A Deterministic Algorithm for Computing the
Weight Distribution of Polar Codes

Hanwen Yao, Arman Fazeli, and Alexander Vardy
University of California San Diego, La Jolla, CA 92093, USA
{hwyao, afazelic, avardy}@ucsd.edu

Abstract—We present a deterministic algorithm for computing
the entire weight distribution of polar codes. As the first step, we
derive an efficient recursive procedure to compute the weight dis-
tributions that arise in successive cancellation decoding of polar
codes along any decoding path. This solves the open problem re-
cently posed by Polyanskaya, Davletshin, and Polyanskii. Using
this recursive procedure, we can compute the entire weight distri-
bution of certain polar cosets in time O(n2). Any polar code can
be represented as a disjoint union of such cosets; moreover, this
representation extends to polar codes with dynamically frozen
bits. This implies that our methods can be also used to compute
the weight distribution of polar codes with CRC precoding, of pol-
arization-adjusted convolutional (PAC) codes and, in fact, general
linear codes. However, the number of polar cosets in such repre-
sentation scales exponentially with a parameter introduced herein,
which we call the mixing factor. To reduce the exponential com-
plexity of our algorithm, we make use of the fact that polar codes
have a large automorphism group, which includes the lower-
triangular affine group LTA (m,2). We prove that LTA (m,2) acts
transitively on certain subsets of polar codes, thereby drastically
reducing the number of polar cosets we need to evaluate. This
complexity reduction makes it possible to compute the weight dis-
tribution of any polar code of length up to n = 128.

Index Terms—coding theory, polar codes, weight distribution,
monomial codes, permutation group

I. INTRODUCTION

The weight distribution of an error correction code counts the
number of codewords in this code of any given weights. The
weight distribution is one of the main characteristic of a code,
and it plays a significant role in determining the capabilities
of error detection and correction of a given code.

Polar coding, pioneered by Arikan [1], gives rise to the first
explicit family of codes that provably achieve capacity with
efficient encoding and decoding for a wide range of channels.
Since it’s invention, the interest and research effort on polar
codes has been constantly rising in academia and industry in
the past decade. Now polar codes have been adopted as part
of the fifth generation (5G) wireless communications standard
[2]. Understanding the weight distribution of polar codes thus
has great importance in both theoretical and practical aspects.

There are many prior attempts towards the weight distri-
bution of polar codes. In [3], the authors provide an explicit
formula for the number of codewords of minimal weight in po-
lar codes. In [4], the authors propose a way to search for low
weight codewords of polar codes by transmitting an all-zero
codeword through a high SNR AWGN channel in simulation,
and decode the received word using successive cancellation
list (SCL) decoding with a huge list size. The authors in [5]
improve this approach in terms of its memory usage. In [6],
a probabilistic computation method is proposed to estimate

the weight distribution of polar code. This method is later im-
proved in [7] in both accuracy and complexity. We remark that
besides the results in [3], all the aforementioned approaches in
the literature are non-deterministic, and they only provide an
estimate on the weight distribution of polar codes. Also, in [4]
and [5], only part of the weight distribution can be derived.
In this paper, we present a deterministic algorithm for com-
puting the entire weight distribution of polar codes. Our algo-
rithm is based on an efficient recursive procedure to compute
the weight distribution of certain polar cosets to be defined
later, that arise in successive cancellation decoding. In a prior
work by Polyanskaya, Davletshin, and Polyanskii [8], they in-
troduce an algorithm that computes the weight distribution of
these polar cosets along the all-zero decoding path. And how
to compute the weight distribution of polar cosets along any
decoding path remains open. In this work, we solve this prob-
lem by establishing a recursive relation followed by the weight
enumerating functions (WEF) of those cosets. Our recursive
computation procedure has two applications: computing the
entire weight distribution of polar codes; analysing the succes-
sive cancellation (SC) decoding performance as shown in [8].
To compute the entire weight distribution of a polar code,
we first represent the code as a disjoint union of some po-
lar cosets, and then obtain the WEF of the entire code as the
sum of the WEF of those cosets. This representation extends
to polar codes with dynamically frozen bits. This implies our
method can be used to compute the weight distribution of po-
lar codes with CRC precoding [9], of polar subcodes [10],
of polarization-adjusted convolutional (PAC) codes [11], etc.
Since any binary linear codes can be represented as polar codes
with dynamically frozen bits [12], our algorithm applies to
general linear codes as well. However, the number of polar
cosets in this representation scales exponentially with a code
parameter that we refer as the mixing factor. To analyse the
complexity of our algorithm, we provide upper bounds on the
mixing factors of polar codes for block lengths up to 1024.
Our algorithm works for polar codes in a general setting,
where we are allowed to select any subsets of rows in the po-
lar transformation matrix as generators for the code. In a more
restricted definition of polar codes, where we only select the
bit-channels with the smallest Bhattacharyya parameters, we
can reduce the exponential complexity of our algorithm using
automorphism group of polar codes. Polar codes as decreasing
monomial codes [3] have a large automorphism group, which
includes the lower triangular affine group LTA(m,2) [3]. We
prove that LTA(m,2) acts transitively on certain subsets of
polar codes, which allows us to drastically reduce the num-
ber of cosets we need to evaluate. This complexity reduction

