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We report analytical solutions of a problem involving a visco-elastic solid material layer
sandwiched between two fluid layers, in turn confined by two long planar walls that
undergo oscillatory motion. The resulting system dynamics is rationalized, based on fluid
viscosity and solid elasticity, via wave and boundary layer theory. This allows for physical
interpretation of elasto-hydrodynamic coupling, potentially connecting to a broad set of
biophysical phenomena and applications, from synovial joint mechanics to elastometry.
Further, obtained solutions are demonstrated to be rigorous benchmarks for testing coupled
incompressible fluid–hyperelastic solid and multi-phase numerical solvers, towards which
we highlight challenging parameter sets. Finally, we provide an interactive online sandbox
to build physical intuition, and open-source our code-base.
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1. Introduction

We report analytical solutions of a minimal yet representative problem involving a
visco-elastic solid material layer sandwiched between two fluid layers, in turn confined
by two long planar walls that undergo oscillatory motion (figure 1). We are motivated by
the ubiquity and relevance of coupled interactions between viscous fluid and visco-elastic
solids in engineering and biology (Dowell & Hall 2001; Grotberg & Jensen 2004; Heil &
Hazel 2011; Zhu & Jane Wang 2011; Barthes-Biesel 2016). Despite the numerous efforts
to investigate this class of systems across modalities (theory, simulations, experiments)
and applications, from vesicle transport (Pozrikidis 2003; Vlahovska & Gracia 2007),
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Figure 1. Schematic of the problem set-up.

pulmonary (Grotberg & Jensen 2004; Heil, Hazel & Smith 2008), oesophageal (Kou
et al. 2017) or cardiovascular systems (Li, Vlahovska & Karniadakis 2013; Bodnár, Galdi
& Nečasová 2014), biolocomotion (Argentina, Skotheim & Mahadevan 2007; Gazzola,
Argentina & Mahadevan 2015; Tytell et al. 2016), microfluidics (Wang & Christov 2019;
Christov 2021), drag reduction or energy harvesting (Alben, Shelley & Zhang 2002, 2004;
Argentina & Mahadevan 2005; Bhosale et al. 2020), there is a perhaps surprising
paucity of rigorous, analytical benchmarks that capture, in a minimal setting, tightly
coupled, interfacially driven dynamics between elastic solids and shearing fluids. Such
solutions are important to characterize system dynamics, relevant spatio-temporal scales,
non-dimensional parameters and solution sensitivity, which are necessary for building
intuition into practical flow–structure interaction problems.
Our set-up, inspired by Sugiyama et al. (2011), caters to these requirements by coupling

an incompressible Newtonian fluid to an incompressible, density-mismatched visco-elastic
solid using a single, well-defined interface. By analysing the flow field at this interface, the
degree of dynamic coupling and underlying mechanisms can be understood. This analysis
is possible because in our set-up, the governing equations reduce to the simplest possible
case of a single dimension, while satisfying identically constraints of incompressibility.
This results in decoupled algebraic equations that we solve to derive rigorous analytical
solutions. These solutions help to isolate the spatio-temporal scales at play, and study the
system behaviour across a range of physical conditions.
Insights may be relevant in a variety of practical settings. For example, in pusatile flows,

bacterial deposition can be modulated through soft coatings (Bakker et al. 2003; Song,
Koo & Ren 2015), offering avenues for controlling bio-film formation and preventing
bio-fouling. Then our model may inform strategies for the manipulation of flow stresses
through elastic surfaces (Gad-el Hak 2002). Similarly, our study may connect to the
mechanics and wear of loaded synovial joints (Dowson & Jin 1986; Sun, Nalim & Yokota
2003; Nalim et al. 2004; Sun 2010), where wall-driven, cyclic (synovial) fluid shear
stresses act on soft articular cartilages. Finally, our results may find use in non-destructive
testing of solid rheological properties, much like Couette visco- and elasto-meters (Carr,
Shen & Hermans 1976).
Within this context, we begin by providing a detailed derivation of the flow solution,

first in the case of a solid modelled using a linear Kelvin–Voigt material. This established
model captures the essence of visco-elasticity, by considering effectively a linear elastic
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spring and viscous damper connected in parallel, and has proven insightful in minimal
settings (Sengul 2021a,b). We first show how the obtained solution, in the limit of
zero solid elastic shear modulus, is consistent with classical multi-phase Stokes–Couette
flow solutions (Landau & Lifshitz 1987; Sim 2006; Leclaire et al. 2014). We then
investigate the parametric impact of solid elasticity and fluid viscosity, and provide
intuition for the observed results, using wave and boundary layer theory. During these
parametric explorations, we discover regimes marked by solid displacements as high as
four times that of the wall’s oscillation amplitudes, which we attribute to elastic, standing
wave harmonics. We then carry forth our analysis from linear Kelvin–Voigt solids to
nonlinear Kelvin–Voigt solids, where elastic forces are modelled using a nonlinear spring,
introduced here to approximate elastomeric and biological tissue responses (Bower 2009).
Mathematically, the consequence is that closed-form solutions are no longer available.
Thus to gain intuition, we turn to a numerical solution, which we then analyse.
Finally, our set-up also serves as a useful benchmark for validating fluid–elastic structure

interaction and multi-phase simulation codes, towards which we highlight challenging
parameter sets, compare with direct numerical simulations (Bhosale, Parthasarathy &
Gazzola 2021), and provide an interactive online sandbox as well as open-source code.
The work is organized as follows. The problem set-up and governing equations are

introduced in § 2. Simplifications and analytical solutions for linear Kelvin–Voigt solids
are discussed in § 3, with the corresponding system behaviour presented in § 4. Numerical
solutions for nonlinear Kelvin–Voigt solids and their interpretation are presented in § 5.
Concluding remarks are provided in § 6.

2. Problem set-up and governing equations

A schematic of the set-up is shown in figure 1, where we have a two-dimensional
(2-D) visco-elastic solid sandwiched between two layers of fluid, such that the system
is top-down symmetric. The thicknesses of the solid and each fluid layer are 2Ls and
Lf , respectively. The set-up is infinitely long, hence we assume homogeneity in the
x-direction. The fluid is bounded by two planar walls that present a prescribed sinusoidal
oscillatory motion Vwall(t) := V̂wall sin(ωt) = Im[V̂wall exp(iωt)], where hatted quantities
denote the Fourier coefficients obtained upon a temporal Fourier transform, ω is the
angular frequency of oscillations, and T = 2π/ω is the time period of oscillation. The
bottom wall oscillates out of phase with the top wall, with phase shift π.

