# Theoretical Modeling and Experimental Testing on the Electrical Breakdown in Supercritical Fluids

Jia Wei<sup>1\*</sup>, Alfonso Cruz<sup>1</sup>, Amanda West<sup>1</sup>, Farhina Haque<sup>2</sup>, Chanyeop Park<sup>2</sup>, and Lukas Graber<sup>1</sup>

- 1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- 2. Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, MS, USA jia.wei@gatech.edu

Abstract- Supercritical fluids (SCFs) have been recently considered to be used as insulating media due to properties that show exceptional dielectric strength, high heat transfer capability, and low viscosity. This paper reports the result of breakdown experiments on carbon dioxide (CO2) from gaseous to supercritical state. Experiments are performed under the isothermal condition of 310 K (37°C). The dielectric strength test is conducted in a 0.1 mm gap under uniform dc electric field. To interpret the result, a theoretical model that combines the thermodynamic calculation and existing data from the structure analysis by small angle x-ray scattering is developed. Our experiments suggest that the dielectric behavior of supercritical CO<sub>2</sub> shows a discontinuity of the dielectric strength near the critical point. This phenomenon can be well explained by the theoretical model, which calculates the molecular cluster size and considers the local fluid structure.

## I. INTRODUCTION

Supercritical fluids (SCFs), i.e., matter in a state that is achieved when temperature and pressure are above the critical temperature  $(T_c)$  and the critical pressure  $(P_c)$  as shown in Fig. 1, have been extensively investigated and involved in industrial applications, including chemical processing, mass transfer processes, and nanostructured materials [2-4]. In addition to chemistry, SCF-related researches have also been expanded to the electrical energy topic, such as using SCFs as dielectric media for power applications [5, 6]. For example, Zhang et al. developed a versatile supercritical medium switch and presented the breakdown voltage as a function of the pressure, gap distance, and the medium flow rate through the gap of electrodes [7, 8]. Kiyan et al. investigated the electrical breakdown voltage of a negative DC (direct current) ununiform gap in supercritical carbon dioxide at 200 µm [9, 10]. Wei et al. conducted experimental investigations on supercritical fluid mixtures, such as supercritical carbon dioxide-ethane (CO2-C2H6) and supercritical carbon dioxidetrifluoroiodomethane (CO<sub>2</sub>-CF<sub>3</sub>I) mixtures [11-13].

Theoretical models have also been developed to describe the electrical breakdown in SCFs. Tian *et al.* and Haque *et al.* investigated the electron scattering cross sections of supercritical CO<sub>2</sub>, supercritical He, and supercritical Xe of different cluster sizes based on the Boltzmann analysis [14-17]. Muneoka *et al.* presented an investigation of the breakdown behavior of micrometer gap DC discharges in supercritical helium and developed a discharge model to reproduce the breakdown behavior by using an improved gas-like and liquid-like breakdown mechanism [18]. Even though extensive

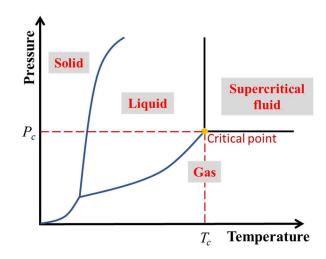



Fig. 1 A pressure-temperature (*P-T*) phase diagram that divides a substance into four thermodynamic phases: solid, liquid, gas, and supercritical fluid.

research has been conducted on this topic, the discharge behavior of highly-pressurized media, especially during the transition from gaseous to supercritical phase, is not fully understood. Established gas discharge theories [19, 20] are proved to be inaccurate in the electrical breakdown characteristics, especially in the uniform electric field.

In this paper, we demonstrate, to the best of our knowledge, the first theoretical modeling method that combines the effect of local density fluctuation and the structural analysis by small angle x-ray scattering to interpret data obtained from the electrical breakdown test. Since the properties of traditional dielectric media have been a major limiting factor impacting the design and operation of many applications spanning from particle accelerators over x-ray radiography and radiotherapy to electrical power systems, the research in SCFs as dielectric media could serve as a key to unlock the design of numerous applications that require high power density.

