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Viscous streaming is an efficient mechanism to exploit inertia at the microscale for flow
control. While streaming from rigid features has been thoroughly investigated, when body
compliance is involved, as in biological settings, little is known. Here, we investigate body
elasticity effects on streaming in the minimal case of an immersed soft cylinder. Our study
reveals an additional streaming process, available even in Stokes flows. Paving the way for
advanced forms of flow manipulation, we illustrate how gained insights may translate to
complex geometries beyond circular cylinders.
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1. Introduction

This paper examines the role of body elasticity in two-dimensional viscous streaming.
Viscous streaming (Holtsmark et al. 1954; Lane 1955; Bertelsen, Svardal & Tjøtta 1973),
an inertial phenomenon, refers to the time-averaged, rectified steady flows that arise
when an immersed body of length scale a undergoes small-amplitude oscillations in a
viscous fluid. Long understood for rigid bodies of uniform curvature, such as cylinders
(Holtsmark et al. 1954) or spheres (Lane 1955), viscous streaming has found application
in microfluidics (Lutz, Chen & Schwartz 2003, 2005; Marmottant & Hilgenfeldt 2004;
Lutz, Chen & Schwartz 2006; Wang, Jalikop & Hilgenfeldt 2011; Chong et al. 2013;
Chen & Lee 2014; Klotsa et al. 2015; Thameem, Rallabandi & Hilgenfeldt 2017;
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Pommella et al. 2021), from chemical mixing (Liu et al. 2002; Lutz et al. 2003, 2005;
Ahmed et al. 2009) to vesicle transport (Marmottant & Hilgenfeldt 2003, 2004), due to
its ability to reconfigure flow and particle trajectories within short length – O (100) µm –
and time – O

(
10−3) s – scales (Thameem, Rallabandi & Hilgenfeldt 2016; Thameem et al.

2017). Recent developments have then furthered opportunities in transport, separation or
assembly, through the use of multi-curvature bodies and associated rich flow topologies
(Parthasarathy, Chan & Gazzola 2019; Bhosale, Parthasarathy & Gazzola 2020; Bhosale
et al. 2021b; Chan et al. 2022).
Despite progress, no effort has so far systematically considered the role of body

elasticity in viscous streaming. Yet, modulation by soft interfaces may be relevant in a
multitude of settings, from pulsatile physiological flows (Jalal et al. 2018; Parthasarathy,
Bhosale & Gazzola 2020; Jacob, Tingay & Leontini 2021) or conformal microfluidics
(Someya, Bao & Malliaras 2016; Heikenfeld et al. 2018; Bandodkar et al. 2019) to elastic
mini-robots in fluids (Park et al. 2016; Ceylan et al. 2017; Aydin et al. 2019; Huang et al.
2019), with relevance to both medicine and engineering. Soft biological organisms, such
as bacteria (Spelman & Lauga 2017) or larvae (Gilpin, Bull & Prakash 2020), may also
take advantage of streaming for feeding or locomotion. Indeed, a back of the envelope
calculation reveals that a millimetre-size aquatic organism beating its cilia at ∼O (10)Hz
would operate at the edge of viscous streaming viability. Supporting this hypothesis,
steady flow patterns and velocities (∼102–103 µms−1) consistent with streaming have
been observed in starfish and ribbon-worm larvae (Gilpin et al. 2020), although being
ascribed, perhaps inaccurately, to Stokes flow phenomena.
Motivated by these considerations, we dissect the effect of body elasticity on viscous

streaming in the minimal setting of an immersed, oscillating hyperelastic circular cylinder.
The major outcome is that, in these conditions, the time-averaged streaming flow 〈ψ1〉
reads

〈ψ1〉 = sin 2θ [Θ(r)+Λ(r)] , (1.1)

where r, θ are cylindrical coordinates, Θ(r) is the classical rigid-body solution
from Holtsmark et al. (1954) and Λ(r) is a novel, independent contribution from body
elasticity.

