
On Finite-Sample Identifiability of Contrastive Learning-Based Nonlinear

Independent Component Analysis

Qi Lyu 1 Xiao Fu 1

Abstract

Nonlinear independent component analysis

(nICA) aims at recovering statistically indepen-

dent latent components that are mixed by un-

known nonlinear functions. Central to nICA is

the identifiability of the latent components, which

had been elusive until very recently. Specifically,

HyvÈarinen et al. have shown that the nonlinearly

mixed latent components are identifiable (up to

often inconsequential ambiguities) under a gen-

eralized contrastive learning (GCL) formulation,

given that the latent components are independent

conditioned on a certain auxiliary variable. The

GCL-based identifiability of nICA is elegant, and

establishes interesting connections between nICA

and popular unsupervised/self-supervised learn-

ing paradigms in representation learning, causal

learning, and factor disentanglement. However,

existing identifiability analyses of nICA all build

upon an unlimited sample assumption and the

use of ideal universal function learnersÐwhich

creates a non-negligible gap between theory and

practice. Closing the gap is a nontrivial challenge,

as there is a lack of established ªtextbookº routine

for finite sample analysis of such unsupervised

problems. This work puts forth a finite-sample

identifiability analysis of GCL-based nICA. Our

analytical framework judiciously combines the

properties of the GCL loss function, statistical

generalization analysis, and numerical differen-

tiation. Our framework also takes the learning

function’s approximation error into consideration,

and reveals an intuitive trade-off between the com-

plexity and expressiveness of the employed func-

tion learner. Numerical experiments are used to

validate the theorems.
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1. Introduction

Independent component analysis (ICA) has been an indis-

pensable unsupervised learning tool across multiple do-

mains. Theory and methods have been developed for ICA

since the 1990s; see, e.g., (Comon, 1994). The classic

ICA guarantees to identify linearly mixed statistically in-

dependent latent components in an unsupervised fashion.

The ICA technique has advanced many tasks such as blind

speech/audio separation and brain signal denoising. Since

the late 1990s, attempts have been made towards generaliz-

ing the classic linear mixture model (LMM)-based ICA to

nonlinear mixture models, e.g., in (Hyvarinen, 1999; Taleb

& Jutten, 1999; Ziehe et al., 2003; Oja, 1997), driven by the

ubiquity of nonlinearity in real-world data.

Formally, the nonlinear independent component analysis

(nICA) problem deals with scenarios where statistically

independent latent components are mixed by unknown non-

linear functions. The nICA technique aims at recovering

the latent components up to certain (inconsequential) ambi-

guities. The nICA task finds many connections to modern

machine learning and unsupervised representation learn-

ing problems. For example, a number of works used the

nICA perspective to develop deep neural feature extractors

for latent factor disentanglement (Bengio et al., 2013; Lo-

catello et al., 2019; Higgins et al., 2017; Kim & Mnih, 2018;

Chen et al., 2018). The disentanglement perspective was

further connected to causal factor learning (Peters et al.,

2017; Zhang & HyvÈarinen, 2009; Monti et al., 2020). Fur-

thermore, nICA and its close relatives were also used to

understand popular neural representation learning frame-

works such as contrastive learning (Hyvarinen & Morioka,

2016; 2017; Hyvarinen et al., 2019), variational autoen-

coder (VAE) (Khemakhem et al., 2020) and data-augmented

self-supervised learning (Zimmermann et al., 2021). For

all these tasks, nICA offers theory-driven perspectives to

understand their successes and sometimes to improve their

learning methods. In particular, the identifiability of the la-

tent independent components under nICA models can often

provide useful insights into these aspects.

The (n)ICA identifiability problem is concerned with the

conditions and learning criteria under which one can re-

verse the unknown mixing process to recover the latent
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components. However, unlike the classic LMM-based ICA

whose model identifiability is well-studied (Comon, 1994;

HyvÈarinen & Oja, 2000; Comon & Jutten, 2010), iden-

tifiability of nICA models had not been fully understood

for a long period. In fact, it is well-known that an nICA

model that only assumes statistical independence of the la-

tent components is not identifiable (HyvÈarinen & Pajunen,

1999).

In recent years, a number of new nICA paradigms emerged,

which nicely addressed the identifiability challenge un-

der some additional yet physically meaningful conditions.

These paradigms judiciously utilized structural information

about the latent components, e.g., temporal dependence

(Sprekeler et al., 2014; Hyvarinen & Morioka, 2017) and

non-stationarity (Hyvarinen & Morioka, 2016) of data, to

underpin the model identifiability. In particular, the work in

(Hyvarinen et al., 2019) unified these developments under a

generalized contrastive learning (GCL) based framework

(Gutmann & HyvÈarinen, 2010), where the latent compo-

nents are assumed to be conditionally independent given an

auxiliary variable. Under the GCL framework, the latent

components are identifiable up to component-wise invert-

ible nonlinear transformations, by simply learning a logistic

regression neural discriminator.

The surprising connection between contrastive learning and

nICA is both refreshing and insight-revealing. The iden-

tifiability proofs in (Hyvarinen & Morioka, 2016; 2017;

Hyvarinen et al., 2019) are also elegant. Nevertheless, a

caveat is that the GCL framework, same as other identifi-

able nICA works (Khemakhem et al., 2020; Locatello et al.,

2020; Gresele et al., 2019), assumes that unlimited data

samples are available. This presents a non-negligible gap

between nICA identifiability theory and practice, since one

never has unlimited data in real systems. In addition, the

GCL-based nICA works all assume that universal exact

function learners are used in their learning process. How-

ever, function approximation errors always exist in practice,

even if very expressive function learners, e.g., deep/wide

neural networks, are used. These less realistic assumptions

naturally lead to an inquiry: Can the identifiability of GCL-

based nICA be established under limited sample cases in

the presence of learning function approximation errors?

Filling this theory-practice gap is a nontrivial task. First, the

proofs in (Hyvarinen et al., 2019; Hyvarinen & Morioka,

2016; 2017) heavily rely on the equivalence between the

optimal logistic regressor and the log-probability density

function (log-PDF) difference of the two contrastive classes

in the limit of infinite samples. Second, many steps in the

proofs use first-order and second-order derivatives with re-

spect to the learned latent componentsÐwhose existence

over continuous open domains is also a result of the (un-

countably) unlimited data assumption. In addition, unlike

supervised learning where well-established generalization

analysis routines (see, e.g., (Shalev-Shwartz & Ben-David,

2014)) can be used to characterize finite sample perfor-

mance, there is no such toolkit for latent component analy-

sis. This is perhaps because supervised learning’s success is

measured by the ªdistanceº between an empirical loss and

its population version, but latent component identification

often has a much more intricate objectiveÐwhich varies

across different generative models and learning goals.

1.1. Contributions

In this work, our interest lies in offering a finite-sample anal-

ysis for the GCL-based nICA framework. Our analytical

framework consists of three major steps. First, we use the

notion of restricted strong convexity of the logistic loss used

in GCL to characterize the relationship between its optimal

solution and gradient at the optimum. Second, we com-

bine statistical generalization theorems with this relation

to characterize the gap between the regressor learned from

finite samples and the optimum under the population case.

Third, based on the gap, we characterize the separability

of different latent components using numerical differenti-

ation tools. As a result, we show that GCL-based nICA

can separate different latent components to a reasonable

extent under finite samples, and the performance improves

when the sample size grows. Our result also takes the learn-

ing function’s approximation error into consideration, and

reveals an intuitive trade-off between the complexity and ex-

pressiveness of the employed learning function. To our best

knowledge, the result is the first to establish such a finite

sample identifiability under the GCL-based nICA frame-

work. We also envision that our proof technique could help

understand the finite-sample performance of different but

nICA-related frameworks, e.g., those in (Zimmermann et al.,

2021; Khemakhem et al., 2020; Locatello et al., 2020).

1.2. Notation

We use the following notations: 𝑥,x,X represent a scalar,

vector, and matrix, respectively; 𝑓 ′ and 𝑓 ′′ denote the

first-order and second-order derivatives of function 𝑓 , re-

spectively; 𝑓 ◦ 𝑔 denotes the function composition of 𝑓

and 𝑔; 𝜎min (W ) denotes the smallest nonzero singular

value of matrix W ; E[·] denotes expectation of its argu-

ment; 𝑝(𝑥) denotes the probability density function of ran-

dom variable 𝑥; a column vector a ∈ R
𝐷 is defined as

a = [𝑎1, . . . , 𝑎𝐷]⊤ = (𝑎1, . . . , 𝑎𝐷).

We will frequently use the notation xℓ ∈ X to represent the

ℓth sample drawn from a distribution D defined over the

continuous domain X. The notation x without subscript

represents a random vector defined over the continuous

domain X following the same distribution DÐi.e., xℓ can

be considered as the ℓth realization of the random vector x.
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2. Background

2.1. ICA, nICA, and Model Identifiability

The classic ICA techniques deal with the LMM, i.e.,

xℓ = Asℓ , ℓ = 1, . . . , 𝑁, (1)

where xℓ ∈ R
𝑀 is the ℓth observed sample, sℓ ∈ R

𝐷 are

the 𝐷 latent components, and A ∈ R
𝑀×𝐷 with 𝑀 ≥ 𝐷.

