
Polar List Decoding for
Large Polarization Kernels

Bhaskar Gupta,⇤ Hanwen Yao,† Arman Fazeli,† and Alexander Vardy†
⇤Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India

†University of California San Diego, La Jolla, CA 92093, USA
bhaskargupta@cse.iitb.ac.in, and {hwyao, afazelic, avardy}@ucsd.edu

Abstract—Polar codes constructed with large polarization ker-
nels were recently proven to be able to achieve optimal finite-
length scaling properties. However, straightforward decoding for
large kernel polar codes introduces a complexity coefficient that
is exponential to the kernel sizes, which makes such codes gener-
ally believed to be impractical. In this paper, we present a new
method that decodes large kernel polar codes with a complexity
coefficient that is polynomial to the kernel sizes. This could facil-
itate the implementation of large kernel polar codes for practical
use in the future.

Successive cancellation decoding for large kernel polar codes
requires calculation on the probabilities of its bit channels. Simi-
lar to conventional polar codes, those bit channels follow a recur-
sive relation, which make this calculation boil down to computing
the probabilities for bit channels of a single polarization kernel.
This kernel-level computation can be shown equivalent to soft-
output maximum-likelihood (ML) decoding on a single bit of a
linear block code. In our proposed method, we first use linear op-
erations to represent the considered linear block code as a polar
code with dynamically frozen bits, and then use a modified po-
lar list decoder to get an approximate value on the soft-output of
the desired bit. This method is motivated by the observation that
at short block lengths, polar list decoding with a large enough
list size can well-approximate ML decoding. The proposed low-
complexity method allows us to decode polar codes constructed
with a 64⇥ 64 polarization kernel with scaling exponent µ ⇡ 2.87
for the first time.

Index Terms—Polar codes, large kernels, list decoding, succes-
sive cancellation decoding.

I. INTRODUCTION

Polar codes, pioneered by Arıkan [1], give rise to the first
explicit family of codes that provably achieve capacity for a
wide range of channels. However, the performance of polar
codes at finite block lengths turn out to be mediocre. One rea-
son is that polar codes approach channel capacity at a rather
slow speed. This is reflected by its finite-length scaling prop-
erties. For a family of capacity-achieving codes, scaling ex-
ponent describes how the gap between the code rate and the
channel capacity vanishes as a function of the block length.
The smaller the scaling exponent, the faster this family of
codes approaches channel capacity. It has been shown by a se-
ries of papers [2]–[5] that polar codes have scaling exponent
µ = 3.627 for binary erasure channels (BEC), and scaling
exponent 3.579 6 µ 6 4.714 for general binary memoryless
symmetric (BMS) channels. These numbers are far from the

optimal scaling exponent µ = 2 [6], which can be achieved
by random linear codes [7], [8].

Arıkan’s polar codes are constructed based on the Kro-
necker product of a 2⇥ 2 binary matrix. One way to improve
the scaling exponent for polar codes, and thus improving its
finite-length performances, is by replacing Arıkan’s size 2
matrix with some larger binary square matrices. Those large
square matrices are called polarization kernels. Polar codes
with large kernels were shown to provide asymptotically op-
timal scaling exponents [9]. Recently, plenty of polarization
kernels of size 16, size 32, and size 64 have been proposed
with good scaling properties [10]–[14]. In particular in [14],
a 64⇥ 64 polarization kernel is constructed with µ ⇡ 2.87.
This kernel gives us the first explicit family of codes with
scaling exponent under 3. However, decoding large kernel
polar codes is generally believed to be impractical due to its
high computational complexity. Conventional polar codes of
length n admit successive cancellation (SC) decoding with
complexity O(n log n). For a length-n polar code constructed
with a size ` kernel, straightforward SC decoding requires
O(2`n log` n) computational complexity. This means by
employing a size ` polarization kernel, we can reduce the
scaling exponent, but at the same time also introduce an ex-
tra 2` complexity coefficient on the decoding process. In the
asymptotic regime, the coefficient 2` is just a constant. But
in the finite-length regime, this coefficient turns out to be
enormous for kernels of relative large sizes.

