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Abstract—Transverse-read is a novel technique to detect the
number of ‘1’s stored in domain wall memory, also known
as racetrack memory, without shifting any domains. Moti-
vated by the technique, we propose a novel scheme to combine
transverse-read and shift-operation such that we can reduce the
number of shift-operations while still achieving high capacity. We
also show that this scheme is helpful to correct errors in domain
wall memory. A set of valid-words in this transverse-read chan-
nel is called transverse-read code. Our goal in this work is to
study the transverse-read code.

We first present several properties of the transverse-read code
and show that it is equivalent to a constrained code. Then, we com-
pute maximal asymptotic rate of transverse-read codes for some
certain parameters. Furthermore, we construct some codes achiev-
ing capacity with efficient encoding/decoding algorithms. Finally,
we discuss their ability of correcting shift-errors in domain wall
memory.

I. INTRODUCTION

Spintronic domain-wall memory (DWM), also referred as
racetrack memory, is a promising candidate as a memory solu-
tion that can overcome the density limitations of spin-transfer
torque magnetic memory (STT-MRAM), while still retaining
its static energy benefits [1]-[4]. DWM is constructed from
ferromagnetic nanowires, referred to as tapes or racetracks,
which are separated into domains and are connected to a sin-
gle or a few access transistors to create access ports. The state
of the magnetic domains is accessed by shifting them along
the nanowire and aligning the target domain to an access de-
vice. Unfortunately, due to process variation of deeply-scaled
domain-wall memories [1], slight fluctuations in current com-
bined with imperfections in the nanowires can cause faults in
the shift process. These faults include over- and under-shifting
of the tape, and thus for domain-wall memory to become vi-
able, the shifting reliability must be addressed. As a result,
several innovative approaches have been developed to detect
and correct shift-errors in racetracks [5]-[9]. Besides that, the
access latency and the energy consumption in racetrack mem-
ory depend on the average number of shift-operations. Several
work have been done to reduce the number of shift operations
in racetrack memory [10], [11].

Another approach to overcome the faults in the shifting pro-
cess of DMW was proposed recently in [12]-[14]. In these
work, a novel transverse read (TR) mechanism was developed
in order to provide global information about the data stored
within a nanowire. In particular, transverse read can detect
the number of ones among the data stored in a DMW with-
out shifting any domains, while still requiring ultra-low power.
However, detecting only the number of ones in the DMW sig-
nificantly reduces the information rate that can be stored within
the memory. Hence, the authors of [14] also demonstrated how
TR can be applied to partial segments of the nanowire, such as
from an end to an access point or between two access points.

This enables a segmented TR which allows access to all of
the bits of an arbitrarily long nanowire in several steps, while
maintaining isolated current paths. While independently sens-
ing several segments can increase the memory’s information
rate, this increase is still far from reaching its full potential.

In this work, we propose a novel scheme that simultane-
ously combines the two important features of DWM. On one
hand, we use transverse reads in order to sense the number of
ones between two consecutive access points, and on the other
hand we still shift all the domains so that we can transverse
read to sense the number of ones in different segments every
time. In general, we consider a message = (z1,...,2,) of
n information bits stored in n domains and consecutive access
points such that each time we can transverse read a segment of
length £. That is, in the first read, the Hamming weight of the
first length-¢ segment x1,...,x, is sensed. Next, we shift all
domains in § positions and sense the Hamming weight of the
length-¢ segment (z541,...,Zs54¢) in the second read. We keep
shifting and sensing until the last segment (Zgs41,-- ., Tro+e)
(for simplicity, we assume that there is an integer k£ such that
n = kd + £). For example, we consider the case n = 12,6 = 2,
and ¢ = 4. If x = (0,0,1,0,1,0,1,1,0,0,0,0), the output in
our reading scheme is (1,2,3,2,0). There exist other vectors,
for example y = (0,0,0,1,0,1,1,1,0,0,0,0) # «, that have
the same output (1,2,3,2,0). Hence, we may not obtain the
full capacity using this scheme. First, we observe that the in-
formation rate in this scheme depends on § and ¢. For example,
when 6 = ¢ = 2, we can compute that the information rate is
about 79.25%. Then, we observe that this scheme significantly
reduces the number of shift-operations by about § times. For ex-
ample, when § = 2, if we just shift normally about n/2 times,
we can only read 50% of information bits but using this scheme,
we can achieve at least 79.25%. Our first question of interest is
whether we can achieve higher information rate. Hence, we are
interested in finding the trade-off between the number of shift-
operations and the maximal information rate in this scheme.
Furthermore, we can show that this scheme is also helpful to
correct shift-errors in racetrack memories. From practical point
of view, this scheme captures the two features of DMW in or-
der to significantly reduce the number of shift operations and
mitigate the shift errors, while still supporting high information
rates. From theoretical point of view, it pose some interesting
challenges in combinatorics and algorithms.

