. 5-FOA medium contained 1 g/L 5'-fluoroorotic acid.

METHOD DETAILS

RNA extraction and cDNA synthesis

RNA extraction and gene expression analysis were done as described in (Barrales et al., 2016; Murawska et al., 2020). Briefly, 50 mL
of yeast culture at OD600 0.5-0.8 was spun down at RT and the pellet was frozen in liquid nitrogen. Cells were thawed on ice and
resuspended in 1 mL of TRIzol. 250 pL of zirconia beads were added and cells were broken with Precyllis 24 (Peglab) for 3x30 s
with 5 min rest on ice. The extract was spun down at 13500 rpm at 4°C for 10 min. The cleared lysate was extracted twice with chlo-
roform and spun at 13500 rpm at 4°C for 10 min. The aqueous phase was taken and RNA was precipitated with isopropanol. The
pellet was washed twice with 75% EtOH, air-dried and resuspended in 50 uL of RNase free dH20. The RNA concentration and purity
were determined by Nano-drop. For RT-QPCR 20 mg of RNA was treated with 1 uL of TURBO DNase | (Ambion) for 1 hr at 37°C. The
reaction was inactivated by adding 6 pL of DNase inactivation reagent followed by the manufacturer instructions. For cDNA synthesis
5 ng of total DNase-treated RNA was reverse transcribed with 1 uL of oligo-(dT)20 primers (50 pM) and 0.25 pL of Superscriptlil
(Invitrogen) according to the manufacturer instructions.

Gene expression analysis

cDNAs were quantified by gPCR using Fast SYBR Green Master mix (Life Technologies) and a 7500 Fast real-time PCR system
(Applied Biosystems). cDNA was analyzed by gPCR using gene specific primers (Table S2). The quantification was based on a stan-
dard curve method obtained with QuantStudioTM Design and Analysis Software. Sheared S. pombe genomic DNA was used as a
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standard. For gene expression the samples were normalized to act? gene. The normalized datasets were shown as relative to the
mean value of the WT strain which was set to 1, errors bars were calculated as SEM and displayed accordingly.

ChIP-seq and ChiP-qPCR

ChIP-QPCR and ChiIP-seq were performed as described previously (Murawska et al., 2020). Briefly, 100 mL yeast cultures were grown
to mid-log phase to OD600 = 0.6. The cultures were cooled down at RT for 10 min and fixed with 1% FA for 20 min at RT on the shaker.
Cross-linking was stopped with 150 mM Gilycine for 10 min at RT. Cells were washed 2x with 30 mL ice-cold dH20O, the pellet was frozen
inliquid nitrogen and kept at —80°C until further processing. Pellets were resuspended in 1 mL FA(1) buffer (650 mM HEPES-KOH, pH 7.5,
150 mM NaCl, 1 mM EDTA, 1% Triton X-100 (v/v), 0,1% NaDeoxycholate (w/v), 0,1% SDS (w/v), supplemented with Roche protease
inhibitors. Cells were broken in a bead beater (Precellys): 9x30s (for ChlP-seq or 6x30s for ChIP-QPCR). After centrifugation, the super-
natant and the pellet were sonicated for 15 min at 4°C. Chromatin extracts were spun down for 10 min at 14000 rpm at 4°C. Different
amount of chromatin was used for different antibodies: 100 pl chromatin (for H3-T7, Spt16, Pob3 ChlIP) or 500 ul chromatin (for Pol II-
Ser2, H3K9me2, H3K9me3, H2Bub, Swi6, Clr4-HA, Epe1-Flag ChlIP). The antibodies used for ChIP are listed in Key Resources Table.
Samples were incubated with antibodies O/N at 4°C. 25 uL of FA(1) buffer washed Dynabeads were added to each sample and they
were incubated for 2 hours at 4°C. Samples were then washed 3x for 5 min at RT with FA(1) buffer, FA(2) buffer (FA(1) buffer with 500 mM
NaCl), once with LiCl buffer (10 mM TrisHCI, pH 8.0, 0.25 M LiCl, 1 mM EDTA, 0,5% NP-40 (v/v), 0,5% NaDeoxycholate (w/v)) and once
with TE buffer. DNA was eluted from the antibodies with ChIP Elution buffer (50 mM Tris HCI, pH 7.5, 10 MM EDTA, 1% SDS) for 15 min at
65°C in a thermomixer set to 1300 rpm. DNA was treated with Proteinase K and de-crosslinked O/N at 65°C. DNA was purified with
Zymo Research ChIP DNA Clean and Concentrator kit according to the manual instructions. To obtain enough material for the library
preparation usually 3 technical IP replicates were pulled. The ChIP-seq libraries were prepared with 2 ng of DNA with NEBNext®Ultra ll
DNA Library Prep Kit for lllumina® according to the manual instructions. The libraries were barcoded and sequenced at LAFUGA at the
Gene Center (LMU). For ChIP-QPCR, the isolated DNA was quantified by qPCR as described for the gene expression analysis. Unless
otherwise noted, the mean was calculated from three independent experiments and errors bars were calculated as SEM and displayed
accordingly. QPCR signals were normalized against the input samples for each primer position as internal control. For ChIP experi-
ments with anti-H3K9me2, anti-Swi6, anti-H3K9me3, the input normalized values were corrected for variation in IP efficiency by
normalizing against the mean of 3 euchromatin loci (act1, adh1-prom, adh1-5prime). For RNAPII Ser2P ChlP, the input normalized
values were corrected for variation in IP efficiency by normalizing against the mean of 3 euchromatin loci (act1, ade2, adh1-3prime).
Euchromatin normalized ChIPs were displayed as ‘Norm to EU’. For ChIP experiments with anti-Pob3, anti-Spt16 and anti-HA
(CIr4-HA ChIP) ChIP signals were normalized to input and displayed as ‘% of Input’. For the histone turnover ChiP, incorporation of
the new histone H3-T7 was calculated as follows: input normalized signals from the B-estradiol-uninduced samples were subtracted
from the input normalized signals from the B-estradiol-induced samples as displayed as ‘4hrs-Ohrs’ HU.