2. Problem set-up and governing equations

The above result is obtained by considering the set-up shown in figure 1, where a 2-D
viscoelastic solid cylinder Ωe with radius a is immersed in a viscous fluid Ωf . The fluid
oscillates with velocity V(t) = εaω cosωt, where ε, ω and t represent the non-dimensional
amplitude, angular frequency and time, respectively. We ‘pin’ the cylinder’s centre using
a rigid inclusion Γ of radius b < a, to kinematically enforce zero strain and velocity near
the cylinder’s centre. We denote by ∂Ω and ∂Γ the boundary between the elastic solid
and viscous fluid, and the boundary of the pinned zone, respectively.
In this set-up, we assume fluid and solid to be isotropic, incompressible and of constant

density. Furthermore, we assume the fluid to be Newtonian, with kinematic viscosity νf
and density ρf . We assume that the solid exhibits viscoelastic Kelvin–Voigt behaviour,
where the elastic stresses are modelled via neo-Hookean hyperelasticity, characteristic of
soft biological materials (Bower 2009), with shear modulus G, kinematic viscosity νe
and density ρe. Nonetheless, as it will later become apparent, the choice of hyperelastic
or viscoelastic model does not affect the general theory presented in this study. This is
because in the analysis that follows, higher order nonlinear terms in the stress–strain or
viscous response drop out, reducing to linear elasticity.
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Figure 1. Problem set-up. Elastic solid cylinderΩe of radius a with a rigid inclusion (pinned zone Γ of radius
b), immersed in the viscous fluid Ωf . The cylinder is exposed to an oscillatory flow with far-field velocity
V(t) = εaω cos(ωt).

The dynamics in the elastic and fluid phases are described by the incompressible Cauchy
momentum equations, non-dimensionalized using the characteristic scales of velocity V =
εaω, length L = a, time T = 1/ω and hydrostatic pressure P = µf V/L = µf εω:

Incomp.
{
∇ · v = 0, x ∈ Ωf ∪Ωe

Fluid
{
∂v

∂t
+ ε(v ·∇)v = 1

M2

(
−∇p+ ∇2v

)
, x ∈ Ωf

Solid
{
αCau

(
∂v

∂t
+ ε(v ·∇)v

)
= Cau

M2

(
−∇p+ β∇2v

)
+∇ · (FFT)′, x ∈ Ωe,






(2.1)

where v and p are the velocity and pressure fields, and F is the deformation gradient
tensor, defined as F = I +∇u, where I is the identity, u = x− X is the material
displacement field and x, X are the position of a material point after deformation and
at rest, respectively. The prime symbol ′ on a tensor denotes its deviatoric. In addition,
the following non-dimensional groups naturally appear: scaled oscillation amplitude ε,
Womersley number M = a

√
ρfω/µf , Cauchy number Cau = ερf a2ω2/G, density ratio

α = ρe/ρf and viscosity ratio β = µe/µf . Physically, M represents the ratio of inertial to
viscous forces, and Cau represents the ratio of inertial to elastic forces. Thus, increasing
M indicates an inertia-dominated environment, and increasing Cau implies a softer body.
The equations are then closed using the boundary conditions

Pinned zone
{
u = 0, v = 0, x ∈ Γ, (2.2)

Interface velocity
{
ve = vf , x ∈ ∂Ω, (2.3)

Interface stresses






σ f = −pI + (∇v +∇vT), x ∈ Ωf ,

σ e = −pI + β(∇v +∇vT)+ M2

Cau
(FFT)′, x ∈ Ωe,

n · σ e · n = n · σ f · n, x ∈ ∂Ω,

n · σ e · t = n · σ f · t, x ∈ ∂Ω,

(2.4)
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Far-field
{
v(|x| → ∞) = cosωt î, x ∈ Ωf , (2.5)

where (2.2) is the rigid pin constraint, (2.3) is the no-slip condition, (2.4) enforces
continuity of stresses and (2.5) is the far-field flow. We note the use of subscripts e and f
to explicitly denote elastic and fluid phases whenever ambiguity may arise, particularly in
treating interfacial quantities. Next, we identify relevant parameter ranges and solve (2.1)
accordingly, using perturbation theory.

