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a b s t r a c t 
Predicting the liquid compositions that will vitrify at experimentally accessible quench rates remains one 
of the grand challenges in the field of condensed matter physics. This glass-forming ability can be quan- 
tified as the critical quench rate needed to suppress crystallization. Knowledge of this critical quench 
rate also informs which glass composition could be used for new applications. There have been several 
physical and empirical models presented in the literature to predict the critical quench rate/glass forming 
ability. These models range from those theoretically derived to those quantified only through experimen- 
tal characterization. In this work, we instead propose a new method to calculate the critical quench rate 
using the recently developed toy landscape model combined with machine learning. The toy landscape 
model accesses the underlying physics that control the vitrification behavior by directly simulating the 
liquid thermodynamics and kinetics. The results are discussed in terms of industrial impact, physical in- 
sights, and how the glass science community can develop improved predictions of glass-forming ability. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
1. Introduction 

Modeling of glass-forming ability (GFA) can be traced back to 
the seminal paper of Zachariasen in 1932 where he laid out struc- 
tural rules that predict whether a glass could be formed based 
on a given oxide composition [1–3] . Although these rules are still 
widely cited today, their practical use is qualitative at best. Since 
the work of Zachariasen, there have been several attempts to un- 
derstand and quantify GFA. Among these is topological constraint 
theory (TCT) which was first proposed by Gupta and Cooper [4] in 
oxide glasses (GC-TCT) but was followed closely with work done 
by Phillips and Thorpe [5] in chalcogenides (PT-TCT). Both theories 
conjectured that the optimal glass-forming ability occurred when 
the atomic degrees of freedom ( f ) was equal to zero. The atomic 
degrees of freedom, f , is 
f = d − n c , (1) 
where d is the dimensionality of the system (usually 3) and n c is 
the number of rigid constraints per atom. GC-TCT uses a rigid poly- 
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tope approach to calculate the degrees of freedom while PT-TCT 
uses 
n c = 1 

N 
N ∑ 

i =0 
(

r i 
2 + 2 r i − 3 ). (2) 

N is the number of atoms and r i is the connectivity of each 
atom, i . The PT-TCT approach was then expanded further by in- 
cluding temperature dependence by Mauro and Gupta (MG-TCT) 
[ 6 , 7 ]. MG-TCT incorporates a multiplicative factor for each individ- 
ual constraint that accounts for the temperature dependence of the 
constraint rigidity. MG-TCT also relates the configurational entropy 
to the degrees of freedom ( S c ∝ f ). These two extensions allow for 
a quantitative prediction of properties, a list of which is available 
in multiple review articles [8–12] . One property that is of interest 
for this work is the glass transition temperature ( T g ) which can be 
predicted as a function of the average number of rigid constraints 
per atom at the glass transition temperature ( n c ( T g ) ) and a con- 
stant ( A ) calculated from a known composition, 
T g = A 

d − n c ( T g ) . (3) 
Another approach for predicting glass-forming ability comes 

from calorimetry, where multiple glass stability parameters (GSP) 
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have been proposed. These are parameters that are intended to es- 
timate the resistance of a glass to crystallization. This topic was 
reviewed most recently in a statistical analysis from Jiusti et al. 
[ 13 , 14 ] who investigated glass stability parameters as a function of 
T g , T l (the liquidus temperature), T c (the peak crystallization DSC 
temperature), T x (the onset crystallization temperatures), η (vis- 
cosity), and η( T l ) (liquidus viscosity). Jiusti et al. found that some 
glass stability parameters can roughly estimate r crit and showed 
that the following expressions reasonably predicted the critical 
quench rate when using a linear relationship (these were chosen 
as representative from the recommended parameters with J being 
the least accurate): 
K = T c − T g 

T l , (4) 
γ = T c 

T g + T l , (5) 
and 
J = η( T l ) 