In Section II, we present some necessary notations and de-
fine the codes formally. In Section III, we study the transverse-
read codes: properties, maximal asymptotic rates and construc-
tions. Then, in Section IV, we show that our scheme of using
transverse-read codes is helpful to correct shift-errors in do-
main wall memories. Finally, in Section V, we summarise our
contributions in this work and discuss some work in near future.



II. DEFINITIONS AND PRELIMINARIES

Let F, denote the g-ary finite field and [n] denote the set
{1,2,...,n}. For each sequence u = (u1,...,u,) € Fy, let
Uik = (Ui, Uig1, .-, Uipk—1), 1 <@ < n—k+1, denote
a length-k substring of w. The weight of vector w is w(u) =
Z:-L:l u;. When ¢ = 2, the weight of a binary vector is the
number of 1’s in the vector. A g-ary code C of length n is a
set of g-ary sequences of length n, that is C C Fy. For each
code C of length n, we define the rate of the code C to be
R(C) = log,(|C|)/n, where |C| is the size of the code C.

Definition 1. Let n, ¢, 6, k be integers such thatn — ¢ = kJ.
o The (¢,))-transverse-read vector of a length-n word

x = (21,...,2,) € TF§ is the vector TRys(x) =
(), w(EEr10), - - W(ERs15) € ]FIELI, where

w(Z[i541;¢) is the weight of the length-{ substring T ;s51,¢.
e AcodeC(n,t,d) C Fy iscalled a binary (¢, 0)-transverse-
read code if for all distinct x,y € C(n,¥,J), it holds that
TRes(x) # TRes(y)
o The largest size of a length-n binary (¢, d)-transverse-read
code will be denoted by A(n;¢,0) and the maximal asymp-
totic rate for fixed ¢ and § is given by

R(£,0) = limsup M.
n—00 n

Note that it is also possible to define the cyclic version of these
transverse-read vectors, however for now we prefer the more
practical noncyclic version. In this work, we always assume that

—{=k6, £ and § are fixed while n and k tend to infinity.

We now observe that for each word x ¢ [F};, we always find
its transverse read vector TRy s(x) € Fﬁ'll However, given a
vector u € F’Zill there may not exist any binary word = € Fy
that u = TRy s(x).

Definition 2. Let n, ¢, §, k be integers such that n — ¢ = k4.
o A vector u € F}, | is called a valid (¢,6)-transverse
read vector if there exists a binary word * € F% that
u = TRg’(;((L').
e A set of such vectors w is called a valid (¢, 0)-transverse-
read code.

From Definitions 1 and 2, we can easily obtain the following
result.

Proposition 3.

o LetC be abinary (¢, 0)-transverse-read code and T Ry 5(C) =

{TRs(c) : ¢ € C} C Fyfl. So, TRy s(C) is a valid
(¢, 0)-transverse-read code and \TRM( ) =1C|.

o Let TR(k,¥,0) denote the set of all valid (¢, )-transverse
read vectors of length k. Then, (k, 0,0)| = A(n, L, 9).

