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ABSTRACT: Preprocessing is a critical step in the analysis pipeline of spectroscopic
data. However, students are rarely introduced to preprocessing when learning spectral
techniques in laboratory courses which in turn may affect and delay their progress in the
field. Despite its undoubtable importance, students will be mainly performing
spectroscopic analysis in the context of a research project where preprocessing is
encountered as part of a routine or “recipe” to follow. In this work, a Python-based
application has been developed that allows facile application of common spectral
preprocessing techniques with instantaneous results to support student learning. The
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developed application, i.e. Porchlight, and supplied Jupyter notebooks can substitute
costly commercial software and make spectroscopic analysis widely available to students, trainees, and users in general.
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Laboratory Instruction, Physical Chemistry

B INTRODUCTION

Computer programs are commonplace as an educational aid,
especially in chemical engineering education. Within chemical
engineering, process simulation software is now indispensable
for teaching process design, unit operations, and control.' ™
Kinetics courses will often have students programming in
Python or MATLAB to predict concentration profiles in
complex reactor systems. Despite concerns of students treating
such applications as black boxes, applications and virtual
laboratories have been shown to increase conceptual under-
standing in students.”” Such incorporation of computer-based
and programming lessons is fortunate, as programming is a
desirable skill for chemical engineers in industry.” However,
the benefits are not just limited to chemical engineering. The
American Chemistry Society recently published a book on the
ways educators are incorporating computer applications and
programming to strengthen chemistry education.” With these
successes in chemical engineering and chemistry, we can
expect value in supplementing spectroscopic education with
computer applications and tutorials.

Computer-based teaching aids are being developed for
spectroscopic education. Some intend to aid understanding the
theory behind spectroscopies, such as how proton relaxation
leads to spectral peaks in nuclear magnetic resonance (NMR)
spectroscopy, or how fundamental molecular vibrations lead to
peaks in infrared (IR) spectroscopy.”” Another category of
applications intends to teach the practice of collecting spectra,
with applications for NMR, IR, UV—vis, fluorescence, and
most recently Raman spectroscopies.lo_13 These programs
allow students to consider real world ramifications of
instrumental parameters in data collection, or at least practice
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the concepts of data collection. Others have focused on the
computer interpretation of spectra, where they developed
computer applications or programming lessons for chemo-
metrics."*~"” These many examples provide evidence of the
community’s interest in theory and practice of spectroscopy;
however the aspect of preprocessing raw data before any
spectroscopic analysis is still neglected, despite its ubiquity.
Preprocessing spectra has been described by Rogers et al. as
mathematical techniques to reduce noise and systematic
variations and to enhance spectral features.'® One such
circumstance would be correcting for scattering differences
between catalyst powder samples in Raman spectroscopy.
Preprocessing is standard practice in spectroscopy, with
protocols for Raman and Fourier transform IR (FTIR)
spectroscopy of biological material recommending preprocess-
ing data by default."””" It is known that the preprocessing
techniques applied to data affect downstream analysis which in
turn potentially affects the interpretation and validation of
data.”’ A sizable portion of literature has been dedicated
toward consolidating and describing available preprocessing
methods.'**7*° Others have made attempts to optimize the
usage and combination of preprocessing methods.”’ '
However, preprocessing methods are not created equally. A
common but susceptible goal is baseline fitting, where Liland
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Figure 1. ATR-FTIR spectra of fructose (black), glucose (red), levulinic acid (blue) binary solutions in water, glucose and fructose ternary
solutions in water (green), and water (violet) alongside parity plots from a four component PLS model. In (a) are raw spectra, (b) the
corresponding concentration predictions, (c) Standard Normal Variate (SNV) processed spectra and (d) corresponding concentration predictions,
and (e) SNV then trimmed spectra and (f) corresponding concentration predictions.

et al. found that the techniques which improved Raman
calibration models could be deleterious in MALDI-TOF
calibration models.”® Especially in chemometrics applications,
a method is generally considered better if the resulting model
achieves a better fit but rarely do researchers delve into why it
turned out better.’” In fact, it is seen that researchers may not
explore the preprocessing methods available, but instead they

1327

tend to assume familiar methods are sufficient.”” While the
number of preprocessing methods continues to grow, the
understanding by practitioners does not grow with it. For this
reason, upon introduction of spectroscopic techniques,
instructors should also introduce the preprocessing methods

along with their mathematical formulation and applicability.
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An interactive computer-based module on this direction will be
instrumental to support teaching spectral preprocessing.