T l 2 . (6) 
Kis the stability parameter based on the work of Weinberg 

[15] and γ comes from the work of Lu and Liu [16] . It is worth 
noting that all the expressions above are functions of the glass 
transition temperature (a viscosity parameter), the liquidus tem- 
perature, and the rate of the kinetics (either through viscosity or 
an explicit measurement of peak crystallization kinetics). Although 
these expressions provide a correlation to the critical quench rate, 
there is an implicit flaw in Eqs. (4) and (5) : the glass must be first 
synthesized to measure T c . Synthesizing glasses is not practical for 
liquids that strongly favor crystallization, and as such, these pa- 
rameters are not sufficient to predict new glass-forming systems. 
Although the J stability parameter is the least accurate of the three 
GSP discussed above, Eq. (6) is of interest since all of the parame- 
ters can be calculated and measured in the liquid state. Addition- 
ally, it captures the notion that a high liquidus viscosity is key to 
a good glass forming system [ 3 , 17 ] and it was tested more exten- 
sively in the work by Jiusti et al. [ 14 , 18 , 19 ]. The liquidus viscos- 
ity is expressed using the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) 
equation [20] and the universal high-temperature limit of viscosity 
from Zheng et al. [ 21 , 22 ] as 
η( T l ) = −2 . 93 + 14 . 93 T g 

T l exp [ (T g 
T l − 1 )(

m 
14 . 93 − 1 )] 

. (7) 
m is the liquid fragility index. All parameters in the above equa- 

tion are also measurable using DSC in the liquid state [ 23 , 24 ]. 
When searching for new glass-forming compositions, yet an- 

other method for predicting glass forming ability is to search for 
a deep eutectic in the phase diagram, i.e., a local minimum in liq- 
uidus temperature [25] . This agrees with Eqs. (4) , (6) , and (7) . De- 
spite these various models, the role of the liquidus temperature, 
the glass transition temperature, the crystallization temperature, 
and the fragility index as they relate to GFA, have remained largely 
qualitative or have required extensive experimental characteriza- 
tion. Feller et al. [ 14 , 26 ] have presented an approach to predicting 
glass-forming ability based on covalency of the network and in- 
termediate range structure; however, this requires extensive NMR 
measurements and remains impracticable for designing new glass- 
forming compositions. 

According to the kinetic theory of glass formation [3] , GFA can 
be most accurately quantified by the critical rate required to cool 
the liquid from above the liquidus temperature to the glass tran- 
sition temperature while keeping the crystal volume fraction be- 
low under a certain threshold, typically defined by the detectabil- 
ity limit of x-ray diffractometry (XRD) [27] . The critical quench rate 

( r crit ) [13] is defined as the cooling rate at which the resulting vol- 
ume fraction of crystals exactly equals this threshold limit. As such, 
a good glass-forming system has a very low critical quench rate. It 
is often assumed that there are some background nuclei always 
present in the system. r crit is then primarily controlled by the rate 
of crystal growth ( U) at the temperature with the fastest rate of 
growth ( T max ). This corresponds to the critical quench rate as given 
by [ 13 , 28 ], 
r crit = T l − T max √ 

X s 
πN s [ U( T max ) ] 2 . (8) 

In this expression, X s is the detectability limit, and N s the num- 
ber density of nuclei in the material. Though this gives a physical 
origin to the GFA, it is not trivial to measure and as such, limits 
the applicability of the expression. 

The challenge of calculating the critical quench rate is largely 
due to an untenable calculation of the crystal growth rate due 
to multiple unknowns in the expression for crystal growth (from 
Wilson-Frenkel theory [29] ) which is a function of the free en- 
ergy difference between the crystal and liquid ( $G ), the diffu- 
sion co-efficient (often written with the Stokes-Einstein relation- 
ship, D = kT / 6 πaη [30] ), and the jump distance ( a ): 
U(T ) = kT 

6 πη(T ) a 2 
(

1 − exp [−$G (T ) 
kT 

])
, (9) 

where k is Boltzmann’s constant. Throughout this work a is held 
to 2.5 Å. 