A. Related Prior Works

Reducing the decoding complexity for large kernel polar codes
have been a subject of investigation in multiple prior works.
In most cases, specific polarization kernels are identified for
which low-complexity decoding is possible. P. Trifonov first
proposed the window processing algorithm and used it to de-
code polar codes constructed with non-binary Reed-Solomon
(RS) kernels [15]. Later in [13], [16], with further complexity
reduction, the window processing algorithm was used to de-
code other selected polarization kernels of size 16 and 32. Re-
cently in [17], the authors propose to perform column permuta-
tion on the polarization kernels to additionally reduce the com-
plexity for the window processing algorithm. Independently,
a class of polarization kernels called permuted kernels were

introduced in [12], [18]. Decoding permuted kernels can be
viewed as SC decoding of conventional polar codes with look-
aheads. Also, there are other decoding algorithms for large
kernel polar codes based on trellises proposed in [19], [20].
But in general, the complexity of those algorithms stays high
for arbitrary kernels of size 32 and size 64.

In our proposed algorithm, we employ a linear transforma-
tion technique that allows one to view any linear code as a
polar code with dynamically frozen bits. Polar codes with dy-
namically frozen bits were first introduced in [21]. It has been
shown in [21]–[23] that any linear code can be represented as
a polar code with dynamically frozen bits. This allows one to
use successive cancellation list (SCL) decoding for polar codes
to perform approximate maximum likelihood (ML) decoding
for the linear code. The required list size varies depending on
the given linear code.

B. Our Contribution

In this paper, we propose a new method to perform SC decod-
ing for large kernel polar codes. Our method is motivated by
the observation that, by representing any linear code as a polar
code with dynamically frozen bits, one can employ polar list
decoding with large enough list size to get a good approximate

to ML decoding.
SC decoding for large kernel polar codes requires calcula-

tion on the probabilities of its bit channels. Similar to conven-
tional polar codes, those bit channels follow a recursive rela-
tion, so this calculation boils down to computing the probabili-
ties for bit channels of a single polarization kernel. This kernel-
level computation can be shown equivalent to soft-output ML
decoding on a single bit of a linear block code. In our proposed
method, we first employ linear transformation techniques to
represent the considered linear block code as a polar code
with dynamically frozen bits, and then use a modified polar
list decoder with a large enough list size to get an approximate
value on the soft-output of the desired bit.

Assuming we are using a size ` kernel, and list size L for
approximation, the complexity of our proposed approach for
kernel-level computation is the same as the list decoding com-
plexity for length-` polar codes, which is O(L` log2 `). This
complexity depends on the list size L, but it’s polynomial in
the kernel size `. Our simulation results show that one can ob-
tain good approximations with relatively small list sizes even
for kernels of size 64. The proposed method enables us to
decoding polar codes constructed with arbitrary polarization
kernels of size 32 and 64. In particular for the first time, we
are able to decode polar codes constructed with the 64⇥ 64
kernel in [14], which has a scaling exponent µ ⇡ 2.87.

C. Paper Outline

In Section II, We begin by giving some preliminary discus-
sions on large kernel polar codes and the SC decoding algo-
rithm. In Section III, we introduce our SCL-Approximation
Decoding Algorithm for kernel-level computation. In Section

IV, we present numerical results of our algorithm on polar-
ization kernels of size 32 and size 64. In Section V, we give
a brief conclusion for our work.

II. PRELIMINARIES

We use the following notations throughout this paper. We use
bold letters like u to denote vectors, and non-bold letters like
ui to denote symbols within that vector. We let the indices for
the symbols start from zero. For u = (u0, u1, · · · , un�1), we
denote its subvector consists of symbols with indices from a

to b as ub
a = (ua, ua+1, · · · , ub). And we denote the concate-

nation of vector u and vector v as (u, v).