makes it possible to compute the weight distribution of any
polar codes up to length 128. In particular, since Reed-Muller
codes can also be viewed as decreasing monomial codes, our
complexity reduction applies to Reed-Muller codes as well.
This enables our algorithm to compute the entire weight dis-
tribution of Reed-Muller codes for all rates and length up to
128 with reasonable complexity.

II. POLAR CODES AND POLAR COSETS

First, we give the definition for polar cosets and their weight
enumerating functions (WEF). For the details of polar codes,
we refer the readers to Arikan’s seminal paper [1]. In our pa-
per, we use bold letters like u to denote vectors, and non-bold
letters like u; to denote symbols within that vector. We let the
indices of the symbols in the vectors start with 0. We use u;
to represent the length (i + 1) vector (ug,uy,- -+ ,u;). Also,
WE USE U even and u;o4q to denote the subvectors of u; with
only even indices and only odd indices respectively.

Assuming n = 2™, an (n,k) polar code is a binary linear
block code generated by k rows of the polar transformation
matrix G, = BnK§m, where

1 0
Kzz{l J,

Kﬁgm is the m-th Kronecker power of Ky, and B, is an n X n
bit-reversal permutation matrix. We denote by A the set of
information indices, which are the row indices for the k se-
lected rows in G,. And we denote by F the set of frozen
indices with 7 = {0,1,--- ,n — 1}\.A. We denote by u the
information vector of length 71, and by ¢ = uG,, the codeword.

Denote by g0, 1, - - ,§n—1 the rows in matrix G;. For 0 <
i<n—1,letu;_1 € {0,1} 1 and u; € {0,1}, we define
the polar coset C(l) (u;_q,u

Z ujgj +

where (g;11, - ,gn—1) is the linear space spanned by rows
Sitlr " 8n— 1 In this definition and the rest of this paper,
we assume ”0 ! to be the empty vector when i = 0. We de-

note the empty vector by . We also define ASI)(ui_l, u;)(X)

;) given u;_1 and u; as

C(ul 1, U gl+1/ T /gn71>/ (1)

as the WEF for C,(ll) (u;_1,u;) to be the polynomial:
. n
A1(11) (uifl/uz)(x) = Z Awar (2
w=0

where Ay, is the number of words in C,(li) (u;_1,u;) with Ham-
ming weight w.

III. CoMPUTING THE WEF OF POLAR COSETS

In this section, we present one of the key results of this paper:
a recursive procedure that computes the WEFs for polar cosets
C,(f) (u;_1, u;) with arbitrary u;_1. Recently in [8], the authors
introduce an algorithm that computes the weight distribution
,(f)(ui,l,ui) with #;_1 = 0. And how to effi-
ciently compute the weight distribution for Cﬁll) (u;_1,u;) with
any u; 1 remains open. In this section, we present a recursive

of polar coset C

Algorithm 1: CalcA(n, u;_q)
Input: block length n and vector u;_q
Output: a pair of polynomials
(A8 1,00 (X), A (i1, 1)(X))
if n =1 then
| return (1, X)
else