To the authors’ knowledge, there are no standalone
programs/modules that specifically focus on preprocessing
spectra. Many commercial spectroscopy packages contain
some preprocessing capability, such as CytoSpec,” Aspen
Unscrambler,** and InfoMetrix Pirouette.”> However, there is
a licensing expense associated with these programs limiting
their use to well-funded research groups and large businesses.
Spectragryph™ is a full spectroscopic suite offering preprocess-
ing, plotting, and analysis of spectra. PyChem®” is an open-
source chemometrics package developed in Python 2 which
includes preprocessing, but development of PyChem has
ceased. Finally, there is RamanLIGHT, which is domain
specific in Raman hyperspectral imaging.”® With the availability
of such programs, one can argue, why not just use one package
that does everything? In teaching chemometrics and spectral
analysis, a student should learn the technique and the
underlying mathematics, not an application. The other extreme
is where researchers implement the preprocessing functions
themselves in their preferred programming language. While the
need for custom scripts that fit one’s unique workflow is
unquestionable, such an approach risks opening the data to
errors as well as slowing down researcher time to investigate
and validate each algorithm. Programming has been identified
as a valuable skill for chemists and chemical engineers.
Therefore, there is value for educational applications to achieve
a middle ground with simple to use applications with a
programming interface.

In this work, Python is chosen for such a preprocessing
program for its open-source nature, for its ability to run on all
operating systems, and for providing the flexibility to develop a
GUI program and a tool to be called in scripts. Additionally,
development focused on using freely available and standard
libraries so no functionality is locked behind paywalls.

B A SHORT REVIEW OF SPECTRAL PREPROCESSING

A thorough review of preprocessing methods is outside the
scope of this report, but some discussion is necessary to show
the many applications of preprocessing. Lasch describes
preprocessing through eight categories in his review article,”®
but for brevity, this article will repeat five of them: exclusion,
normalization, filtering, transformations, and miscellaneous.

e Exclusion is the process of removing spectra from the
set, such as outlier spectra, or removing unnecessary
abscissa variables, such as trimming.

Normalization is the mathematical manipulation of
spectra to improve comparison. Despite spectroscopists’
best efforts, spectra cannot always be collected under
identical conditions. Examples include the following:
Temperature and humidity of the room vary throughout
the day, catalyst powders can vary in morphology
leading to different scatter profiles, or increasing total
cell concentration changes solution scatter. Each
normalization technique will attempt to overcome
specific issues in the data and homogenize a dataset.

Filtering techniques often appear as smoothing of data
to decrease noise. Some techniques, such as Raman and
near-infrared spectroscopies, can have a low signal-to-
noise ratio because of the rarity of those signal events.
While the best time to minimize noise is through
appropriate instrumental parameters during collection,
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smoothing can be helpful after data collection to
increase the signal-to-noise ratio, although at the cost
of deformation of signal peaks.

Transformations are given the distinction where they
are grounded in a physical model. Examples include
converting between absorbance and transmittance,
attenuated total reflection (ATR) correction, and
converting reflectance to Kebulka-Munk. Each of these
transform the data according to well described systems.

Miscellaneous are the ones that do not quite fit into the
other groups but tackle a specific defect in data, such as
baseline fitting, cosmic ray correction, etc.

A common goal in preprocessing is to homogenize a dataset
in order to compare spectral data under normalized conditions.
An example is shown in Figure 1; ATR-FTIR spectra of
solutions of fructose, glucose, levulinic acid, or a mixture of
sugars in water are presented. The objective of this example is
to use these spectra as a calibration dataset in a model that will
predict sugar concentration in biomass reaction solutions
containing fructose, glucose, and levulinic acid. This goal will
be achieved using a partial least-squares (PLS) regression
model, a form of multivariate analysis commonly used in
spectroscopy and chemometrics. In univariate modeling, one
would use individual variables to predict the concentration but
that does not work well when the variables are convoluted,
such as in the spectra of compounds with overlapping peaks. In
multivariate modeling such as PLS, a representation of all
variables is found that represents a hidden pattern in the data, a
latent variable, which is then used to estimate the y-variable. A
model is described by the number of latent variables, or
components, used for making predictions. For a more
thorough introduction of multivariate modeling, one may be
interested in starting with principal component analysis™ or
reading more about PLS.*

