IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

3779

NASA: NVM-Assisted Secure Deletion
for Flash Memory

Weidong Zhu*', Student Member, IEEE, and Kevin R. B. Butler~, Senior Member, IEEE

Abstract—Secure deletion in flash-based storage is crucial for
data security. However, existing secure deletion schemes for flash
memory suffer from performance degradation and reliability
issues and cannot provide secure deletion guarantees. Although
emerging nonvolatile memory (NVM) allows in-place updates and
provides high performance, it is unable to fully replace flash
memory and, thus, cannot solve the secure deletion problem. In
this article, we propose NVM-assisted secure deletion scheme for
flash memory (NASA), a stale-free storage system that combines
NVM and flash memory to provide immediate secure deletion
without significant performance degradation in SSDs. NASA uses
block erasure to provide secure deletion guarantees for flash
memory and exploits NVM to conceal time-consuming erasure
operations. We demonstrate that unless the unique character-
istics of NVM are considered, schemes that merely implement
existing approaches to secure deletion will end up with stale
data replicas within their storage media. Moreover, we evaluate
NASA with different real-world workloads and demonstrate that
NASA increases the average latency by 0.01% compared to LRU
and decreases 2.1% average latency over the FIFO caching pol-
icy. NASA is a novel storage system that provides strong secure
deletion guarantees with high performance.

Index Terms—Flash memory, nonvolatile memory (NVM),
secure deletion.

I. INTRODUCTION

HE “information explosion” has been an issue for

decades [1] with no signs of abating. As the amount of
stored data increases rapidly, managing and accessing this data
in a secure fashion is crucial to assure user security and pri-
vacy [2], [3]. Secure data deletion is an important secure data
management technology for individuals, enterprises, and gov-
ernments. Moreover, secure deletion is required by various
laws and regulations [4], [5]. For example, individuals could
suffer from coercive attackers, such as border guards, who can
examine their drives. Secure deletion of potentially controver-
sial material thus provides personal protections. Governments
may require secure deletion as well; for example, in 2018, a
Belgian court ordered Facebook to delete all illegally collected
data from Belgian citizens [6]. Data destruction is required by
the U.S. Department of Defense [7] to ensure the erasure of

Manuscript received 4 August 2022; accepted 5 August 2022. Date of
publication 10 August 2022; date of current version 24 October 2022. This
work was supported by NSF under Grant CNS-1815883. This article was
presented at the International Conference on Embedded Software (EMSOFT)
2022 and appeared as part of the ESWEEK-TCAD special issue. This article
was recommended by Associate Editor A. K. Coskun. (Corresponding author:
Weidong Zhu.)

The authors are with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: zwdong1994@gmail.com).

Digital Object Identifier 10.1109/TCAD.2022.3197514

hard drives and other storage devices. Therefore, reliably eras-
ing data from storage is essential for secure data management,
and many built-in storage techniques, such as ATA [8] and
NVM Express (NVMe) [9], provide secure erase commands.

NAND flash is a popular storage medium for solid-state
drives (SSDs) due to its high capacity and performance advan-
tages over magnetic storage found on hard disk drives (HDDs).
However, the physical characteristics of flash memory, which
necessitate erasing a storage block before it can be rewrit-
ten, invalidate assumptions about in-place overwriting of data.
Therefore, traditional software-based secure deletion methods,
which are effective for HDDs, cannot provide secure deletion
guarantees to flash memory.

Past secure deletion schemes remove stale data by lever-
aging physical features of flash memory [10], [11], [12] or
using cryptography [13], [14]. Scrubbing-based approaches
sanitize flash memory by zeroing individual flash pages (e.g.,
4 or 16 kB) to remove data. Erasure-based secure deletion
is implemented by moving valid data pages within a selected
block to other free blocks and then erasing the block contain-
ing stale data. Encryption-based approaches rely on encrypting
data with a cipher such as AES [15]; deletion then occurs by
sanitizing the key, rendering the encrypted data unrecoverable.
However, these strategies are problematic due to the following
reasons.

1) Security Concerns: Encryption-based methods are sus-
ceptible to side-channel attacks [16], improper key
management [17], and bad crypto implementation [18].
For scrubbing-based mechanisms, the physical proper-
ties of flash memory can allow the recovery of scrubbed
data [19].