A new approach called toy landscapes modeling (TLM) has re- 
cently been shown to accurately predict the crystal growth rate 
of glass-forming melts with minimal assumptions [31] . The TLM 
method is a physics-based approach which creates a simplistic en- 
thalpy landscape of the glass-forming liquid. It has been shown to 
accurately model structural relaxation, viscosity, and crystallization 
behavior [31] . It is based on creating a ‘toy’ landscape that closely 
mimics the distributions of states found in real landscapes. It uses 
a log-normal distribution of states and is parameterized through 
knowledge of the viscosity. When parametrizing TLM for crystal 
growth, it was found that the model was able to provide accu- 
rate predictions for growth with a root-mean-square-error (RMSE) 
of 0.333 orders of magnitude (when lead based compounds were 
omitted) [31] . As such, it is possible to use TLM to obtain the crys- 
tal growth parameter needed to calculate the critical quench rate 
given the T g , T l , and the liquid fragility index ( m ). This method al- 
lows for a direct evaluation of GFA with a completely quantitative 
and physics-based methodology that can be applied to any system. 

In this article, we will present a novel method that combines 
a machine learning (ML) approach with the physics-based TLM 
model to offer quantitatively accurate predictions of glass-forming 
ability. This combined method enables prediction of the critical 
quench rate for common systems while simultaneously testing sev- 
eral common approaches for finding glasses with optimum GFA. 
The four approaches evaluated are: 

a. Select a composition at a eutectic (thermodynamic approach) 
b. Increase the ratio between the number of network formers 

to the modifiers (structural approach) 
c. Find a glass where n c ( T g ) ≈ 3 (topological approach) 
d. Maximize the liquidus viscosity (kinetic approach) 
The reader should note that GFA is purely a representation of 

the rate at which the liquid must be quenched to reach the glass 
transition without reaching a detectable volume fraction of crys- 
tals. The GFA does not provide information about the degree of 
liquid-liquid immiscibility which may occur. Further work would 
be needed to account for phase-separation and as such it will not 
be addressed in this manuscript. 

2 



C.J. Wilkinson, C. Trivelpiece, R. Hust et al. Acta Materialia 222 (2022) 117432 
2. Methods 

The ‘Toy Landscape Method’ was recently proposed by Wilkin- 
son and Mauro [31] and uses an approximation of the energy land- 
scape of a material. The landscape consists of a log-normal distri- 
bution of sites with equal probability spacing to ensure an equiva- 
lent degeneracy of each site. The distribution is then fit such that 
the slope of the configurational entropy vs temperature matches 
that which is predicted by the MYEGA model. This gives a set of 
states that are representative (though simplified) of the overall ma- 
terial behavior and can give kinetic and thermodynamic insights. 
The states can be used (along with a Boltzmann distribution) to 
calculate the free energy, 
G = N ∑ 

i =0 
exp [− H i 

kT ]
N ∑ 

j=0 exp [ − H j 
kT ] H i + kT exp [− H i 

kT ]
N ∑ 

j=0 exp [ − H j 
kT ] ln 

 
   exp [− H i 

kT ]
N ∑ 

j=0 exp [ − H j 
kT ] 

 
   , 

(10) 
in which Nis the number of basins and H i is the enthalpy of a 
particular basin. In this equation the second term is equivalent to 
T S c (T ) . The viscosity can then be given by, 
log 10 η = log 10 η∞ + T g S c ( T g ) [ log 10 η( T g ) − log 10 η∞ ] 

T S c ( T ) . (11) 
It is worthwhile to emphasize that TLM is not capable of cap- 

turing all underlying physics nor is it the only way to construct a 
landscape. The crystal free energy could then be approximated us- 
ing 2 constants, H cry and T l (if assuming that the enthalpy of the 
crystal is constant), 
G cry = H cry − k T 

T l [G liq ( T l ) − H cry ] (12) 
This gives all the parameters needed for Eq. (9) from a few ex- 

perimentally accessible parameters. In the paper of Wilkinson and 
Mauro [31] they showed that using this simple model, one can pre- 
dict the critical quench rate within an order of magnitude. Further 
details on TLM are available elsewhere [31] . 

