
List Decoding of Polar Codes: How Large
Should the List Be to Achieve ML Decoding?

Arman Fazeli, Alexander Vardy, and Hanwen Yao
University of California San Diego, La Jolla, CA 92093, USA

{afazelic,avardy,hwyao}@ucsd.edu

Abstract—Successive-cancellation list (SCL) decoding is a widely
used and studied decoding algorithm for polar codes. For short
blocklengths, empirical evidence shows that SCL decoding with
moderate list sizes (say, L 6 32) closely matches the performance
of maximum-likelihood (ML) decoding. Hashemi et al. proved that
on the binary erasure channel (BEC), SCL decoding actually co-
incides with ML decoding for list sizes L > 2� , where � is a new
parameter we call the mixing factor. Loosely speaking, the mixing
factor counts the number of information bits mixed-in among the
frozen bits; more precisely � =

���i 2 Fc : i 6 max{F}
 ��, where

F ⇢ [n] denotes the set of frozen indices.
Herein, we extend the aforementioned result of Hashemi et al.

from the BEC to arbitrary binary-input memoryless symmetric
channels. Our proof is based on capturing all 2� decoding paths
that correspond to the � information bits appearing before the
last frozen bit, and then finding the most-likely extension for each
of these paths efficiently using a nearest coset decoding algorithm
introduced herein. Furthermore, we present a hybrid successive-
cancellation list (H-SCL) decoding algorithm, which is a hybrid
between conventional SCL decoding and nearest coset decoding.
We believe that the hybrid algorithm can outperform the con-
ventional SCL decoder with lower decoding complexity.

Index Terms—coding theory, polar codes, successive-cancellation
list decoding, maximum-likelihood decoding, decoding complexity

I. INTRODUCTION

Since their invention by Arıkan in 2008, polar codes have been
a subject of intensive research. Successive-cancellation list
decoding [12] made polar codes suitable for a wide range of
applications in practice. In particular, after nearly a decade of
improvements, polar codes have been selected by 3GPP [1]
as the coding method of choice for eMBB control channels in
the fifth generation (5G) of the wireless technology standard.

Today, the literature contains numerous efficient decoding
methods for polar codes, many of which are based on succes-
sive-cancellation list decoding [12]. The computation com-
plexity of SCL scales linearly with the list size, denoted by L.
For small code-lengths, simulations show that it is possible to
use SCL with moderate list sizes, such as L = 16 or L = 32, to
achieve error probabilities nearly as small as that of maximum-
likelihood (ML) decoding. However, numerical observations
also show that one has to increase the list size as the block-
length increases in order to maintain the same near-optimal
performance. The increased decoding complexity associated
with larger values of L makes polar codes less attractive for
practical purposes. Unfortunately, theory currently falls short
of predicting how large the value of L should be, which in turn
requires practitioners to derive these numbers experimentally.

The algorithmic implementation of successive-cancellation
decoding in [2] allows the decoder to efficiently follow a single
decoding path on the polar decoding tree. SCL decoding of
polar codes allows one to pursue multiple paths on the polar
decoding tree. For an (n, k) polar code, there are k layers in
the decoding tree where the paths branch off. These layers
corresponds to the positions of the information bits in the
uncoded length-n vector u. Therefore, by setting the list size
as L = 2k, the SCL decoding method explores all 2k valid
polar codewords and becomes equivalent to ML decoding.

Hashemi, Mondelli, Hassani, Urbanke, and Gross [7] proved
that for the class of binary erasure channels it is possible to
retain the optimal performance of ML decoding by setting
L = 2k�⌧ , where ⌧ is the number of information bits that
appear after the last frozen index in u. For simplicity, let us
define the mixing factor of the polar code as the number of
information bits that appear before the last frozen bit in the
uncoded vector u and denote it by �. We extend this result to
arbitrary binary-input memoyless symmetric (BMS) channels
in the following theorem.

Theorem 1 (Main theorem). Consider transmission over a bi-

nary-input memoryless symmetric channel W using an (n, k)
polar code whose mixing factor is �. Then successive-cancel-

lation list decoding with list size L = 2� achieves maximum-

likelihood decoding.