It is assumed that xℓ and sℓ are the ℓth realizations of the

random vectors

x = [𝑥1, . . . , 𝑥𝑀 ]⊤, and s = [𝑠1, . . . , 𝑠𝐷]⊤,

respectively, in which x = As and 𝑠1, . . . , 𝑠𝐷 are statisti-

cally independent. The task of ICA is to recover sℓ from

xℓ . Recovering the latent components from LMMs is in

general not possible, since xℓ = Asℓ = AQQ−1sℓ for any

nonsingular Q. However, using the statistical mutual inde-

pendence among 𝑠1, . . . , 𝑠𝐷 , one can show that sℓ and A

are identifiable through ICA techniques up to permutation

and scaling ambiguities. This is normally done by finding

an inverse filter W such that the elements of y = Wx are

mutually independent; see (Comon, 1994; HyvÈarinen & Oja,

2000; Arora et al., 2012).

In nICA, the LMM in (1) is generalized to a nonlinear mix-

ture model, i.e., (HyvÈarinen & Pajunen, 1999)

xℓ = g(sℓ), (2)

where g(·) is a smooth and invertible unknown function, and

xℓ and sℓ are defined as before. The goal often amounts

to learning a nonlinear function h(·) such that for any x =

g(s) the following holds:

y = h(x) s.t. 𝑦𝑖 = 𝜎𝑖 (𝑠𝜋 (𝑖) ), 𝑖 = 1, . . . , 𝐷, (3)

where {𝜋(1), . . . , 𝜋(𝐷)} represents a permutation of

{1, . . . , 𝐷} and 𝜎𝑖 (·) : R → R is an unknown invertible

function. Note that such 𝑦𝑖 and 𝑠𝜋 (𝑖) attain the maximum

mutual information and can be converted from one to an-

other. Thus, the learning goal is meaningful. Unfortunately,

unlike ICA, under such a nonlinear mixture model, the

desired 𝑦𝑖 in (3) is in general not identifiable by just con-

straining the output of a learning system to be statistically

independent (HyvÈarinen & Pajunen, 1999)

2.2. Auxiliary Variable-Assisted GCL-based nICA

In recent years, some notable breakthroughs of the iden-

tifiability research of nICA have been made. Specifically,

several recent works show that s in (2) can be identified

(i.e., (3) can be guaranteed) under interesting and physi-

cally meaningful conditions; see, e.g., (Hyvarinen et al.,

2019; Hyvarinen & Morioka, 2017; 2016). In particular,

(Hyvarinen et al., 2019) distilled the essence and presented

a unified framework based on GCL. Under the framework,

it is assumed that 𝑠1, . . . , 𝑠𝐷 are statistically independent

conditioned on the revelation of an auxiliary variable u,

i.e.,

log 𝑝(s|u) =
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑠𝑖 ,u), (4)

where 𝑞𝑖 (·) is a certain continuous function and 𝑝(s|u) is

the conditional PDF of s given u. Note that u is observed

together with x, i.e., z = (x,u) appears as a pair.

To put into context, we briefly mention some examples

where the existence of auxiliary variables makes sense:

Example - Time Contrastive Learning (TCL) In TCL,

the auxiliary variable could be an indicator of the time stamp

with 𝑢 = 𝑡 or other information, e.g., the mean and variance

of of sℓ in a certain time frame (Hyvarinen & Morioka,

2016; 2017; Hyvarinen et al., 2019). Here, the condition (4)

means that the latent variables are independent if they are

from the same time frame/slot.

Example - Multiview Contrastive Learning (MVCL) A

slightly different but closely related example is MVL. There,

s is assumed to be mixed with different nonlinear functions

for each view (Gresele et al., 2019), i.e, x = g(s) with the

auxiliary variable u ≈ g̃(s) that is another view of the same

data entity with some random perturbations. In this case,

the log PDF log 𝑝(s|u) can also be similarly factored as in

(4) given that 𝑠1, . . . , 𝑠𝐷 are statistically independent.

Under (4), the nICA framework in (Hyvarinen et al., 2019)

proposed to learn a regression function

𝑟 (x,u) =
𝐷∑︁
𝑖=1

𝜙𝑖 (ℎ𝑖 (x) ,u) (5)

to distinguish between two types of zℓ , i.e.,

zℓ = (xℓ ,uℓ) and zℓ = (xℓ , ũℓ). (6)

Note that the ªpositive samplesº zℓ = (xℓ ,uℓ) are observed

from dataÐand uℓ is the natural auxiliary variable of xℓ .

However, for the ªnegative samplesº zℓ = (xℓ , ũℓ), ũℓ

is randomly drawn from 𝑝(u) which has no dependence

on xℓ . For example, in TCL, the positive sample zℓ =

(xℓ ,uℓ) = (xℓ , 𝑡) where ℓ ∈ time frame 𝑡, but the negative

sample zℓ = (xℓ , ũℓ) = (xℓ , 𝑡
′) where ℓ ∉ time frame 𝑡 ′.

In MVCL, the positive sample zℓ = (xℓ ,uℓ) which means

that the two views are generated from the same sℓ . The

negative sample zℓ = (xℓ , ũℓ = u 𝑗 ) with ℓ ≠ 𝑗 ; i.e., the

pair of data from the two views correspond to different latent

vectors sℓ and s 𝑗 .

The functions ℎ𝑖 and 𝜙𝑖 are often represented by nonlinear

function learners, e.g., neural networks. This ªclassification
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Figure 1: The neural network structure used for GCL-based

nICA (Hyvarinen et al., 2019).

problemº can be realized using a logistic loss:

min
φ,h

L = min
φ,h

Ez [log(1 + exp[−𝑑𝑟 (z)])] , (7)

where 𝑑 ∈ {+1,−1} is the ªlabelº of z. The realizations

of 𝑑, namely, 𝑑ℓ for ℓ = 1, . . . , 𝑁 , are created using the

following rule:

𝑑ℓ =

{
+1, zℓ = (xℓ ,uℓ),
−1, zℓ = (xℓ , ũℓ).

(8)

The learning system is shown in Fig. 1.

The framework is called ªconstrastive learningº because

it constructs a discriminator from data itself without using

traditional class labels as in supervised learning. Similar

ideas are widely used in the domain of self-supervised rep-

resentation learning (Chen et al., 2020; He et al., 2020; Tian

et al., 2020; Oord et al., 2018).

The work in (Hyvarinen et al., 2019) showed that the learned

h★(x) (i.e., the optimal solution of (27) in Appendix B) is

the desired latent component s up to some ambiguities. To

see the result, let us define the following

y = h(x), v(y) = g−1 (h−1 (y)) = s.

Using the above notations, we restate the main result of

(Hyvarinen et al., 2019) as follows:

Theorem 2.1 (Infinite-Sample Identifiability). (Hyvari-

nen et al., 2019) Assume

(i) that the data follows the model in (2) and (4) with 𝑀 = 𝐷;

the conditional log-PDF 𝑞𝑖 in (4) is smooth (i.e., second-

order differentiable) as a function of 𝑠𝑖 for any u;

(ii) (Variability Assumption) that for any y ∈ R
𝐷 , there

exist 2𝐷 + 1 vector u 𝑗’s, such that the 2𝐷 vectors in R
2𝐷

denoted as

W = [w(y,u1) −w(y,u0), · · · ,
w(y,u2𝐷) −w(y,u0)] (9)

are linearly independent, where

w(y,u) =
[
𝜕𝑞1 (𝑦1,u)

𝜕𝑦1

, · · · , 𝜕𝑞𝐷 (𝑦𝐷 ,u)
𝜕𝑦𝐷

, (10)

𝜕2𝑞1 (𝑦1,u)
𝜕𝑦2

1

, · · · , 𝜕
2𝑞𝐷 (𝑦𝐷 ,u)

𝜕𝑦2
𝐷

]
;

(iii) that (7) is solved with universal function approximators

to represent 𝑟 (z);

(iv) and that the learned optimal h★ = (ℎ★
1
, · · · , ℎ★

𝐷
) is

constrained to be invertible and smooth.

Then, in the limit of infinite data, we have ℎ★
𝜋 (𝑖) (x) =

𝑣−1
𝑖 (𝑠𝑖), for 𝑖 = 1, . . . , 𝐷, where {𝜋(1), . . . , 𝜋(𝐷)} is a per-

mutation of {1, . . . , 𝐷}.

The variability assumption means that the auxiliary variable

u must provide sufficiently different information and im-

pacts on the independent components to identifyÐi.e., the

realizations of u should be diverse; see more explanations

in (Hyvarinen et al., 2019; Gresele et al., 2019).

The proof of Theorem 2.1 consists of three major steps.

Step 1: Under the unlimited data assumption, the optimal

logistic regression function is converged to the log-density

difference of the two classes (Goodfellow et al., 2014). To

be specific, one can show that

𝑟★(x,u) =
𝐷∑︁
𝑖=1

𝜙★𝑖
(
ℎ★𝑖 (x) ,u

)
= log 𝑝(x|u) − log 𝑝(x), (11)

if 𝑟★ is learned using a universal function approximator.

Step 2: Using the assumption in (4), a functional equation

can be established everywhere over X (i.e., the domain of

x) by equating the constructed (5) and (11).

Step 3: Given the equation holds everywhere, cross-

derivatives w.r.t. 𝑦 𝑗 and 𝑦𝑘 are taken, which results in a

linear system with a full-rank coefficient matrix under the

assumption of VariabilityÐwhich finally leads to the desired

result.