3. Perturbation series solution

Typically, in viscous streaming applications, the non-dimensional oscillation amplitude is
ε � 1 (Holtsmark et al. 1954; Bertelsen et al. 1973; Lutz et al. 2005), and the Womersley
number is M ≥ O (1) (Marmottant & Hilgenfeldt 2004; Lutz et al. 2006). Additionally,
density α and viscosity β ratios are ∼ O (1). The Cauchy number Cau requires careful
consideration. For a rigid body Cau = 0, while for an elastic body Cau > 0, with Cau � 1
implying weak elasticity. From a mathematical perspective, dealing with Cau ≥ O (1) is
challenging due to the highly nonlinear nature of hyperelastic materials. Here, we assume
that the cylinder is only weakly elastic, and in particular that Cau = κε, where κ = O (1).
This assumption simplifies the asymptotic treatment, slaving Cau to ε so that both are
equally small and tend to zero at the same rate. As further discussed in the supplementary
material, § 2 available at https://doi.org/10.1017/jfm.2022.525, this modelling choice does
not compromise the practical generality of our findings.
We then look for asymptotic solutions of (2.1) by perturbing all relevant fields as

series of powers of ε. We derive the zeroth-order solution O (1), which reduces to a rigid
cylinder in a purely oscillatory flow governed by the unsteady Stokes equation (Holtsmark
et al. 1954). The next-order solution O (ε) is derived in two steps. First, we obtain
the deformation of the elastic solid due to the leading-order flow. Second, we use this
deformation to determine the boundary conditions for the flow atO (ε), thus incorporating
elasticity effects into the streaming solution. Steps are mathematically outlined below, with
details in the supplementary material.
We start by perturbing to O (ε) all physical quantities q, which include v, u, p, Ω , n, t,

as

q ∼ q0 + εq1 + O
(
ε2
)

(3.1)

and substitute them in (2.1). Subscripts (0, 1, . . .) indicate the solution order. Then, we
adopt the more convenient cylindrical coordinate system (r, θ), with radial coordinate r,
angular coordinate θ and origin at the centre of the cylinder. Horizontal axis direction i
corresponds to θ = 0.

3.1. Zeroth-order O (1) solution
At zeroth orderO (1), the governing equations and boundary conditions in the solid reduce
to

∇ · ((I +∇u0)(I +∇u0)T)′ = 0, r ≤ 1; u0|r=ζ = 0, (3.2)

where ζ = b/a is the non-dimensional radius of the pinned zone. Since at this order Cau =
κε = 0, the solution of (3.2) is the fixed, rigid body cylinder:

∂Ω0 = r = 1; u0 = 0, v0 =
∂u0
dt

= 0, r ≤ 1. (3.3)
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With these zeroth-order definitions, the governing equations in the fluid reduce to

M2 ∂∇2ψ0

∂t
= ∇4ψ0 r ≥ 1,

v0,r|r=1 =
1
r
∂ψ0

∂θ

∣∣∣∣
r=1

= 0; v0,θ |r=1 = −∂ψ0

∂r

∣∣∣∣
r=1

= 0,

v0,r|r→∞ = cos θ cos t; v0,θ |r→∞ = − sin θ cos t,






(3.4)

where ψ is the streamfunction defined as v = ∇ × ψ . This system ((3.3) and (3.4)) is
a rigid cylinder immersed in an oscillating unsteady Stokes flow, which has the exact
analytical solution (Holtsmark et al. 1954)

ψ0 =
sin θ
2

(
r + H2(m)

rH0(m)
− 2H1(mr)

mH0(m)

)
e−it + c.c., r ≥ 1, (3.5)

where i =
√
−1, and m =

√
iM. Here, Hi and c.c. refer to the ith-order Hankel function

of first kind and complex conjugate. The zeroth-order field ψ0 in the fluid is purely
oscillatory, thus no steady streaming is observed at O (1), as expected (Holtsmark et al.
1954; Bertelsen et al. 1973). Additionally, no effects of elasticity manifest on the flow at
this order.