In order for the SCL decoding algorithm to achieve ML
decoding, we modify the hard decision rule once the decoder
reaches the last frozen index. The proposed rule is based on
comparing the minimum distances between the received vector
and two polar cosets, which allows the decoder to follow the
most likely path on the decoding tree from this index onward.
The decoding complexity of the decoder in Theorem 1 is
bounded by O(2�n log n), which can be significantly smaller
than O(2kn log n) depending on the location of frozen bits.
In simulations, we observe that it usually suffices to pick
much smaller values of L in order to closely match the
performance of the ML decoder. Furthermore, empirical
evidence shows that in order to obtain near-ML performance,
the required list size should be larger for polar codes with
larger mixing factors. This explains why code dimension
alone is not enough to predict the required list size.

A. Our contributions

This work may be regarded as an attempt to shed some light on
how large the list should be in SCL decoding of polar codes,

thereby clarifying why SCL decoding of some polar codes
requires larger list sizes than the others.

We define certain polar cosets that correspond to polar
codewords that agree with the so-far-decoded bits during
the decoding process. We then use the recursive structure
of polar codes to efficiently compute the minimum distance
between any given vector and any such coset. Based upon
these results, a new hard-decision decoding rule is proposed,
which differs from the conventional rule used in successive-
cancellation (or SCL) decoding. The new rule is based on
comparing the minimum distances between the received vector
and some of the aforementioned polar cosets. We prove that
once the decoder passes the last frozen index, it can switch
to the alternative hard-decision rule, and efficiently obtain the
maximum-likelihood codeword. This leads to the proof of the
upper bound on the required list size in Theorem 1.

Lastly, we introduce a hybrid SCL decoding algorithm, in
which the decoder switches the hard-decision rule half-way
through the decoding process. We explain why the new method
is likely to outperform the conventional SCL decoding.

B. Related work

The list size in the SCL decoding algorithm has been a subject
of research in multiple prior works. The fact that one can
achieve near-ML performance with reasonably small list sizes
was first discovered through numerical simulations in [12].
However, the numerical simulations also showed that as the
block-length increases, one has to increase the list size in order
to maintain this property. In fact, in [10], it was shown that
the scaling exponent of polar codes under SCL decoding with
a fixed list size is the same as that of SC decoding. The recent
works of [4] and [5] provided the first theoretically-proven
bounds on the list size, which are rooted in information-
theoretical quantities and are easy to compute.

Nearly all of our results in this paper also extend to “polar-
like” codes. One example would be the RM-polar codes
introduced in [8]. Polar codes with dynamic frozen constraints
are another example. Such codes were first introduced in [14],
and have been subject to extensive research since. Polarization-
adjusted convolutional (PAC) codes of Arıkan [3] can be re-
garded as polar codes with dynamic frozen constraints [16].
In fact, it was recently shown in [9] and [6] that any linear
code can be encoded as a polar code with dynamic frozen
constraints. SCL decoding can be used effectively to decode
all of these codes, which further highlights the importance of
improving the bounds on its list size.

C. Paper outline

In the next section, we give a brief overview of successive-
cancellation list decoding. In Section III, we define the mixing
factor of polar codes and introduce an alternative way to
make hard decisions throughout the decoding process. We
then provide a proof for Theorem 1. The hybrid SCL decoding
algorithm is presented in Section IV. Finally, we conclude the
paper in Section V with a few remarks and a conjecture.

· · · ...
· · · ...

...
· · ·

· · ·
completely frozen

· · ·
mixed

· · ·
completely unfrozen

root u0 u1 ua�1 ua ub ub+1 un�1

Fig. 1. The binary tree associated with decoding an (n, k) polar code. There
are n steps in the decoding and 2n paths, out of which only 2k represent
valid polar codewords. The red nodes/edges correspond to ui = 1 decisions.
ua is the first unfrozen bit while ub is the last frozen bit in u. The mixing
factor � is the number of unfrozen bits between ua and ub.