ChlP-seq analysis

Single-end reads (50 bp) were mapped to the reference genome (Schizosaccharomyces pombe ASM294v2) using bowtie2 (version
2.2.9). Reads were counted in either 250 bp or 10 kb windows (bins) using the windowCounts() function from the csaw R/Bio-
conductor package (version 1.18.0). Normalization factors were calculated by the normFactors() function using the “TMM” method
on count matrices with 10 kb bins and applied on count matrices with 250 bp bins. Normalized, log2-transformed count matrices
were obtained by the cpm() function (edgeR package, version 3.26.8). ChlP samples were normalized by their corresponding inputs
(i-e., subtraction in log2-scale). Input-normalized count matrices were converted to coverage vectors using the coverage() function
(GenomicRanges package, version 1.38.0) and exported as bigwig files (rtracklayer package, version 1.44.4). For visualization, cov-
erages were smoothed by the rollmean() function (zoo package, version 1.8.9) and plotted using custom R functions.

Broad H3K9me2 peaks were identified using the Homer software package (Heinz et al., 2010). Tag directories were created with
the settings -mapq 1 and parameters for findPeaks command were set to -style histone -F 2. Peaks were called on replicates inde-
pendently and the intersect was taken as final set.

Normalized count matrices (with 250 bp bins) were subset by telomeric, centromeric heterochromatin or euchromatin regions on
chromosome | and Il. Telomeric and centromeric bins were selected by the overlap of wild-type H3K9me2 peaks with telomeres
(1:1-100000; 1:5479000-5579000; 11:1-100000; 11:4440000-4539000) or centromeres (1:3720000-3820000; 11:1570000-1670000),
respectively. The data were aggregated using two approaches: either replicates were averaged and values of bins were visualized
as boxplots or the median of bins were calculated for each replicate and region, and visualized as dot plots. Statistical analysis was
performed on aggregated data using the second approach (i.e., on medians). P values were obtained by fitting a linear mixed effect
model (Ime4,_version 1.1-27 and ImerTest, version 3.1-3 packages) with genotype (e.g., wild-type or pob34) and region (e.g., telo-
meric, centromeric or euchromatin) as fixed effects and sample id as random intercept.

Histone turnover assay

RITE histone turnover assay was done as before (Greenstein et al., 2018) with several modifications. Briefly, cells were inoculated from
a pre-culture to 100 mL YES supplemented with Hygromycin B (100 png/ mL, Invitrogen) and grown O/N at 30°C to OD600 0.4-0.8. 20
ODs of cells were taken and processed for ChIP as the 0 hr (uninduced) time point. The remaining cells were washed 2x in media devoid
of Hygromycin B. 12.5 ODs of cells were taken and resuspended in 50ml YES supplemented with 15 mM Hydroxyurea (HU) and 1.5 uM
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B-Estradiol (ER) and incubated further for 4 additional hours at 30°C. 20 ODs of cells were processed for ChlP as the 4 hr (induced) time
point.

Protein extract preparation

Whole cell extracts (WCE) were prepared as published before (Murawska et al., 2020). Briefly, 50 mL yeast cultures were grown to
mid-log phase (OD600 0.5-0.8). The cultures were spun down and cell pellets were resuspended in 500 pL of Workman Extract Buffer
(40mM HEPEs pH7.4, 250mM NaCl, 0.1% NP40, 10% Glycerol, 1 mM PMSF, Roche proteinase inhibitors). 250 puL of glass beads
were added and cells were lysed with Peglab precellys homogenizator (3x30 s). The extracts were shortly spun down at
2500 rpm at 4°C. The supernatant and the pellet were treated with benzonase in the presence of 2mM MgCI2 for 30 min on ice
and spun down at the maximum speed for 10 min at 4°C. The extracts were frozen in liquid nitrogen and stored at —80°C or imme-
diately used for western blot analysis. Protein concentration was measured with Bradford reagent (BioRad).