We have restated the proof in Appendix C.1.1, as it may

help the readers better understand the finite-sample analysis.

One can see that all the three steps heavily rely on the unlim-

ited sample assumption. In the next section, we will offer

an analytical framework that can circumvent this unrealistic

assumption.
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3. Finite-Sample Analysis of nICA

In practice, instead of directly solving (7), one always deals

with the corresponding empirical loss function as follows:

min
φ,h

L̂ = min
φ,h

1

𝑁

𝑁∑︁
ℓ=1

log (1 + exp [−𝑑ℓ𝑟 (zℓ)]) . (12)

Before stating the main results, we first define the vector

that we hope to characterize as

γ 𝑗𝑘 =

[
𝜕2𝑣1 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

, · · · , 𝜕
2𝑣𝐷 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

]⊤
. (13)

The vector γ 𝑗𝑘 will be used as a key metric to quantify

the latent component identification performance. Fact 3.1

shows the rationale behind using such a vector to serve as

our success metricÐi.e., in the population case, γ 𝑗𝑘 = 0

holds for all ( 𝑗 , 𝑘) pairs where 𝑗 < 𝑘 everywhere.

Fact 3.1. In the proof of Theorem 2.1, it is noted that if

γ 𝑗𝑘 = 0 for all ( 𝑗 , 𝑘)’s, then we have ℎ★
𝜋 (𝑖) (x) = 𝑣−1

𝑖 (𝑠𝑖),
for 𝑖 = 1, . . . , 𝐷, where {𝜋(1), . . . , 𝜋(𝐷)} is a permutation

of {1, . . . , 𝐷}.

Proof: First note that γ 𝑗𝑘 = 0 means that

𝜕2𝑣𝑖 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

= 0 (14)

for any 𝑖 ∈ {1, · · · , 𝐷}. Since we have v(y) =

g−1 (h−1 (y)) where both g and h are smooth and invert-

ible functions, v = g−1 ◦ h−1 is also invertible, which leads

to the fact that the Jacobian Jv should be full-rank:

rank(Jv) = 𝐷. (15)

Meanwhile, (14) implies that any 𝑣𝑖 only depends on one

of its arguments 𝑦 𝑗 . That is, the Jacobian must have the

following form

Jv = Diag(λ)𝚷
where 𝜆𝑖 ≠ 0 for 𝑖 = 1, · · · , 𝐷 and 𝚷 is a permutation

matrix.

Note that it is impossible that different 𝑣𝑖 and 𝑣𝑖′ are func-

tions of the same 𝑦 𝑗Ðotherwise the Jacobian would have at

least a zero column, which violates rank(J𝑣) = 𝐷 in (15).

As a result, we have ℎ★
𝜋 (𝑖) (x) = 𝑣−1

𝑖 (𝑠𝑖) for 𝑖 = 1, . . . , 𝐷. ■

Fact 3.1 indicates that the ªsizeº of ∥γ 𝑗𝑘 ∥ could quantify the

level of success for separating the functions of 𝑠1, . . . , 𝑠𝐷 .

Hence, under the finite sample scenario, our goal is to show

that ∥γ 𝑗𝑘 ∥ is bounded by 𝑂 ((1/𝑁)𝛽) for a certain 𝛽 > 0.

To start with, we first characterize the Rademacher complex-

ity of the neural network function class used to model the

regression function 𝑟 (z). We define the function class F
for multi-layer perceptrons (MLP).

Assumption 3.2 (Neural Network). Assume that h(·) :

R
𝐷 → R

𝐷 and each 𝜙𝑖 (·) : R
𝐷 → R is parameterized by

an 𝐿-layer neural network with the following structure and

constraint

F = {f |f (z) = P𝐿ζ (...P2ζ (P1z)), ∥P𝑖 ∥𝐹 ≤ 𝐵𝑖}, (16)

where the activation function ζ (·) = [𝜁1 (·), . . . , 𝜁𝐷 𝑗
(·)]⊤,

and 𝜁𝑖 (·) : R → R is a 1-Lipschitz continuous function that

satisfies 𝜁𝑖 (0) = 0 for 𝑖 = 1, . . . , 𝐷 𝑗 for 𝑗 = 1, . . . , 𝐿, and

𝐷 𝑗 is the network width of the 𝑗 th layer.

We hope to remark that the identifiability theory in (Hyvari-

nen et al., 2019) and this work require that h to be invertible.

Such h could be approximated using special networks such

as normalizing flows or autoencoder-type regularization.

Nonetheless, we use a generic neural network following

(Hyvarinen et al., 2019), which suggested that such simple

constructions of h normally do not hurt the performance.

We have the following bound for the complexity of F .

Lemma 3.3 ((Golowich et al., 2018), Corollary 1). As-

sume that the observation is bounded as ∥z∥2 ≤ 𝐶. The

Rademacher complexity ℜ
𝑓

𝑁
of the function class defined in

3.2 is bounded by

ℜ
𝑓

𝑁
≤ (17)

𝑂

©­­­­«
𝐶

𝐿∏
𝑖=1

𝐵𝑖 min




log3/4 (𝑁)
√︂

log
(
𝐶
Γ

∏𝐿
𝑖=1 𝐵𝑖

)
𝑁1/4 ,

√︂
𝐿

𝑁




ª®®®®
¬
,

where supz∈Z |𝑟 (z) | ≥ Γ.

The bound can be simplified to ℜ
𝑓

𝑁
≤ 𝑂 (𝐶 ∏𝐿

𝑖=1 𝐵𝑖

√︁
𝐿/𝑁).

Under this simplification, we have the following complexity

bound for 𝑟 (z):
Lemma 3.4. Assume that the observation is bounded as

∥x∥2 ≤ 𝐶𝑥 and ∥u∥2 ≤ 𝐶𝑢. Then the Rademacher com-

plexity ℜ𝑁 of 𝑟 (z) is bounded by

ℜ𝑁 ≤ 𝑂

([
𝐶𝑥

𝐿∏
𝑖=1

𝐵𝑖 +
√
𝐷𝐶𝑢

]
𝐿∏
𝑖=1

𝐵𝑖

√︂
𝐷𝐿

𝑁

)
.

The detailed proof is in Appendix A.

Under the population case, Step 1 in the proof of Theo-

rem 2.1 assumed that 𝑟★(z) equals to the log of the PDF

differences of the positive and negative classes [cf. Ap-

pendix C.1.1]. Then, the next steps can take derivatives

using this equation over the continuous domain where z is

defined. However, with 𝑁 samples, the distance between

the learned regression function and the log-PDF difference

is not zero. To characterize this distance, we introduce the

following lemma:
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Lemma 3.5. Assume that |𝑟 (z) | ≤ 𝛼 over all z ∈ Z.

The logistic function ℓ(𝑟) = log(1 + 𝑒−𝑑𝑟 ) is 𝛾𝛼-restricted

strongly convex (𝛾𝛼-RSC) in 𝑟 , where 𝛾𝛼 = 𝑒𝛼

(1+𝑒𝛼)2 .

Proof: Starting with the following function for any (x,u)

ℓ(𝑟) = log(1 + 𝑒−𝑑𝑟 ),

we take derivative w.r.t. 𝑟 , which gives us

𝑑ℓ(𝑟)
𝑑𝑟

=
−𝑑

1 + 𝑒𝑑𝑟
,
𝑑2ℓ(𝑟)
𝑑𝑟2

=
𝑒𝑑𝑟

(1 + 𝑒𝑑𝑟 )2

since 𝑑 = −1 or 𝑑 = 1.

The function 𝑒𝑑𝑟

(1+𝑒𝑑𝑟 )2 is maximized when 𝑟 = 0 and it is

monotonic for 𝑟 < 0 and 𝑟 > 0. By assuming that |𝑟 | ≤ 𝛼,

we have

𝑒𝑑𝑟

(1 + 𝑒𝑑𝑟 )2
≥ min

{
𝑒−𝛼

(1 + 𝑒−𝛼)2
,

𝑒𝛼

(1 + 𝑒𝛼)2

}

=
𝑒𝛼

(1 + 𝑒𝛼)2
=

𝑒−𝛼

(1 + 𝑒−𝛼)2

Therefore, for bounded 𝑟, the logistic function is 𝛾𝛼-

strongly convex, with

𝛾𝛼 =
𝑒𝛼

(1 + 𝑒𝛼)2
,

which completes the proof. ■

Note that the restricted strong convexity of the logistic loss

was often mentioned in the one-bit matrix/tensor recovery

literature; see, e.g., (Ni & Gu, 2016).

In (Hyvarinen et al., 2019), it was assumed that 𝑟̂★(z) is a

learning function that is an universal function approximator.

Hence, 𝑟̂★(z) can exactly express the desired function [i.e.,

a log-PDF difference as on the right hand side of (11)]. In

practice, we take 𝑟 from a function class R that may not

be powerful enough to express any function, even if R is a

deep neural network class. To take this function mismatch

into consideration, we make the following assumption:

Assumption 3.6. Assume that we use 𝑟 ∈ R as the learning

function. The best learned 𝑟 ∈ R from the population case

(7) is characterized as

min
𝑟 ∈R

L(𝑟) − L(𝑟★) ≤ 𝜈 (18)

where 𝑟★ is the desired regression function as in (11).