II. AN OVERVIEW OF SCL DECODING OF POLAR CODES

Let us begin by recalling that many families of codes can be
viewed as polar codes with row selection rules different than
that of conventional polar codes. Reed-Muller (RM) codes are
one such family. Although these codes and their decoding
algorithms have been studied extensively, most practitioners
agree that for short-length codes and under reasonable de-
coding complexity limitations, SCL decoding of polar codes
achieves the lowest error probability. Polarization-adjusted
convolutional codes, recently introduced by Arıkan in [3],
are another example of polar codes, in which not only the
row selection rule differs from that of the conventional polar
code but also it utilizes a set of dynamic frozen constraints to
determine the values of frozen bits. Simulations show that the
required lists size for the SCL decoding to obtain near-optimal
performance of RM codes and PAC codes are significantly
larger than that of polar codes at the same code-lengths [16].

Let n = 2m denote the code length. Assume G = A
⌦m

2 is
the n ⇥ n generating matrix of polar codes at length n, and
A2 is the 2 ⇥ 2 polarization kernel. The encoding relation is
given by

uG = x, (1)

where u = u
n�1
0 and x = x

n�1
0 are the information (uncoded)

vector and the polar codeword respectively. Let k denote the
code dimension. The construction algorithms of polar codes,
such as that in [11], designate k coordinates on the vector
u to carry raw information bits while the other n � k bits
are frozen according to some pre-determined values that are
known to the decoder. Both the SC and and the SCL decoding
algorithms are based on decoding the values of ui sequentially
for i = 0, 1, . . . , n�1. This process can be viewed as pursuing
one path in the SC decoder, or L paths in the SCL decoder
with list size L, in a binary decoding tree with depth n such
as that in Figure 1.

For any frozen coordinate such as ui, its value can be
fixed to some number in {0, 1} or dynamically set according
to uj for j = 0, 1, . . . , i � 1 since the values of uj for
j = 0, 1, . . . , i � 1 are known to the decoder at the time
it is decoding ui. The latter assignment of frozen bits is
known as dynamic frozen constraints and was first introduced

in [14]. Recently, it has been shown in [9], [16] that any linear
code can be encoded as polar codes with dynamic frozen
constraints. The main question of interest is that whether
the existing decoding algorithms of polar codes can also be
modified to decode such codes. In [16], it is showed that the
conventional successive-cancellation decoding of polar codes
cannot be used to decode these arbitrary linear codes. In
fact, it is known that the ML decoding of arbitrary codes is
an NP-hard task in general. On the other hand, successive-

cancellation list (SCL) decoding of polar codes is shown to
be able to attain probabilities of error nearly as good as that of
the ML decoder with small list sizes. An interesting question
pops up: can we use the SCL decoding algorithm of polar
codes with small list sizes to decode any linear code nearly
as good as the ML decoder?

The SC decoding algorithm is based on decoding ui’s for
i = 0, 1, . . . , n� 1 sequentially. At each step, it estimates the
value of ûi according to the following rule:

ûi =

8
>>>>><

>>>>>:

fi if ui is a frozen bit

0 if not frozen and W (y,ui�1
0 |ui=0)

W (y,ui�1
0 |ui=1)

> 1,

1 if not frozen and W (y,ui�1
0 |ui=0)

W (y,ui�1
0 |ui=1)

< 1,

Ber(12) otherwise,

(2)

where fi is the frozen value for ui and W (y, ui�1
0 |ui = t) is

the bit-channel transition probability defined as

W (y, ui�1
0 |ui = t) =

X

u
n�1
i+1 2{0,1}n�i�1

1

2n�1
Wn(y|uG), (3)

in which y is the received vector after transmitting x over n

i.i.d. copies of a BMS channel W and

Wn(y|uG) =
n�1Y

j=0

W (yj |xj). (4)

Despite that there are exponentially many terms in the tran-
sition probabilities defined in (3), the butterfly-like structure of
polar codes allows the decoder to compute these probabilities
with an average computation complexity of O(log n). Thus,
the decoding complexity of SC decoder and SCL decoder
with list size L can be given by O(n log n) and O(Ln log n)
respectively.