2.1. Governing equations
We consider a 2-D domain Σ occupied physically by elastic solid and viscous fluid, with
Ωe and ∂Ωe representing the support and boundaries of the elastic solid, respectively. The
fluid region is represented by Σ − Ω̄ .
Linear and angular momentum balance in both the elastic solid and fluid phases, in the

fixed lab frame of reference and on a continuum scale, leads to the Cauchy momentum
equation

∂v

∂t
+∇ · (v ⊗ v) = − 1

ρ
∇p+ 1

ρ
∇ · σ ′, x ∈ Σ, (2.1)

where t ∈ R+ represents time, v : Σ × R+ → R2 represents the velocity field, ρ

denotes material density, p : Σ × R+ → R represents the mean normal stress field
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(i.e. thermodynamic pressure), and σ ′ : Σ × R+ → R2 ⊗ R2 stands for the deviatoric
Cauchy stress tensor field. Throughout this work, the prime symbol ′ on a tensor A
indicates its deviatoric, i.e. A′ := A− 1

2 tr(A) I , where I stands for the identity tensor, and
tr(·) represents the trace operator. All fields defined above are assumed to be sufficiently
smooth in time and space. Additionally, incompressibility of the fluid and elastic domains
results in the kinematic constraint on the velocity field

∇ · v ≡ 0, x ∈ Σ. (2.2)

Interactions between the fluid and elastic solid phases take place via interfacial boundary
conditions, which correspond to continuity in velocities (no-slip) and traction forces at the
fluid–elastic solid interface:

v = vf = ve, n · σ f · n = n · σ e · n, n · σ f · t = n · σ e · t, x ∈ ∂Ωe, (2.3a–c)

where n and t denote the unit outward (solid to fluid) normal vector and the unit tangent
vector at the interface ∂Ωe, respectively. Here, vf and ve correspond to the interfacial
velocities in the fluid and the elastic body, respectively, while �f = −pI + �′f and �e =
−pI + �′e correspond to the interfacial Cauchy stress tensors in the fluid and the elastic
body, respectively.

2.2. Simplification of governing equations
We first simplify the governing equations by noting that the problem is homogeneous in
the x-direction, hence we can omit the x-dependence of any quantity. The problem then
reduces to one dimension, with gradients only along the y-axis, and classical symmetry
reductions to the governing Cauchy momentum equation can be adopted. First, the
continuity equation (or equivalently the incompressibility condition) of (2.2) simplifies
to

∂v[y]

∂y
≡ 0, (2.4)

where the superscript indicates the directional component. A trivial solution of this
equation is v[y]( y, t) = c(t), where c(t) is an arbitrary quantity. Because of the absence
of motion of the wall in the y-direction, c(t) is identically zero to match wall boundary
conditions. Then only the displacement u[x]( y, t), velocity v[x]( y, t) and stresses σ [xy]

need to be considered. We remark that the thermodynamic pressure p in σ [xy] has zero
gradient due to our assumption of homogeneity, hence we need to consider only deviatoric
stresses σ ′[xy]. This simplifies the governing equation (2.1) in both the fluid (indicated by
the subscript f ) and solid (indicated by the subscript s) domain, yielding

ρ ∂tvj = ∂yσj, j = {f , s}, where ∂tuj = vj, (2.5)

where all quantities depend on ( y, t), and the symbols [·] and ′ are dropped. In order to
achieve closure of (2.5), we need to specify the form of internal material stresses, i.e.
the constitutive relations. In this work, we assume the fluid to be Newtonian, isotropic
and incompressible, with density ρf , dynamic viscosity µf , and kinematic viscosity νf =
µf /ρf . Accordingly, the Cauchy stress is assumed to be

σf = µf ∂yvf (Ls � |y| < Ls + Lf ). (2.6)

The simplified equations (2.5) and (2.6) in the fluid indicate that accelerations (left-hand
side) result from viscous forces alone.
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Next, we assume that the solid is isotropic and incompressible, and is of constant density
ρs and of nonlinear Kelvin-Voigt type, exhibiting visco-elastic behaviour. Then the Cauchy
stress is assumed to be

σs = 2c1 ∂yus + 4c3 (∂yus)3 + µs ∂yvs (0 � |y| < Ls), (2.7)

where µs represents the dynamic viscosity of the solid phase, and c1, c3 are coefficients
of elastic moduli. This model, while unable to capture the full complexity of generalized
nonlinear visco-elasticity, is well established as a minimal model and has been employed
previously (Sengul 2021a,b) to gain insight into more general nonlinear visco-elastic
phenomena. From this model, in the limit of zero solid viscosity µs = 0, we recover
the generalized Mooney–Rivlin constitutive model (Bower 2009; Sugiyama et al.
2011), appropriate to capture elastomeric and biological tissue responses. Here, in the
infinitesimal deformations limit, the entity 2c1 represents G, the elastic shear modulus of
the solid. In addition, setting c3 = 0 in (2.7) implies linear stress responses with respect
to the one-dimensional displacement us, while c3 /= 0 is responsible for (cubic) nonlinear
behaviours (Sugiyama et al. 2011). Then setting c3 = 0 and 2c1 = G results in the Cauchy
stress of a linear Kelvin–Voigt solid. Finally, similar to the fluid phase, we define the
kinematic viscosity of the solid as νs = µs/ρs. Equations (2.5) and (2.7) indicate that
accelerations (left-hand side) result from a combination of viscous and elastic forces in
the solid (right-hand side).
Further, the stresses and velocities at the interfaces need to be continuous per (2.3), thus

vf (±Ls, t) = vs(±Ls, t),

µf ∂yvf (±Ls, t) = 2c1 ∂yus(±Ls, t)+ 4c3 (∂yus(±Ls, t))3 + µs ∂yvs(±Ls, t).

}
(2.8)

Finally, we close the equations above by imposing no-slip boundary conditions at the upper
and lower walls at y = ±(Ls + Lf ):

vf =
{
V̂wall sinωt at y = Lf + Ls,
−V̂wall sinωt at y = −(Lf + Ls).

(2.9)

In the case of a linear Kelvin–Voigt solid (c3 = 0), the governing equations (2.5)–(2.9)
reduce to a set of linear equations since our set-up involves purely shearing motions. We
take two distinct, but equivalent, solution approaches. The first involves solving directly
the linear governing equations in the physical domain. The second approach instead solves
the modal form of the governing equations obtained via a sine transform. The first,
closed-form solution is possible only in the linear Kelvin–Voigt case, while the second,
infinite series solution can handle arbitrary constitutive models. We discuss both in the
following.