// Stopping condition

1
2
3
4 if i mod 2 = 0 then

5 (fo, f1) < CalcA(n/2, ;1 even ® Ui—104d)
6 (80,81) < CalcA(n/2,u;—1,044)

7 return (fogo + 181, fog1 + f180)

8

9

else
(fO/ fl) < CalcA(n/2, Ui_2 even D u;:g,gdd)
10 (80,81) < CalcA(n/2, ;3 04d)
11 if u;_1 = 0 then
12 | return (fog0, f181)
13 else
14 | return (f1g0, fog1)

computation procedure that solves this problem. This proce-
dure is based on a recursive relation shown in Proposition 1.
We leave the proof of Proposition 1 to the extended version
of this paper due to lack of space [13].

Proposition 1. Foranym >0, n =2", and 0 <i<n—1,

Agf) (121, u2i) (X) =

Y AV (20 veven ® 211,004, 2 ® 2 1) (X)
ugi+1€{0,1}

: AS) (42i—1,0dd, U2i41)(X), (3)

and
2i+1
AP (50 151 (X) =

A (42i—1,even © W2i—1,0dd » Ui D Upiy1)(X)
: A;(f) (42i—1,0dd, U2i41)(X). (4

Using (3) and (4) in Proposition 1, we can compute the WEF

A,(zl) (u;_1,u;)(X) of any polar coset recursively with the stop-
ping conditions

Vy,00=1, A%yp,1)=x. 5)

The steps of this recursive procedure are shown in Algorithm
1. Next we analyze its complexity. Denote by T(n) the run
time for Algorithm 1, where n is the block length. Notice n
is also the maximal degree of the polynomials fy, f1, 80,41 in
the algorithm. For every recurrence, the computation is divided
into two recursive calls on the same algorithm, each with half
of the parameter . And there are up to three extra polynomial
operations including addition and multiplication. Assume mul-
tiplication of two degree-n polynomials takes time O(n?), the
recurrence relation shows T(1n) = 2T (n/2) + O(n?), which
by the Master theorem [14] gives us T(n) = O(n?). So Algo-
rithm 1 has complexity O(n?). This complexity may be im-
proved assuming multiplication of two degree-n polynomials
takes time O(nlogn) with the Fast-Fourier Transform.

IV. COMPUTING THE ENTIRE WEIGHT DISTRIBUTION

In this section, we introduce our main deterministic algorithm
that computes the entire weight distribution of polar codes,
and polar codes with dynamically frozen bits.

A. Representing Polar Codes with Polar Cosets

First, We define the last frozen index and the mixing factor
for polar codes as follows:

Definition 1. Consider an (n,k) polar code C specified in
terms of its set of information indices A. With F being the
set of frozen indices, we let T(C) = max{F} denote its last
Jrozen index and define its mixing factor as:

MF(C) = |{ie A : i< 1(C)}| (6)
Loosely speaking, the mixing factor MF(C) counts the num-
ber of information bits in C that are mixed-in among the frozen
bits. To show that any polar code can be represented as a dis-
joint union of polar cosets, let’s start with an example:

Example 1. The (16,11,4) extended Hamming code C can
be generated by rows in the polar transformation matrix Gig.
So we can view C as a polar code of length 16. The polar
transformation matrix Gqg is given by

wo F10000000000000007
w [1000000010000000

wy [1000100000000000

s, [1000100010001000

ws [1010000000000000

ws [1010000010100000

we [1010101000000000

w [1010101010101010 .
wg |1100000000000000 (7
wo [1100000011000000

wo |1100110000000000

wy |1100110011001100

up |1111000000000000

iy [1111000011110000

wy [1111111100000000

ws L1111111111111111.

In (7), the information bits are highlighted in red and blue,
and the frozen bits are black. We color the information bits
that are mixed-in among the frozen bits in red, and color the
rest of the information bits in blue. The last frozen bit of C is
ug, so T(C) = 8. The mixing factor of C counts the number
of red bits, so MF(C) = 4.