2) Performance Overhead: Erasure-based secure deletion
incurs significant performance overhead due to time-
consuming flash block erase operations (e.g., 2 ms).
While encryption overheads can be alleviated by deploy-
ing hardware accelerators [20], the encryption function
is within the critical I/O path; the encryption overhead
is still non-negligible [21]. Scrubbing-based approaches
also degrade the performance because of extra data page
copies required within the flash memory.

3) Reliability Concerns: Scrubbing-based strategies
decrease the reliability of the flash memory due to
the increased bit-error rate (BER) from data distur-
bance [12], [22]. Moreover, the scrubbing number in
a flash block is limited [11]. Thus, scrubbing-based
methods need to exploit block erasure to sanitize data;
however, the program/erase (P/E) cycles of a flash page
are limited, and erasure-based methods shorten the
lifetime of flash memory.

1937-4151 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9812-6634
https://orcid.org/0000-0002-7498-4239

3780

Emerging nonvolatile memory (NVM), such as STT-
MRAM [23], resistive random access memory (ReRAM) [24],
PCM [25], and 3-D-XPoint [26], provide higher endurance and
lower latency than NAND flash. As such, NVM brings oppor-
tunities for secure deletion because it supports in-place write.
However, given the price and density consideration, NVM is
primarily used for caching within SSDs, but not as a direct
replacement for flash memory.

In this article, we present NVM-assisted secure deletion for
flash memory (NASA), which integrates NVM technologies
into flash-based SSDs to achieve secure deletion with low
performance overhead. NASA deploys NVM as the cache for
flash memory. In contrast to traditional caching systems, NASA
accommodates secure deletion across different storage devices;
we thus leverage the in-place update property of NVM and
block erasure operation of flash memory to securely delete
data. We consider properties of real-world workloads, includ-
ing recency [27] (i.e., accessed data has a high probability of
being used again in the next few /O requests), hotness [28]
(i.e., most I/O requests will access relatively few data blocks),
and spatial locality [29] (i.e., if data is accessed, neighboring
data will likely be accessed soon). We leverage these properties
by proposing a Hybrid Evictor to evict data based on hot-
ness and recency without losing spatial locality. Furthermore,
we propose a new copyback method, called spatiality- and
hotness-enabled copy back (SHOCK), to prefetch data pages
based on the spatial locality and hotness properties when data
overwriting occurs within a flash block. Our work makes the
following contributions.

1) We develop NASA, the first scheme using NVM to
assist the secure deletion in flash-based SSDs by inte-
grating NVM into the flash translation layer (FTL).
NASA exploits block erasure to provide stronger secure
deletion guarantees and can effectively shield the time-
consuming block erasure operation to provide higher
performance than existing secure deletion schemes.

2) We design and implement an NVM emulator (NVMU)
that can model the physical structure of an NVM device.
Our performance evaluation illustrates NVMU can accu-
rately emulate the latency of a real NVM device with
5.7% and 4.8% latency deviation on write and read.

3) We implement a prototype of NASA using NVMU and
a flash-based SSD emulator. Our evaluation verifies the
existence of stale data in the current cache systems.
Compared with the caching policies (LRU and FIFO)
without secure deletion, NASA increases 0.01% and
decrease 2.1% average response latency, respectively.
Moreover, we implement existing secure deletion meth-
ods as comparisons, and NASA achieves lower flash
block erases that can improve flash memory reliability.

II. BACKGROUND
A. Flash Memory Basics

A NAND flash floating-gate transistor is a metal-oxide semi-
conductor technology capable of trapping electrons between
the gate and tunnel oxides. In Fig. 1(a), the electronic charge
could be deployed from the substrate to the floating gate
through the tunnel oxide. The voltage of a flash cell is deter-
mined by the amount of electronic charge in a floating gate. A

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

WL

!

Control Gate
I Gate Oxide ‘

Floating Gate
Tunnel Oxide

Source Drain

Substrate

(a)

Fig. 1. NAND flash memory floating gate transistor and flash memory array.
(a) Floating gate. (b) NAND flash block.

flash cell comprises multiple bits (e.g., 3 bits in TLC) based
on the variance of floating gate voltage. In Fig. 1(b), multiple
cells are grouped as a wordline (WL), which represents pages.
The page number within a WL is determined by the number
of bits within the flash cell. The source level gate (SLG) and
ground-level gate (GLG) are deployed to clamp WLs, which
group to a flash block. Flash operations can thus be performed
by adjusting the voltages of the SLG and GLG.