3.2. First-order O (ε) solution
We then proceed to the next order of approximation O (ε), where we instead do expect
steady streaming to emerge and elasticity to play a role. At O (ε), the solid governing
equations reduce (supplementary material, (1.42), (1.49)) to

∇4ψe,1 = 0, x ∈ Ωe, (3.6)

where we have defined the strain function ψe, so that u = ∇ × ψe (similar to the
streamfunction ψ). Equation (3.6) shows how the specific choice of solid elasticity
model is irrelevant at O (ε), since all nonlinear stress-strain responses drop out
due to linearization (supplementary material, (1.37)–(1.42)). Equation (3.6) is further
complemented by the boundary conditions at the pinned zone interface:

u1,r =
1
r
∂ψe,1

∂θ

∣∣∣∣
r=ζ

= 0; u1,θ = −∂ψe,1

∂r

∣∣∣∣
r=ζ

= 0. (3.7a,b)

Now, the flow solution at O (1) exerts interfacial stresses on the solid, which at O (ε) is no
longer rigid but instead deforms. This process is driven by (2.4), which yields the following
radial and tangential stress conditions:

M2

κ

∂

∂r

(
1
r
∂ψe,1

∂θ

)∣∣∣∣
r=1

= ∂v0,r

∂r

∣∣∣∣
r=1

,

M2

κ

(
1
r2

∂2ψe,1

∂θ2
− ∂2ψe,1

∂r2
+ 1

r
∂ψe,1

∂r

)∣∣∣∣
r=1

=
(
1
r
∂v0,r

∂θ
+ ∂v0,θ

∂r
− v0,θ

r

)∣∣∣∣
r=1

,






(3.8)

where the left-hand side corresponds to the elastic stresses in the solid phase
((M2/Cau)(FFT)′, (2.4)) and the right-hand side to the viscous stresses in the fluid phase
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(∇v +∇vT, (2.4)), both evaluated at the zeroth-order interface r = 1. We note that the
pressure term (−pI , (2.4)) cancels out from both sides of (3.8), since at O (1) the pressure
is continuous at the interface (supplementary material, (1.31)). Additionally, (3.8) shows
how the choice of solid viscosity model is irrelevant atO (ε), since the solid viscosity term
(β(∇v +∇vT), (2.4)) is of order higher than O (ε), and thus drops out (supplementary
material, (1.37)–(1.42)). We further note that although the solid interface does deform,
the use of r = 1 in (3.8) is not inconsistent. Indeed, as shown in the supplementary
material ((1.44)–(1.46)), this approximation induces higher order O

(
ε2
)
errors in the

boundary stresses evaluation. The flow quantities on the right-hand side can be then
directly evaluated:

∂v0,r

∂r

∣∣∣∣
r=1

= 0,

(
1
r
∂v0,r

∂θ
+ ∂v0,θ

∂r
− v0,θ

r

)∣∣∣∣
r=1

= sin θ F(m) e−it + c.c.,





(3.9)

with
F(m) = −mH1(m)/H0(m). (3.10)

Once (3.9) and (3.10) are substituted back in the boundary conditions of (3.8), the
biharmonic (3.6) can be solved to obtain the O (ε) solid displacement field:

ψe,1 =
κ

M2 sin θ(r)
(
c1 +

c2
r2

+ c3r2 + c4 ln(r)
)
F(m) e−it + c.c., (3.11)

where the expressions for c1, c2, c3, c4 (functions of ζ ) are reported in the supplementary
material. Equation (3.11) represents the O (ε) solid displacement field both in the bulkΩe
and at the boundary ∂Ω , which directly affects theO (ε) flow. AtO (ε), the flow governing
equation, in streamfunction form, reads (Holtsmark et al. 1954)

M2 ∂∇2ψ1

∂t
+M2

(
(v0 ·∇)∇2ψ0

)
= ∇4ψ1, r ≥ 1. (3.12)

Since we are interested in steady streaming, we consider the time average:

∇4〈ψ1〉 = M2 〈(v0 ·∇)∇2〈ψ0〉〉︸ ︷︷ ︸
right-hand side

, r ≥ 1, (3.13)

where the right-hand side can be rewritten using (3.5) to yield

∇4〈ψ1〉 = sin 2θ ρ(r), r ≥ 1,

ρ(r) = −M4

2
Im

[
H2(mr)
H0(m)

+
H2(m)H∗

0(mr)

H2
0(m)r

2
+2

H0(mr)H∗
2(mr)

H2
0(m)

]

,





(3.14)

with Im[·] representing the imaginary part. To solve this equation, we first recall the
far-field boundary conditions:

1
r
∂〈ψ1〉
∂θ

∣∣∣∣
r→∞

= ∂〈ψ1〉
∂r

∣∣∣∣
r→∞

= 0. (3.15)

Next, we recall the no-slip boundary condition of (2.3) that needs to be enforced at the
O (ε) accurate solid–fluid interface (supplementary material, (1.62))

ve|∂Ω = ve|r=1+εu1,r + O
(
ε2
)
= vf

∣∣
∂Ω

= vf
∣∣
r=1+εu1,r

+ O
(
ε2
)
, (3.16)

where we highlight how, at O (ε), the cylinder interface is no longer fixed at r = 1, but
deforms as r′ = 1+ εu1,r. Here, u1,r is the O (ε) accurate deformation field computed by
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injecting (3.11) into u1 = ∇ × ψe,1. To enforce (3.16), while maintaining an analytically
tractable formulation, we replace the boundary flow velocity vf |r=r′ on the temporally
moving interface r′ with the velocity that the flow would need to see on the fixed interface
r = 1 to respond equivalently. We achieve this (supplementary material, (1.64)–(1.66)) by
Taylor expanding vf |r=r′ around r = 1:

vf
∣∣
r=1+εu1,r

=
(
εvf ,1 + ε

∂vf ,0

∂r
u1,r

)∣∣∣∣
r=1

+ O
(
ε2
)
. (3.17)

Similarly, ve|r=1+εu1,r (left-hand side of (3.16)) can be computed to O (ε) accuracy
as ∂u1,r/∂t|r=1 (supplementary material, (1.63)). Given that u1,r (3.11) and ∂vf ,0/∂r
(3.5) are known, we can plug (3.17) into (3.16) to obtain vf ,1 (supplementary material,
(1.62)–(1.67)), referred to as v1 henceforth. Time averaging yields

〈v1,r〉
∣∣
r=1 =

1
r
∂〈ψ1〉
∂θ

∣∣∣∣
r=1

= 0,

−〈v1,θ 〉
∣∣
r=1 =

∂〈ψ1〉
∂r

∣∣∣∣
r=1

= κ

M2 sin 2θ G1(ζ )F(m)F∗(m)





(3.18)

with

G1(ζ ) = 0.5
(
(ζ 2 + 1)ln(ζ )

ζ 2 − 1
− 1

)
. (3.19)

Equation (3.18) tells us that, from the fluid perspective, the no-slip condition on the
moving interface r′ can be equivalently seen as a rectified tangential slip velocity
(〈v1,θ 〉|r=1 /= 0) on the zeroth order, fixed interface r = 1 (for details, see supplementary
material, (1.62)–(1.67)). In our case, this slip velocity stems from solid elasticity and
modifies the Reynolds stresses – sin 2θ ρ(r) – associated with the rigid body (3.14), thus
altering the overall streaming flow response. We remark that this slip is independent of
the Navier–Stokes nonlinear inertial advection. Hence, streaming can be generated even
in the Stokes limit, unlike for rigid bodies. This is similar, in spirit, to the mixed-mode
streaming of pulsating bubbles (Longuet-Higgins 1998; Spelman & Lauga 2017), with
the difference that in our treatment, this effect naturally emerges from the fully coupled
interaction between the elastic solid and the primary flow.
Given the steady flow of (3.14) and boundary conditions of (3.15) and (3.18), the

streaming solution can finally be written as
〈ψ1〉 = sin 2θ [Θ(r)+Λ(r)] . (3.20)

Here, Θ(r) is the classical rigid body contribution from (Holtsmark et al. 1954):