In order to make predictions of the growth curve using TLM, 
the inputs required are T g , m , T l , H cry , and log 10 η∞ . The value of 
T g comes from the neural network trained by Cassar et al. [32] , 
the heat of fusion ( H cry ) was shown to have minor effects on the 
prediction of the growth rate and as such, was held constant at - 
0.1 eV which is in line with our previous work [31] , and log 10 η∞ 
can be approximated with log 10 η∞ = −2 . 93 based on the work of 
Zheng et al. [21] . Additionally, consistent with Jiusti et al., [13] we 
set X s / N s = 10 −5 . To approximate the liquidus temperature and ac- 
count for predictive error, we used a random forest method. The 
random forest approach works by constructing a large number of 
decision trees and then averaging results from each one to get a 
prediction. At the same time, polling the decision trees give a stan- 
dard deviation ( δ) which will be used as the error metric in this 
work. 

To create a database for fragility for building a machine 
learning-based model, raw viscosity data was taken from GlassPy 
by Cassar [33] . The data are fit using the MYEGA model, and if the 
fit resulted in a RMSE of less 0.1 in log units, the data was accepted 
into the database. If a higher threshold was used, a large distribu- 
tion of fragilities was found while if a lower threshold was used, 
the dataset was reduced greatly. The resulting database for fragility 
is then used as an input for Gaussian process regression, random 
forest, and linear regression. Both the random forest and Gaussian 
process regression hyperparameters were optimized through a grid 
search using Scikit-Learn [34] along with a 70% training set for 
cross-validation. The species considered in this model were O, B, Si, 

Fig. 1. Testing the predictive power of the ML + TLM vs just TLM showing less ac- 
curate results but with the error bars being within reasonable error. The TLM model 
gives a root-mean-square error of the log values of 0.25 log(K/s) while conversely 
the TLM + ML model shows an error of 1.8 log(K/s) but also has an average log error 
bar of 1.35 log(K/s). The highest point comes from a large error in the liquidus in 
GlassPy (citing Kaplun and Meshalkin [35] ) which is reported as 1230 K while Jiusi 
et al. report a value of 1016 K [ 18 , 36 ]. Data for the liquidus temperatures in GlassPy 
can be found in the supplemental information. 
Al, Ca, Li, and Na. Lithium was only included to compare to previ- 
ous work by Jiusti et al. [13] .The RMSE of the fragility model using 
Gaussian Process Regression was 5.0 and the RMSE of the liquidus 
temperature using random forest was 60 K. Random forest, linear 
regression, and gaussian process regression were all used for liq- 
uidus temperature and fragility. However, we only used the model 
that reproduced the test set with minimal error. Neural networks 
were not considered as they offer no straightforward way to quan- 
tify uncertainty. The software and data used for training is avail- 
able in the supplemental information. 

The error bars for the critical quench rate were calculated by 
running the TLM two additional times, once where m = m + δ(m ) 
and T l = T l − δ( T l ) , and then once where m = m − δ(m ) and T l = 
T l + δ( T l ) . This gives the maximum and minimum quench rate from 
the average critical quench rate based on standard deviation of 
the predicted variables of interest. It is also important to keep in 
mind that TLM has an error associated with it (though significantly 
smaller than that of the machine learning methods). 
3. Results 

To first confirm the validity of the approach, we ran the model 
on five well-studied systems with experimental critical quench rate 
parameters available. These systems were chosen as they represent 
all atoms used in this study and only required one additional el- 
emental parameterization (Li); they are: Li 2 O 2B 2 O 3 , Li 2 O 2SiO 2 , 
Na 2 O 2B 2 O 3 , Na 2 O 2SiO 2 , and CaO Al 2 O 3 2SiO 2 . All of these sys- 
tems have well known parameters as reported by Jiusti et al. The 
results of this are shown in Fig. 1 . 