We now examine a model of domain wall memory of n do-
mains stored a binary word of length n, and two consecutive
access points that can transverse read to sense the weight of a
segment of length /. A shift operation in racetrack memory shift
all domains together ¢ positions. So, if © = (z1,...,2,) € F}
is a stored word, the output in our reading scheme is TRy ().
Using the new scheme, we can reduce the number of shift-
operations by about ¢ times. However, given § and /¢, the max-
imal information rate in racetrack memories is R(¢,d), which

may not achieve the full capacity. Hence, in this work, we are
interested in finding the maximal size A(n,¢,0) and the max-
imal asymptotic rate R(¢,0). Given §, we are also interested
in finding the optimal ¢ such that the asymptotic rate R(¢, )
is maximal. Furthermore, we also seek for some constructions
of (¢, §)-transverse-read codes with efficient encoding/decoding
algorithms.

Besides that, both shift-operation and transverse-read may not
work perfectly and errors may occur. It is known that the shift-
errors can be modelled as synchronizations, including sticky-
insertions and deletions. We also see that errors in transverse-
read may cause some substitution errors. Hence, in this work,
we also study some transverse-read codes which can correct
shift-errors and substitutions errors.

III. TRANSVERSE-READ CODES

In this section, given £,d, we study (¥, ¢)-transverse-read
codes, their properties and aim to find the maximal asymp-
totic rate of these codes. We are also interested in constructing
these codes with efficient encoding/decoding algorithms.

To study the values of A(n;¥¢,d) and R(¢,6), we may con-
sider the maximal valid (¢, §)-transverse-read code T'R(k, ¢, 0)
since |[TR(k,£,0)] = A(n;¢,5). We first present several basic
results on A(n;¢,d) and R(4, ) in the following theorem.

Theorem 4.

1) For { = 1, it holds that A(n;{ =
R =1,0)=1/0.

2) For { =4, it holds that A(n;{,0 = ¢)

log, (£+1

R(€,8 = £) = oellrl),

3) For ¢ < 0, it holds that A(n;{,0) =
R(L, 5) M

4) Foré =1 and some constant ¢, it holds that A(n;¢,6 =
=2 “andR((,6 =1) = 1.

1,6) = 2" *1 and
= ({+1)"/* and

(¢ + 1)+ and

Proof:

1) To prove Claim 1 for = 1 and k = (n—1) /4, we consider
a vector ¢ = (x1,...,%,) € FJ and its transverse-read

vector TRys(x) = (21,%s41,---5Thot1) € ]Fifj:ll
We observe that any vector u € F4T! w is a valid
(¢,9)-transverse read vector. Hence, A(n,{ = 1,0) =
ITR(k, ¢ = 1 5)\ = 2K and thus R({ = 1,6) =
hmn—>oo w g

2) For £ =4, andk-(n/tS)—l given © = (z1,...,%,) €

F3, TRy s(x) = (w(@p.g), w(@ps1,0) - 0(Tpes1,) €
. Since all segments ®[; 1., for 0 < i <k,
are non-overlap, any vector u € F’Zill is a valid
(¢, ¢)-transverse read vector. Hence A(n,f,6 = () =
ITR(k,¢,0)] = (£ + 1)*' = (¢ + 1)"/* and thus
R(6,6 =€) = limp_ o0 (k+1)(log2(5+1)) _ 10g2(13+1)
3) Using the same argument as 1n part 2), note that all seg-
ments [i541,¢, for 0 < ¢ < k, are non-overlap, the claim

is proven.

4) To prove Claim 4, we consider two length-n vec-
tors v = (0,...,0,u1,...,up—¢) € FZ and v =
(0,...,0,v1,...,0,—¢) € F% such that u # v. We observe

that TRy s=1(u) # TRy s5=1(v). Let C(n, ¢, J) be a set of
all vectors of length n that the first £ entries are zeros. So,



C(n,£,0) is a binary (¢,§ = 1)-transverse-read code and
|C(n,¢,6 = 1)| = 2"~*. Therefore, A(n,¢,6 =1) > 2"~*
and R({,6 = 1) = lim, 00 25 = 1.

|
For all cases in Theorem 4, we can find the maximal asymp-
totic rate of (¢, §)-transverse-read codes. In the rest of the paper,
we focus on the more challenging cases when 1 < § < £. Let
us start with the case where § = 2 and even values of ¢, which

will be addressed in the following theorem.

Theorem 5. For § = 2 and ¢ even, it holds that
log, 3
2

R(0,6=2) = ~ 0.7925.