#### II. THEORETICAL MODELING

The ideal gas law does not take the interaction between molecules into consideration. Thus, it cannot explain the change of kinetic energy during collisions. The van der Waals

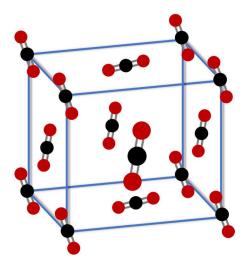



Fig. 2 The crystal structure of CO<sub>2</sub>: a face-centered-cubic structure. It has a coordination number of twelve and contains four molecules per unit cell. Red circles indicate the oxygen atom, and black circles indicate the carbon atom

equation, as a generalized equation based on the ideal gas law, is given by:

$$\left(P + \frac{a}{V_m^2}\right)(V_m - b) = N_A k_B T \tag{1}$$

where  $V_m$  is the molar volume, b is the volume that is occupied by one mole of the molecules,  $N_A$  is the Avogadro number,  $k_B$ is the Boltzmann constant, T is temperature, P is pressure, and a is a constant whose value depends on the molecular interaction. This equation accounts for the intermolecular attraction from molecules.

At the critical point, the heat of vaporization reaches zero. A stationary inflection point in the isothermal lines on a P-V phase diagram exists, which defines the critical point as in [21]:

$$\left(\frac{\partial P}{\partial V}\right)_{T_c} = \left(\frac{\partial^2 P}{\partial V^2}\right)_{T_c} = 0 \tag{2}$$

Solving (1) and (2):

$$Vc = 3b$$

$$Pc = \frac{a}{27b^2}$$

$$Tc = \frac{8a}{27N_A k_B b}$$

The cluster size and the number of molecules in an SCF cluster can be calculated from the Ornstein-Zernike correlation length  $\xi$ . According to the Ornstein-Zernike theory, the correlation length  $\xi$  can be determined from the characterization of the material using small angle x-ray scattering [22]:

$$I(s) = \frac{I(0)}{1 + \xi^2 s^2} \tag{3}$$

where I(s) is the scattering intensity, and I(0) is the zero-angle scattering intensity at s = 0. s is a measure of the scattering angle defined as:

$$s = \frac{4\pi \sin \theta}{\lambda} \tag{4}$$

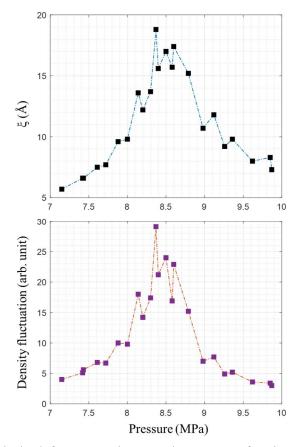
where  $\theta$  is the scattering angle, and  $\lambda$  is the x-ray source wavelength.

Data obtained from the small angle x-ray scattering experiment are related to density fluctuation  $F_D$ :

$$F_D = \frac{\langle (N - \langle N \rangle)^2 \rangle}{\langle N \rangle} = \frac{I(0)}{N} \frac{1}{Z^2} = \frac{(n_s V)^2}{n_{ave} V} = \frac{k_T}{k_T^0}$$
 (5)

where N is the total number of particles in a given volume V,  $\langle N \rangle$  is the average of N, Z is the number of electrons in a molecule,  $n_s$  is the standard deviation of the local number density,  $n_{ave}$  is the average number density,  $k_T$  is the isothermal compressibility, and  $k_T^0$  is the value of  $k_T$  for an ideal gas.

The equation of isothermal compressibility  $k_T$  is defined in the following equation, with  $V = N_A/n$ , where n is the number density.


$$k_T = -\frac{1}{V} \left( \frac{\partial V}{\partial P} \right)_T = -\frac{1}{n} \left( \frac{\partial n}{\partial P} \right)_T \tag{6}$$

The Ornstein–Zernike is an integral equation for defining the direct correlation function. It describes how the correlation between two molecules can be calculated.

In the present study, CO<sub>2</sub> has a face-centered-cubic crystal structure as shown in Fig. 2, which means it has a coordination number of twelve and contains four molecules per unit cell. The corresponding length of the crystallographic axes of CO<sub>2</sub> is measured from 4.330 Å to 5.963 Å [23]. According to the cell edge length, the cluster size of supercritical CO<sub>2</sub> at different thermodynamic conditions can be calculated as presented in Section III.