For HU treatment assay, strains were pre-cultured in liquid YES at 27°C for 24 hours, back diluted and grown to log-phase. A con-
trol (untreated) culture and treated culture (20mM HU) were incubated for a further 2 hours at 27°C. Total protein extracts from
OD600 = 1 were prepared by trichloroacetic acid (TCA) precipitation according to (Knop et al., 1999). Proteins solubilized in HU buffer
(200 mM phosphate buffer, pH 6.8, 8 M urea, 5% w/v SDS, 1 mM EDTA,100 mM DTT) and heat denatured at 65°C for 10 minutes were
separated with SDS-polyacrylamide gel electrophoresis and subjected to Western Blot analysis.

Western blot

Western blot was performed as published before (Murawska et al., 2020). Briefly, proteins were separated with SDS-polyacrylamide
gel electrophoresis and electroblotted onto methanol activated polyvinylidene difluoride (PVDF) membranes in Blotting Buffer
(20 mM Tris, 192 mM glycin, 20% methanol) for 1hr at 400 mA at 4°C. Membranes were then incubated in Blocking Buffer (TBS,
0.1% Tween 20, 5% non-fat dry milk) for 40 min - 1hr at RT followed by an incubation in the Blocking Buffer with the appropriate
primary antibody for 1hr at RT. Membranes were washed three times for 5 min in Washing Buffer - TBST (TBS, 0.1% Tween 20)
and then incubated in Blocking Buffer containing the appropriate fluorescence or HRP-conjugated secondary antibodies for
40 min - 1 hour at RT followed by 3 times washing in TBST for 5-10 min. Fluorescent western blot signals were visualized with Li-
Cor Imaging System. Chemiluminescent western blot signals were visualized with the Immobilon Western Chemiluminescence
HRP substrate (Millipore, WBKLS0500) using BioRad ChemicDoc MP Imaging System.

HSS assay

Cells containing HSS reporters were grown for flow cytometry experiments as described (Greenstein et al., 2020). Flow cytometry
was performed using a Fortessa X20 dual machine (Becton Dickinson) and high-throughput sampler (HTS) module. Depending on
strain growth and sample volume, data from approximately 4,000-100,000 cells were collected. Fluorescence detection, compen-
sation, and data analysis were done as described (Al-Sady et al., 2016; Greenstein et al., 2018). 2D-density histogram plots were
generated as described previously (Greenstein et al., 2018) with the following exceptions: Data from biological replicates were
merged together prior to plotting. Hexbin plots were generated in R via the ggplot2 package. The guide-lines for cutoff values of
“off” and “on” states for Green and Orange were determined using mean of a Red-Only control strain plus 3 times the standard de-
viation (SD) and mean of cir4 4 (after removal of color-negative cells) minus 1 SD value respectively. For the spt716-1 experiment, the
fraction of cells below the “off” threshold for both “green” and “orange” were calculated for each biological replicate independently.

Cell cycle analysis

PAS99 wild-type, pob34::KAN and spt16-1:KAN cells were struck onto YS plates, and grown at 27°C in EMM liquid culture. Cell were
diluted to OD 0.1 and grown another 9 hr in EMM at 27°C till OD ~0.5-0.8. For the cdc25 experiment, cells were grown at 25°C over-
night, diluted as above and then either kept at 25°C or moved to 37°C for 2 or 4hrs. Cells were then fixed, RNaseA treated and stained
with Sytox Green as described (Knutsen et al., 2011) but instead of sonication, cells were vigorously vortexed just prior to Flow cy-
tometry analysis. Flow cytometry and analysis was performed as described (Greenstein et al., 2018). Within each experiment, the
same gates were applied to all specimen for forward and side scatter, to select a population of similar sized and shaped cells to
analyze, and for Width and Area of SyTOX green fluorescence, to assess cell cycle stage distributions.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification, number of replicates and statistical tests employed are described in the figure legends or in the method section.
Shortly, for RT-QPCR, RITE assay and RNAPII ChIP-QPCR statistical analysis was done on log2 transformed values. One-way
ANOVA was performed, and different letters were assigned with significant differences with a Tukey’s post hoc test at p < 0.05.
For ChIP-QPCR data at Figures 4A, 4B, and 4D statistical analysis was performed by fitting a linear mixed effect model (R packages:
Ime4 version 1.1-27 and ImerTest version 3.1-3), where the group variable (i.e., the combination of primer and genotype) served as a
fixed effect and the sample variable (i.e., the combination of replicate number and genotype) as a random intercept. For each primer,
mutant versus wild-type comparisons were tested and p values were adjusted by the Benjamini-Hochberg method. The details of
statistical analysis can be found in the figure legends, p values are listed in Table S3.
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