Proof: Let ny = n/2 and ¢; = {/2 be two posi-
tive integers. Given a vector * = (z1,...,z,) € F3, let
f®) = (fr,.--,fn) € F5* where f; = ;-1 + x9; €
{0,1,2} for 1 < ¢ < n1. We see that TRy s5—2(x) =

(w(fe))s wfien 1) - w(fpe+10)) € Fyff. Let
C(n,?,6) be a binary (¢,0)-transverse-read code, that

is, for two different vectors z,y € C(n,t,d), it holds
that TRys(x) # TRys(y). Hence, f(x) # f(y). So,
IC(n,£,0)] < |Fg'| = 3™, for any (¢,J)-transverse-read
code C(n,?,5). Therefore, A(n,¢,6) < 3"/2, and thus
R(£,0 = 2) < 9822 ~0.7925.

On the other hand, we can construct a binary (¢,0)-
transverse-read code C(n,¢,d) as follows. Let F C F3' be
a set of all ternary vectors of length n; such that their first
¢, entries are all zeros. So, |F| = 3™ %, For each f =
(fi,.- s fn,) € F, we define f~! =z = (xq,...,2,) € F}
such that (Igi_l,zgi) = (0,0) if fz = 0, (1’21_171’21') = (0, 1)
if fz =1 and (1’22',1,.’1,'21') = (1,1) if f1 = 2. Let C(?’l,g7 5)
be a set of all vectors = f~! defined above where f € F.
So, |C(n,¢,08)| = |F| = 3m~%. Moreover, we can see that
C(n,?,6) is a binary ({,d)-transverse-read code. Therefore,
A(n,£,8) > 3" ~% and thus R((, ) > 1822,

In conclusion, we obtain R(¢,6 = 2) = % ~ 0.7925.
The theorem is proven. ]
The results in Lemma 5 can be extended in the following the-
orem for arbitrary values of ¢ and §, where ¢ is a multiple of

J.

Theorem 6. If ¢ is a multiple of §, then

1 0+1
R(£,0) = M.
1)
Proof: To prove Theorem 6, we can follow the same ar-
gument as in the proof of Theorem 5. ]

Next, we continue with 6 = 2 and odd values of ¢. The result
in Theorem 5 gives us a lower bound on the maximal asymp-
totic rate of (¢, 0)-transverse-read codes for § = 2. We state the
result formally in the following theorem.

Theorem 7.

R((,6=2) > ~ 0.7925.

log, 3
2
Proof: To prove Theorem 7, we present a construc-
tion of a (¢,0)-transverse-read code. Let k = (n — £)/2 and
u = (uy,...,u;) € F§ be a ternary vector of length k. Let

c = (c1,...,¢) € F} such that ¢ = ---

and for 1 < ) < k, (C£+27271702+2i) = (0,0) if U; =
(Cog2i—1,Coq2i) = (0,1) if u; = 1, and (coq2i—1,Cr42:)
(1,1) if u; = 2. Let C(n,¢,d = 2) = {g(u) : u € F§}.
It is possible to show that if w # v then g(u) # g(v) for
any u,v € F%. Hence, |C(n,¢,§ = 2)| = |F%| = 3*. More-
over, if g(u) # g(v) then TRy s—2(g9(uw)) # TRes(g(v)).
Thus, the code C(n,¢,6 = 2) constructed above is a (¢,0)-
transverse-read code. Hence, A(n,/,d ) > 3% and thus

= 2
R(L,6=2) < 1°g223 ~ 0.7925 for any £ > § = 2.

g(u) = = o =

Lo

|
From the above proof of Theorem 7, we can find a construction
of a (¢,0 = 2)-transverse-read code with efficient encoding al-
gorithms. Similar, we can extend the result in Theorem 7 for
arbitrary values of ¢ and § that £ > §. We first present a simple
construction of a binary (¢, §)-transverse-read code.

Construction 8. Let k = 2% andw = (u1, ..., uy) € F¥,, be
a (0 + 1)-ary vector of length k. Let g(u) = ¢ = (¢1,...,¢,) €
Fy such that ¢; = 0 for1 < ¢ < ¢ and forl < ¢ < k,
Cle45(i—1)+1;5) 1S a subvector of length § such that its first
0 — j entries are 0 and its last j entries are 1 if u; = j. Let
C(n,¢,0) ={g(u) : uw e F§, }.