Flash memory supports program, read, and erase opera-
tions. Program operations occur at page-level granularity by
charging the flash cells within a selected WL to switch the
flash cell bit state from 1 to 0. Read operations sense the volt-
age levels of flash cells within a WL to identify the bit state at
page granularity. Erase operations reset the flash cell for serv-
ing the next program (i.e., erase-before-program). The erase
operation removes charge from the floating gate by apply-
ing high voltage to the substrate. Since all flash cells in a
block are grounded on the same substrate, erase works at
block-level granularity and is time consuming. Furthermore,
program/erase (P/E) cycles are limited (e.g., 3000 P/Es for
MLC NAND flash memory) for a flash cell.

The scrub was proposed to sanitize the stale data [11]. Scrub
requires no removal of charge in a flash cell, and it reprograms
the data page from 1s to 0s. Thus, scrub incurs smaller latency
overhead than erasure operation without increasing the lifetime
of flash memory. However, scrub is less secure than erase
operation as discussed in Section V-E.

B. Flash-Based SSDs

Flash-based SSDs provide high performance and energy
efficiency compared to HDDs. To fully take advantage of
the high bandwidth of SSDs, the NVMe protocol has been
proposed to replace traditional storage interfaces (e.g., SATA).
The design of most file systems is primarily still based on the
block-level granularity of traditional hard drives. Thus, SSDs
leverage an FTL to expose a block-based interface to the OS,
enabling a clean abstraction of the SSD from the OS. The main
functions of the FTL operate independently from the host OS.

Address Translation: 1t translates the logical block addresses
(LBAs) to a physical page address (PPA) on the flash memory.
Garbage collection (GC) reclaims the invalidated data, and it
has the following operations: 1) select blocks that satisfy the
predetermined reclaim threshold; 2) move valid pages within
selected blocks to other free blocks; and 3) erase the selected
blocks. Since blocks undergoing the GC process cannot pro-
vide service for incoming 1/Os, the performance is generally
greatly degraded. The limited program/erase cycles limit the
lifetime of an SSD. The FTL mitigates this through wear-
leveling (i.e., the technique to distribute writing on blocks

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



ZHU AND BUTLER: NASA

[oRau| [ | [oRaw]
(_ToBus —» (V0B »
Lo ] [Fur
(@) (b) (©

Fig. 2. Different storage hierarchies with NVM. (a) Main memory. (b) NVMe
SSD. (c) Cache in SSD.

evenly) and bad block management functions, improving the
reliability of the SSD.

C. Emerging NVM Technology

Although flash-based SSDs vastly outperform HDDs in
performance, they still suffer performance instability because
of the GC and endurance problems. Thus, byte-addressable
NVM technology dramatically changes the state-of-the-art
storage hierarchy. In this article, we use Intel Optane [30] as
the NVM device because it is an available NVM device on the
market. Intel Optane adopts 3-D-XPoint as the storage media,
and it is a kind of PCM [25]. PCM exploits the physical prop-
erty of chalcogenide [31] by observing that the difference in
resistivity between the crystalline (low resistivity) phase and
the amorphous (high resistivity) phase is very large. Therefore,
the crystalline phase represents “0,” and the amorphous phase
defines “1” in the storage. Switching between physical phases
is achieved by deploying different temperatures: 1) switching
from crystalline to amorphous needs a high temperature to
melt and then quench the chalcogenide rapidly by perform-
ing a high electrical pulse and 2) switching from amorphous
phase to crystalline phase needs a lower (still much higher
than room temperature) temperature by applying medium elec-
tric current for a period of time. Different from NAND flash,
PCM supports bit-level in-place writes by directly switching
chalcogenide material phases.