A. Large Kernel Polar Codes

Assuming n = `m, an (n, k) large kernel polar code is a
binary linear block code generated by k rows of the polar
transform matrix G = D`K

⌦m, where K
⌦m is an m-fold Kro-

necker product of an ` ⇥ ` binary matrix K with itself, and
D` is a base-` digit-reversal permutation matrix. For Arıkan’s
conventional polar codes, K would be the 2⇥ 2 matrix

K2 =


1 0
1 1

�
,

and D` would be the bit-reversal permutation matrix.
Consider a BMS channel W : X ! Y as base channel

with input alphabet X = {0, 1} and output alphabet Y , char-
acterized by its transition probabilities W(y|x) for all x 2 X ,
y 2 Y . For a size ` polarization kernel K which is not upper
triangular under any column permutation, it’s shown in [24]
that the polar transform matrix G = D`K

⌦m gives rise to bit
channels W

(i)
m (yn�1

0 , ui�1
0 |ui) with capacities approaching 0

or 1. The definition for the bit channels is given by

W
(i)
m (yn�1

0 , ui�1
0 |ui) =

1
2n�1 Â

un�1
i+1

W
n(yn�1

0 |(ui�1
0 , ui , un�1

i+1)G), (1)

where W
n denotes n independent uses of channel W.

The encoding scheme for large kernel polar codes is given
by c = uG, where just like conventional polar codes, u is a
length-n binary input vector carrying k information bits, and
c is the codeword for transmission. The positions of those
k information bits in u are specified by an index set A ✓
{0, 1, · · · , n � 1}. The index set A is chosen such that the
bit channels W

(i)
m ’s for i 2 A are the k bit channels with the

largest channel capacities. The rest of the n� k bits in u are
frozen to certain fixed values, usually zeros.

B. SC Decoding of Large Kernel Polar Codes

On the receiver side, for i goes from 0 to n� 1, the SC de-
coding algorithm successively estimate bit ui, and decode it

as bui based on the earlier decoded path bui�1
0 in the following

way:

bui =

(
arg maxui2{0,1} W

(i)
m (yn�1

0 , bui�1
0 |ui) i 2 A

frozen value i /2 A
(2)

At the end of this process, the SC decoder returns the length-n
estimated vector bu as the decoded vector for u.

To perform SC decoding, one has to calculate the proba-
bility W

(i)
m (yn�1

0 , ui�1
0 |ui) with a given channel output vector

yn�1
0 . Due to the Kronecker product structure for the polar

transform matrix G, this probability can be calculated recur-
sively. Assuming i mod ` = �, and i = s`+�, this proba-
bility for the bit channel can be calculated as

W
(i)
m (yn�1

0 , ui�1
0 |ui) = W

(�)
1 (z`�1

0 , us`+��1
s` |ui) (3)

Here for the expression W
(�)
1 (z`�1

0 , us`+��1
s` |ui) in (3), we

are considering the bit channel for a single polarization kernel
K, and we let z`�1

0 denotes a length-` channel output vector
for this single kernel. For the symbols in z`�1

0 , the transition
probabilities of the base channels are given by

Pr(z j|u) = W
(s)
m�1(y j(n/`)

(j+1)(n/`)�1, v(j)s�1
0 |u), u 2 {0, 1}

(4)

where v(j)s�1
0 is a length-s binary vector with

v(j)k = (u(k+1)`�1
k` K) j

Therefore, with the recursive relation in (3), calculating the bit
channel probabilities for large kernel polar codes boils down
to computing the probabilities W

(i)
1 (y`�1

0 , ui�1
0 |ui) for a sin-

gle polarization kernel K. Moreover, for SC decoding in the
LLR domain, it suffices to compute the ratio

R
(i)(ui�1

0 , y`�1
0)

def
=

W
(i)
1 (y`�1

0 , ui�1
0 |ui = 0)

W
(i)
1 (y`�1

0 , ui�1
0 |ui = 1)