To understand the role of each parameter, we have explored 
three common glass-forming systems: soda lime silicate, sodium 
borosilicate, and calcium aluminosilicate. These glasses have well 
known structures (as discussed below) and comprise most indus- 
trial glasses in the commercial market today. It is not unreason- 
able to think that new compositions in the future can be derived 
from these families. As such, they remain some of the most impor- 
tant systems to understand for future glass compositions. The most 
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important of these properties is the glass-forming ability. These 
three systems have been calculated in Fig. 2 using a combination of 
machine learning and TLM. This approach combines the empirical 
predictive power of ML with TLM to enable predictions of kinetic 
properties that have historically been inaccessible. Also, in Fig. 2 , 
the liquidus temperature is shown for discussion of the thermody- 
namic and kinetic approaches to GFA. Fig. 2 is the first prediction 
of GFA based solely on composition and is a promising step to- 
wards decoding the glass genome [37–40] . 

Soda lime silicates (SLS) are the most commonly used glasses 
on earth. SLS consist of mostly silicon tetrahedra with 3 bridging 
oxygen (Q 3 ) with silicon being the only network former in the sys- 
tem. In Fig. 2 A, the critical quench rate and liquidus temperature 
are shown for soda lime silicates with different modifier ratios and 
amounts of SiO 2 . It is important to note that the SLS system shows 
a mild mixed modifier effect and that the critical quench rate 
slightly deviates from linearity with respect to [Na 2 O]/[Na 2 O + CaO] 
[ 10 , 41 ]. 

Sodium borosilicates (NBS) serve as the base to many of the 
well-recognized commercial systems such as Pyrex, Duran, and 
Schott NBK-7 [3] . The structure is a mixture of the binary sodium 
borate and sodium silicate systems in which a fraction of boron 
species changes from three-fold to tetrahedral coordination. This 
leads to an increased connectivity of the network where nonbridg- 
ing oxygens do not begin to form until a ratio of ∼0.5 alkali to 
boron is present, though this value can change depending on cool- 
ing rate [ 42 , 43 ]. As the ratio continues to increase, the introduc- 
tion of nonbridging oxygens near silicon tetrahedra results in a less 
connected network. The calculated critical quench rate and liquid 
temperatures for this system are shown in Fig. 2 B. The effect of the 
conversion of boron units resulting in a non-monotonic progres- 
sion of the critical quench rate can be clearly seen in Figure 2 B (at 
Na 2 O/[Na 2 O + SiO 2 ] ratio of approximately 0.35). The reader should 
note that, in Figure 2 A and 2 C, silica is held constant while in 2B 
the borate content is held constant. This is done so that it is easier 
to observe the non-linear evolution. 

Calcium aluminosilicate glasses (CAS) are ubiquitous in geology 
and in industry. Understanding the formation of CAS systems can 
be used to gain greater control of applications of commercial ap- 
plications, as well as a more detailed understanding of lava flows. 
The structure for this glass system is also anomalous to the SLS 
system due to the dependence on the ratio of calcium to alu- 
minum. Since alumina tetrahedra are negatively charged, a charge 
balancing mechanism is needed. When the amount of calcium is 
greater than the amount of aluminum, the negative charge can 
be accommodated by calcium ions. Excess calcium will then cre- 
ate nonbridging oxygens that modify the underlying SiO 2 network. 
However, when insufficient calcium exists to charge balance the Al 
tetrahedron, which occurs when the ratio of Al 2 O 3 to CaO is equal 
to or greater than one, it is debated whether three-coordinated 
oxygens or five-coordinated Al will form [44] . It remains unclear 
which mechanism takes place, but both would result in a higher 
network connectivity with fewer nonbridging oxygens. As such, it 
can be difficult to fabricate glasses in this range since they would 
require high quench rates. In Fig. 2 C the estimates for the criti- 
cal quench rate and liquidus temperature of the CAS system with 
varying percentages of SiO 2 can be found. In Fig 2 C, progression of 
the calcium is seen to dominate the critical quench rate, which is 
intuitive since the calcium controls the structure of the aluminum 
units at all compositions. For further discussion of aluminum spe- 
ciation on GFA see the work of Zheng et al. [45] . 
4. Discussion 

Before discussing the results, it is worth noting the limita- 
tions and consequences of the model presented here. Since indus- 

trial processes have an upper limit to possible quench rates, this 
method allows for large compositional spaces to be removed from 
consideration and allows for the conversion of simple, accessible 
properties into the critical quench rate, making a much-needed 
step to decode the glass genome. Additionally, this method can be 
used to investigate the validity of the predictive methods discussed 
before. However, it is limited by the fact that there is an innate er- 
ror in TLM (RMSE 0.333 orders of magnitude) when considering 
crystallization rates. 