## III. RESULTS

The Ornstein-Zernike correlation length  $\xi$  and the density fluctuation values are obtained from the small angle x-ray scattering experiments reported by Nishikawa *et al* [1]. Their results are plotted as shown in Fig. 3. Fig. 3 (above) shows the Ornstein-Zernike correlation length  $\xi$  of supercritical CO<sub>2</sub>



obtained from scattering experiments as a function of the

Fig. 3 The Ornstein-Zernike correlation length  $\xi$  (above) and density fluctuation values (below) obtained from small angle x-ray scattering experiments in supercritical CO<sub>2</sub> as a function of pressure at 310 K. The figure is plotted based on measurement data from [1].

pressure, at the temperature of 310 K. Fig. 3 (below) shows density fluctuation values of supercritical CO<sub>2</sub> obtained from scattering experiments as a function of the pressure, at the temperature of 310 K.

The breakdown voltage measurements of CO<sub>2</sub> are carried out at the same temperature as the small angle x-ray scattering experiment at 310 K, from the gaseous phase to supercritical condition. Fig. 4 shows the measured breakdown voltage as a function of the pressure. The average breakdown voltage of fifteen measurements and their scattering data under one experimental condition is represented by an open circle and a vertical error bar, respectively. The right y-axis of Fig. 4 shows the calculated result of the cluster size at different thermodynamic conditions of supercritical CO<sub>2</sub>, based on the cell edge length. As shown in the left y-axis of Fig. 4, the measured breakdown voltage values increase with the density of CO<sub>2</sub> and scatter more in the supercritical region. An obvious discontinuity of the slope can be observed near the critical point where the substance experiences a phase change.

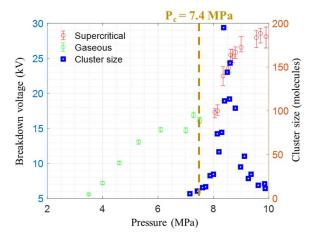



Fig. 4 Experimental results for the breakdown voltage of supercritical  $CO_2$  up to 10 MPa. The experiment is conducted in a uniform electric field at 0.1 mm.

## IV. CONCLUSIONS

In this study, we conducted DC breakdown measurements of CO<sub>2</sub> from gaseous to supercritical phase at the isothermal of 310 K. We also developed a theoretical model which considers the local fluid structure and calculates the molecular cluster size. The model takes the data obtained from small angle x-ray scattering, specifically the Ornstein-Zernike correlation length ξ, as the input. According to the crystal structure and the length of crystallographic axes of the molecule, the model calculates the molecular cluster size (the number of molecules inside one cluster) at different thermodynamic conditions. By comparing with data measured from the dielectric strength experiment, we prove that the breakdown characteristics of SCFs also exhibit a similar critical anomaly phenomenon as observed in other transport properties of SCFs. The direct comparison between the calculated cluster size and the breakdown voltage measurement manifests a strong correlation, which implies the anomalous behavior dielectric strength of SCFs is caused by long mean free paths in the highly fluctuating fluid that accelerate electrons. This work provides theoretical foundations to understand the electrical breakdown characteristics of supercritical fluids.

## ACKNOWLEDGMENT

This work has been supported in part by the National Science Foundation Grant No. 1944014.