3. Derivation of analytical solutions for linear Kelvin–Voigt solids

3.1. Direct analytical solution
The first approach, for a linear Kelvin–Voigt solid (with c3 = 0), is to solve directly
(2.5)–(2.7) in the fluid and solid domains. We begin by noting that due to symmetry, (2.5)
can admit only solutions that are odd functions of y. Indeed, the equations of motion are
invariant upon replacing u( y, t), v( y, t) with−u(−y, t),−v(−y, t) in both solid and fluid.
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Thus we consider only solutions for y � 0 henceforth. Given c3 = 0, we have

ρf ∂tvf = µf ∂
2
y vf for fluid (Ls � y < Ls + Lf ),

ρs ∂
2
t us = 2c1 ∂2y us + µs ∂

2
y ∂tus for solid (0 � y < Ls).

}

(3.1)

Considering the linearity of (3.1), the symmetry of our set-up, and the sinusoidal form
of wall velocity Vwall(t) = Im[V̂wall exp(iωt)], one can expect similar sinusoidal forms in
resulting solid displacements us( y, t) = Im[ûs( y) exp(iωt)] and flow velocities vf ( y, t) =
Im[v̂f ( y) exp(iωt)]. Substituting these ansatzes in (3.1) yields

(
∂2y − iω

νf

)
v̂f = 0 for fluid (Ls � y < Ls + Lf ),

(
∂2y + ω2

iωνs + (2c1/ρs)

)
ûs = 0 for solid (0 � y < Ls),





(3.2)

which are a pair of homogeneous Helmholtz equations with exact solutions

v̂f (ỹ) = A exp
(
kf

ỹ
Lf

)
+ B exp

(
−kf

ỹ
Lf

)
, ỹ ∈ [0, Lf ),

ûs( y) = C exp
(
ks

y
Ls

)
+ D exp

(
−ks

y
Ls

)
, y ∈ [0, Ls),





(3.3)

where ỹ = y− Ls, and

kf =
√
i (L−1

f (νf /ω)
1/2)−1, ks = i[((ωLs)−1(2c1/ρs)1/2)2 + i(L−1

s (νs/ω)
1/2)2]−1/2.

(3.4a,b)

The coefficients A,B,C,D are determined directly given interface and boundary
conditions (2.8) and (2.9), and their (lengthy) expressions are reported in § 1 of the
supplementary material available at https://doi.org/10.1017/jfm.2022.542. Physically, (3.3)
indicates a damped wave behaviour, in both solid and fluid domains.

3.2. Modal solution using Fourier series
The second approach, based on Sugiyama et al. (2011), consists in representing
us( y, t), vf ( y, t) as Fourier sine series in the spatial coordinate y, injecting them into
the governing equations (2.5)–(2.7), and matching the interfacial conditions of (2.8) and
boundary conditions of (2.9) to obtain the final solutions. The choice of a sine series
expansion is natural here given the Dirichlet velocity boundary conditions. Because of the
piecewise definition of stresses in (2.6) and (2.7), and the interfacial condition in (2.8)
(which indicates that velocities are C0 continuous), convergence can be poor if a global
Fourier series (i.e. for both the solid and fluid domains together) is considered. Hence, we
utilize two piecewise Fourier series expansions for the solid vs( y, t) and fluid vf ( y, t)
velocities, respectively, and impose explicitly C0 continuity in velocities and stresses.
Then, due to symmetry, one can expand us( y, t), vf ( y, t) using the Fourier sine series
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only in the upper half-space y � 0, as follows:

vf (ỹ, t) = VI(t)+
ỹ
Lf

(Vwall(t)− VI(t))+
∞∑

k=1

vf ,k(t) sin
πkỹ
Lf

,

us( y, t) =
UI(t) y
Ls

+
∞∑

k=1

us,k(t) sin
πky
Ls

,






(3.5)

where UI(t),VI(t) are the displacement and velocity of the solid–fluid interface at y = Ls,
and vf ,k(t) and us,k(t) are the Fourier expansion coefficients of vf and us, respectively.
This expansion satisfies the incompressibility condition (2.2), odd symmetry requirement
about y = 0, interfacial velocity conditions (2.8), and boundary velocity conditions (2.9)
imposed in the set-up. Additional details regarding the expansion can be found in § 2 of
the supplementary material. We also note that the interface displacement UI and modal
displacement us,k satisfy

dUI

dt
= VI,

dus,k
dt

= vs,k. (3.6a,b)

Substituting the Fourier series defined in (3.5) into the governing equation (2.5), and
utilizing the stress relations of (2.6) and (2.7), we rewrite the equations with all terms
moved to the left-hand side:

dVI

dt
+ ỹ

Lf

(
dVwall

dt
− dVI

dt

)
+

∞∑

k=1

{
dvf ,k
dt

+ νf

(
πk
Lf

)2

vf ,k

}

sin
πkỹ
Lf

= 0,

y
Ls

dVI

dt
+

∞∑

k=1

{
d2us,k
dt2

+ νs

(
πk
Ls

)2 dus,k
dt

+ 2c1
ρs

(
πk
Ls

)2

us,k +
πk
ρsLs

σNL,k

}

sin
πky
Ls

= 0,






(3.7)

where νs = µs/ρs and νf = µf /ρf are the kinematic viscosities of the solid and fluid
phases, respectively. Here, σNL denotes the nonlinear contribution (i.e. the term containing
c3) in the solid stress equation (2.7) with respect to the displacement, so that its expansion
coefficients read

σNL := 4c3

(
∂us
∂y

)3

=
∞∑

k=0

σNL,k cos
πky
Ls

. (3.8)

We then project the governing equations in physical space (3.7) onto the Fourier modal
bases, and use Fourier identities (supplementary material § 3) to simplify the obtained
expressions:

2
πk

{
dVI

dt
− (−1)k

dVwall

dt

}
+

dvf ,k
dt

+ νf

(
πk
Lf

)2

vf ,k = 0, (3.9)

−2(−1)k

πk
dVI

dt
+ d2us,k

dt2
+ νs

(
πk
Ls

)2 dus,k
dt

+ 2c1
ρs

(
πk
Ls

)2

us,k +
πk
ρsLs

σNL,k = 0,

(3.10)

with k = 1, . . . ,∞. In modal space, the continuity condition of shear stresses at
the interface, upon substituting (3.5) into (2.8) and using the Fourier identities of
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supplementary material § 3, reads

µf (Vwall − VI)

Lf
− 2c1UI

Ls
− σNL,0

− µsVI

Ls

∞∑

k=1

[
µfπkvf ,k

Lf
− (−1)k

{
2c1πkus,k

Ls
+ µsπk

Ls

dus,k
dt

+ σNL,k

}]
= 0. (3.11)

Equations (3.9)–(3.11) relate directly the modal expansion coefficients vf ,k in the fluid,
and us,k in the solid, via the interfacial quantities UI,VI as functions of the physical
set-up parameters. We now need to solve (3.9)–(3.11) for the modal quantities vf ,k, us,k
and interfacial quantities UI,VI . To do so, we truncate the number of modes in the above
infinite Fourier series to k = K − 1. This leads to a truncation error, which we minimize
by taking K to be large. Here, K is fixed to 1024 unless otherwise indicated.
We now specialize the above solutions for the linear Kelvin–Voigt case with c3 = 0.