To understand the validity of glass forming theories in the 
literature, we can compare the results predicted by TLM to the 
four different approaches outlined in the Introduction. The ther- 
modynamic approach (in which a eutectic composition is selected) 
works well for the soda lime silicate and sodium borosilicate sys- 
tems; however, in the CAS system, there is no correlation between 
the liquidus temperature and the glass forming ability. Instead, the 
critical quench rate increases monotonically (corresponding to a 
decrease of the glass-forming ability) with respect to compositions 
despite a eutectic in Fig. 1 C around [CaO]/[CaO + Al 2 O 3 ] = 0.5. 

The second approach utilizes Zachariasen’s theory of glass for- 
mation [2] . In this approach, each component is classified as a 
network former or modifier. Since network formers, such as SiO 2 , 
B 2 O 3 , and Al 2 O 3 , provide a connected framework for the glass sys- 
tem while modifiers act to break up this network, the GFA can 
be optimized by having a large amount of network formers and 
a small number of modifiers (intermediates are dealt with on a 
case-by-case basis). At first glance only the CAS system tends to 
follow this trend. However, NBS also follows this trend since these 
glasses undergo the boron anomaly. When examining the SLS data 
the glass forming ability undergoes a monatomic change as one 
modifier is switch to another keeping the mean connectivity of the 
network the same. This fact shows that Zachariasen’s method can- 
not distinguish between types of modifiers which is a fundamental 
limitation in the method when designing glass compositions. 

The third approach, which uses topological constraint theory 
(TCT), is the most recent and is based on a more nuanced struc- 
tural understanding. TCT states that the optimal glass forming abil- 
ity occurs when the atomistic degrees of freedom match the di- 
mensionality of the system. Mauro and Gupta showed that the 
fragility [6] was related to the derivative of the number of rigid 
constraints with respect to temperature. This implies that the 
fragility cannot be predicted merely by the absolute value of the 
constraints alone. TCT is also unable to predict the liquidus, which 
creates two free parameters in total (i.e., fragility and liquidus tem- 
perature). Therefore, it is difficult to determine whether the num- 
ber of constraints can describe glass forming ability (GFA) since 
the glass transition temperature is the only value that can be 
accurately predicted from the absolute number of constraints. In 
Fig. 3 A, the GFA is plotted vs the number of constraints while hold- 
ing the liquidus temperature at 1600 K, the fragility constant, and 
A = 1500K . Although this could be explored through a specific sys- 
tem this approach allows for a generalized approach allowing us 
to understand the nature of these materials. In Fig 3 A, it is pos- 
sible to see that the critical quench rate decreases as the number 
of constraints increase (approaching 3). The same trend holds true 
regardless of which fragility is chosen. However, as observed in the 
SLS system, the critical quench rate decreases as calcium is ex- 
changed for sodium (decreasing the number of rigid constraints). 
This is due to the rapid depression of the liquidus temperature 
over the same range implying that the TCT approach is only valid 
when there are small changes in the liquidus temperature. 