(5)

In the context of large kernel polar codes, instead of consid-
ering the probability W

(i)
m (yn�1

0 , ui�1
0 |ui), it’s convenient to

consider

W
(i)
m ((ui�1

0 , ui)|yn�1
0) =

W
(i)
m (yn�1

0 , ui�1
0 |ui)

2W(yn�1
0)

=

Â
un�1

i+1 2{0,1}`�i�1

W
n((ui

0, un�1
i+1)G|yn�1

0), (6)

which is the probability for path ui

0 given the channel out-
put yn�1

0 . The ratio in (5) can also be derived using those
probabilities for the paths as

R
(i)(ui�1

0 , y`�1
0) =

W
(i)
1 ((ui�1

0 , 0)|y`�1
0)

W
(i)
1 ((ui�1

0 , 1)|y`�1
0)

(7)

In this way, the task for computing W
(i)
1 (y`�1

0 , ui�1
0 |ui)

equivalently becomes the task for computing the ratio

R
(i)(ui�1

0 , y`�1
0) for a single kernel K. This task is referred

as kernel processing [25], or kernel marginalization [26]. If
this kernel-level computation task takes complexity O(T),
then the overall SC decoding complexity for length-n large
kernel polar codes will be O(T · n log` n).

Straightforward calculation for W
(i)
1 (ui

0|y
`�1
0) as in (6)

takes exponential complexity O(2`). This complexity can be
slightly reduced by methods in [27] or by methods in [26].
But in general, direct calculation stays prohibitive for kernels
with relative large sizes. More efficient algorithms such as
window processing [15] and recursive trellis processing [19]
have been proposed for computing W

(i)
1 (ui

0|y
`�1
0). Those

algorithms are still exponential with respect to the kernel
size `, but with various improvements [16], [17], [25], they
are efficient enough to process kernels of size 16 and some
designed low-complexity kernels of size 32.

III. SUCCESSIVE CANCELLATION LIST APPROXIMATION
ALGORITHM FOR POLARIZATION KERNELS

In this section, we propose a new algorithm that uses succes-
sive cancellation list (SCL) decoders for polar codes [28] to
estimate the ratio in (7). We call it SCL-Approximation Algo-
rithm.

First, we show the problem of computing the ratio
R
(i)(ui�1

0 , y`�1
0) can be transformed into the problem of

soft-output ML decoding on a single bit of a linear block
code.

A. Cancelling the Effect of the Preceding Bits

Let K be an ` ⇥ ` polarization kernel with ` = 2t being a
power of 2, and let

K =


A
(i�1)

B
(i)

�

where A
(i�1) is defined to be the submatrix of K consisting

of its rows with indices from 0 to i� 1, and B
(i) is defined

to be the submatrix of K consisting of its rows with indices
from i to `� 1. We start by expressing W

(i)
1 (ui

0|y
`�1
0) as

W
(i)
1 ((ui�1

0 , ui)|y`�1
0)

= Â
u`�1

i+1

W
`((ui�1

0 , ui , u`�1
i+1)K|y

`�1
0)

= Â
u`�1

i+1

W
`(ui�1

0 A
(i�1) + (ui , u`�1

i+1)B
(i)|y`�1

0)

Since the base channel W is a BMS channel, for any y 2 Y
with W(0|y) = p1 and W(1|y) = p2, there exists a ȳ 2 Y
such that W(0|ȳ) = p2 and W(1|ȳ) = p1. So in the above
expression for W

(i)
1 (ui

0|y
`�1
0), we can cancel out the impact

of the earlier path ui�1
0 on y`�1

0 by replacing y`�1
0 with a new

channel output vector z`�1
0 , such that

z j =

(
yj (ui�1

0 A
(i�1)) j = 0

ȳ j (ui�1
0 A

(i�1)) j = 1

We remark that this z`�1
0 is a new defined output vector dif-

ferent from the one in (3). By defining this new vector z`�1
0 ,

we have

W
(i)
1 ((ui�1

0 , ui)|y`�1
0) = Â

u`�1
i+1

W
`((ui , u`�1

i+1)B
(i)|z`�1

0)