It is possible to show that the code C(n,¥,d) constructed
above is a binary (¢, 9)-transverse-read code since for any
u,v € C(n,l,0), then g(u) # g(v), and thus TRy s5(u) #
TRy5(v). Moreover, |C(n,¢,6)] = |[F¥,,| = (6 + 1)*. So,
A(n,€,8) > (6 + 1)*. Therefore, we obtain the following re-
sult on the lower bound of the maximal asymptotic rate of
(¢, 0)-transverse-read codes.

Theorem 9. If ¢ and § are two integers such that £ > § > 1 then

R(L,5) > @
From Construction 8, there is a binary (¢,d)-transverse-read
code with an efficient encoding algorithm.

In the rest of this section, we present a technique to find the
asymptotic rates of (¢, d)-transverse-read codes exactly, given
¢ > ¢ > 1. To find the asymptotic rate of the above codes,
we first prove that these codes are equivalent to a class of con-
strained codes avoiding some specific patterns and a class of
regular languages. Then, we can use some known techniques
in constrained codes and regular languages using finite state
machines to compute the maximal asymptotic rates. We first
consider the case £ = 3 and § = 2. We recall that A(n, ¢, ) =
|TR(k,£,0)| where TR(k,¢,d) is the set of all valid (¢,4)-
transverse-read vectors of length £+ 1. Let u = (ug,...,ug) €
TR(k,¢ = 3,0 = 2) C F¥*! be a valid (¢ = 3,6 = 2)-
transverse-read vector. So, there exists a vector * € F5 such
that TRy s(x) = w. Then, for each 1 < i < k, u; = g1 +
Zo; +x2;41 € {0,1,2,3}. We can view u; as a path from zg;_1
to xo;41. Here, x9;_; is called a starting point of u; and ;4
is called an ending point of u;. So, a starting point of u; is also
an ending point of u;_1. We observe that TR(k, ¢ = 3,0 = 2)
is a regular language. It is recognized by a non-deterministic
state machine as in Figure 1, where node j is the state that the
ending point of w;_1 is x9;—1 = 7 for j = 1,2. If 29,1 = 0
and the ending point of wu; is 9,41 = 0, then u; = 0 or u; = 1.



Fig. 1: Non-deterministic finite state transition diagram ¢ =
3,0 =2

Fig. 2: Deterministic finite state transition diagram ¢ = 3, = 2

Hence, from the state 0, if we write u; = 0 or u; = 1 then we
may still stay in the same state 0. If z5;,_1—¢ and the ending
point of w; is Z2;4+1 = 1, then w; = 1 or u; = 2. Hence, from
the state O, if we write u; = 1 or u; = 2 then we may move
to the new state 1. We also note that, from state 0, if we write
u; = 1, we may stay in the same state or move to the new state.
Hence, the state machine in Figure 1 is a non-deterministic fi-
nite state machine. We note that, for any regular language which
can be recognized by a non-deterministic finite state machine, it
can be expressed by a deterministic state machine. In this case,
the regular language T'R(k, ¢, ) is recognized by a determinis-
tic finite state machine as in Figure 2. In this diagram, we have
a new node “*” which is the state that x5;_1 can be 0 or 1. The
adjacency matrix of this deterministic diagram is:

1 11
Ag=11 2 1
1 11
So, using the well-known Perron-Frobenius theory [16], we can
find exactly the maximal asymptotic rate of (¢ = 3,5 = 2)-
transverse-read codes which is (log, A)/2 = 0.8858 where A =
3.4142 is the largest real eigenvalue of Ag.
Besides that, T R(k, ¢, §), which can be expressed by the state
machine in Figure 2, is also a constrained system. We state the

following result.

Theorem 10. We consider the following set
F={(.(1,2),0),(3,(1,2)",1,3),(0,(2,1)",3),(0,(2,1),2,0)}.

A valid (¢ = 3,6 = 2)-transverse-read code is a constrained
code avoiding all patterns in F.