For any vector uy; with ug = uqy = up = uy = 0, and
13, U5, g, U7 taking some values in {0,1}, the polar coset
Cii) (u7,ug = 0) is a subset of C. There are 2* = 16 such
disjoint polar cosets, and code C is their union:

c= U

u7€{0,1}8: ug=uy=up=14=0

Ciz) (u7, ug = O) (8)

Therefore, we can compute the WEF A (X) for the entire
code C as the sum of the WEFs for those cosets:

)3

u;€{0,1}8: ug=uy=up=14=0

Ac(X) = AR (7,0)(X) O

As shown in Example 1, in general, any polar code can be
represented as a disjoint union of polar cosets:

Proposition 2. Consider a polar code C with the set of frozen
indices F, and its last frozen index T(C) = T. We can repre-
sent C as a disjoint union of polar cosets as follows:

C= U C (1, ur = 0)
ur 1€{0,1}%: u;=0 for all ic F

(10)

The number of polar cosets in this representation equals 2MF(C),
Denote the the WEF for the entire code C as Ac(X), then
Ac(X) is the sum of the WEFs for those polar cosets:

Ac(X) = A (1r1,0)(X) (11)

ur_1€{0,1}%: u;=0 for all ic F

B. Representing Polar Codes with Dynamically Frozen Bits

Our representation for polar codes extends to polar codes with
dynamically frozen bits. Polar codes with dynamically frozen
bits, first introduced in [15], are polar codes where each of
the frozen bit u; is not fixed to be zero, but set to be a linear
function of its previous bits as u; = f;(ug, uy,- - ,uj_1). We
refer the collection of these functions {f; : i € F} as the dy-
namic constraints for this code. Polar codes with dynamically
frozen bits include polar codes with CRC precoding [9], po-
lar subcodes [10], polarization-adjusted convolutional (PAC)
codes [11], etc. Since any binary linear codes can be repre-
sented as polar codes with dynamically frozen bits [12], our
algorithm extends to all binary linear codes as well.

We define the last frozen index and the mixing factor for
polar codes with dynamically frozen bits the same way as in
Definition 1. Then Proposition 2 extends to polar codes with
dynamically frozen bits as follows:

Proposition 3. Consider a polar code C with dynamically
frozen bits, with the set of frozen indices F and the dynamic
constraints {f; 11 € F}. Let its last frozen index be T(C) =
T. We can represent C as a disjoint union of polar cosets as
follows:

C= U
ur—1€{0,1}7: u;=f;(u;_1) for all ic F,
uT:fT(urfl)

C(ue1,u:) (12)

The number of polar cosets in this representation equals 2ME(C),
Denote by Ac(X) the WEF of the entire code C, then Ac(X)
is the sum of the WEFs for those polar cosets:

Ac(X) = A (e, 17 (X)
ur—1€{0,1}7: u;=f;(u;_1) for all icF,
ur=fr(tir_1)

13)
C. Computing the Entire Weight Distribution
As shown in Proposition 2 and Proposition 3, we can represent
any polar code, or any polar code with dynamically frozen bits
as a disjoint union of polar cosets. With this representation,
we can first use Algorithm 1 to compute the WEFs for those
polar cosets, and then sum them up to obtain the WEF for the
entire code. This procedure is shown in Algorithm 2.

In Algorithm 2, the number of polar cosets we need to
evaluate for code C equals 2MF(©) S0 Algorithm 2 has com-
plexity O(ZMF(C) n?). This complexity is largely governed by
the mixing factor of the code. In the next section, we identify

Algorithm 2: Compute the WEF of polar codes and
polar codes with dynamically frozen bits

Input: block length 7, set of frozen indices JF, and
the dynamic constraints {f; : i € F}
Output: WEF Ac (X)
1 T < max{F}
2 Ac(X) 0

sfor ur 1 €{0,1}7: u; = fi(uj_q) foralli € F do

4 (fo, f1) < CalceWEF(1, u;_1)
5 Ur < fr(ur_1)

6 if ur = 0 then

7 | Ac(X) + Ac(X) + fo

8 else

9

i L Ac(X) — Ac(X) +f1
10 return Ac(X)

polar codes as decreasing monomial codes, and upper bound
the mixing factors for polar codes at different block lengths.
We remark that although any binary linear codes can be
represented as polar codes with dynamically frozen bits, many
such representations have a large mixing factor, making Al-
gorithm 2 less practical for a relative large block length.