So the ratio in (7) has the expression

R
(i)(ui�1

0 , y`�1
0) =

Âu`�1
i+1

W
`((0, u`�1

i+1)B
(i)|z`�1

0)

Âu`�1
i+1

W`((1, u`�1
i+1)B(i)|z`�1

0)
(8)

If we denote the linear code generated by B
(i) as C(B

(i)), and
view z`�1

0 as the channel output after transmitting a codeword
in C(B

(i)) through the base channels, then for the expression
in (8), we basically have Pr(ui = 0|z`�1

0) in the numerator,
and Pr(ui = 1|z`�1

0) in the denominator. Therefore, comput-
ing the ratio R

(i)(ui�1
0 , y`�1

0) can be achieved by soft-output
ML decoding on the first bit of the code C(B

(i)) generated
by B

(i).
Since the polarization kernel K has full-rank, its subma-

trix B
(i) has rank ` � i, and C(B

(i)) is an (`, ` � i) linear
block code. To compute this ratio R

(i)(ui�1
0 , y`�1

0) directly,
one needs to check the probabilities for all the codewords in
C(B

(i)). This straightforward approach requires complexity
O(2`), which is exponential in the kernel size `. In our algo-
rithm, we propose to perform polar list decoding for C(B

(i)),
and approximate the ratio R

(i)(ui�1
0 , y`�1

0) by only checking
the probabilities for the codewords in the list. To perform po-
lar list decoding, we first need to represent C(B

(i)) as a polar
code with dynamically frozen bits.

B. Representation as Polar Codes with Dynamic Freezing

Polar codes with dynamically frozen bits, first introduced in
[21], are polar codes where each of the frozen bit uj is not
fixed to be zero, but set to be a linear function of its preceding
bits as uj = fi(u0, u1, · · · , uj�1). It has been shown [21]–
[23] that with linear operation techniques, any linear code can
be encoded as a polar code with dynamically frozen bits.

We now represent C(B
(i)) as a polar code with dynamically

frozen bits, so that we can perform polar list decoding on top
of it. Let KA = BK

⌦t

2 be the Arıkan’s polar transform matrix
of size `. we first define an (`� i)⇥ ` precoder matrix M as

M = B
(i)

KA (9)

Observe that KA is invertible with (KA)�1 = KA. So

B
(i) = MKA (10)

Then with elementary row operations, we can transform M

into a matrix M
⇤ in reduced row echelon form (RREF). The

relation between M and M
⇤ is given by M

⇤ = TM, where
T is some (`� i)⇥ (`� i) invertible matrix. By mutiplying
T on both sides of (10), we get

TB
(i) = M

⇤
KA (11)

Denote B
(i)⇤ = TB

(i) as a new generator matrix. Since row
operations preserve the linear space spanned by B

(i), B
(i)⇤

generates the same code as B
(i). Let v be a length-(`� i) bi-

nary vectors with `� i information bits. The encoding of v
with the generator matrix B

(i)⇤ is given by

vB
(i)⇤ = vM

⇤
|{z}

w

KA (12)

Here M
⇤ is in RREF, so vector w = vM

⇤ is a length-` vec-
tor with `� i information bits, and i dynamically frozen bits.
Therefore, the encoding vB

(i)⇤ can also be achieved by multi-
plying w with dynamically frozen bits with the Arıkan’s polar
transform matrix KA. In this way, we represent C(B

(i)) as a
polar code with dynamically frozen bits.

The linear code C(B
(i)) can be encoded either by u`�1

i
B
(i),

or by vB
(i)⇤. For the same codeword, the relation between

u`�1
i

and v can be established by

u`�1
i

B
(i) = vB

(i)⇤) u`�1
i

= vT (13)

This shows ui equals to the first bit of vT. In other words,
ui = (vT)0.