Note that the bound 𝜈 serves as an indicator of the expres-

siveness of the function class R. For example, when R
consists of neural networks, 𝜈 decreases as the neural net-

work becomes deeper and wider.

Using Lemma 3.5, we show the following key lemma:

Lemma 3.7. Assume that the empirical loss in (12) is

trained with i.i.d. samples {zℓ }𝑁ℓ=1
, and that the criterion is

optimally solved. Also assume that the solution of (12) is

taken from the function class R. Then, we have the following

bound over the domain z ∈ Z = X ×U with probability at

least 1 − 𝛿:

ED [|𝑟̂★(z) − 𝑟★(z) |2] (19)

≤ (1 + 𝑒𝛼)2

𝑒𝛼

(
2ℜ𝑁+𝜈 + 5𝑐

√︂
2 ln(8/𝛿)

𝑁

)
,

where x ∈ X and u ∈ U in which X and U are two contin-

uous open domains, D is the distribution where any zℓ ∈ Z
is drawn from, 𝑟̂★ and 𝑟★ are the optimal solutions of (12)

and the desired regression function in (11), respectively,

𝛼 =

(√
𝐷𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖 + 𝐷𝐶𝑢

) ∏𝐿
𝑖=1 𝐵𝑖 is an upper bound of

|𝑟 (z) |.

The proof of Lemma 3.7 can be found in Appendix B.

The bound in Lemma 3.7 shows the expected distance be-

tween 𝑟̂★ and 𝑟★Ðand how the gap scales with various

problem parameters. This will be used in the next steps to

estimate the numerical derivative in the proof of the main

theorem:

Theorem 3.8 (Main Result). Under the generative model

(2) and Assumption 3.2, assume that the learning problem

defined in Theorem 2.1 is solved with 𝑁 i.i.d. samples

{zℓ }𝑁ℓ=1
, and that the learned h is invertible. Suppose that

the learned 𝑟̂★ ∈ R is fourth-order differentiable w.r.t. y

and the absolute value of the fourth-order partial derivative

of 𝑡 (z) = 𝑟̂★ (z) − 𝑟★ (z) w.r.t. any 𝑦𝑖 is upper bounded by

𝐶𝑡 . Then, we have the following bound with probability of

at least 1 − 𝛿,

ED
[

γ̂ 𝑗𝑘



2

2

]
(20)

≤ 𝑂
©­«
𝐷𝐶𝑡 (1 + 𝑒𝛼)

𝑒𝛼/2𝜎2
∗

(
ℜ𝑁 + 𝜈 + 𝛼

√︂
ln(1/𝛿)

𝑁

)1/2ª®
¬
,

where D is the distribution of z, γ̂ 𝑗𝑘 is an estimation of

γ 𝑗𝑘 at any observed xℓ using 𝑁 samples for any ( 𝑗 , 𝑘) pair

with 𝑗 < 𝑘 where the upper bound 𝛼 = (
√
𝐷𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖 +

𝐷𝐶𝑢)
∏𝐿

𝑖=1 𝐵𝑖 , and 𝜎∗ = max
W

𝜎min (W ) [cf. the definition

of W in (9)].

Theorem 3.8 asserts that with a large enough 𝑁 , the γ̂ 𝑗𝑘’s

are almost zero vectors for all ( 𝑗 , 𝑘)’s. As mentioned in

Fact 3.1, this serves as a quantified indicator for the latent

component identification performance.

The result in Theorem 3.8 is intuitiveÐit presents a trade-off

between the learning function’s complexity and its expres-

siveness. Specifically, given a certain 𝑁 , increasing the
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network complexity (e.g., by increasing the network depth

and width) makes the learning function class R more ex-

pressive (i.e., with a smaller 𝜈) but more complex (i.e., with

a larger ℜ𝑁 ). If 𝑁 is not large, ℜ𝑁 could dominate the

right hand side of (20). Hence, under a small or moderate

sample size, it is useful to employ a reasonably expressive

network to serve as 𝑟̂★, but not encouraged to use an overly

deep/wide neural network. This is similar to the widely rec-

ognized ªdata-hungryº and overfitting phenomena observed

in supervised deep learning problems.

Proof Sketch. We sketch the proof of Theorem 3.8 hereÐ

the readers are referred to the appendices for the detailed

proof. Our proof consists of the following steps.

First, starting from (12), we estimate the performance of the

learned regression function; i.e., we bound the following

distance

ED [|𝑟̂★(z) − 𝑟★(z) |2],
which can be done by invoking Lemma 3.5 and Lemma 3.7.

Second, we construct

𝑡 (yℓ) =
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ),uℓ) − log 𝑝𝑠 (v(yℓ))

−
𝐷∑︁
𝑖=1

𝜙𝑖 ( [yℓ]𝑖 ,uℓ) . (21)

at any observed sample ℓÐwhich is a sample version of the

key functional equation for establishing the infinite sample

nICA identifiability; see more details in Appendix C.1.1.

Taking numerical derivatives of (21) w.r.t. 𝑦 𝑗 and 𝑦𝑘 , we

establish a ªnoisyº system of linear equation

Wκ 𝑗𝑘 = b ≈ 0,

where ∥b∥ can be characterized by the quantity of

E[|𝑟̂★(z) − 𝑟★(z) |2] and κ 𝑗𝑘 includes γ̂ 𝑗𝑘 as a sub-vector.

Third, combining with the smallest singular value of W ,

using standard perturbation analysis of system of linear

equations can help estimate the upper bound of γ̂ 𝑗𝑘 . ■

The full proof is relegated to Appendix C.

4. Related Works

The work in (Arora et al., 2012) considered finite sample

analysis for the classic ICA under the LMM. The recent

work in (Lyu & Fu, 2021) considered finite sample anal-

ysis of post-nonlinear mixture model. However, the post-

nonlinear mixture model is a special kind of simplified non-

linear model, whose finite-sample analysis is much less

challenging than the case in this work. In (Lyu et al., 2022;

Lyu & Fu, 2022), sample complexity of latent component

recovery was studied under the deep canonical correlation

analysis and self-supervised learning settings. The learning

criteria there are different from GLS, and are arguably easier

to handle due to their least squares nature. In contrastive

learning, (Arora et al., 2019; Tosh et al., 2021; Tsai et al.,

2020; HaoChen et al., 2021) analyzed finite sample perfor-

mance, but in terms of downstream classification error. This

is more aligned with traditional generalization error analysis,

instead of latent component identification as in this work.

We should mention that our analysis is built upon the nICA

framework in Theorem 1 of (Hyvarinen et al., 2019). There

are also other nICA works in the literature. For example,

(Zimmermann et al., 2021) showed that data-augmented

contrastive learning can recover the latent components up to

affine transformations, under some more specific conditions,

e.g., the latent components’ inner product follows a certain

distribution. An exponential family distribution assumption

on s was used in Theorem 3 of (Hyvarinen et al., 2019),

which also helped connect nICA and VAE; see (Khemakhem

et al., 2020). Our proof does not use assumptions on the

distribution of s.

5. Numerical Validation

In this section, we validate our theoretical results using

synthetic and real data experiments.

5.1. Synthetic Data -TCL

Data Generation We follow the setup of the first exper-

iment in (Hyvarinen et al., 2019) for TCL and consider

time-domain data {xℓ }𝑁ℓ=1
. We generate latent compo-

nents s = [𝑠1, 𝑠2]⊤ ∈ R
2 that are divided into 5 differ-

ent time frames. The latent component samples [sℓ]𝑖 for

𝑖 = 1, 2 are generated using a distribution specified by

uℓ ∈ {ω1, . . . ,ω5}; i.e., uℓ are randomly drawn from

5 different vectors, each corresponding to a time frame.

Specifically, [sℓ]𝑖 for 𝑖 = 1, 2 and ℓ ∈ time frame 𝜏 are gen-

erated by the multiplication of a Gaussian distribution and

a Laplacian distribution, and the mean and variance/scale

information of the distributions are contained in ω𝜏 . The

multiplication is needed to meet the variability condition in

Theorem 2.1; see more details in (Hyvarinen et al., 2019).

The generative function g(·) : R
𝐷 → R

𝐷 is a one-hidden-

layer neural network with leaky ReLU activations. The

network weights are drawn from the standard Gaussian dis-

tribution. The vectors zℓ = (xℓ ,uℓ) for ℓ = 1, . . . , 𝑁 can

be considered as i.i.d. samples that are re-arranged into

different time frames. We run the TCL framework using

different sample sizes 𝑁 with equally divided time frames.

Evaluation Metrics The goal of nICA is to output 𝑦𝜋 (𝑖) =
𝑣−1
𝑖 (𝑠𝑖) for 𝑖 = 1, · · · , 𝐷. Hence, to evaluate the perfor-

mance, we use the mutual information (MI) between the
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Figure 2: The MI performance under the TCL setting.

estimated 𝑦̂𝜋 (𝑖) and the corresponding 𝑠𝑖 as our evaluation

metric, since the MI of 𝑦̂𝜋 (𝑖) and the associated 𝑠𝑖 is maxi-

mized when 𝑦̂𝜋 (𝑖) = 𝑣−1
𝑖 (𝑠𝑖) with an invertible 𝑣𝑖 (·). Specif-

ically, we estimate the MI using kernel density estimation

(Kozachenko & Leonenko, 1987). We compute the MI be-

tween each of the recovered 𝑦̂𝑖 and the ground truth 𝑠 𝑗’s.