III. MIXING FACTOR AND NEAREST COSET DECODING

Given that there are only k unfrozen bits among ui’s, there
could be at most 2k branch-offs during the decoding process
over the decoding tree that correspond to the valid polar
codewords. Thus, the maximum list size required to achieve
ML decoding can not be larger than 2k. In this section, we
show how one can improve this upper bound to 2� , where �

is the mixing factor of polar code and is defined as below.

Definition 1 (Mixing Factor). Let C be an (n, k) polar code,

where F ⇢ [n] and A = [n] \ F denote the set of frozen and

unfrozen indices respectively. We denote the mixing factor of

this code by � and define it as

� , |{t 2 A | t 6 max(F)}|. (5)

Equivalently, we can denote the uncoded polar vector by u and

then, the mixing factor will be the number of unfrozen bits in

{ua, ua+1, . . . , ub�1}, where a = min(A) and b = max(F).
This can also formulated as

� = k � (n� 1� b). (6)

The proof of Theorem 1 is based on following all valid
decoding paths on the decoding tree until the decoder arrives
at the last frozen bit, i.e. ub. Given that there are � unfrozen
bits before ub, the list size has to be at least 2� to capture all
of these paths. Then, we utilize a hard decision rule different
to that in (2) to extend each of these 2� paths to the end. The
ML codeword corresponds the most-likely path among these
length-n completed paths.

Let i > b. Consider one of the paths that the decoder
pursued until it reached ui. Therefore, the decoder is provided
with the values of uj for j = 0, 1, . . . , i�1 when it approaches
ui. Given that there are no future frozen bits after ui, all of the
2n�i path extensions represent valid polar codewords. These
codewords together form a polar coset, which can be defined
as
8t 2 {0, 1} :

C(i)
t

(ui�1
0) ,

i�1X

j=0

ujgj + t.gi + hgi+1, gi+2, . . . , gn�1i,
(7)

where gj is the j’th row in the generating matrix of length-n
polar code, G. Given the definition of transition probabilities
in (3), we can see that the hard decision rule in (2) is equivalent
to

X

x2C(i)
0 (ui�1

0)

Wn(y|x) R
X

x2C(i)
1 (ui�1

0)

Wn(y|x). (8)

In the following, we assume that the underlying channel is
a binary symmetric channel (BSC) with some flip probability
p < 1/2. We recall that maximum-likelihood decoding for
BSC is equivalent to minimum (Hamming) distance decoding.
Everything can be extended to arbitrary binary memoryless
symmetric (BMS) channels by replacing the Hamming dis-
tance with a proper distance that is defined according to the
channel transition probabilities. We refer the interested reader
to Section III in [15] for more details on this topic. Thus, to
find the most likely path extension, it suffices to find which
of the two cosets above are closer to the received vector y in
Hamming distance, i.e.

min
x2C(i)

0 (ui�1
0)

dH(y,x) R min
x2C(i)

1 (ui�1
0)

dH(y,x), (9)

which is also equivalent to

max
x2C(i)

0 (ui�1
0)

Wn(y|x) R max
x2C(i)

1 (ui�1
0)

Wn(y|x). (10)

For the technique of utilizing the max function instead
of the summation in decoder, see also [13], although it was
used for a different purpose. This technique was also used
in [6] to establish the proof of NP-hardness for SC decoding
of arbitrary linear codes. In the following, we present two
techniques to efficiently obtain the nearest coset.
Method 1. Let us re-write the summations in (8) as

X

x2C(i)
t

(ui�1
0)

Wn(y|x)

=
X

x2C(i)
t

(ui�1
0)

p
dH(y,x)(1� p)n�dH(y,x)

=
nX

j=0

p
j(1� p)n�j ⇥ |{x 2 C(i)

t
(ui�1

0)|dH(y,x) = j}|.