NVM is mainly deployed as a cache layer in the current /O
stack. Fig. 2(a) shows a practical architecture where NVM is
located in the main memory system and shares the memory
bus with DRAM. Since NVM has a much higher capacity
than the DRAM and can provide an acceptable bandwidth for
main memory, this architecture has been well researched [32],
[33], [34]. NVM can also be deployed as a block device in the
storage system to avoid using a DRAM DIMM slot, a scarce
system resource. In Fig. 2(b), NVM can be used as an inde-
pendent storage device. For example, Intel Optane SSD [35] is
served as a block device and leverages NVMe for transferring
data and has RAID-like internal structure [36]. In Fig. 2(c),
NVM is incorporated into the flash-based SSD [37], [38], [39],
[40], and we will discuss this in a greater detail in Section IX.
Although NVM is expensive at the current moment, NVM
could provide much higher endurance. For example, the cost
of 1 GB of storage capacity of the Intel Optane 905P SSD is
5.6 times to Samsung 870 QVO SSD; however, the endurance
of the Intel Optane 905P is 44.2 times higher than the Samsung
870 QVO.

III. SECURE DELETION FOR FLASH MEMORY

Secure deletion aims to securely sanitize data from a
storage device to prevent an adversary from recovering the
deleted data. However, traditional secure deletion methods for

3781

1251 1251

625
e7 I
]

Erasure

Bandwidth (MB/S)
g
=

g

Serubbing

M Baseline M Update

Fig. 3. Bandwidth of erasure- and scrubbing-based secure deletion schemes
when a large number of updates are served by flash-based SSD.

HDDs [41], [42], [43] fails to ensure data sanitization in the
SSD because of the erase-before-program property of flash
memory. Although the FTL prevents the invalidated data from
leaking, adversaries can recover the “deleted” data if they
can access the flash memory physically. Therefore, traditional
secure deletion approaches are not effective if an adversary
has physical access to the SSD.

A. Erasure-Based Secure Deletion

Erasure-based methods leverage erasure operation to sani-
tize stale data and migrate valid data pages within the selected
block (including the updated data page) to other free blocks.
Since discharging a flash cell can reset the bit state to 1 without
data remanence issues, erasure-based methods could provide
a strong security guarantee to the deleted data. However,
erasure-based schemes significantly degrade the performance
due to the time-consuming block erasure operation. In Fig. 3,
we implement erasure-enabled and scrubbing-enabled SSDs
using methodologies in Section VII. When we overwrite the
data within a flash-based SSD, the bandwidth of erasure-based
method will be decreased by 99.9% compared to a normal
SSD. Therefore, the erase operation is impractical for use with
secure deletion.

B. Scrubbing-Based Secure Deletion

After scrubbing, the “sanitized” data page could be
recovered [19], leading to significant security issues. In
Section II-A, electrons are trapped within the floating gate.
However, the oxide layer will gradually decay over time, and
the voltage of a flash cell will be changed due to leakage
of electrons. When data pages are sanitized by scrubbing,
flash cells must be reprogrammed from 1s to Os, and the data
0s will not be charged for reprogramming. Due to the elec-
tron leakage, the voltage of data Os will be different from the
reprogrammed 0s. An attacker can thus recover scrubbed data
by observing the voltage difference of flash cells.

Leveraging scrubbing for secure deletion is challenging for
multiple-bits flash memory (i.e., MLC, TLC, and QLC). For
example, QLC flash memory enables 4 bits to be stored within
a flash cell, and one WL comprises four data pages. To scrub
a data page, we need to move three pages within the selected
WL to other free pages and then perform scrubbing on flash
cells within the WL. Therefore, three additional read and three
additional write operations are incurred that will significantly
degrade the performance. Furthermore, reprogramming a data
page will lead to data disturbance [12] to its adjacent pages

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



3782 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE 1
PARAMETERS OF THE FLASH MEMORY AND NVM USED FOR
EVALUATION
Flash Parameter | Value | NVM Parameter | Value
Capacity 128GB Capacity 300M
Page Size 4KB Page Size 4KB
Pages Per Block 256 Pages Per Segment | 256
Blocks Per Plane 4096 Chip Per Channel 2
Planes Per Chip 1 Channels 3
Chips Per Channel 8 Page Read 4us
Channels 4 Page Write Sus
Page Read 0.04ms
Page Write 0.2ms
Block Erase 2ms

and increase the BER significantly. Since the BER must stay
under a specific threshold for reliability, scrubbing in a block
should be limited. For example, we could limit the scrubbing
number to 16 for a block in a MLC NAND flash [11]. Once the
scrubbing number exceeds 16 in that block, erase operations
are necessary to securely delete the data. As shown in Fig. 3,
scrubbing-based secure deletion will decrease I/O bandwidth
by 50% compared to a normal flash-based SSD.