V. MIXING FACTORS OF POLAR CODES AS DECREASING
MoNOMIAL CODES

In Section II, we introduce (n, k) polar codes in a broad sense,
where we can pick any k rows in the polar transformation ma-
trix G, as generators for the code. If we follow a more re-
stricted definition, where we pick the k bit-channels having
the smallest Bhattacharyya parameters the same as Arikan’s
definition in [1], the constructed polar code becomes a de-
creasing monomial code as introduced in [3]. In this section,
We present results on the largest mixing factor of polar codes
at each block length as decreasing monomial codes.

A. Decreasing Monomial Codes

We first recast the definition for decreasing monomial codes.
For details of decreasing monomial codes and their algebraic
properties, we refer the readers to the paper by Bardet, Dragoi,
Otmani, and Tillich [3].

For n = 2™, define the polynomial ring R, as

R =Fxo, , xm-1]/ (x5 — X0, ,x2_1 — Xp—1).

We associate each polynomial p € R, by a binary vector
in IF} as the evaluation of p in all the binary m-tuples x =
(x0, "+, Xm_1) € IF3'. In other words, we associate polyno-
mial p with ev(p) = (p(x))xcpy where ev: Ry —] is a
homomorphism. Denote the monomials in R, as

by by
Moy = {xf"'xm_f (bw~-~,bm_1)€1F?}-
The monomial codes are defined as follows:

Definition 2. Let n = 2™ and T C M, the monomial code
C(Z) generated by I is the linear space spanned by {ev(f) :

fezy

Since all rows in the polar transformation matrix G, can be
obtained as ev(f) with f € M, polar codes can be viewed

as monomial codes. For a monomial f € M,, given by f =
Xiy Xiy -+ Xj,, we write deg f = d as the degree of f, and
ind(f) = {i,i,...,iz} as the set of indices for the vari-
ables in f. If the evaluation of f is the i-th row in the polar
transformation matrix G,, we write [f]] = i to be its row
index. Henceforth, whenever we write a monomial as f =
Xi) Xi, =+ X;, we assume that 77 < iy < -+ <y, unless stated
otherwise.

A partial order for the monomials in M,,, and the decreas-
ing monomial codes following this order can be defined as:

Definition 3. Two monomials in My, of the same degree are
ordered as x; -+ Xj, < Xj - Xj, if and only if i < jy holds
for any £ € {1,---,d}. Two monomials f,g € M, of dif-
ferent degrees are ordered as f < g if there is a divisor §* of
g having the same degree as f, and f < g*.

Definition 4. A set Z C M, is decreasing, if (§ € T and
f < g) implies f € I. We call the monomial code generated
by a decreasing set a decreasing monomial code.

B. Largest Mixing Factors for Decreasing Monomial Codes

To compute the largest mixing factor for decreasing mono-
mial codes at a given length, we first consider all decreasing
monoimal codes with last frozen index T:

Proposition 4. Let n = 2", and let € be the set of all length-
n decreasing monomial codes with last frozen index T, then

max MF(C) =
Cee,

Hg € M : [g] <7, 8 & frand g ¥ fr}| (14)

We leave the proof for Proposition 5 to the our extended pa-
per [13]. Let € be the set of all lengh-n decreasing monomial
codes, we can then compute their largest mixing factor as

max MF(C) =

max (max MF(C)) (15)
Cec

0<t<n—1 \Cee,
The results for block length up to 1024 are shown in the first
row of Table 1.

Since by the MacWilliams identity [16], one can easily ob-
tain the weight distribution of a code from the weight distribu-
tion of its dual, to get a better complexity cap, we can further
restrict our searching space to codes with rates at most 1/2.