(11)

The efficient implementation of SC decoding in [2] enables us
to calculate the summation in (11) for all values of 0 < p <

1/2 with O(log n) computation complexity on average. Here,
we can utilize a technique from [6] and set p to be a very small
number such that the closest codeword x in C(i)

t
to x becomes

the dominant term in (11). Recalling the discussion in Section
II.B of [6], we deduce that it suffices to set p = 2�2n for the
two hard decision rules in (8) and (10) to become equivalent.
Method 2. While the first method is perfectly capable of
identifying the closest polar coset to the received vector, it
requires the decoder to perform mathematical operations with
very high precision due to the fact that p is extremely small.
This can become problematic when n is large or when the
chip space is limited.

An alternative method is to use the existing recursive
structure of the SC decoder to compute the distances to any
such coset. Let C⇤(i)

t
(·) denote the polar cosets defined in (7)

but for length n
⇤ = n/2. Assume i mod 2 = 0. It is possible

to show that

C(i)
t

(ui�1
0) =
�
(c1|c2)|c1 2 C⇤(i

2)
0 (ui�1

0,even � u
i�1
0,odd),

c2 2 C⇤(i

2)
t

(ui�1
0,odd)

[

�
(c1|c2)|c1 2 C⇤(i

2)
1 (ui�1

0,even � u
i�1
0,odd),

c2 2 C⇤(i

2)
1�t

(ui�1
0,odd)

,

(12)

where u
i�1
0,odd and u

i�1
0,even denote the subvectors of u

i�1
0 that

consist of only odd and even indices respectively. A similar
expression holds true for when i mod 2 = 1. The problem of
finding dH

�
y
n�1
0 , C(i)

0 (ui�1
0)

�
can now be simplified to finding

the Hamming distance between two halves of the received
vector y

n/2�1
0 and y

n�1
n/2 and the corresponding polar cosets

at length n
⇤ in (12). Algorithm 1 performs this task. The

proof is based on a mathematical induction on the number
of polarization levels, m = log n. Due to lack of space, we
leave the proof for the extended version of this paper.

Algorithm 1: CalcD(n, ui�1
0 , y

n�1
0),

Input: block length n, vector ui�1
0 , and received

vector yn�1
0

Output: a pair of distances⇣
dH

�
y
n�1
0 , C(i)

0 (ui�1
0)

�
, dH

�
y
n�1
0 , C(i)

1 (ui�1
0)

�⌘

1 if n = 1 then // Stopping condition
2 return dH(u0, y0)
3 else
4 if i mod 2 = 0 then
5 (a0, a1) CalcD(n2 , u

i�1
0,even � u

i�1
0,odd, y

n

2 �1
0)

6 (b0, b1) CalcD(n2 , u
i�1
0,odd, y

n�1
n

2
)

7 d0 min(a0 + b0, a1 + b1)
8 d1 min(a0 + b1, a1 + b0)
9 return (d0, d1)

10 else
11 (a0, a1) CalcD(n2 , u

i�2
0,even � u

i�2
0,odd, y

n

2 �1
0)

12 (b0, b1) CalcD(n2 , u
i�2
0,odd, y

n�1
n

2
)

13 if ui�1 = 0 then
14 (d0, d1) (a0 + b0, a1 + b1)
15 else
16 (d0, d1) (a0 + b1, a1 + b0)

17 return (d0, d1)

Proof of Theorem 1. Let C, F , and A denote the (n, k) polar
code, the set of its frozen indices, and the set of unfrozen
indices respectively. Further, let {i1, i2, . . . , i�} = {t 2
A | t 6 max(F)} be the set of unfrozen indices that appear
before the last frozen index. Then, C can be represented as the
disjoint union of the following 2� polar cosets:

Cui1 ,ui2 ,...,ui�
=

max(F)X

j=0

ujgj + hgb+1, gb+2, . . . , gn�1i, (13)

where {ui1 , ui2 , . . . , ui�
} 2 {0, 1}� . By setting the list size to

L = 2� , the decoder captures all 2� possible paths until the
last frozen bit, which corresponds to all of the 2� affine shifts

max(F)X

j=0

ujgj for all {ui1 , ui2 , . . . , ui�
} 2 {0, 1}� . (14)

The decoder can then use the nearest coset decoding algorithm
to efficiently compute the closest codeword to y in each of
these cosests, which is equivalent to extending each path
in an ML fashion according to the decision rule in (9).
The extended path with the maximum conditional probability,
i.e. Wn(y|uG) =

Q
n�1
j=0 W (yj |xj) corresponds to the ML

codeword.