First, similar to § 3.1, we expect sinusoidal forms for the temporal quantities

VI(t) = Im[V̂I exp(iωt)], vf ,k(t) = Im[v̂f ,k exp(iωt)], us,k(t) = Im[ûs,k exp(iωt)].
(3.12a–c)

Substitution of the temporal transformed quantities from (3.12a–c) in the momentum
ODEs (3.9) and (3.10) leads to algebraic equations that can be solved. Upon algebraic
manipulation and taking into account the modal stress balance (3.11), we obtain

ûs,k = − i(−1)kV̂Iβk

πωk
, v̂f ,k =

{(−1)kV̂wall − V̂I}αk
πk

, (3.13a,b)

where V̂I,αk,βk are coefficients whose expressions are tedious and hence deferred to
supplementary material § 4. The expressions of (3.13a,b) can then be used directly in (3.5)
to evaluate solid displacements, fluid velocities and solid velocities. This provides the final
modal solution for the case of a linear Kelvin–Voigt solid.
Our solution approaches are equivalent and generate the same results (supplementary

material § 5). Having discussed both these approaches, we now identify key
non-dimensional quantities that characterize the system physically, validate our solutions
against known special cases and direct numerical simulations, analyse parametric
behaviour, and investigate implications on the system response.

4. Analysis of system behaviour for linear Kelvin–Voigt solids

4.1. Key driving parameters
The proposed system can be characterized fully through a set of non-dimensional
parameters, deduced from our solutions above, which are listed in table 1. Here, the
Reynolds number Re captures the importance of inertial effects in the fluid phase using the
ratio of inertial to viscous forces. Higher Re indicates an inertia-dominated response from
the fluid. The Ericksen number Er captures the importance of elasticity in the solid phase
using the ratio of viscous to elastic forces. Lower Er indicates an elasticity-dominated
response from the solid. The fluid Stokes layer thickness δf captures the boundary layer
length scale associated with the exponential decay of wall velocity, relative to the fluid
layer thickness. Low values of δf indicate significant decay of wall velocity in the fluid.
The solid Stokes layer thickness δs has a similar interpretation, but for the solid. The elastic
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Symbol Definition Physical interpretation

L 2(Ls + Lf ) Length scale
Lf /Ls Length ratio
γ̇ 2V̂wall/ωL Non-dimensional shear rate
Re γ̇ ωL2f /νf Reynolds number
Er µf γ̇ ω/2c1 Ericksen number
ρ ρs/ρf Density ratio
ν νs/νf Viscosity ratio

δf Lf−1(νf /ω)
1/2 = exp(iπ/4) k−1

f =
(

γ̇

Re

)1/2

Non-dimensional fluid
Stokes layer thickness

δs Ls−1(νs/ω)
1/2 =

√
Im[−k−2

s ] = (Lf /Ls)
(
νγ̇

Re

)1/2

Non-dimensional solid
Stokes layer thickness

λ (ωLs)−1(2c1/ρs)1/2 =
√
Re[−k−2

s ] = (Lf /Ls)
(

γ̇ 2

ρ ReEr

)1/2

Non-dimensional elastic wavelength

Table 1. Characteristic non-dimensional parameters.

wavelength λ captures the length scale associated with elastic shear waves progressing
from the interface into the solid bulk, relative to the solid layer thickness. Low values of
λ indicate high elastic wavenumbers within the solid phase. The relevance of these length
scales δf , δs, λ will become apparent as we discuss the system response in § 4.2.
In this work, we fix the geometry Ls = Lf = L/4, and unless stated otherwise, we

assume non-dimensional shear rate γ̇ = π−1 and density ratio ρ = 1. We remark that
these assumptions do not affect the generality of our results. Indeed, the effects of γ̇ , ρ can
be reproduced through fluid viscosity νf and solid elasticity c1, via the non-dimensional
parameters of table 1.
Having defined the key non-dimensional parameters, we can now investigate their

impact on the behaviour of the system.

4.2. Limit cases
In order to develop a physical intuition for the system response, we first remove selectively
the effects of solid viscosity (νs → 0) and elasticity (c1 → 0), and analyse our solution.
In these limit cases, we recover classical analytical results.

4.2.1. Purely elastic solid case (νs = 0)
In the limit of νs = 0, the solid is purely elastic (with a neo-Hookean constitutive model)
and we recover the solution of Sugiyama et al. (2011) (up to minor typographical errors
in that work). Here we consider the set-up shown in figure 2 with parameters taken
from Sugiyama et al. (2011), to enable comparison with their results. This system is
characterized by Re = 0.25, Er = 1/(5π), ν = 0, δf = 1.12, δs = 0, λ = 2.52, where
ν = νs/νf is the viscosity ratio.
We begin our comparison by highlighting representative non-dimensional velocity

profiles obtained from our solutions. We showcase profiles only in the upper half-plane,
shown in figure 2(a), due to symmetry in our set-up. We plot the profiles corresponding to
the marked line station in figure 2(a), at different time instants (or equivalently phases)
within one oscillation cycle. These profiles are presented in figure 2(b), with colours
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Figure 2. Pure elastic solid limit. Non-dimensional velocity profiles in y for a pure elastic solid (with a
neo-Hookean constitutive model). The system response is shown only in the upper half-plane. The system is
characterized by Re = 0.25, Er = 1/(5π), ν = 0, δf = 1.12, δs = 0, λ = 2.52, where ν = νs/νf is the viscosity
ratio. Additional details can be found in supplementary material § 6. The same set of parameters is analysed in
Sugiyama et al. (2011), whose profiles (provided at only two time instants) are overlaid as black scatter points
on our curves. Colours represent t/T .