Theorem 10 can be proven by showing that both above codes
have the same finite state transition diagram as in Figure 2.
Furthermore, it is possible to extend the above results for
other values of ¢ > ¢ > 1. For example, when ¢ = 5 and
0 = 2, we can build a non-deterministic finite state machine of
(¢ = 5,0 = 2) as in Figure 3. In this diagram, each node is
a state that a length-3 substring is started by the correspond-
ing length-3 substring. If a length-5 string starts by (0,0,0) and
its weight is 1, it may end by (0,1,0) or (0,0,1). If its weight

Fig. 3: Non-deterministic finite state transition diagram ¢ =
5,0 =2.

is 0, it must end by (0,0,0) and if its weight is 2, it must end
by (0,1,1). Similar, we can build a non-deterministic finite state
machine. For simplicity, in Figure 3, we only label all edges
go out from nodes (0,0,0) and (1,1,1). Once we have a non-
deterministic finite state machine, we can build a deterministic
finite state machine and compute the maximal asymptotic rate
of transverse-read codes. Several numerical results were com-
puted and tabulated in Table 1.

TABLE I: The maximal asymptotic rates of (¢, ¢)-transverse-
read codes.

(=4
0.7925

{=5
0.9258

{=06
0.7925

{=7
0.9361

{=38
0.7925

{=3
0.8857

6=2

From the results in Table I, we see that 0.936 = T R¢—7 5—2 >
TRZ:S’(SZQ > TR[:S’(SZQ > TR[ZQ’(;:Q = 0.795. So, using
our scheme, even we reduce the number of shift-operations to
50%, we still can achieve the information rate at least 93.6%.
Since the asymptotic rates of (¢,§ = 2) are increasing when ¢
is odd and increasing, we are interested in finding the maximal
asymptotic rates R(¢,d = 2) for odd .

Furthermore, since we can build a deterministic finite state
machine of (¢, ¢)-transverse-read code, it is possible to con-
struct this code with efficient encoding/decoding algorithms us-
ing well-known finite state splitting algorithms [16]. In the fol-
lowing section, we will study the ability of correcting shift-
errors and substitution-errors of these codes.



IV. TRANSVERSE-READ CODES CORRECTING ERRORS

In this section, we discuss about the ability of detecting and
correcting errors of these codes. There are two types of errors
in this model: shift-errors and substitution errors.

Shift-errors, which may occur when all domains are shifted,
can be modelled as sticky-insertions or deletions. Normally, we
may need to use some classical deletion correcting codes or use
multiple heads to correct these errors. In this work, we show
that some transverse-read codes have special properties that are
useful for correcting these shift-errors. Let us consider a vector
x = (r1,x2,23,24,25) = (0,0,1,1,0) and its transverse-read
vector TRy 1(x) = (21 + 2,22 + 23,23 + T4, Ta + T5) =
(0,1,2,1). Once an over-shift occurs, a symbol in TR 1 ()
is deleted and we may obtain an invalid word. For example,
an over-shift occurs in the second position and symbol x5 +
x3 = 1 is deleted, we obtain the word (0,2, 1). However, the
word (0,2,1) is not a valid (2,1)-transverse-read vector since 0
can not be followed by 2. Hence, we can detect and locate a
single deletion in this case. Based on this simple observation,
we are able to design a code correcting ¢ deletions, where there
is no consecutive deletions, with at most ¢ log(n) 4+ o(log n) bits
of redundancies. For simplicity, we first present the result for
t=1.

Theorem 11. Let C; C F% be a binary code correcting a sin-
gle sticky-deletion. The code C; can correct a single deletion in
the (2,1)-transverse-read code. That is, if a deletion occurs in a
transverse-read vector TR271(c) where ¢ € Cy, we can recover
the original word c.