Then, we use the Hungarian algorithm (Kuhn, 1955) to fix

the permutation ambiguity.

Neural Network Settings We model h(·) and 𝜙𝑖 (·) using

three-hidden-layer neural networks. We test various 𝑅’s

(i.e., the number of hidden neurons) for each layer, where

𝑅 ∈ {4, 8, 16, 32, 64, 128, 256, 512}. The activation func-

tion is ReLU. Note that a larger 𝑅 means a more complex

(wider) neural network, which has a higher expressive power

(Hornik, 1991; Hassoun et al., 1995) (i.e., a smaller 𝜈) but

leads to a larger Rademacher complexity ℜ𝑁 . For optimiza-

tion, we use the Adam optimizer (Kingma & Ba, 2014) with

an initial learning rate 5 × 10−4.

Results Fig. 2 shows the nICA performance in terms of

MI using different network width 𝑅’s under 𝑁 = 5, 000 and

𝑁 = 10, 000. The results are averaged over 5 random trials.

One can see that, under a given 𝑁 , the MI performance

improves when the network size 𝑅 increases from 4 to 64.

When 𝑅 continues to grow, the MI performance shows a

descending trend. This exactly reflects the expressiveness

(𝜈) and complexity (ℜ𝑁 ) trade-off revealed in Theorem 3.8.

That is, the initial performance improvement is likely due to

the fact that wider neural networks can better approximate

the desired unknown functions, and the decrease of MI may

be due to the fact that the overly complex neural networks

have a dominating ℜ𝑁 .

5.2. Synthetic Data - MVCL

Data Generation In this subsection, we use the multiview

setting from (Gresele et al., 2019)Ðalso see the second ex-
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Figure 3: The MI performance under the MVCL setting.

ample in Sec. 2.2. We use xℓ = g(sℓ) as the first view. We

set uℓ = g̃(𝑠ℓ) to be data from another view. We use 𝐷 = 2

with each component sampled from independent uniform

distribution U[−𝑎, 𝑎] with different 𝑎’s. For x, the mixing

function g is a one-hidden-layer neural network, with 𝐷

hidden neurons. For uℓ , the generation follows (Gresele

et al., 2019) where uℓ = g̃(sℓ + nℓ), in which nℓ is again

a product of a Gaussian variable and a Laplacian variable

(Hyvarinen et al., 2019). Under this setting, the sufficiently

distinct views condition in (Gresele et al., 2019) (which is

derived from the variability assumption in Theorem 2.1)

is satisfied. Similarly, g̃ is another one-hidden-layer neu-

ral network, with 𝐷 hidden neurons. For both of g and

g̃, the neural network coefficients are generated from stan-

dard normal distribution. For invertibility consideration, the

activation function used is leaky ReLU. The positive and

negative samples are generated by (6).

Metric and Neural Network Settings We continue using

MI as our evaluation metric. The settings of h(·) and 𝜙𝑖 (·)
are the same as those in the previous experiment.

Results Fig. 3 shows latent component identification per-

formance evaluated by MI on the first view. The results

are averaged over 5 random trials. Similar trends can be

observed as in Fig. 2. That is, the performance improves

when 𝑅 increases from 4, but starts to decline for 𝑅 ≥ 128

when 𝑁 = 5000 and 𝑅 ≥ 256 when 𝑁 = 10000.

5.3. Real Data

Data and Settings In addition to synthetic data, we also

use the ªEEG eyeº dataset from the UCI repository (Dua

& Graff, 2017). The task here is to predict whether the

eyes of the subject are open or closed based on the EEG

recording xℓ at time ℓ. The EEG data xℓ can be considered

as a nonlinear mixture of some latent signals sℓ ªemittedº

by the brain. Hence, if one could learn the unmixed latent
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Figure 4: Test error on the EEG data under various 𝑅’s.

components ŝℓ = h(xℓ) and use them as the extracted

features of xℓ , it may help reduce the complexity of the

learner in the downstream tasks (e.g., classification).

The data xℓ’s have fourteen dimensions. We aim to learn a

five-dimensional underlying latent sℓ for each data sample.

We use 12,000 data samples as the training set to learn h(·).
Then, we train simple classifiers (i.e., SVM and logistic

regression) using ŝℓ = h(xℓ). The classifiers are tested

using 3000 test samples. We run the TCL framework in

(Hyvarinen & Morioka, 2016) on the EEG data. We split

the training data into 60 time frames with 200 samples

within each frame. We use the frame label to be uℓ , where

uℓ ∈ {0, · · · , 59}. The vector zℓ is constructed following

the description in Sec. 2.2; also see (Gresele et al., 2019).

The network structures of both h(·) and ϕ𝑖 (·) are as before.

Results Fig. 4 shows the averaged classification errors

using SVM and logistic regression, respectively. The results

are averaged over 5 random trials. One can observe a similar

phenomenon as seen in the synthetic experiments. In partic-

ular, the classification performance improves as 𝑅 increases,

because the function h(·) becomes more expressive. But

when the neural network gets overly complex (i.e., when

𝑅 > 128), the performance deteriorates. This result again

corroborates our main result in Theorem 3.8.

6. Conclusion

In this work, we investigated the identifiability problem of

GCL-based nICA under a practical finite sample setting.

The GCL-based nICA framework is an important devel-

opment of the long-existing nonlinear latent component

identification problem, yet existing works all used an in-

finite sample assumption to establish model identifiability.

Our work is the first to address the identifiability problem

under a finite sample setting, to our best knowledge. The

proposed analytical framework is a nontrivial integration

of properties of the logistic loss, the classic generalization

theory of supervised learning, and numerical differentia-

tion. Unlike the existing GCL-based nICA works that all

assume the use of universal exact function learners to estab-

lish identifiability, our analysis also provides insights into

the trade-off between the expressiveness and the complexity

of the employed function approximators. We envision that

the analytical framework can be further applied to a wider

range of unsupervised/self-supervised learning problems for

studying finite-sample identifiability.
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A. Proof of Lemma 3.4

We show the Rademacher complexity of the network plotted in Fig. 1. Note that norm the output of ∥h(x)∥2 is bounded by

∥h(x)∥2 ≤ 𝐶𝑥

𝐿∏
𝑖=1

𝐵𝑖 (22)

by simply using the Cauchy±Schwarz inequality. Next, assume that

|ℎ𝑖 (x) | ≤
𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖√
𝐷

. (23)

Then, for each of the 𝜙𝑖 network, the norm of its input is bound by

√︄
(𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖)2

𝐷
+ 𝐶2

𝑢. (24)

The Racemecher complexity of 𝜙𝑖 is bounded as

√︄
(𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖)2

𝐷
+ 𝐶2

𝑢

𝐿∏
𝑖=1

𝐵𝑖

√︂
𝐿

𝑁
. (25)

The final complexity of 𝑟 (·) is the summation of the above, which is

ℜ𝑁 ≤ 𝐷

√︄
(𝐶𝑥

∏𝐿
𝑖=1 𝐵𝑖)2

𝐷
+ 𝐶2

𝑢

𝐿∏
𝑖=1

𝐵𝑖

√︂
𝐿

𝑁

≤
(
𝐶𝑥

𝐿∏
𝑖=1

𝐵𝑖 +
√
𝐷𝐶𝑢

)
𝐿∏
𝑖=1

𝐵𝑖

√︂
𝐷𝐿

𝑁
(26)

where the second inequality is by
√
𝑎 + 𝑏 ≤

√
𝑎 +

√
𝑏 for 𝑎 > 0, 𝑏 > 0. ■

B. Proof of Lemma 3.7

B.1. Bound the Generalization Error of the Regression Function

Define the following function:

ℓ(z, 𝑑; 𝑟) = log(1 + exp[−𝑑𝑟 (z)])

Using the above notation, consider the following loss function:

min
𝑟

L(𝑟) = min
𝑟

E [ℓ(z, 𝑑; 𝑟)] = min
𝑟

E [log(1 + exp[−𝑑𝑟 (z)])] (27)

where 𝑟 is the nonlinear function to learn. The finite-sample version is as follows:

min
𝑟

L̂(𝑟) = min
𝑟

1

𝑁

𝑁∑︁
ℓ=1

ℓ(zℓ , 𝑑ℓ ; 𝑟) = min
𝑟

1

𝑁

𝑁∑︁
ℓ=1

[log(1 + exp[−𝑑ℓ𝑟 (zℓ)])] (28)

Note that we hope to bound the following

L(𝑟̂★) − L(𝑟★), (29)
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which can be rewritten as

L(𝑟̂★) − min
𝑟 ∈R

L(𝑟) + min
𝑟 ∈R

L(𝑟) − L(𝑟★) ≤ L(𝑟̂★) − min
𝑟 ∈R

L(𝑟) + 𝜈, (30)

by using Assumption 3.6.