indicating time instants. For reference, the wall is located at y/(Ls + Lf ) = 1, and the
symmetry plane is located at y/(Ls + Lf ) = 0. The interface is located at y/(Ls + Lf ) =
0.5, below which we have the elastic solid zone, and above which we have the fluid zone.
In this plot we also overlay the velocity profiles (black points) predicted by Sugiyama
et al. (2010). While they provide profile data for only two time instants, we find favourable
agreement with our velocity profiles, at both times. From these velocity profiles, we
see that the solid velocity exhibits a phase lag (indicated by the colours) relative to the
fluid velocity, and less pronounced magnitudes. The fluid’s maximum velocity magnitude
always occurs at the wall (|v| = V̂wall), while the solid velocity magnitudes always reach a
minimum at the symmetry plane (|v| = 0). Finally, the slopes of the velocity profiles ∂yv
are discontinuous at the interface, to satisfy continuity in stresses (2.8).
We can gain an intuition for these profiles by considering force balance in the fluid

and solid phases separately. That is, at any point in space–time, the sum of all real and
apparent (i.e. inertial acceleration) forces must add up to zero. In the viscous fluid, we have
inertial and viscous contributions, as seen from −∂tv + ν ∂2y v = 0. This balance equation
indicates that viscous forces operate by acting on the curvature ∂2y v of the velocity profile.
Thus both high viscosity ν (low Re) and high velocity profile curvature ∂2y v contribute to
increasing viscous forces, which then balance out accelerations exactly. Typically, these
viscous forces (and velocity profile curvatures) are concentrated within a boundary layer
close to the wall (seen from the structure of the solution in (3.3)), characterized by the
non-dimensional Stokes layer thickness δf . Within this boundary layer, viscous forces
cause the flow velocity to decay rapidly before eventually reaching the interface.
From the moving interface (no-slip), the solid phase displacement propagates into the

bulk, mediated by elastic forces. From (2.5)–(2.7), the elastic contribution to solid force
balance is −∂tv + 2c1 ∂2y u = 0. This indicates that elastic forces operate by acting on the
curvature ∂2y u ∝ ω−1 ∂2y v of the solid velocity profile v. So both high elastic shear modulus

946 A15-10



Elastic solid dynamics in a coupled oscillatory Couette flow

2c1 (low Er) and high velocity profile curvature ∂2y v contribute to increasing elastic forces.
These elastic forces propagate as waves within the solid (νs = 0, so λ2 from (3.4a,b) is
purely imaginary, leading to sinusoids in (3.3)), characterized by the non-dimensional
elastic wavelength λ. This implies that a wave profile can be expected for velocities (and
curvatures) within the solid, which then always adjusts to zero at the symmetry plane
in a fashion similar to nodes in stationary waves. Additionally, for a visco-elastic solid
(νs /= 0), we have viscous effects that set up a boundary layer close to the interface and
symmetry planes, similar to the fluid phase. The extent of this region is characterized by
the non-dimensional solid Stokes layer thickness δs.
Overall, across both fluid and solid phases, we can rationalize the observed velocity

profiles by considering Re, Er and the curvature length scales δf , δs, λ. Referring
back to figure 2, since Re = 0.25 ∼ O(1), we expect inertial and viscous forces to be
approximately equally important in the fluid. Additionally, δf = 1.12 > 1 indicates that the
boundary layer occupies most of the fluid zone. This leads to moderate velocity curvatures
throughout the fluid phase, as seen in figure 2(b). This, in turn, drives the solid phase
characterized by no viscosity and low Er, indicating stiff/strong elastic behaviour. As
a consequence of low Er, the wavelength λ ∝ Er−1/2 is large (λ = 2.52 > 1). We then
expect to see only the nascent part of a wave, which is almost linear, as indeed is observed
in figure 2(b).

4.2.2. No elastic solid (c1 = 0): single-phase and multi-phase Stokes–Couette flows
Our solution recovers classical results in the limit of c1 = 0, which indicates absence
of elastic forces in the solid phase. Thus only viscous forces operate in the solid,
effectively rendering it a Newtonian fluid. If c1 = 0, µs = µf = µ and ρs = ρf = ρ, then
the entire domain is occupied by a single fluid, and we recover the Stokes–Couette flow
solution (Landau & Lifshitz 1987) valid throughout the domain. If instead c1 = 0, but
µs /=µf or ρs /= ρf , then the domain is occupied by two different fluids, and we recover
the multi-phase Stokes–Couette flow for two immiscible liquids, which has established
piecewise analytical solutions (Sim 2006; Leclaire et al. 2014). Upon comparison with
single- and double-phase Stokes–Couette flow references, our analytical formulations
(§§ 3.1 and 3.2) are found in excellent agreement (see supplementary material § 7).

4.3. Linear Kelvin–Voigt solid: verification against numerical simulations
We now move on from analyses of limit cases and consider the more general scenario of
visco-elastic linear Kelvin–Voigt solids. Before studying the system behaviour in a range
of conditions (§ 4.4), we validate our solutions against direct numerical simulations (DNS)
employing a recent 2-D remeshed vortex method framework (Bhosale et al. 2021). In
figure 3(a), we consider a system characterized by Re = 2, Er = 1, ν = 0.1, δf = 0.4,
δs = 0.126, λ = 0.225. In these conditions Re,Er ∼ O(1), so that we expect elastic,
viscous and inertial forces to be equally important in the solid, marking a departure from
the above limit cases. Additionally, since λ < 1, we expect the emergence of wave-like
profiles inside the solid. As illustrated in figure 3(a), our analytical solutions within
the solid indeed exhibit a standing-wave-like behaviour, constrained by boundary layer
adjustments (with characteristic high curvatures) near both the interface and the symmetry
plane. These results are confirmed by DNS, as illustrated in figure 3(c), where we report
the numerically obtained velocity profiles along the line-station of figure 3(b), overlaid
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Figure 3. Comparison against simulations. (a) Non-dimensional analytical velocity profiles in y, for a
visco-elastic solid with a neo-Hookean constitutive model. The system response is shown only in the
upper half-plane. This system is characterized by Re = 2, Er = 1, ν = 0.1, δf = 0.4, δs = 0.126, λ = 0.225.
Additional details can be found in supplementary material § 6. Colours indicate t/T . (b) We solve the above
problem through 2-D DNS (Bhosale et al. 2021) and run our simulations until the system reaches a dynamical
steady state (t/T = 10), then sample quantities within the last cycle. Corresponding simulation parameters
and set-up details can be found in supplementary material § 6. In the image, we mark the x-velocity field
(orange/blue represent positive/negative velocity) and deformation contours within the solid, with the interface
marked (black, thick solid) for visual clarity. (c) Upon plotting the velocity profiles at the highlighted station
(black, dashed) in the centre of the domain, we see good agreement with our analytical results across all times.
For the sake of clarity, we show profiles at only two different time instances. Here, numerical results are plotted
with scatter points whereas analytical results are plotted with a solid line.

on the theoretical predictions. As can be seen, profiles compare favourably at multiple
temporal instants, validating the accuracy of both our theory and the numerical solver.