We also point out that a similar statement was given
in [17]. The method above does not rely on using the soft
information throughout the decoding in contrast to that of [17],
which makes the proposed method more suitable for practical
implementations.

IV. HYBRID SUCCESSIVE-CANCELLATION
LIST DECODING ALGORITHM

In the proof of Theorem 1, we described a modified SCL
decoding algorithm, where the list decoder captures all 2�

available paths until it reaches the last frozen bit, and then
extends each path in an ML fashion. We point out that there
is indeed no need to extend all of the 2� decoding paths.
This is because Algorithm 1 allows the decoder to compute
the distance between the received vector y and all of the 2�

polar cosets that corresponds to these paths. The decoder can
essentially drop all those paths except the one that corresponds
to the coset with minimum distance and simply extend the
remaining path to the end. This can significantly reduce the
overall decoding complexity, particularly when � is small.

It is also evident that 2� could be significantly large for the
practical implementation of the SCL decoder if one wishes to
capture all L = 2� paths. However, the numerical simulations
show that one can achieve near-ML performance even by
setting L to much smaller values. In this section, we present
the Hybrid Successive-Cancellation List (H-SCL) decoding
algorithm, which is a hybrid between the SCL decoding
algorithm and the nearest coset algorithm presented earlier.
As an input, it takes the list size L and a switching index t,
where t 6 ⌧ = k��. The algorithm works in two main stages:
Stage 1. We use the conventional SCL decoding algorithm to
capture L decoding paths until the decoder reaches ut.
Stage 2. The nearest coset decoding algorithm is used to
determine the distances between the received vector y and
the polar cosets that correspond to these L paths. We pick
the closest coset and find the most-likely path extension for
this coset by using the nearest coset decoding algorithm in the
remaining n� t decoding steps.

A high-level description of the main loop in H-SCL
decoding is given in Algorithm 2. The notations are ex-
tracted from [12]. The main differences are the additions
of RecursivelyCalcD and continue_ML_path func-
tions. They both require O(n log n) computational complexity,
which proves that the overall decoding complexity of H-SCL
is at most O(Ln log n) asymptotically. However, the numerical
simulations show a significant improvement in the constant.

V. CONCLUDING REMARKS

In this paper, we introduced the mixing factor of polar codes,
denoted by �. The SCL decoding of polar codes was shown
to achieve ML decoding when the list size is L = 2� or
larger. Thus, the computational complexity of ML decoding
of polar codes can be upper bounded by O(2�n log n), where
n is the block-length. This fact sheds some lights on why
some polar codes require larger list sizes than the others for
the SCL decoding algorithm to obtain near-ML performances.
In fact, based on our numerical calculations, Reed-Muller
codes tend to have the largest mixing factors among codes
with the same lengths and dimensions, which coincides with
the observations in [16], in which PAC codes with RM rate
profilers required larger list sizes to achieve ML performance

Algorithm 2: H-SCL decoder, main loop
Input: the received vector y, a switching index t

where t 6 ⌧ = k � � , and a list size L

Output: a decoded codeword ĉ

// Initialization
1 initializeDataStructures()
2 ` assignInitialPath()
3 P0 getArrayPointer_P(0, `)
4 for � = 0, 1, . . . , n� 1 do
5 set P0[�][0] W (y� |0), P0[�][1] W (y� |1)
// Main SCL loop

6 for ' = 0, 1, . . . , t do
7 recursivelyCalcP(m,')
8 if u' is frozen then
9 for ` = 0, 1, . . . , L� 1 do

10 if activePath[`] = false then continue
11 Cm getArrayPointer_C(m, `)
12 set Cm[0][' mod 2] to the frozen value of

u'