C. Ratio Estimation via Polar List Decoding

By viewing C(B
(i)) as a polar code with dynamically frozen

bits, we can perform SCL decoding in [28] for C(B
(i)) to

decode the vector v. Assuming the list size we are using is L,
at the end of the SCL decoding process, we will get a list of
L different paths for v. We denoted the set of those L paths
as P = {v[1], v[2], · · · , v[L]}.

Let’s re-examine the expression in (8) for the ratio
R
(i)(ui�1

0 , y`�1
0). To compute this ratio directly, we need to

divide all codewords in C(B
(i)) into two sets. The first set

contains codewords encoded by u`�1
i

with ui = 0, and the
second set contains codewords encoded by u`�1

i
with ui = 1.

Then R
(i)(ui�1

0 , y`�1
0) can be computed as the ratio of the

sums of the probabilities for codewords in those two sets.
In our SCL-Approximation Algorithm, instead of checking

all the codewords in C(B
(i)), after the SCL decoding process,

we propose to only check those L codewords generated by
paths in the list. We divide those L codewords into two sets
depending on the values of ui, and get an approximate value
for the ratio as

bR(i)(ui�1
0 , y`�1

0) =
Âv2P:(vT)0=0 W

`(vB
(i)⇤|z`�1

0)

Âv2P:(vT)0=1 W`(vB(i)⇤|z`�1
0)

(14)

With a large enough list size L, empirically the polar list
decoder is a good approximation for the ML decoder. There-
fore, it is reasonable to expect that those L codewords in
the list will capture majority of the probabilities, and thus
bR(i)(ui�1

0 , y`�1
0) in (14) will give us a precise enough

approximation for R
(i)(ui�1

0 , y`�1
0).

In this approach, the computation for the precoder matrix
M
⇤, and the new generator matrix B

(i)⇤ can all be performed
offline. So the complexity of this kernel-level computation is

Algorithm 1: SCL-Approximation Algorithm

Input: size ` kernel K =


A
(i�1)

B
(i)

�
, index i, base

channel W, and channel output vector y`�1
0

Output: bR(i)(ui�1
0 , y`�1

0)

1 set M B
(i)

KA, where KA is Arıkan’s polar
transform matrix of size `

2 transform M into M
⇤ in RREF by M

⇤ = TM

3 set B
(i)⇤ M

⇤
KA

// The above part of the algorithm
can be performed offline

4 x ui�1
0 A

(i�1)

5 z (z0, z1, · · · , z`�1)
6 for i = 0, 1,, `� 1 do
7 if xi = 1 then
8 zi = yi

9 else
10 zi = ȳi

11 perform SCL decoding with list size L on (vM
⇤)KA

with channel output z to get the set of L paths
{v[1], v[2], · · · , v[L]}

12 p0 0
13 p1 0
14 for i = 1,, L do
15 if (v[i]

T)0 = 0 then
16 p0 p0 + Pr(v[i]

B
(i)⇤|z)

17 else
18 p1 p1 + Pr(v[i]

B
(i)⇤|z)

19 return bR(i)(ui�1
0 , y`�1

0) = p0/p1

O(L` log2 `), the same as the complexity of polar list decod-
ing for length-` polar codes. This complexity is polynomial
in the kernel size `. If we apply the SCL-Approximation Al-
gorithm, the overall complexity of SC decoding for length-n
large kernel polar polar codes will be O(L` log2 ` · n log` n).
The pseudo code summarizing our SCL-Approximation Algo-
rithm is given in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we show some simulation results of SC de-
coding with SCL-Approximation Algorithm for large kernel
polar codes. We consider two polarization kernels K32 and
K64 from [14]. The 32⇥ 32 kernel K32 has scaling exponent
µ(K32) = 3.122, and the 64⇥ 64 kernel K64 has scaling expo-
nent µ(K64) ⇡ 2.87. The large kernel polar codes considered
here are all constructed with Monte-Carlo simulations.