Θ(r) = − r4

48

∫ ∞

r

ρ(τ )

τ
dτ + r2

16

∫ ∞

r
τρ(τ ) dτ

+ 1
16

(∫ r

1
τ 3ρ(τ ) dτ +

∫ ∞

1

ρ(τ )

τ
dτ − 2

∫ ∞

1
τρ(τ ) dτ

)

+ 1
r2

(
− 1
48

∫ r

1
τ 5ρ(τ ) dτ − 1

24

∫ ∞

1

ρ(τ )

τ
dτ + 1

16

∫ ∞

1
τρ(τ ) dτ

)
, (3.21)

where τ is the radial coordinate, and Λ(r) is the new elastic modification

Λ(r) = 0.5
κ

M2 G1(ζ )F(m)F∗(m)
(
1− 1

r2

)
, (3.22)

with G1(ζ ) and F(m) given in (3.19) and (3.10). This concludes our theoretical analysis.
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Figure 2. Effect of elasticity on streaming flow. (a–c) Time-averaged Lagrangian (i.e. Stokes-drift corrected –
see supplementary material, § 3 for details) streamline patterns (blue/orange represent clockwise/anticlockwise
rotating regions) depicting streaming response atM ≈ 8 with increasing softness Cau: (a) rigid limit (Cau = 0),
(b) Cau = 0.025 and (c) Cau = 0.05. Non-dimensional radius of the pinned zone (green cylinder) is set at
ζ = 0.2 throughout the study. For effects of ζ variation on streaming, refer to supplementary material, § 5.
(d) Normalized DC layer thickness δDC/a vs inverse of Womersley number (1/M) from theory and simulations,
for varying body elasticity Cau. The DC layer is the innermost recirculation zone (a–c). Its extent (finite
or infinite thickness) and flow velocities characterize streaming. Its robust nature and high flow gradients
and curvatures render the DC layer useful for trapping, filtration or chemical mixing. (e–g) Radial decay of
velocity magnitude along θ = 0◦ from theory and simulations, with increasing softness Cau. Experimental
parameter values equivalent to the range of M and Cau considered here can be found in supplementary
material, § 6, revealing practical viability in association with soft tissue or common polymeric materials.
Simulations are performed using a remeshed vortex methodology (Gazzola et al. 2011; Bhosale, Parthasarathy
& Gazzola 2021a) that accurately solves the vorticity–velocity formulation of the Navier–Stokes equations.
The flow domain is discretized as particles for vorticity advection. The vorticity carried by particles is then
interpolated on a regular mesh for the evaluation of all other terms. Within this framework, the rigid cylinder
is modelled as a density matched (ρf = ρe = 1) Brinkmann solid, while the elastic cylinder is modelled as
a density matched viscoelastic Kelvin–Voigt solid with shear modulus G. Deformations are tracked using an
inverse-map technique (Kamrin & Nave 2009; Kamrin, Rycroft & Nave 2012). The pinned zone is modelled as
a Brinkmann solid. The parametric values for the far-field motion V(t) = V0 cosωt with characteristic velocity
V0 = εaω, are ε = 0.1 and ω = 32π. Parametric values of fluid dynamic viscosity µf , oscillation frequency
ω and shear modulus G are determined based on the Womersley number M = a

√
ρfω/µf , and Cauchy

number Cau = ερf a2ω2/G. Additional simulation details: domain [0, 1]2, uniform grid spacing h = 1/1024,
penalization factor λ = 1× 104, mollification length εmoll = 2

√
2h, Lagrangian Courant–Friedrichs–Lewy

number LCFL = 0.1. These values are used throughout the text, unless stated otherwise. Refer to Gazzola
et al. (2011) and Bhosale et al. (2021a) for details on these parameters.