The failure of the constraint approach for quantifying the glass- 
forming ability in systems where the liquidus temperature is 
rapidly depressed means that a predictive model needs to incorpo- 
rate the glass transition temperature, the fragility, and the liquidus 
temperature. This results in stability expressions that must be de- 
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Fig. 2. (A) SLS, (B) SBS, and (C) CAS systems showing the critical quench rate (Panel 1) and the liquidus temperature (Panel 2). The points show the absolute value and 
shading shows the error bar calculations. The reader should note that the error is derived from the machine learning approaches and not from any other source. 
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Fig. 3. (A) The critical quench rate as a number of constraints while the liquidus 
temperature is held constant at 1600 K. The constant for the glass transition tem- 
perature calculation was held at 1500. (B) The critical quench rate vs the two liq- 
uidus viscosity parameters. The data points were generated by doing a grid simu- 
lation with the glass transition temperature ranging from 50 0–150 0 K, the fragility 
ranging from 20–100, and the liquidus temperature ranging from the glass transi- 
tion temperature + 10 0–20 0 0 K. When evaluating the correlation between the log 
of the stability parameter and the log of the critical quench rate an R 2 of 0.98 was 
calculated for each tested metric. 
pendent on thermodynamics and kinetics, such as liquidus viscos- 
ity. In Fig. 3 B, the clear relationship between the liquidus viscosity 
and the glass-forming ability is shown. This high correlation be- 
tween the critical quench rate and both glass stability parameters 
(the liquidus viscosity while normalized and not normalized by the 
liquidus temperature) indicates that this is a strong metric when 
trying to predict which systems will form a glass. It is interest- 
ing that Jiusti et al. [13] had previously reported that the liquidus 
viscosity was not as important as other terms such as T c when de- 
termining GFA. This indicates that T c (the DSC peak crystallization 
temperature) seems to be a function of viscosity itself and is re- 
lated to the peak crystallization temperature. Despite this, T c re- 
mains impractical for the purpose of designing glass compositions 
since it requires a synthesized sample and differential scanning 
calorimeter measurements. 

To recap we cannot employ Zachariasen’s theory for design- 
ing glass compositions as it cannot distinguish modifiers. Also, we 
are unable to use most glass forming parameters as aids in de- 
signing glasses since they require synthesized glasses with specific 

markers from DSC or other experimental characterization. TCT the- 
oretically can guide the design but only in systems where fragility 
and the liquidus temperature varies little. The eutectic approach 
works in some systems but not all. This leads to the testing of 
the liquidus viscosity. The liquidus viscosity is the only metric that 
required the same parameters as the physically based model. It 
then resulted in a linear relationship (R 2 = 0.98) between the crit- 
ical quench rate and the value of interest, indicating this as the 
optimal glass forming metric. 

The methods presented here allow for a quantifiable prediction 
of the critical quench rate using a new physics and machine learn- 
ing hybrid approach. This predictive model improves our under- 
standing of GFA more than previously reported methods in the lit- 
erature. However, it is worth noting that if the TLM is not avail- 
able, the liquidus viscosity gives a close approximation to the crit- 
ical quench rate due to the strong linear relationship between the 
two. Other methods such as using eutectic compositions and pure 
structural approaches to predicting GFA were found to fail in some 
circumstances considered here. The liquidus viscosity also explains 
the origin of glass forming ability because the glass transition tem- 
perature and fragility are related to the structure of the glass and 
the liquidus temperature is purely driven by the thermodynamics 
of the liquid and crystal. This implies that the glass structure, liq- 
uid thermodynamics, and crystalline dynamics must be understood 
to understand glass forming ability. 
5. Conclusions 

Despite decades of research, we do not have a universal param- 
eter for glass-forming ability that is quantitatively predictive from 
modeling. In this work, we used a combination of a physics-based 
model (viz., the toy landscape model) and machine learning to cre- 
ate a powerful tool that enables a quantitative prediction of the 
compositional dependence of critical quench rates. We then used 
this approach to validate other common approaches to choosing 
glass-forming liquids. We found that the Zachariasen approach and 
the eutectic approach both failed in some circumstances. The topo- 
logical approach worked successfully with the caveat that the liq- 
uidus temperature could not vary dramatically. The best perform- 
ing metric for glass-forming ability is simply the liquidus viscosity, 
where a higher viscosity at the liquidus temperature enables eas- 
ier vitrification. This result is intuitive since it was the only metric 
that accounted for both thermodynamic and kinetic effects. 
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