Figure 1 shows the simulation results of SC decoding for
(1024, 512) polar codes on AWGN channels. The black line
shows the SC decoding performance for conventional polar

1 1.5 2 2.5
SNR (dB)

10-4

10-3

10-2

10-1

100

FE
R

K2
K32, SCL-Approximation with L=8
K32, SCL-Approximation with L=16
K32, SCL-Approximation with L=32
K32, SCL-Approximation with L=64

Fig. 1: SC decoding performance for (1024,512) polar codes

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
SNR (dB)

10-3

10-2

10-1

100

FE
R

K2
K64, SCL-Approximation with L=16
K64, SCL-Approximation with L=32
K64, SCL-Approximation with L=64
K64, SCL-Approximation with L=128

Fig. 2: SC decoding performance for (4096,2048) polar codes

codes, and the color lines show the SC decoding perfor-
mance with SCL-Approximation Algorithm for large kernel
polar codes constructed with K32. We can observe that as
we increase the list size L for the SCL-Approximation Al-
gorithm, the overall SC decoding performance gets better
as expected. Since larger L is expected to gives us better
approximation for the ratio in (7) for kernel-level computa-
tions. For K32, our simulation results show that L = 32 is
large enough to get us close to the performance limit of our
approach. Thus it is reasonable to believe that for K32, the
SCL-Approximation Algorithm with L = 32 gives us a pretty
precise approximation for the ratio in (7).

Figure 2 shows the simulation results of SC decoding for
(4096, 2048) polar codes on AWGN channels. Similarly, the
black line shows the SC decoding performance for conven-
tional polar codes, and the color lines show the SC decod-
ing performance with SCL-Approximation Algorithm for large
kernel polar codes constructed with K64. For K64, L = 64
is large enough to get us close to the performance limit of

our approach. This gives the evidence that for K64, the SCL-
Approximation Algorithm with L = 64 is likely to give us a
pretty precise approximation for the ratio in (7).

V. CONCLUSION

In this paper, we propose the SCL-Approximation Algorithm
to perform kernel-level computation for SC decoding on large
kernel polar codes. The SCL-Approximation Algorithm ex-
ploits the idea that polar list decoding with large enough list
size can well-approximate ML decoding. This algorithm has
computational complexity polynomial in the kernel size. With
this low-complexity approach, we are able to SC decode polar
codes constructed with a size 64 kernel for the first time.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on information Theory, vol. 55, no. 7, pp. 3051–3073,
2009.

[2] D. Goldin and D. Burshtein, “Improved bounds on the finite length scal-
ing of polar codes,” IEEE Transactions on Information Theory, vol. 60,
no. 11, pp. 6966–6978, 2014.

[3] S. H. Hassani, K. Alishahi, and R. L. Urbanke, “Finite-length scaling
for polar codes,” IEEE Transactions on Information Theory, vol. 60,
no. 10, pp. 5875–5898, 2014.

[4] S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical
scaling law for polar codes,” in 2010 IEEE International Symposium on

Information Theory. IEEE, 2010, pp. 884–888.
[5] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Unified scaling of

polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors,” IEEE Transactions on Information Theory, vol. 62, no. 12,
pp. 6698–6712, 2016.

[6] V. Strassen, “Asymptotische abschatzugen in shannon’s informationsthe-
orie,” in Transactions of the Third Prague Conference on Information

Theory etc, 1962. Czechoslovak Academy of Sciences, Prague, 1962, pp.
689–723.

[7] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, 2010.

[8] M. Hayashi, “Information spectrum approach to second-order coding
rate in channel coding,” IEEE Transactions on Information Theory,
vol. 55, no. 11, pp. 4947–4966, 2009.