4. Numerical validation and extension to bodies of multiple curvatures

Next, we compare our theory against known analytical results in the rigidity limit (Raney,
Corelli & Westervelt 1954; Bertelsen et al. 1973), and direct numerical simulations
performed using remeshed vortex methods (Bhosale et al. 2021a; Gazzola, Van Rees &
Koumoutsakos 2012) (see also the caption of figure 2). For a rigid cylinder (Cau = 0)
oscillating at M ≈ 8, numerical time-averaged Lagrangian streamlines (i.e. Stokes-drift
corrected – see supplementary material, § 3 for details) are shown in figure 2(a). We
highlight the fourfold symmetry and the presence of a well-defined direct circulation (DC)
layer of thickness δDC. Holtsmark et al. (1954) predict this flow topology, as well as an
increase of δDC with 1/M until divergence, at which point the DC layer extends to infinity.
This behaviour is recovered by our theory when Cau = 0 (i.e. Λ = 0), and by simulations
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Pinned zone

Rear DC
vortex

a

Flanking
vortex

(b)(a) (c)

Figure 3. Extension of compliance-induced streaming to generalised, multiple curvature bodies.
Time-averaged Eulerian flow topologies obtained from simulations for a bullet – formed by hybridizing a
circle of radius a with a square of side length 2a – at M ≈ 8, with varying body elasticity Cau: (a) rigid limit
Cau = 0, (b) Cau = 0.05 and (c) Cau = 0.1. Increasing body softness results in contraction and strengthening
of the rear DC vortex on the square side, consistent with our theoretical insights.

(black line/dots in figure 2d). As the cylinder becomes soft (Cau > 0), fourfold symmetry
is preserved (sin 2θ in (3.20)), but δDC contracts on account of the elastic termΛ /= 0. This
is confirmed by simulations across a range of Cau, as seen in figure 2(b–d). An intuitive
argument for this effect may be the following. If the cylinder is soft (Cau > 0), its surface
deforms and the associated deformation velocities feed back into the flow, acting as an
additional source of inertia. As a result, the flow effectively ‘sees’ a greater M relative to
the rigid case, hence a decrease of DC layer thickness with elasticity (Cau). This further
implies that an elastic body can access the streaming flow configurations of rigid objects
with significantly lower oscillation frequencies. This can be seen in figure 2(d), where,
for example at Cau = 0.05, a∼2× frequency reduction is observed. Additionally, we note
that for soft cylinders the divergence of δDC with decreasingM is still expected as for rigid
counterparts, although at lower values of M. This is because for Cau > 0, the rigid body
contribution Θ(r) is the same as in classic streaming and will diverge, with the elasticity
contributionΛ(r) only shifting the curve (see supplementary material, § 7 for details). We
conclude our validation by reporting in figure 2(e–g) theoretical and simulated radially
varying, time-averaged velocities |〈v〉| at θ = 0◦, noting close agreement. For a detailed
analysis surrounding the effect of inertia (M) and elasticity (Cau) on velocity magnitudes
(flow strength), the reader is referred to § 4 of supplementary material.
Finally, we demonstrate how gained theoretical intuition extends to geometries of

multiple curvatures. We consider the shape of figure 3, previously designed (Bhosale et al.
2020) to attain streaming flows favourable to particle transport (Parthasarathy et al. 2019)
and separation (Bhosale et al. 2021b). Both applications rely on the presence of flanking
and rear vortices, and performance is improved by strengthening the vortices via increasing
oscillation frequencies (Bhosale et al. 2020). Figure 3 shows how the same process can
alternatively be achieved by increasing softness only. As a result, the same flow topologies
of Bhosale et al. (2020) are obtained in figure 3 for frequencies ∼4× lower.

5. Conclusion

In summary, we derived a viscous streaming theory for the case of an elastic cylinder,
and validated it computationally. Our study reveals an additional, tunable mode of
streaming, accessible through material compliance and available even in Stokes flow. We
demonstrate its use for flow control in the case of a previously designed streaming body
of multiple curvatures, to illustrate application potential in microfluidics or microrobotics,
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in conjunction with the use of elastomeric or biological materials. Further, the fact that
compliance enables streaming effects at frequencies significantly lower than rigid bodies
supports the hypothesis that biological creatures, speculated to operate at the edge of
viscous streaming viability, may instead take full advantage of it thanks to their softness.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.525.
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