C. Encryption-Based Secure Deletion

For flash-based SSDs deployed with encryption-based
secure deletion, I/0 requests must be processed by an encryp-
tion module. Thus, the performance overhead from encryption
cannot be circumvented. In addition, a hardware-backed cryp-
tographic accelerator could be used to improve performance.
For example, an AES hardware accelerator [44] provides
encrypted throughput of 51.2 Gb/s. In a flash-based SSD with
the parameters in Table I, encrypting a data page requires
0.6 us, and we assume the latency of software stack in the OS
is 8 us, which is measured in Ubuntu 20.04.4; encryption thus
increases flash read latency by 1.2% and flash write latency by
0.3%. However, when considering NVM as a cache within the
flash-based SSD, the read and write latency will be increased
to 5% and 4.6%, respectively. Therefore, the overhead from
encryption cannot be neglected within the NVM-cached flash-
based SSD. In addition, the keys used for deletion need to be
stored within the flash memory. Erasure or scrubbing opera-
tions are still necessary to sanitize the key; encryption-based
methods will thus suffer from the issues found in solutions
that rely on erasure or scrubbing.

When encryption is performed within the OS [13], the key
is vulnerable in the DRAM because the cold boot attack [16]
allows the recovery of keys after power is cut. Furthermore,
when encryption is performed within the SSD [14], the key
should not leave the SSD controller; however, existing works
demonstrate that maintaining the key in the SSD is not safe
due to the specification issues [17], [45], bad design [17], [46],
and improper implementation [17], [18].

IV. THREAT MODEL

We consider an adversary capable of recovering the deleted
data from a storage system. The adversary can physically
access the storage device, including processor, DRAM, NVM,
and flash memory, to perform arbitrary operations (such as
read, write, and other low-level memory operations) to any

data (i.e., include valid and invalid data). Thus, the attacker
can bypass the OS and FTL to directly access the storage
cells in the raw NVM and flash chips. For the encrypted
data storage, similar to a “peek-a-boo attacker” defined by
Reardon et al. [13], we assume adversaries can the storage
because they can coerce a user to surrender the encryption
keys and passwords [47]. Moreover, the adversary has knowl-
edge about how encryption is implemented and can perform
side-channel attacks on the main memory (e.g., cold-boot
attack [16]) to recover deleted keys in the DRAM. The pro-
tection of undeleted data is an active research [48], [49], [50].
We also consider an adversary, who with legal authority (e.g.,
a border guard), can compel users to reveal their existing
data. The protection of nondeleted data is thus an orthogonal
problem.

Since we only consider secure deletion in the storage layer,
we assume normal users can delete data by overwriting the
original logical block address in the OS using a built-in
deletion command (e.g., TRIM [51]). Moreover, users can-
not perform any extraordinary sanitization operation to force
secure deletion before an attack happens (e.g., coercive attack)
since we are unable to predict the attack time. We consider
obsolete data to be securely deleted if the adversary cannot
recover any deleted or stale data from the storage device.

V. NASA DESIGN

Existing secure deletion strategies cannot satisfy secure
deletion requirements—performance and security—for flash-
based storage systems. Therefore, we propose NASA, a secure
deletion system that manages data across different storage
media, that leverages the block erasure for sanitizing stale
data in flash memory. To fully exploit the internal parallelism
of flash memory and provide flexibility while managing data
movement, NASA leverages NVM as a cache by modifying the
FTL [39], as current persistent memory region (PMR)-assisted
SSDs do not provide internal data migration between NVM
and flash memory, forcing data to be transferred through the
host I/O stack.

A. Secure Deletion in NASA

NASA fulfills a strong secure deletion guarantee while incur-
ring trivial performance overhead by exploiting NVM. The
NVM first serves incoming writes to storage. When an update
or deletion operation occurs and the old data resides in the
NVM, NASA directly sanitizes the old data by performing
an in-place overwriting operation with new data or Os in the
NVM. Due to the secure bit switch in the NVM storage as
discussed in Section V-E, the deleted data in the NVM will
not be recovered. Otherwise, when old data exists in the flash
memory, the new data will be written to the NVM, and NASA
will leverage SHOCK for prefetching and erase operations to
sanitize the stale data. Thus, NASA first locates the flash block,
containing the stale data, and then copies valid data pages in
the selected flash block to other storage (NVM or other flash
blocks) and performs block erasure.