Invoking Theorem 26.5 of (Shalev-Shwartz & Ben-David, 2014), we have the following generalization error bound, with

probability of at least 1 − 𝛿:

L(𝑟̂★) − min
𝑟 ∈R

L(𝑟) ≤ 2ℜ(ℓ ◦ 𝜔 ◦ 𝑟) + 5𝑐

√︂
2 ln(8/𝛿)

𝑁
(31)

where the notation ª◦º means function composition, ℜ(ℓ ◦ 𝜔 ◦ 𝑟) is the Rademacher complexity of the composed function

ℓ ◦𝜔◦𝑟 , 𝑟★ is the optimal solution of (27), 𝑟̂★ the optimal solution of (28), 𝛼 is an upper bound of |𝑟 (z) | and 𝑐 = log(1+ 𝑒𝛼),
and

ℓ(𝑟) = log(1 + exp(−𝑟)), 𝜔(𝑟) = 𝑑𝑟.

By the properties of Rademacher complexity (Bartlett & Mendelson, 2002), we have

ℜ(ℓ ◦ 𝜔 ◦ 𝑟) ≤ ℜ𝑁 ,

where ℜ𝑁 is the Rademacher complexity of 𝑟 under 𝑁 i.i.d. samples, since both ℓ(·) and 𝜔(·) are 1-Lipschitz functions.

Therefore, Eq. (29) becomes

L(𝑟̂★) − L(𝑟★) ≤ 2ℜ𝑁 + 𝜈 + 5 log(1 + 𝑒𝛼)
√︂

2 ln(8/𝛿)
𝑁

. (32)

B.2. Bound the Distance Between the Learned Regression Function and the Optimal

Next, we will bound the following error term

E[|𝑟̂★(z) − 𝑟★(z) |2], (33)

First, using Lemma 3.5, we have

𝛾𝛼

2
|𝑟̂★ − 𝑟★ |2 ≤ ℓ(z, 𝑑; 𝑟̂★) − ℓ(z, 𝑑; 𝑟★) − ⟨∇ℓ(z, 𝑑; 𝑟★), 𝑟̂★ − 𝑟★⟩, (34)

where

𝛾𝛼 =
𝑒𝛼

(1 + 𝑒𝛼)2
.

Taking expectation on both sides, we have

𝛾𝛼

2
E[|𝑟̂★ − 𝑟★ |2] ≤ L(𝑟̂★) − L(𝑟★) − E

[
⟨∇ℓ(z, 𝑑; 𝑟★), 𝑟̂★ − 𝑟★⟩

]
. (35)

We hope to show that

E
[
⟨∇ℓ(x, 𝑑; 𝑟★), 𝑟̂★ − 𝑟★⟩

]
≥ 0.

Expand the left hand side, we have

E

[
𝑑𝑟★ − 𝑑𝑟̂★

1 + 𝑒𝑑𝑟
★

]
.

Given the fact that

L(𝑟̂★) ≥ L(𝑟★),



On Finite-Sample Identifiability of Nonlinear ICA

we have

E

[
log(1 + 𝑒−𝑑𝑟̂

★)
]
≥ E

[
log(1 + 𝑒−𝑑𝑟

★)
]
=⇒ E

[
log

1 + 𝑒−𝑑𝑟̂
★

1 + 𝑒−𝑑𝑟★

]
≥ 0.

By the Jensen’s inequality, we have

E

[
1 + 𝑒−𝑑𝑟̂

★

1 + 𝑒−𝑑𝑟★

]
≥ 1.

It can be re-written as

E

[
1 + 𝑒𝑑𝑟

★ + 𝑒𝑑𝑟
★−𝑑𝑟̂★ − 1

1 + 𝑒𝑑𝑟
★

]
≥ 1,

which is

E

[
𝑒𝑑𝑟

★−𝑑𝑟̂★ − 𝑒0

1 + 𝑒𝑑𝑟
★

]
≥ 0.

Since 𝑒𝑥 is monotonic, the above implies that

E

[
𝑑𝑟★ − 𝑑𝑟̂★ − 0

1 + 𝑒𝑑𝑟
★

]
≥ 0 ⇒ E

[
⟨∇ℓ(z, 𝑑; 𝑟★), 𝑟̂★ − 𝑟★⟩

]
≥ 0.

Thus, we have the following inequality:

𝛾𝛼

2
E[|𝑟̂★ − 𝑟★ |2] ≤ L(𝑟̂★) − L(𝑟★) ≤ 2ℜ𝑁 + 𝜈 + 5𝑐

√︂
2 ln(8/𝛿)

𝑁
, (36)

which is

E[|𝑟̂★(z) − 𝑟★(z) |2] ≤ (1 + 𝑒𝛼)2

𝑒𝛼

(
2ℜ𝑁 + 𝜈 + 5𝑐

√︂
2 ln(8/𝛿)

𝑁

)
. (37)

This concludes the proof. ■

C. Proof of Theorem 3.8

Let us first recall the optimal 𝑟★(x,u)’s expression in the unlimited sample case from (Hyvarinen et al., 2019). Given

a two-class classification problem, where the probabilities of seeing the positive class and negative class are 𝑝(x) and

𝑞(x) = 1 − 𝑝(x), respectively. We train a classifier 𝐷 using the following loss function:

𝐿 (𝐷) = Ex∼𝑃 [− log 𝐷 (x)] + Ex∼𝑄 [− log(1 − 𝐷 (x))] (38)

where 𝐷 (x) is supposed to learn the probability of the positive class that is generated following the distribution 𝑃 and

1 − 𝐷 (x) the probability of class with distribution 𝑄.

As shown in (Goodfellow et al., 2014), the optimal solution is of the discriminator is as follows

𝐷 (x) = 𝑝(x)
𝑝(x) + 𝑞(x) .

The above can be re-written as (Hyvarinen et al., 2019):

𝐷 (x) = 1

1 + 𝑞(x)/𝑝(x)

=
1

1 + exp(− log(𝑝(x)/𝑞(x)))
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In our case, we have two classes of data, i.e., (xℓ ,uℓ) ∼ 𝑃 = Px,u and (xℓ , ũℓ) ∼ 𝑄 = PxPu. Note that 𝑄 = PxPu

because the latter was sampled from x and u randomly and independently.

Note that our discriminator is constructed as

𝐷 (x,u) = 1

1 + exp(−𝑟 (x,u)) ,

following the standard logistic regression formulation. Hence, the optimal 𝑟 (x,u) can be written as

𝑟★(x,u) = log (𝑝(x,u)/𝑝(x)𝑝(u)) (39)

= log 𝑝(x|u) − log 𝑝(x).

C.1. Cross-Derivative Estimation Using Numerical Derivative

In this subsection, we estimate of the cross-derivative using the generalization bound above. First, using Lemma 3.7, we

define

𝜀 =
(1 + 𝑒𝛼)2

𝑒𝛼

(
2ℜ𝑁 + 𝜈 + 5𝑐

√︂
2 ln(8/𝛿)

𝑁

)
.

We denote

𝜀ℓ =
(
𝑟̂★ (zℓ) − 𝑟★ (zℓ)

)2

as a realization of 𝜀. Using these notations and the i.i.d. assumption, we have

Ezℓ∼D [𝜀ℓ] ≤ 𝜀,

where D stands for the distribution that generates z1, . . . , z𝑁 .

Note the learned regression function 𝑟̂★(·) is constructed as follows:

𝑟̂★(x,u) =
𝐷∑︁
𝑖=1

𝜙★𝑖
(
ℎ★𝑖 (x) ,u

)
(40)

where h★ = (ℎ★
1
, · · · , ℎ★

𝐷
) is invertible and smooth.

Recall that the optimal regression function 𝑟★(z) can be written as the difference of log PDF [cf. Eq. (39)]:

𝑟★(z) = log 𝑝(x|u) + log 𝑝(u) − (log 𝑝(x) + log 𝑝(u)) (41)

=

(
𝐷∑︁
𝑖=1

𝑞𝑖 ( 𝑓𝑖 (x),u) + log 𝑝(u) + log detJ

)
− (log 𝑝𝑠 (f (x)) + log 𝑝(u) + log detJ )

=

𝐷∑︁
𝑖=1

𝑞𝑖 ( 𝑓𝑖 (x),u) − log 𝑝𝑠 (f (x))

where 𝑝𝑠 is the distribution of s, J is the Jacobian of f = g−1 and the related terms are cancelled. Also recall that we have

defined the relations:

y = h(x), v(y) = f (h−1 (y)) = s. (42)

Then, using (40) and (41) and the notations in (42), we have the following

𝜀ℓ =

(
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ),uℓ) − log 𝑝𝑠 (v(yℓ)) −
𝐷∑︁
𝑖=1

𝜙𝑖 ( [yℓ]𝑖 ,uℓ)
)2

with ED [𝜀ℓ] ≤ 𝜀.
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C.1.1. RECALL THE PROOF OF THE POPULATION CASE

To understand our development, we first recall the key steps in the proof of the infinite sample case from (Hyvarinen et al.,

2019).