[9] A. Fazeli, H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes
with optimal scaling: Polar codes with large kernels,” IEEE Transactions

on Information Theory, 2020.
[10] A. Fazeli and A. Vardy, “On the scaling exponent of binary polarization

kernels,” in 2014 52nd Annual Allerton Conference on Communication,

Control, and Computing (Allerton). IEEE, 2014, pp. 797–804.
[11] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary

polarization kernels from code decompositions,” IEEE Transactions on

Information Theory, vol. 61, no. 5, pp. 2227–2239, 2015.
[12] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, and A. Vardy, “On

efficient decoding of polar codes with large kernels,” in 2017 IEEE

Wireless Communications and Networking Conference Workshops (WC-

NCW). IEEE, 2017, pp. 1–6.
[13] G. Trofimiuk and P. Trifonov, “Efficient decoding of polar codes with

some 16⇥ 16 kernels,” in 2018 IEEE Information Theory Workshop

(ITW). IEEE, 2018, pp. 1–5.
[14] H. Yao, A. Fazeli, and A. Vardy, “Explicit polar codes with small scal-

ing exponent,” in 2019 IEEE International Symposium on Information

Theory (ISIT). IEEE, 2019, pp. 1757–1761.
[15] P. Trifonov, “Binary successive cancellation decoding of polar codes

with reed-solomon kernel,” in 2014 IEEE International Symposium on

Information Theory. IEEE, 2014, pp. 2972–2976.
[16] G. Trofimiuk and P. Trifonov, “Reduced complexity window processing

of binary polarization kernels,” in 2019 IEEE International Symposium

on Information Theory (ISIT). IEEE, 2019, pp. 1412–1416.

[17] F. Abbasi and E. Viterbo, “Large kernel polar codes with efficient win-
dow decoding,” IEEE Transactions On Vehicular Technology, vol. 69,
no. 11, pp. 14 031–14 036, 2020.

[18] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, and A. Vardy, “Per-
muted successive cancellation decoding for polar codes,” in 2017 IEEE

International Symposium on Information Theory (ISIT). IEEE, 2017,
pp. 2618–2622.

[19] P. Trifonov, “Trellis-based decoding techniques for polar codes with
large kernels,” in 2019 IEEE Information Theory Workshop (ITW).
IEEE, 2019, pp. 1–5.

[20] E. Moskovskaya and P. Trifonov, “Design of bch polarization kernels
with reduced processing complexity,” IEEE Communications Letters,
vol. 24, no. 7, pp. 1383–1386, 2020.

[21] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in 2013 IEEE Informa-

tion Theory Workshop (ITW). IEEE, 2013, pp. 1–5.
[22] A. Fazeli, A. Vardy, and H. Yao, “Hardness of successive-cancellation

decoding of linear codes,” in 2020 IEEE International Symposium on

Information Theory (ISIT). IEEE, 2020, pp. 455–460.
[23] C.-Y. Lin, Y.-C. Huang, S.-L. Shieh, and P.-N. Chen, “Transformation

of binary linear block codes to polar codes with dynamic frozen,” IEEE

Open Journal of the Communications Society, vol. 1, pp. 333–341, 2020.
[24] S. B. Korada, E. Şaşoğlu, and R. Urbanke, “Polar codes: Characteri-

zation of exponent, bounds, and constructions,” IEEE Transactions on

Information Theory, vol. 56, no. 12, pp. 6253–6264, 2010.
[25] G. Trofimiuk and P. Trifonov, “Window processing of binary polariza-

tion kernels,” IEEE Transactions on Communications, 2021.
[26] V. Bioglio and I. Land, “On the marginalization of polarizing kernels,”

in 2018 IEEE 10th International Symposium on Turbo Codes & Iterative

Information Processing (ISTC). IEEE, 2018, pp. 1–5.
[27] Z. Huang, S. Zhang, F. Zhang, C. Duanmu, F. Zhong, and M. Chen,

“Simplified successive cancellation decoding of polar codes with
medium-dimensional binary kernels,” IEEE Access, vol. 6, pp. 26 707–
26 717, 2018.

[28] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