Proof: Let ¢ = (c1,¢2,...,¢,) € C1 be a stored word.
Thus w = TRy 1(c) = ((c1 + ¢2), (c2 + ¢3), .-+, (o1 + Cn))s
where u; = ¢; 4 ¢;j41, is its (2,1)-transverse-read vector. We
observe that in a valid (2,1)-transverse-read vector, the run
of I’s has odd length if it is bounded by two different sym-
bols, that is (0,1,...,1,2) or (2,1,...,1,0), and the run of
I’s has even length if it is bounded by the same symbol, that
is (0,1,...,1,0) or (2,1,...,1,2). Hence, if a symbol 1 is
deleted in the valid (2,1)-transverse-read vector, we can de-
tect and locate the error and thus correct it. We now consider
the case that a symbol O or 2 is deleted. Note that if u; = 0
then ¢; = ¢;41 = 0 and if u; = 2 then ¢; = ¢;41 = 1. Hence,
if a symbol O or 2 is deleted in the transverse-read vector u,
a sticky-deletion occurs in the stored word c. Since ¢ € C;
which can correct a single sticky-deletion, we can correct the
error and recover the original word c. Hence, in any case, we
can recover the stored word c. Therefore, code C; can correct
a single deletion in a (2,1)-transverse-read code. [ |
It is known that correcting a sticky-deletion is easier than cor-
recting a deletion. Hence, the transverse-read code is helpful in
correcting a deletion (shift-error). It is interesting that we also
can extend the result for code correcting multiple deletions.

Theorem 12. Givent > 1, let C; be a code of length n correct-
ing t sticky-deletions. If there are at most t deletions in a (2,1)-
transverse-read vector T Rs 1(c) where ¢ € C; such that there
does not exist two-consecutive deletions then we can recover the
original word c.

Proof: Let us sketch the main idea of the proof of this
theorem. To prove the theorem, we just need to follow the ar-
gument in the proof of Theorem 11. If a symbol 1 is deleted
in the transverse-read vector TRy 1(c), we can detect and cor-
rect this error immediately. If a symbol O or 2 is deleted in
the transverse-read vector, we see that a sticky-deletion occurs
in the original word c. Then, we use a decoder of the code
C¢, which can correct multiple sticky-deletion, to correct these
errors. ]
So far, we showed that our scheme of using (¢, d)-transverse-
read code is helpful to correct shift-errors for = 2 and § = 1.
The main idea is to use codes correcting sticky-deletion to cor-
rect deletions, using some special properties of (2,1)-transverse-
read codes. This idea is presented in [17] for codes correcting
deletions in symbol-pair read channel. We note that, the best
known results on codes correcting ¢ deletions require at least
8tlogn + o(tlogn) bits of redundancy while it is possible to
correct t sticky-deletions using only tlogn + o(logn) bits of
redundancy, given a constant ¢. Hence, in our scheme for ¢ = 2
and 6 = 1, it is easier to correct shift-errors. The results for
other values of ¢ and 4 are in our interests and will be studied
in the full version of this work.

Besides that, a substitution error occurs when there is a mis-
take in transverse read and a symbol is read wrongly. For ex-
ample, z = (0,0,1,1,0) and TRy 1 (x) = (0,1,2,1). If a third
symbol in the transverse-read vector T'R 1 () is wrong then we
obtain the vector (0,1, 0,1) which is invalid. Moreover, we can
locate an error in the pattern (0, 1,0). It is helpful to correct a
substitution error with large magnitude. For a substitution error
with small magnitude, we propose to study a coding scheme to
combine our transverse-read code with the well-known limited-
magnitude error correcting code [15]. We also can show that
our scheme for £ = 2 and § = 1 is helpful to correct a sin-
gle limited magnitude error. These schemes will be discussed
in the full version of our work.

V. CONCLUSION AND DISCUSSION

In this work, we propose a new scheme of reading informa-
tion in domain wall memories to reduce the number of shift-
operations while still achieving the high information rate. We
introduce a new family of codes, called (¢, d)-transverse-read
codes and study their properties, maximal asymptotic rates and
constructions. Furthermore, we also show that our scheme of
using these transverse-read codes are helpful to correct shift-
errors in domain wall memories. In the full version of our work,
we also present some encoding/decoding algorithms in details.
The ability of transverse-read codes in correcting substitution-
errors will be studied in near future. Furthermore, we are also
interested in finding the maximal asymptotic rates of (¢,0)-
transverse-read codes for other values of ¢ and 4.
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