Step 1. By training the regression function defined in (5), we have the optimal solution under unlimited infinite samples

equivalent to the log PDF difference as shown in (39)

𝐷∑︁
𝑖=1

𝜙★𝑖
(
ℎ★𝑖 (x) ,u

)
︸                  ︷︷                  ︸

𝑟̂★ (x,u)

= log 𝑝(x|u) − log 𝑝(x)︸                       ︷︷                       ︸
𝑟★ (x,u)

. (43)

Step 2. The equation from Step 1 can be further expanded by following (41), i.e.,

𝐷∑︁
𝑖=1

𝜙★𝑖 (𝑦𝑖 ,u) =
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (y),u) − log 𝑝𝑠 (v(y)). (44)

Step 3. Denote 𝜂(y) = log 𝑝𝑠 (v(y)). Taking derivatives w.r.t. 𝑦 𝑗 and 𝑦𝑘 on (44), we have

∑︁
𝑖

(
𝑞′′𝑖

𝜕𝑣𝑖 (y)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (y)
𝜕𝑦𝑘

+ 𝑞′𝑖
𝜕2𝑣𝑖 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

)
− 𝜕2𝜂(y)
𝜕𝑦 𝑗𝜕𝑦𝑘

= 0, (45)

since the term on the LHS of Eq. (44) is gone.

By putting together

κ 𝑗𝑘 =

[
𝜕𝑣1 (y)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (y)
𝜕𝑦𝑘

, · · · , 𝜕𝑣1 (y)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (y)
𝜕𝑦𝑘

,
𝜕2𝑣1 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

, · · · , 𝜕
2𝑣𝐷 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

]⊤

as a single vector, there could be different versions of Eq. (45) since the coefficients 𝑞′′𝑖 and 𝑞′𝑖 are determined by u. Suppose

for u0 we have

∑︁
𝑖

𝑞′′𝑖
𝜕𝑣𝑖 (y)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (y)
𝜕𝑦𝑘

+ 𝑞′𝑖
𝜕2𝑣𝑖 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

− 𝜕2𝜂(y)
𝜕𝑦 𝑗𝜕𝑦𝑘

= 0. (46)

Then, for another u1, · · · ,u2𝐷 we have 2𝐷 different versions of (45). By subtracting (46) from the 2𝐷 equations and using

the assumption of Variability, we have

Wκ 𝑗𝑘 = 0 (47)

where W is full column rank.

Therefore, we can reach the conclusion of Theorem 2.1 by using Fact 3.1. ■

C.1.2. THE FINITE-SAMPLE CASE

Unlike the population case, one cannot directly establish the cross-derivative equations for any point y. Instead, we can

estimate the corresponding quantity of 𝜙(yℓ) at any observed point yℓ using numerical differentiation techniques. Similar

to (44), we look at the finite sample version defined as

𝑡 (yℓ) =
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ),uℓ) − log 𝑝𝑠 (v(yℓ)) −
𝐷∑︁
𝑖=1

𝜙★𝑖 ( [yℓ]𝑖 ,uℓ) , (48)

of which we hope to numerically estimate its cross-derivative, i.e.,
𝜕2𝑡 (y)
𝜕𝑦 𝑗𝜕𝑦𝑘

. Note that under population case, 𝑡 (yℓ) = 0 for

any ℓ.
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Next, we define:

Δy++
𝑗𝑘 = [0, . . . , +Δ𝑦 𝑗 , . . . , 0, . . . , +Δ𝑦𝑘 , . . . , 0]⊤,

Δy+−
𝑗𝑘 = [0, . . . , +Δ𝑦 𝑗 , . . . , 0, . . . ,−Δ𝑦𝑘 , . . . , 0]⊤,

Δy−+
𝑗𝑘 = [0, . . . ,−Δ𝑦 𝑗 , . . . , 0, . . . , +Δ𝑦𝑘 , . . . , 0]⊤,

Δy−−
𝑗𝑘 = [0, . . . ,−Δ𝑦 𝑗 , . . . , 0, . . . ,−Δ𝑦𝑘 , . . . , 0]⊤,

with Δ𝑦 𝑗 > 0 and Δ𝑦𝑘 > 0 for any 𝑗 , 𝑘 ∈ [𝐷] with 𝑗 < 𝑘 .

Define y
ℓ̂
= yℓ + Δy++

𝑗𝑘
, y

ℓ̃
= yℓ + Δy+−

𝑗𝑘
, y

ℓ
= yℓ + Δy−+

𝑗𝑘
, and yℓ′ = yℓ + Δy−−

𝑗𝑘
. Then, we have

𝜀
ℓ̂
=

(
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ̂
),uℓ) − log 𝑝𝑠 (v(yℓ̂

)) −
𝐷∑︁
𝑖=1

𝜙★𝑖
(
[y

ℓ̂
]𝑖 ,uℓ

))2

,

𝜀
ℓ̃
=

(
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ̃
),uℓ) − log 𝑝𝑠 (v(yℓ̃

)) −
𝐷∑︁
𝑖=1

𝜙★𝑖
(
[y

ℓ̃
]𝑖 ,uℓ

))2

,

𝜀
ℓ
=

(
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ
),uℓ) − log 𝑝𝑠 (v(yℓ

)) −
𝐷∑︁
𝑖=1

𝜙★𝑖
(
[y

ℓ
]𝑖 ,uℓ

))2

,

𝜀ℓ′ =

(
𝐷∑︁
𝑖=1

𝑞𝑖 (𝑣𝑖 (yℓ′),uℓ) − log 𝑝𝑠 (v(yℓ′)) −
𝐷∑︁
𝑖=1

𝜙★𝑖 ( [yℓ′]𝑖 ,uℓ)
)2

.

where uℓ remains the same. Note there exist such points zℓ̂ = (xℓ̂ ,uℓ), zℓ̃ = (x
ℓ̃
,uℓ), zℓ = (x

ℓ
,uℓ) and zℓ′ = (xℓ′ ,uℓ)

in the domain of X ×U.

Using numerical differentiation of multivariate function (Mùrken, 2013), the cross-derivative of a function 𝜓(𝑥, 𝑦) can be

numerically estimated as

𝜕2𝜓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦

≈ 𝜓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝜓(𝑥 + Δ𝑥, 𝑦 − Δ𝑦)
4Δ𝑥Δ𝑦

− 𝜓(𝑥 − Δ𝑥, 𝑦 + Δ𝑦) − 𝜓(𝑥 − Δ𝑥, 𝑦 − Δ𝑦)
4Δ𝑥Δ𝑦

. (49)

The exact relation between the left and right hand sides are as follows:

𝜕2𝜓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦

=
𝜓(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) − 𝜓(𝑥 + Δ𝑥, 𝑦 − Δ𝑦)

4Δ𝑥Δ𝑦
− 𝜓(𝑥 − Δ𝑥, 𝑦 + Δ𝑦) − 𝜓(𝑥 − Δ𝑥, 𝑦 − Δ𝑦)

4Δ𝑥Δ𝑦

− Δ𝑥2

6

𝜕4𝜓(𝜉11, 𝜉21)
𝜕𝑥3𝜕𝑦

− Δ𝑦2

6

𝜕4𝜓(𝜉12, 𝜉22)
𝜕𝑥𝜕𝑦3

− Δ𝑥3

48Δ𝑦

(
𝜕4𝜓(𝜉13, 𝜉23)

𝜕𝑥4
− 𝜕4𝜓(𝜉14, 𝜉24)

𝜕𝑥4

)

− Δ𝑥Δ𝑦

8

(
𝜕4𝜓(𝜉15, 𝜉25)

𝜕𝑥2𝜕𝑦2
− 𝜕4𝜓(𝜉16, 𝜉26)

𝜕𝑥2𝜕𝑦2

)
− Δ𝑦3

48Δ𝑥

(
𝜕4𝜓(𝜉17, 𝜉27)

𝜕𝑦4
− 𝜕4𝜓(𝜉18, 𝜉28)

𝜕𝑦4

)
,

where 𝜉1𝑖 ∈ (𝑥 − Δ𝑥, 𝑥 + Δ𝑥) and 𝜉2𝑖 ∈ (𝑦 − Δ𝑦, 𝑦 + Δ𝑦) for 𝑖 ∈ {1, · · · , 8}.

Denote 𝜂(yℓ) = log 𝑝𝑠 (v(yℓ)). Note that the analytical form of cross derivative
𝜕2𝑡 (yℓ )
𝜕𝑦 𝑗𝜕𝑦𝑘

is

𝜕2𝑡 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

=

∑︁
𝑖

𝑞′′𝑖
𝜕𝑣𝑖 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (yℓ)
𝜕𝑦𝑘

+ 𝑞′𝑖
𝜕2𝑣𝑖 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

− 𝜕2𝜂(yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

, (50)

which can be also expressed as

𝜕2𝑡 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

=
±√𝜀

ℓ̂
∓ √

𝜀
ℓ̃
∓ √

𝜀
ℓ
± √

𝜀ℓ′

4Δ𝑦 𝑗Δ𝑦𝑘
−
Δ𝑦2

𝑗

6

𝜕4𝑡 (ξ1)
𝜕𝑦3

𝑗
𝜕𝑦𝑘

−
Δ𝑦2

𝑘

6

𝜕4𝑡 (ξ2)
𝜕𝑦 𝑗𝜕𝑦

3
𝑘

−
Δ𝑦3

𝑗

48Δ𝑦𝑘

(
𝜕4𝑡 (ξ3)
𝜕𝑦4

𝑗

− 𝜕4𝑡 (ξ4)
𝜕𝑦4

𝑗

)
(51)

−
Δ𝑦 𝑗Δ𝑦𝑘

8

(
𝜕4𝑡 (ξ5)
𝜕𝑦2

𝑗
𝜕𝑦2

𝑘

− 𝜕4𝑡 (ξ6)
𝜕𝑦2

𝑗
𝜕𝑦2

𝑘

)
−

Δ𝑦3
𝑘

48Δ𝑦 𝑗

(
𝜕4𝑡 (ξ7)
𝜕𝑦4

𝑘

− 𝜕4𝑡 (ξ8)
𝜕𝑦4

𝑘

)
,
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where ξ𝑚’s are vectors satisfying

ξ𝑚 = 𝜃𝑚yℓ̂
+ (1 − 𝜃𝑚)yℓ′ , 𝑚 ∈ {1, · · · , 8},

where 𝜃𝑚 ∈ (0, 1).