The dataset contains 40 spectra. There are nine spectra each
of fructose, glucose, and levulinic acid binary solutions in water
ranging from 0.1—1 M, ten spectra of fructose and glucose
ternary mixtures where the total sugar content is 1 M, and
finally three spectra of water. Figure 1a shows the raw spectra
of the solutions, where several defects are present. The first
major defect is that three spectra do not match the intensity of
the others. The intensity mismatch is most noticeable in the
OH region, 3750—3000 cm™!, where two fructose and one
sugar mix spectra are lower in intensity than the rest, or in the
1500—1000 cm ™" region where those same spectra appear as if
they had a lowered baseline. The remainder of the spectra have
roughly the same overall intensity profile, especially the other
fructose and sugar mix solutions, which is why we were able to
identify these three as outliers. There is no anticipated
variation in the baseline, so baseline correction is unnecessary.
The noise is in the fingerprint region is low so filtering is would
do more harm than good. Finally, without prior knowledge of
the solution refractive indices, a transformation such as ATR-
correction cannot be performed. Figure 1b shows a parity plot
for predictions from a four component PLS regression model.
A parity plot allows us to quickly see how well the model
works. By plotting the predicted value against the known value,
a perfect model will result in parity where all points are on the
diagonal—the prediction matches the known value. A poor
model will deviate from the diagonal. In Figure 1b, the model
shows weak predictions for the sugars. This is especially seen
around O, where even in solutions without glucose, the
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Figure 2. Applying the preprocessing steps on the sugar solutions in Porchlight using the GUI. (a) shows the spectra after selecting the type of
spectroscopy (arrow 1, red) and loading the files (arrow 2, blue). (b) shows the selection of “Normalization” in Step 1 Category (arrow 3, green),
and then “SNV” in Technique (arrow 4, amber). (c) shows the trimming step cutting down to the range 800—1800 cm™ by selecting the category
“Trim” (arrow S, green), Technique “Trim” (arrow 6, amber), and then placing bounds in the parameter boxes that appeared (arrow 7, violet).

presence of fructose had the model estimate between apparent
negative concentrations to 0.2 M of glucose. Levulinic acid is
already adequately estimated as it is very different in structure
and spectra. In order to contend with the intensity defect, one
can normalize the spectra by Standard Normal Variate (SNV).
The SNV normalized spectra in Figure lc shows, at least
visually, that the intensity defect has been corrected. Figure 1d
shows a model trained on the SNV corrected data is improved,
with data points not as spread out.

The next major defect to fix is the diamond ATR region,
from 2300—1900 cm™'. This region is a result of diamond
being a strong IR absorber in this range, which makes it
susceptible to minor changes resulting in high noise. Spurious
correlations from this region can degrade predictive models.
Additionally, there is not much information to be gained from
the OH region either as the absorbance from the water is
already so high that the small changes from the addition of
sugars or levulinic acid will be minor. We will try to improve
the model by focusing only on the fingerprint region, as this is
where the most important signal variance is found. Trimming
down to the fingerprint region reveals the spectra in Figure le.
The parity plot in Figure 1f shows we can greatly improve the
PLS model’s ability to identify the variable correlations and
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their impact by focusing in on this region. This preprocessing
can be performed in the GUI of Porchlight, as shown in Figure
2. Porchlight can also be incorporated in scripts such as the
one used for the PLS regression and in Jupyter notebooks.
With a guiding hand, future spectroscopists will be better
prepared for their work.

B PYTHON APPLICATION

Python has been among the most popular programming
languages in the past ten years,*" is one of the most commonly
used among chemical engineers,” and has been used in many
classes within chemistry and chemical engineering to teach
programming.”*~** Python is therefore an excellent choice as
the base language for our application. Specifically, Porchlight is
developed using Python 3.9, NumPy 1.21.5,% Pandas 1.4.2,"
Matplotlib 3.5.1,* and Tkinter as standard libraries. The
installation files can be found at https://github.com/Jakub-
Konkol/Porchlight. The complete guide is also provided in the
Supporting Information.