4.4. Range of soft, elastomeric interface dynamics
Having validated our analytical solutions across different scenarios, we next investigate
the dynamic response of the system for variations in the two most important parameters:
elasticity (Er) and viscosity (Re). Here, we span the set of Er = 0.1, 1, 10, which includes
the range of soft cellular tissue found in the human body (Wu et al. 2018; Guimarães et al.
2020), and Re = 0.1, 0.5, 1, 2, 10, which indicates small to moderate inertial effects. Our
choices capture typical values found in oscillatory micro-fluidic assays and applications
(highlighted in § 1) involving biological and soft elastomeric materials that operate in
conjunction with fluid interfaces (Di Carlo 2009; Velve-Casquillas et al. 2010; Duncombe,
Tentori & Herr 2015). Additional details on these parameter values can be found in
supplementary material § 8.
Within this context, we focus on the system response (velocity profiles) first at low

Re = 0.1 (figures 4a–c), then at (relatively) high Re = 10 (figures 4m–o) and finally at
intermediate Re (figures 4d–l). For each Re, we consider the impact of Er, ranging from
stiff (low Er, figures 4a,d,g,j,m) to soft solids (high Er, figures 4c, f,i,l,o). Within each Re
regime, we discuss the fluid velocity profiles first, followed by the solid velocity profiles.
Velocity profiles are rationalized using the length scales δf = (γ̇ Re)−1/2, δs = (νγ̇ /Re)1/2

and λ = γ̇ (ReEr)−1/2, which are marked alongside each case study.

4.4.1. Low Re
First, at low Re = 0.1, we expect viscous forces to be important in the bulk flow. Indeed,
the boundary layer in the fluid zone is characterized by δf ≈ 1.8 > 1, so that its thickness
spans the entire flow domain. This thick boundary layer results in two prominent effects.
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Figure 4. Dynamics with parametric variation. Non-dimensional velocity profiles in y for parametric changes
in Re = {0.1, 0.5, 1, 2, 10}× Er = {0.1, 1, 10}, with ν = 0.1, ρ = 1. The system response is shown only for the
upper half-plane, where we also mark the length scales δf , δs, λ. The black dashed lines indicate the solid–fluid
interface. Colours represent t/T , with the same colour bar as in figure 2.
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First, it indicates that fluid velocities have minimal curvature, which we confirm from
figures 4(a–c). Second, it effectively transmits the viscous stresses induced by the wall to
the interface, which then initiates motion in the bulk solid. At this low Re, the thickness
δs ≈ 0.6 of the solid boundary layer spans the bulk of the solid domain itself. In addition,
unlike the fluid phase, we now also have elastic contributions, which we investigate by
spanning Er. At low Er = 0.1, the solid has a large elastic wavelength λ ≈ 3.2 > 1. Hence,
similar to § 4.2.1, we expect the velocity profiles to have no wave-like behaviour, and
thus less curvature. This is confirmed by figures 4(a,d,g,j,m), where we see approximately
linear solid velocity profiles, justified intuitively by the fact that to balance out acceleration
forces, the elasticity modulus c1 has to be large when curvatures are minimal (see § 4.2.1).
If we then increase Er, going from stiffer (figures 4a,d,g,j,m) to softer (figures 4c, f ,i,l,o)

solids, we expect both elastic and viscous forces to contribute equally to the dynamics.
This is accompanied by decreasing values of λ, which indicate that more wavelengths can
now fit in the solid layer thickness. Then, similar to § 4.3, we expect the appearance of
standing-wave-like profiles, with prominent boundary layer adjustments close to interface
and symmetry planes. These considerations are confirmed in figures 4(a–c), where
we see that solid velocity profiles exhibit increasing curvatures as we move from left
to right.

4.4.2. Higher Re
Next, for Re = 10, we see prominent boundary layer adjustments in the fluid close to
the wall. This is due to the characteristically low boundary layer thickness δf ≈ 0.2 < 1,
which implies that fluid velocity curvatures can be high only within this compact region.
Indeed, beyond this boundary layer, the fluid velocity decays rapidly before reaching the
interface, leading to the profiles shown in figures 4(m–o). As a result of this decay, the flow
cannot effectively transmit viscous stresses to the interface, hence the solid barely deforms.
This flow decay is dependent only on Re, so we expect similar small solid deformation
amplitudes even if we vary the solid elasticity. We confirm this intuition by increasing Er
(left to right), noticing small solid velocity amplitudes. Hence in this Re regime, the fluid
evolves almost independently (‘weak coupling’) from the details of the solid. In contrast,
the low Re regime seen earlier is ‘strongly coupled’. Finally, we note that increasing
Er, i.e. decreasing λ, leads to wavy profiles (although of small magnitude) inside
the solid.

4.4.3. Intermediate Re
For intermediate Re, the system showcases a rich variety of behaviours, which we highlight
by investigating parameters around Re = 1. First, in these cases the fluid’s boundary
layer has moderate thickness δf ∼ O(1), hence we expect moderate velocity profile
curvatures over δf . By decreasing δf (e.g. by increasing Re), we expect the flow curvature
to increase. We confirm this in figure 4, as we move from Re = 0.5 (figures 4a–c) to
Re = 2 (figures 4m–o). An increase in Re also increases the solid velocity curvatures, by
decreasing both the solid wavelength λ and solid boundary layer thickness δs ∼ O(0.1).
The effect of decreasing λ is displayed prominently as we move from Re = 0.5 to Re = 2
for a fixed Er = 1 (figures 4b,e,h,k,n). Further, at high Er, we expect viscous forces to
dominate over elastic forces, thus rendering the solid medium more fluid-like. Indeed,
for Er = 10, the solid velocity profiles showcase a boundary layer adjustment similar
to the one encountered in fluids. Hence, as we span Er from 0.1 to 10 at intermediate
Re = 0.5− 2, the effects of viscosity and elasticity compete in the solid leading
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to rich dynamics. As a consequence, in this regime, solid velocity profiles are especially
sensitive to changes in Er. Such sensitivity provides a potential mechanism to manipulate
and control interfacial stress magnitudes in the previously mentioned applications. Finally,
because of its dynamic variety and sensitivity, this intermediate parameter regime is
identified as challenging numerically, therefore we propose the parameter sets Re =
{0.5, 1, 2} and Er = {0.1, 1, 10} for benchmarking flow–structure interaction solvers, as
illustrated in figure 3.