Proposition 5. Let n = 2™, and let € r<q /2 be the set of all
length-n decreasing monomial codes with last frozen index T,
and rates at most 1/2, then

max MF(C) <

Celrr<iy2
min {énacx MF(C), (t+1— n/Z)} (16)
€l
So let €r<q/2 be the set of all lengh-n decreasing monomial
codes with rates at most 1/2, an upper bound on their mixing
factors can be computed with

max

ME(C) =
C€€R<1/2

max max
o<t<n—1 CEQT,Rél/Z

MHQ) (17)

The results for block length up to 1024 are shown in the sec-
ond row of Table 1.

log(n) 3 14| 5 6 7 8 9 10

maxcee MF(C) 1|4 | 11|27 | 68 | 156 | 339 | 721

maxcee,,,MEC)< | 1 | 2| O | I8 | 49 | 98 | 225 | 450

Table 1. Largest mixing factor for decreasing monomial codes at each
block length.

We observe that when log(n) = 3,5,7,9, those upper-
bounds at the second row of Table 1 are met by the rate 1/2
Reed-Muller codes. We thus conjecture that, with the options
of applying Algorithm 2 to either the code or its dual, the
rate 1/2 Reed-Muller code has the highest complexity among
decreasing monomial codes with the same length in general.

VI. REDUCING COMPLEXITY USING THE LOWER
TRIANGULAR AFFINE PERMUTATION GROUP

Polar codes as decreasing monomial codes have a large au-
tomorphism group that includes the lower triangular affine
group LTA(m,2) [3, Theorem 2]. In this section, we show that
LTA(m,2) acts transitively on certain subsets of decreasing
monomial codes. This allow us to reduce the coset WEFs we
need to compute in Algorithm 2. Since Reed-Muller codes are
decreasing monomial codes as well, our complexity reduction
also applies to Reed-Muller codes. Although the complexity
remains exponential, this reduction makes it possible to com-
pute the weight distribution of any polar code and Reed-Muller
code for all rates of length up to n = 128.

A. Lower Triangular Affine Group Acts Transitively on Sub-
sets of Decreasing Monomial Codes

First, we recast the definition for LTA(m, 2).

Definition 5. The lower triangular affine group over IF%', de-
noted as LTA(m, 2), consists of all affine transformations over
E5! with the form x — Ax + b, where A € IFE"X’" is a non-
singular m X m lower triangular binary matrix, and b € F}'.

Since any affine transformations in LTA (2, 2) is a permutation
of all the m-tuples in IF}', we can also think of the transfor-
mation as a permutation on the coordinates of the monomial
codes. If we can prove that LTA(m, 2) acts transtively on cer-
tain subsets of decreasing monomial codes, since permutation
on the coordinates doesn’t change the Hamming weights of
the codewords, this will imply that all those subsets share the
same weight distribution.

To describe the subsets on which LTA(m,2) acts transi-
tively, we define a new relation called one-variable descen-
dance for the monomials in M,,.

Definition 6. Let f,¢ € M, we say g is a one-variable
descendant of f if ind(f)\ind(g) = {i} is a singleton, and
either one of the following holds:

1) ind(g)\ind(f) = {j} is also a singleton, and j < i.

2) ind(g)\ind(f) = @, or g divides f.
If g is a one-variable descendant of f, We write § <one f.

We also make the following definitions.

Definition 7. Let C be a decreasing monomial code generated
by T C My, and let f € I. Define S(C; f) as the set of

monomials:

SCf)={he Mpy : h<one fand [h] < T(C)} (18)

Define C f as the subcode of C generated by the set of mono-
mials that are not in ({f}US(C;f))

Cy=C(I\ ({fIUus(Cf))) (19)
Define X (C; f) as the set of cosets of Cy as
X(Cf)=qe(f)+ Y, wup-ev(h)+Cy :
heS(C;f)
up € {0,1} forall h € S(C; f) » (20)

Now we state our main theorem of this section, and its corol-
lary that helps with the complexity reduction. Due to lack of
space, we leave its proof for our extended paper [13].

Theorem 1. Let C be a decreasing monomial code generated
by T C My, and let f € I. The group action of LTA(m,2)
on X(C; f) is transitive.