The main application window is split into two parts, as seen
in Figure 2. The left panel is the user control side where users
can locate files and apply preprocessing methods. The right
panel is where the preprocessed data are shown. The use of the

https://doi.org/10.1021/acs.jchemed.2c00812
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program begins with selection of the type of spectroscopy. As a
teaching aid, we took special care to have the plot labels
accurately reflect the contents as well as the impact of
preprocessing techniques. Next, the student selects their
spectral files. Porchlight currently supports .txt, .csv, Microsoft
Excel, and .spc files, with mixed single or multispectral files. If
data files do not contain the same amount of data points,
Porchlight will do its best to match up the closest ones. Next,
the student can select a category of preprocessing techniques.
Doing so populates the Technique dropdown with appropriate
methods. Upon selecting a technique, Porchlight will
dynamically prompt the user for relevant parameters. A label
above each entry box describes what the student must provide,
but full descriptions of these parameters and some
recommendations are available inside the manual. A list of
all methods available is presented in Table 1. The

Table 1. Preprocessing Methods Available in Porchlight

Preprocessing Method

Type Method Source
Trim Trim
Inverse Trim
Baseline Correction Polyfit 49
Asymmetric Least Squares S0
Smoothing Savitzky-Golay 51
Moving Window
Normalize Standard Normal Variate (SNV) 52
Area 25
Vector Normalization 2§
Min-Max
Multiplicative Scattering Correction 53
(MSC)
Peak normalization 25
Derivative Savitzky-Golay 51
Centering Last Point
At point
Mean
Dataset Operations Ignore
Subtract
Reset

preprocessing steps are then performed by pressing the button
labeled “Apply preprocessing.” If the student wants more steps
they can add more using the “Add step” button. Finally,
students can export the data using “Save data,” where they can
save to .csv or Excel files. On the right panel, the plot will
automatically replot the data after calculations, resetting
bounds and dynamically renaming axis titles where appro-
priate. Using the standard plotting widgets of Matplotlib,
students can pan, zoom, and save the plot to an image.

B FUTURE OPPORTUNITIES AND LEARNING
METHODS

Porchlight would be best used as part of laboratory-based
spectroscopy or chemometrics courses, where simple or
advanced spectral analysis would showcase the benefits or
detriments certain techniques may have. Graduates, upper-
level undergraduates in specialty electives, and those working
with spectroscopy research would benefit the most from such
lessons. Regardless, a number of possibilities exist that would
allow students to explore the importance of preprocessing with
a few ideas presented here. The first lesson plan would be as a

1330

wholly in silico lab, where the students are presented with a
dataset with a known defect. Some example lectures are
provided in the GitHub of the project as Jupyter notebooks
with sample data, primarily showcasing vibrational spectra in
regression and classification objectives. The instructor would
present relevant preprocessing techniques, how they work, and
the type of defect they correct, and provide literature where
appropriate as additional learning material. Then the students
would proceed to use the lessons from the lecture to
preprocess data and, for example, compare techniques in
multivariate calibration. They should find that some techniques
yield superior results in modeling than others and should be
able to explain qualitatively why the chosen technique works.
This would fit nicely into a chemometrics lesson, where
students can see the challenges that are present in real data and
begin associating challenges with solutions.

Alternatively, instructors may incorporate our preprocessing
application into a larger lab-based module, possibly even with
another computer-based module such as RamanCAT."” In this
case, students collect the spectra themselves and attempt to
tackle any shortcomings with preprocessing techniques. This
would allow students to see the whole spectroscopic data
collection pipeline: parameter selection, collection, preprocess-
ing, and finally analysis. It is worth nothing that a key factor in
such a lab or course would be to clearly underscore to students
that preprocessing is not a magic cure—bad data are bad data.
The onus is on the spectroscopist to collect the best possible
data they can and then use preprocessing to improve the
interpretation.

Finally, a third lab concept is oriented toward graduate
students and students in research. One of the challenges of
preprocessing is that, done incorrectly, can lead to (a)
“beautified” bad data, (b) altered interpretation of the data
and, (c) wrong predictive models.

We can introduce students to these concerns by challenging
them to alter data. A simple case is to explore the impact of
smoothing, and how too much smoothing can look nicer but
the information contained in the spectra is diminished.
Alternatively, one can present a region that is meaningless
but may look like it has information, such as the diamond ATR
region, and try to preprocess it until it successfully predicts a
set of y-variables. By seeing firsthand the impact that poor
preprocessing has, students will learn to scrutinize the
literature.
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