4.5. Solid phase resonance
We conclude this section by investigating the conditions under which resonant solid
deformations may occur. These might serve well applications such as elastometry, where
high-amplitude peaks can provide unique footprints to characterize materials.
We begin by defining the gain function |G| � 0 as the ratio of solid to wall amplitude

which, from (3.3), is given by the closed-form expression

|G| =
∣∣∣∣
iωC

V̂wall

∣∣∣∣ =
2

|(ekf−ks − e−(kf−ks))(1− α)− (ekf+ks − e−(kf+ks))(1+ α)|
, (4.1)

where kf and ks are the fluid and solid wave contributions (see (3.4a,b)), and α =
(Lf /Ls)(ks/kf )(ρν − i(γ̇ /Er)) captures the degree of fluid–solid coupling.
In the limit case of a purely elastic solid (ν = 0), the denominator of G is always > 0,

due to the non-zero contributions from the fluid phase (kf /= 0). The immediate implication
is that unbounded resonance, |G| → ∞, is not possible in our set-up because the fluid
always dampens out high amplitudes in the solid phase. Thus interstitial fluids, besides
providing lubrication as in synovial joints, may also prevent excessive deformations and
subsequent failure of the soft, articular cartilage.
In figure 5(a), we plot |G| as a function of Er,Re with ν = 0. As can be seen,

characteristic gain peaks (|G| > 1, bright yellow) take place and manifest as families of
hyperbolae ReEr = k2. Here, k = π/λ corresponds to discrete harmonic wavenumbers
with wavelength λ = (π2 ReEr)−1/2, from table 1. Hence higher k corresponds to higher
harmonics. To gain further intuition, we fix Re = 1 (chosen because of its dynamic
richness, see figure 4), and plot |G| versus Er to obtain the red curve of figure 5(c). We
see four distinct high-gain peaks 0© – 3© of increasing amplitude, where the numbers
represent the standing wave mode. In the cases 1© – 3©, the solid displaces more than
the driving wall (figures 5d–f ), with velocity profiles corresponding to the first three
harmonics. Case 0© is characterized by the fact that maximal amplitudes occur at the
interface, and not in the bulk, thus behaving as a standing wave with a free end at the
interface.
Realistic materials include internal dissipation effects, which we enable here by adding

viscosity to the solid. This reduces |G| amplitudes, but preserves the hyperbolic structure
of peaks, as seen in figure 5(b).
Finally, 2-D DNS simulations for ν = 0, 10−2 (black scatter points in figures 5d,g)

validate our model predictions. Since it is challenging numerically to capture these
high-gain regimes, we propose Re = 1, Er = 1.3, ν = 0, 10−2 for benchmarking
numerical simulations, in addition to the parameter sets presented in § 4.4.
We have thus provided analytical solutions for the dynamics of a visco-elastic linear

Kelvin–Voigt solid immersed in an oscillatory Couette flow system. We have derived
a general solution to account for arbitrary solid densities and viscosities in our set-up,
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Figure 5. High amplitude gains. Phase map of |G| as a function of Re,Er shows distinct regions of high (bright
yellow) and low (dark blue) gains in cases with viscosity ratios (a) ν = 0, (b) ν = 10−2, with maxima in both
cases along ReEr = k2 (white dashed line), where k increases in the direction of the arrow in (a). We fix
Re = 1 and plot |G| against Er along the black dashed line in (a) for different viscosity ratios ν (coloured) in
(c), which shows four distinct peaks, 0© to 3©, at Er = 0.14, 1.3, 4.27, 9.27. Increasing viscosity decreases |G|
peaks, especially for 2© and 3©. Plotting the velocity profiles corresponding to 1© to 3© at ν = 0 in (d–f ) and
ν = 10−2 in (g–i) reveals that they resemble harmonic standing waves within the solid. We confirm that these
high-gain results are indeed physical by plotting equivalent 2-D DNS results as black scatter points in (d,g)
where we notice agreement between the curves.

using two approaches – one in modal space generalizing the previous work of Sugiyama
et al. (2011), and one in physical space. As a special limiting case, we recover the
original solution of Sugiyama et al. (2011) for a density-matched solid with zero viscosity.
Additionally, we recover analytical solutions of single-fluid (Landau & Lifshitz 1987) and
multi-fluid (Sim 2006; Leclaire et al. 2014) Stokes–Couette flows in the limit of zero solid
elastic shear modulus. Further, our solutions compare well against DNS results (figure 3).
They are found to exhibit a range of behaviours (figure 4), including high gains (figure 5),
with potential applications in biophysics and engineering. Next, we discuss the case of
a nonlinear Kelvin–Voigt solid, which presents higher-order nonlinear effects within the
solid.
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5. Generalization to nonlinear Kelvin–Voigt solids

5.1. Modal solutions
In the case of a nonlinear Kelvin–Voigt solid, characterized by c3 /= 0, the elastic stress
is proportional to the cubic power of strain (see (2.7)), which signifies a higher-order
nonlinear response to deformations. The resulting equations, whose nonlinearity is
captured overall via the parameter c = c3/c1, resist closed-form analytical solutions. Then,
to investigate the system response in this setting, we derive a solution using the Fourier
series machinery of § 3.2, which we then evaluate numerically.
The solution strategy here is to employ a Fourier pseudo-spectral collocation scheme

(Sugiyama et al. 2011) for evaluating the nonlinear stress terms σNL,k in the governing
equation (3.10), at a finite set of grid points xj = (j+ 1

2)∆x, with ∆x = Ls/K. All other
terms are treated as described in § 3.2.
Armed with this spatial discretization, we employ a numerical time integration scheme

to evolve the nonlinear equations (3.9) and (3.10). We use a second-order constant
timestepper (of timestep ∆t) comprised of mixed Crank–Nicolson (implicit, for stability
in the viscous updates) and explicit Nyström (midpoint) rule for the second-order time
derivatives (Hairer, Nørsett & Wanner 1991). If we denote the nth time level t = n∆t by a
superscript n, then the prescribed wall velocity takes the analytical form

V(n+1)
wall := Vwall((n+ 1)∆t) = Im[V̂wall exp(iω((n+ 1)∆t))]. (5.1)

For the interface displacement UI and fluid velocity update in (3.9), we use the
Crank–Nicolson scheme (Hairer et al. 1991)

U(n+1)
I ≈ U(n)

I + ∆t
2

(V(n+1)
I + V(n)

I )+ O(∆t2), (5.2)

and for updating the interface velocity VI and solid displacements in (3.10), we utilize the
explicit Nyström (midpoint) rule

(
dVI

dt

)(n)

≈
V(n+1)
I − V(n−1)

I
2∆t

+ O(∆t2). (5.3)

Upon substituting these discretizations in the governing equations (3.9) and 3.10, and by
invoking the modal stress balance of (3.11) at every step, we obtain the solution, after
standard (but tedious) algebraic manipulations. For brevity, we omit derivation details,
which can be found in supplementary material § 9.