## REFERENCES

- [1] K. Nishikawa, A. A. Arai, and T. Morita, "Density fluctuation of supercritical fluids obtained from small-angle X-ray scattering experiment and thermodynamic calculation," *The Journal of supercritical fluids*, vol. 30, no. 3, pp. 249-257, 2004.
- [2] C. A. Eckert, B. L. Knutson, and P. G. Debenedetti, "Supercritical fluids as solvents for chemical and materials processing," *Nature*, vol. 383, no. 6598, p. 313, 1996.
- [3] H. Muneoka, K. Urabe, S. Stauss, and K. Terashima, "Micrometer-scale electrical breakdown in high-density fluids with large density fluctuations: Numerical model and experimental assessment," *Physical Review E*, vol. 91, no. 4, p. 042316, 2015.
- [4] S. Stauss, H. Muneoka, K. Urabe, and K. Terashima, "Review of electric discharge microplasmas generated in highly fluctuating fluids: characteristics and application to nanomaterials synthesis," *Physics of Plasmas*, vol. 22, no. 5, p. 057103, 2015.
- [5] C. Xu, J. Wei, and L. Graber, "Compatibility Analysis of Piezoelectric Actuators in Supercritical Carbon Dioxide," in 2020 IEEE Electrical Insulation Conference (EIC), 2020: IEEE, pp. 171-174.
- [6] J. Wei, A. Cruz, C. Xu, F. Haque, C. Park, and L. Graber, "A Review on Dielectric Properties of Supercritical Fluids," in 2020 IEEE Electrical Insulation Conference (EIC), 2020: IEEE, pp. 107-113.
- [7] J. Zhang et al., "Breakdown strength and dielectric recovery in a high pressure supercritical nitrogen switch," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 22, no. 4, pp. 1823-1832, 2015.
- [8] J. Zhang, B. van Heesch, F. Beckers, T. Huiskamp, and G. Pemen, "Breakdown voltage and recovery rate estimation of a supercritical nitrogen plasma switch," *IEEE Transactions on Plasma Science*, vol. 42, no. 2, pp. 376-383, 2014.
- [9] T. Kiyan et al., "Negative DC prebreakdown phenomena and breakdown-voltage characteristics of pressurized carbon dioxide up to supercritical conditions," *IEEE transactions on plasma* science, vol. 35, no. 3, pp. 656-662, 2007.
- [10] T. Kiyan *et al.*, "Polarity effect in DC breakdown voltage characteristics of pressurized carbon dioxide up to supercritical conditions," *IEEE transactions on plasma science*, vol. 36, no. 3, pp. 821-827, 2008.
- [11] J. Wei, C. Park, and L. Graber, "Breakdown characteristics of carbon dioxide–ethane azeotropic mixtures near the critical point," *Physics of Fluids*, vol. 32, no. 5, p. 053305, 2020, doi: 10.1063/5.0004030.
- [12] J. Wei, A. Cruz, F. Haque, C. Park, and L. Graber, "Investigation of the dielectric strength of supercritical carbon dioxide– trifluoroiodomethane fluid mixtures," *Physics of Fluids*, vol. 32, no. 10, p. 103309, 2020, doi: 10.1063/5.0024384.
- [13] J. Wei, A. Cruz, F. Haque, C. Park, and L. Graber, "Electrical Breakdown Characteristics of Supercritical Trifluoroiodomethane-Carbon Dioxide (CF3I-CO2) Mixtures," in 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2020: IEEE, pp. 427-430.
- [14] Y. Tian, J. Wei, C. Park, Z. Wang, and L. Graber, "Modelling of electrical breakdown in supercritical CO 2 with molecular clusters formation," in 2018 12th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), 2018: IEEE, pp. 992-995.
- [15] F. Haque, J. Wei, L. Graber, and C. Park, "Modeling the dielectric strength variation of supercritical fluids driven by cluster formation near critical point," *Physics of Fluids*, vol. 32, no. 7, p. 077101, 2020, doi: 10.1063/5.0008848.
- [16] F. Haque, J. Wei, L. Graber, and C. Park, "Electron Scattering Cross Section Data of Supercritical CO 2 Clusters," in 2020 IEEE Electrical Insulation Conference (EIC), 2020: IEEE, pp. 144-147.
- [17] F. Haque, J. Wei, A. Cruz, L. Graber, and C. Park, "Modeling cluster formation driven variations in critical electric field of He and Xe near critical point based on electron scattering cross sections," *Physics of Fluids*, vol. 32, no. 12, p. 127106, 2020.
- [18] H. Muneoka, K. Urabe, S. Stauss, and K. Terashima, "Breakdown characteristics of electrical discharges in high-density helium near

- the critical point," *Applied Physics Express*, vol. 6, no. 8, p. 086201, 2013.
- [19] F. Paschen, "Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz," *Annalen der Physik*, vol. 273, no. 5, pp. 69-96, 1889.
- [20] J. S. Townsend, Electricity in gases. Рипол Классик, 1915.
- [21] P. A. Rock, *Chemical thermodynamics*. University Science Books, 1983.
- [22] H. E. Stanley, *Phase transitions and critical phenomena*. Clarendon Press, Oxford, 1971.
- [23] K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh, and K. Takemura, "Crystal structure of the high-pressure phase of solid CO2," *Science*, vol. 263, no. 5145, pp. 356-358, 1994.