Note that with a different u
ℓ̃
, we have the following

∑︁
𝑖

𝑞′′𝑖
𝜕𝑣𝑖 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (yℓ)
𝜕𝑦𝑘

+ 𝑞′𝑖
𝜕2𝑣𝑖 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

− 𝜕2𝜂(yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

(52)

=

±
√︃
𝜀̃
ℓ̂
∓

√︁
𝜀̃
ℓ̃
∓

√︁
𝜀̃
ℓ
±

√︁
𝜀̃ℓ′

4Δ𝑦 𝑗Δ𝑦𝑘
−
Δ𝑦2

𝑗

6

𝜕4𝑡 (ξ̃1)
𝜕𝑦3

𝑗
𝜕𝑦𝑘

−
Δ𝑦2

𝑘

6

𝜕4𝑡 (ξ̃2)
𝜕𝑦 𝑗𝜕𝑦

3
𝑘

−
Δ𝑦3

𝑗

48Δ𝑦𝑘

(
𝜕4𝑡 (ξ̃3)
𝜕𝑦4

𝑗

− 𝜕4𝑡 (ξ̃4)
𝜕𝑦4

𝑗

)

−
Δ𝑦 𝑗Δ𝑦𝑘

8

(
𝜕4𝑡 (ξ̃5)
𝜕𝑦2

𝑗
𝜕𝑦2

𝑘

− 𝜕4𝑡 (ξ̃6)
𝜕𝑦2

𝑗
𝜕𝑦2

𝑘

)
−

Δ𝑦3
𝑘

48Δ𝑦 𝑗

(
𝜕4𝑡 (ξ̃7)
𝜕𝑦4

𝑘

− 𝜕4𝑡 (ξ̃8)
𝜕𝑦4

𝑘

)
,

By subtracting (52) from (51), the
𝜕2𝜂 (yℓ )
𝜕𝑦 𝑗𝜕𝑦𝑘

term is gone. Taking absolute value and expectation w.r.t y

E

[�����
∑︁
𝑖

(𝑞′′𝑖 − 𝑞′′𝑖 )
𝜕𝑣𝑖 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (yℓ)
𝜕𝑦𝑘

+ (𝑞′𝑖 − 𝑞′𝑖)
𝜕2𝑣𝑖 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

�����
]

≤
E

[√
𝜀
ℓ̂

]
+ E

[√
𝜀
ℓ̃

]
+ E

[√
𝜀
ℓ

]
+ E

[√
𝜀ℓ′

]
4Δ𝑦 𝑗Δ𝑦𝑘

+
E

[√︃
𝜀̃
ℓ̂

]
+ E

[√︁
𝜀̃
ℓ̃

]
+ E

[√︁
𝜀̃
ℓ

]
+ E

[√︁
𝜀̃ℓ′

]
4Δ𝑦 𝑗Δ𝑦𝑘

+
Δ𝑦2

𝑗

3
𝐶𝑡 +

Δ𝑦2
𝑘

3
𝐶𝑡 +

Δ𝑦3
𝑗
𝐶𝑡

12Δ𝑦𝑘
+
Δ𝑦 𝑗Δ𝑦𝑘𝐶𝑡

2
+
Δ𝑦3

𝑘
𝐶𝑡

12Δ𝑦 𝑗

≤ 2
√
𝜀

Δ𝑦 𝑗Δ𝑦𝑘
+
Δ𝑦2

𝑗

3
𝐶𝑡 +

Δ𝑦2
𝑘

3
𝐶𝑡 +

Δ𝑦3
𝑗
𝐶𝑡

12Δ𝑦𝑘
+
Δ𝑦 𝑗Δ𝑦𝑘𝐶𝑡

2
+
Δ𝑦3

𝑘
𝐶𝑡

12Δ𝑦 𝑗

where the first inequality is by triangle inequality and the assumption on the bound of fourth-order derivative, while the

second inequality is by Jensen’s inequality, i.e.
√︁

E[𝑥] ≥ E[
√
𝑥].

Then, we hope to find the optimal upper bound

inf
Δ𝑦 𝑗 ,Δ𝑦𝑘

2
√
𝜀

Δ𝑦 𝑗Δ𝑦𝑘
+
Δ𝑦2

𝑗

3
𝐶𝑡 +

Δ𝑦2
𝑘

3
𝐶𝑡 +

Δ𝑦3
𝑗
𝐶𝑡

12Δ𝑦𝑘
+
Δ𝑦 𝑗Δ𝑦𝑘𝐶𝑡

2
+
Δ𝑦3

𝑘
𝐶𝑡

12Δ𝑦 𝑗

.

To find an upper bound, we let Δ𝑦 = Δ𝑦 𝑗 = Δ𝑦𝑘 , with Δ𝑦 > 0. Such simplification leads to a looser upper bound but easier

to derive. Then, we have the following optimization problem:

inf
Δ𝑦

2
√
𝜀

Δ𝑦2
+ Δ𝑦2

3
𝐶𝑡 +

Δ𝑦2

3
𝐶𝑡 +

Δ𝑦2𝐶𝑡

12
+ Δ𝑦2𝐶𝑡

2
+ Δ𝑦2𝐶𝑡

12
. (53)

Note that the function in (53) is convex, so the optimal is at

Δ𝑦★ =

(
36
√
𝜀

𝐶𝑡

)1/4
.

Then, the cross-derivative can be bounded by

E

[�����
∑︁
𝑖

(𝑞′′𝑖 − 𝑞′′𝑖 )
𝜕𝑣𝑖 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (yℓ)
𝜕𝑦𝑘

+ (𝑞′𝑖 − 𝑞′𝑖)
𝜕2𝑣𝑖 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

�����
]
≤

√
3𝐶𝑡𝜀

1/4

3
.
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With

𝜀 =
(1 + 𝑒𝛼)2

𝑒𝛼

(
2ℜ𝑁 + 𝜈 + 5 log(1 + 𝑒𝛼)

√︂
2 ln(8/𝛿)

𝑁

)
,

we have

E

[�����
∑︁
𝑖

(𝑞′′𝑖 − 𝑞′′𝑖 )
𝜕𝑣𝑖 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝑖 (yℓ)
𝜕𝑦𝑘

+ (𝑞′𝑖 − 𝑞′𝑖)
𝜕2𝑣𝑖 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

�����
]
≤

√
3𝐶𝑡 (1 + 𝑒𝛼)1/2

3𝑒𝛼/4

(
2ℜ𝑁 + 𝜈 + 5 log(1 + 𝑒𝛼)

√︂
2 ln(8/𝛿)

𝑁

)1/4

,

(54)

for all pairs of ( 𝑗 , 𝑘) with 𝑗 < 𝑘 . Thus we have 𝐷 (𝐷 − 1)/2 such inequalities above.

By the assumption of Variability (Hyvarinen et al., 2019), there exists u𝑖 with 𝑖 ∈ {0, · · · , 2𝐷}, such that the matrix

W = [w(y,u1) −w(y,u0), · · · ,w(y,u2𝐷) −w(y,u0)],

as defined in (9) is full rank where w(y,u) is defined (10). This further implies that we have 2𝐷 different versions of (54)

with various coefficients. Putting the 2𝐷 inequalities together, we have the following bound

E
[
∥Wκ 𝑗𝑘 ∥1

]
≤ 2𝐷

√
3𝐶𝑡 (1 + 𝑒𝛼)1/2

3𝑒𝛼/4

(
2ℜ𝑁 + 𝜈 + 5 log(1 + 𝑒𝛼)

√︂
2 ln(8/𝛿)

𝑁

)1/4

, (55)

with the vector κ 𝑗𝑘 defined earlier

κ 𝑗𝑘 =



𝜕𝑣1 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣1 (yℓ)
𝜕𝑦𝑘

, · · · , 𝜕𝑣𝐷 (yℓ)
𝜕𝑦 𝑗

𝜕𝑣𝐷 (yℓ)
𝜕𝑦𝑘

,
𝜕2𝑣1 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘

, · · · , 𝜕
2𝑣𝐷 (yℓ)
𝜕𝑦 𝑗𝜕𝑦𝑘︸                            ︷︷                            ︸

γ⊤
𝑗𝑘



⊤

.

Therefore, for any ( 𝑗 , 𝑘) pair, we have

E
[
∥γ 𝑗𝑘 ∥2

]
≤ E

[
∥κ 𝑗𝑘 ∥2

]
≤ 2𝐷

√
3𝐶𝑡 (1 + 𝑒𝛼)1/2

3𝑒𝛼/4𝜎2
∗

(
2ℜ𝑁 + 𝜈 + 5 log(1 + 𝑒𝛼)

√︂
2 ln(8/𝛿)

𝑁

)1/4

,

where we use the inequality ∥x∥2 ≤ ∥x∥1 and 𝜎∗ = max
W

𝜎min (W ). This completes the proof. ■