5.2. Analysis of system behaviour
We first validate our solutions against DNS (figure 6) in the set-up of figure 3, but
with c = 4 instead of c = 0. The choice of c is consistent with established biological
tissue models (Raghavan & Vorp 2000). As can be seen in figure 6(a), the solid velocity
profiles exhibit characteristic high-curvature bends (marked), differently from the linear
Kelvin–Voigt case (figure 3) on account of the additional material nonlinearity. Further, as
illustrated in figure 6(c), our solutions are found to agree well with DNS.
Next, in the spirit of figure 4, we highlight system responses upon varying both

degree of solid nonlinearity (c) and viscosity (Re). Throughout this exploration, we
fix the elastic to viscous contributions by setting Er = 1 and ν = 0.1. These values
are informed by the rich dynamics of figures 4(b,e,h,k,n). We then choose values that
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Figure 6. Comparison against simulations. (a) Non-dimensional velocity profiles in y, for a nonlinear
Kelvin–Voigt solid. The system response is shown only in the upper half-plane. This system is characterized
by Re = 2, Er = 1, ν = 0.1, c = c3/c1 = 4, δf = 0.4, δs = 0.126, λ = 0.225. Additional details can be found
in supplementary material § 6. Colours indicate t/T . We also mark a high curvature bend in the profile with
a black arrow. (b) We solve the above problem through 2-D DNS (Bhosale et al. 2021) with corresponding
simulation parameters reported in supplementary material § 6. In this image, we mark the x-velocity field
(orange/blue represent positive/negative velocity) and deformation contours within the solid, with the interface
marked (black, thick solid) for visual clarity. Upon plotting the velocity profiles at the highlighted station (black,
dashed) in the centre of the domain, we see good agreement with our results across all times as shown in (c).
For the sake of clarity, we show profiles at only two different time instances. Here, numerical results are plotted
with scatter points, whereas present results are plotted with a solid line.

span (c,Re) ∈ {1, 5, 10}× {0.1, 0.5, 1, 2, 10}, and report the responses of the system in
figure 7.
For solids with small c, we expect dynamics similar to the linear Kelvin–Voigt

counterpart. This is confirmed from the solid zone profiles in figures 7(a,d,g,j,m).
Increasing the nonlinearity coefficient stiffens the solid, constraining deformation
velocities (narrower envelopes) as well as producing sharper bends (marked), as we move
from left to right in figure 7.
Changing viscosity (Re) affects the response in a fashion similar to the linear case

(figure 4), where profile curvatures in both fluid and solid phases get concentrated
progressively within sharper boundary layers, as we move from top to bottom in figure 7.
Finally, we investigate whether the high-gain regimes seen in § 4.5 exist for nonlinear

Kelvin–Voigt solids, and if so, under what conditions. Here, unlike § 4.5, there is no
mathematical guidance to identify high-gain parameters, thus we explore the Er–Re phase
space numerically for the representative cases c = 1 (figure 8a) and c = 5 (figure 8b). For
c = 1, we see in figure 8(a) that high-gain peaks (bright yellow) still occur in a regular
structure, although they are less pronounced and depart from the hyperbolae seen in the
linear Kelvin–Voigt case, now lying on the curve-fit ReEr0.5 = const. In figure 8(c), we
report the velocity profiles of a representative high-gain case, and note that |v/V̂wall| hardly
exceeds 1, as opposed to the linear Kelvin–Voigt cases of figure 5. As we increase c from
1 to 5, we observe that the peaks spread apart and lie on the curve-fit ReEr0.4 = const.,
and gains diminish further (figure 8b). We conclude that the cubic term that characterizes
nonlinear Kelvin–Voigt solids stiffens the material locally, reducing its propensity to
deform and shear.

6. Conclusion

We have presented solutions for an oscillatory Couette set-up involving parallel
visco-elastic solid–fluid layers sandwiched between two oscillating planar walls.

946 A15-18



Elastic solid dynamics in a coupled oscillatory Couette flow

c = 1
Re

 =
 0

.5
c = 5 c = 10

Re
 =

 1
Re

 =
 2

Re
 =

 1
0

–0.04 0.040 0 0–0.04 0.04 –0.04 0.04

Re
 =

 0
.1

1.0

0.8

0.6

0.4

0.2

0

y/
(L

s +
 L

f)
y/

(L
s +

 L
f)

y/
(L

s +
 L

f)
y/

(L
s +

 L
f)

y/
(L

s +
 L

f)

–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0

1.0

0.8

0.6

0.4

0.2

0–1.0 –0.5 0 0.5 1.0
v/V̂wall v/V̂wall v/V̂wall

0.5 0.5 0.5

(a) (b) (c)

(g) (h) (i)

(m) (n) (o)

( j) (k) (l )

(d ) (e) ( f )

Figure 7. Dynamics with parametric variation. Non-dimensional velocity profile in y for parametric changes
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946 A15-19



T. Parthasarathy, Y. Bhosale and M. Gazzola

|G|

Low

High

Re

2 4 6 8 10
Er

0

2

4

6

8

10c = 1 c = 5

0

2

4

6

8

10

2 4 6 8 10
Er

–1.0 –0.5 0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

0
Panel (c)

Re ×Er 0.5 = const.

Re ×Er 0.4 = const.

y/
(L

s +
 L

f)

v/V̂wall

(a) (b) (c)

Figure 8. High amplitude gains for a nonlinear Kelvin–Voigt solid. Phase map of numerically measured |G|
as a function of Re,Er, for ν = 10−3 and (a) c = 1, (b) c = 5, shows regions of high (bright yellow) and low
(dark blue) gains with maxima along ReEr0.5 = const. and ReEr0.4 = const., respectively, deviating from the
hyperbolae seen in the linear Kelvin–Voigt case. The curves are obtained from a numerical fitting procedure,
with details reported in supplementary material § 10. Velocity profiles of a representative case with Re = 0.2,
Er = 6, c = 1 marked in (a) and plotted in (c) showcase high-gain bends (marked) characteristic of strong
nonlinear effects in the solid.

We are motivated by the paucity of minimal yet representative elasto-hydrodynamicsystems
that can be analysed analytically and rigorously, given their relevance and ubiquity
in biophysical and engineering settings. Here, we consider visco-elastic solids with
arbitrary density and viscosity immersed in a Newtonian fluid. We derive two equivalent
analytical solutions for linear Kelvin–Voigt solids – one based on homogeneous Helmholtz
equations, and another based on partitioned Fourier series expansions. For nonlinear
Kelvin–Voigt solids, we turn to numerical solutions using a pseudo-spectral scheme. We
leverage these solutions to deduce non-dimensional parameters, which we then employ
to rationalize the system’s rich dynamical repertoire over physically realistic parameter
ranges. Our analysis connects to a number of practical biophysical scenarios ranging from
bio-film/bio-fouling control to wear and tear of soft biological interfaces as in synovial
joints. We further uncover regimes characterized by high solid phase displacements,
attributed to standing wave harmonics, which serve as unique footprints to characterize
the solid material. This provides a novel non-destructive approach for elastometry, never
proposed before to the best of our knowledge. Altogether, our results provide a basis for
developing intuition into coupled elasto-hydrodynamic systems, towards which we provide
an interactive online sandbox (supplementary material § 11), and open-source our code.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.542.
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