Corollary 1. All the cosets of Cy in X(C; f) have the same
weight distribution.
B. Complexity Reduction for Decreasing Monomial Codes

Now we use Corollary 1 to reduce the complexity of Algo-
rithm 2. First, observe that there are 2/S(C:f)l disjoint cosets
of Cy in the set X'(C; f), and the union of those cosets with
the subcode C(Z\{f}) is the entire code C:

U x

XeX(C;f)

C=C@I\{fHu

By Corollary 1, all cosets of C in X'(C; f) share the same
WEF. So with Algorithm 2, if we can compute the WEF for
C(Z\{f}) as B(X), and compute the WEF for a single coset
in X(C; f) as C(X), we can obtain the WEF A (X) for the
entire code C as

Ac(X) = B(X) +25H1. c(x) @1

If we apply Algorithm 2 directly to code C, equivalently we
will compute the WEFs for all the cosets in X' (C; f). With
equation (21), we only need to compute the WEF for a single
coset in X (C; f).

If we pick f to be the monomial in Z with the smallest [f],
then the subcode C(Z\{f}) is also a decreasing monomial
code, as shown by the following proposition. We leave the
proof for Proposition 6 to [13].

Proposition 6. Let C(Z) be a decreasing monomial code gen-
erated by T C My, If we pick f to be the monomial in T
with the smallest [f], then the subcode C(Z\{f}) is also a
decreasing monomial code.

So in (21), when we use Algorithm 2 to compute the WEF for
the subcode C(Z\{f}), we can reapply the same complexity
reduction, and unfold the WEF for C(Z\{f}) again. So on
and so forth.

To demonstrate the overall reduction of the complexity ex-
ponent, consider the self-dual Reed-Muller code RM(3,7) and
a (128,64) polar code. We show in the extended paper on arxiv
[13] that, for the Reed-Muller code, the complexity of our al-
gorithm reduces from 2%° polar coset evaluations to 23953,
while for the polar code, the complexity reduces from 237 po-
lar coset evaluations to 22286,

[1]

[5]

[6]

[7]

[8]

[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on information Theory, vol. 55, no. 7, pp. 3051-3073,
2009.

3GPP TSG RAN WG1 Meeting #87, Final report, Reno, NV, November
2016.

M. Bardet, V. Dragoi, A. Otmani, and J.-P. Tillich, “Algebraic proper-
ties of polar codes from a new polynomial formalism,” in 2016 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2016,
pp. 230-234.

B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list
decoder for polar codes with cyclic redundancy check,” IEEE Commu-
nications Letters, vol. 16, no. 12, pp. 2044-2047, 2012.

Z. Liu, K. Chen, K. Niu, and Z. He, “Distance spectrum analysis of
polar codes,” in 2014 IEEE Wireless Communications and Networking
Conference (WCNC). 1EEE, 2014, pp. 490-495.

M. Valipour and S. Yousefi, “On probabilistic weight distribution of po-
lar codes,” IEEE communications letters, vol. 17, no. 11, pp. 2120-2123,
2013.

Q. Zhang, A. Liu, and X. Pan, “An enhanced probabilistic computation
method for the weight distribution of polar codes,” IEEE Communica-
tions Letters, vol. 21, no. 12, pp. 2562-2565, 2017.

R. Polyanskaya, M. Davletshin, and N. Polyanskii, “Weight distributions
for successive cancellation decoding of polar codes,” IEEE Transactions
on Communications, vol. 68, no. 12, pp. 7328-7336, 2020.

I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 5, pp. 2213-2226, 2015.

P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 2, pp. 254-266, 2015.
E. Arikan, “From sequential decoding to channel polarization and back
again,” arXiv preprint arXiv:1908.09594, 2019.

A. Fazeli, A. Vardy, and H. Yao, “Hardness of successive-cancellation
decoding of linear codes,” in 2020 IEEE International Symposium on
Information Theory (ISIT). 1EEE, 2020, pp. 455-460.

H. Yao, A. Fazeli, and A. Vardy, “A deterministic algorithm for
computing the weight distribution of polar codes,” arXiv preprint
arXiv:xxxx.yyyyy, 2021.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in 2013 IEEE Informa-
tion Theory Workshop (ITW). 1EEE, 2013, pp. 1-5.

J. A. MacWilliams, “A theorem on the distribution of weights in a sys-
tematic code,” Bell System Technical Journal, vol. 42, no. 1, pp. 79-94,
1963.