13 else
14 continuePaths_UnfrozenBit(')

15 if ' mod 2 = 1 then
16 recursivelyUpdateC (m,')

// Find the nearest coset
17 `

0 0, d0 1
18 for ` = 0, 1, . . . , L� 1 do
19 if activePath[`] = false then continue
20 Cm getArrayPointer_C(m, `)
21 Ut getArrayPointer_U(m, `)
22 d RecursivelyCalcD(n, Ut)
23 if d < d

0 then
24 `

0 `, d0 d

// Extent the ML path
25 for ' = t+ 1, t+ 2, . . . , n� 1 do
26 continue_ML_path(`0,')

// Return the completed codeword
27 set C0 getArrayPointer_C(0, `0)
28 return ĉ = (C0[�][0])

n�1
�=0

than the conventional polar codes. We loosely conjecture
that polar codes with larger mixing factors require larger
list sizes for the SCL decoding algorithm to obtain near-ML
performance. Although, the precise definition of near-ML is a
subject of another discussion, which is left for a future work.

We also introduced the hybrid successive-cancellation list
decoding of polar codes, which is based on switching from
the SCL decoding algorithm to the nearest coset decoding
once the decoder reaches the last frozen bit. This technique
reduces the overall decoding complexity and further improve
the error probability of the decoder as it prevent the decoder
from exploring non-ML paths.

REFERENCES

[1] 3GPP Working Group Meeting RAN1 #87, Contribution R1-1611108,
Evaluation on channel coding candidates for URLLC and mMTC, Reno,
Nevada, USA, November 2016.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–73, June
2009.

[3] E. Arıkan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594, Auguest 2019.

[4] M. C. Coskun and H. D. Pfister, “Bounds on the list size of successive
cancellation list decoding,” IEEE International Conference on Signal

Processing and Communications (SPCOM), pp. 1–5, July 2020.
[5] M. C. Coskun and H. D. Pfister, “An information-theoretic perspective

on successive cancellation list decoding and polar code design,” arXiv
preprint arXiv:2103.16680.

[6] A. Fazeli, A. Vardy, and H. Yao, “Hardness of successive-cancellation
decoding of linear codes,” Proceedings of the IEEE International Sym-

posium on Information Theory (ISIT), pp. 455–460, June 2020.
[7] S.A. Hashemi, M. Mondelli, S.H. Hassani, R.L. Urbanke, and W.J. Gross,

“Partitioned list decoding of polar codes: Analysis and improvement
of finite length performance,” pp. 1–7, Proceedings of the IEEE Global

Communications Conference (GLOBECOM), Singapore, 2017, also avai-
lable as arXiv preprint arXiv:1705.05497, May 2017.

[8] B. Li, H. Shen, and D. Tse, “A RM-polar codes,” arXiv preprint
arXiv:1407.5483. 2014 Jul 21.

[9] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv
preprint arXiv:1912.06359, December 2019.

[10] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Scaling exponent of
list decoders with applications to polar codes,” IEEE Transactions on

Information Theory, no. 61, vol. 09, pp. 4838–51, August 2015.
[11] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions

on Information Theory, no. 59, vol. 10, pp. 6562–82, July 2013.
[12] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213–26, March 2015.
[13] P. Trifonov, “A score function for sequential decoding of polar codes,”

Proceedings of the IEEE International Symposium on Information

Theory (ISIT), pp. 1470–1474, June 2018.
[14] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen

symbols and their decoding by directed search,” Proceedings of the IEEE

Information Theory Workshop (ITW), pp. 1–5, September 2013.
[15] A. Vardy and Y. Be’ery, “More efficient soft decoding of the Golay

codes,” IEEE Transactions on Information Theory, no. 37, vol. 3,
pp. 667–72, May 1991.

[16] H. Yao, A. Fazeli, and A. Vardy, “List decoding of Arıkan’s PAC codes,”
arXiv preprint arXiv:2005.13711, May 2020.

[17] Z. Zhang et al, “A split-reduced successive cancellation list decoder
for polar codes,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 2, pp. 292–302, November 2015.