Since erase operations are time consuming and shortens
the lifetime of flash memory, we seek to minimize updates
in the flash memory. Thus, we propose Hybrid Evictor and
SHOCK. Hybrid Evictor exploits the characteristics of recency

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



ZHU AND BUTLER: NASA

3783

k..___J"“m
| / | Tablles and Data Structures for NASA
fo’ Hybrid Evictor [T Logical Address Spage | ---=-=-=--=----- 7 SHOCK |
] rgreviotior SEG 0 SEG 1 SEG_2 SEG 3 SEG 4 SEG 5 ! [Updatingto P LPA_to_PPA PPA_to_LPA
i ' ing to a page in
I ‘sagments group size i
Host System | e Nw|0|1|z]—s|4|5|a 7|8 9|w|11|---| : . Jable (LPT) pople (LT
A N i
ﬂ—% b Seloct THRES segments |[EvictionTime 0 6 1 7 2 & 3 8 4 10 5 11 i Find hot_pages In the [[Paa T PPaa | PRAD | LPAD |
<v o —8—3 e ‘v)| with smallest SEG_FREQ i | block of updsated page | | Pa1 | PRA1 | PPAT | LPA1 |
| H,mdwm:@ ﬂaﬂoeu ! | [T -] [=T=1
NVMe 55D ; A recency i [Copy back pages to NVM
Contromer < buftar? BLK 0 BLK_1 BLK 2 BLK 3 BLK 4 BLK 5 || based on spatiel bocabty | |, | pata f Frequ- OIdF
! of hot_pages
N Flash i pag Table (DFT)  ency Table (S| Table (OFT)
NVMe Queus |[Address | | Starting paralll |°|‘|2|3|‘ 5|5|?|8|°|“’“ | | FREQ SEG FREQ SEG FREQ
ction : [[Lean TFREGO] [ 5EGD [FREGD]
Hybrid Evictor || SHOCK | | g | IEEI [ 5EG1_|FRECH |
[ ‘Storage Transaction Management | .
Storage Media Storage Media 1 | | Physica] Address l?;l
| v | rlasn]| [Flesn]l | CH LUN _ SEG Jae]
1 : Bbits | Btws | 0bits Zbts | 0

PPA
L

| CH LUN PL BLK PG SEC
Fllash | o [ Bbis [ bits [ 1600s | 18bits [Bbes] 1
FREQ

Read F Write Frequen:
B EE

Fig. 4. Architecture overview and data structures of NASA.

Algorithm 1 Page Allocation

Input: SEG_SET = the segments set in the NVM
1: for each segment SEG in Seg_SET do
2: if free pages exist in SEG then
3: Page = A free page in the SEG
4: break

5 end if

6: end for

7: return Page

(i.e., temporal locality) and hotness in real-world workloads
for eviction to increase the hit ratio to the NVM. SHOCK
prefetches data from flash memory to NVM based on the
hotness and spatial locality of the data.

B. Address Translation

Since the NVMe protocol processes data with memory
block granularity (e.g., 4 kB), and the flash memory is
accessed with page granularity (e.g., 4 kB), NASA accesses
the data in the NVM with the page size (i.e., flash memory
page). Furthermore, NASA divides the NVM storage space into
segments (SEG), each of which comprises the same number
of pages as within a flash memory block. As discussed in
Section II-C, NVM-based SSD has a RAID-like structure sim-
ilar to the flash-based SSD. To exploit the parallelism of NVM,
as shown in Fig. 4, NASA evenly distributes pages within a
SEG to the NVM chips across different channels. NASA writes
data to segments sequentially to maintain spatial locality of
data within the segment. To allocate a free NVM page, the
allocation method should be lightweight to avoid performance
degradation in searching the free page, and it can leverage
the parallelism of the NVM. Thus, as shown in Algorithm 1,
NASA will query the segment set SEG_SET in the NVM to
get a segment SEG with free pages and then return a free page
for serving the incoming write request.

In Fig. 4, NASA uses an logical page address (LPA) to PPA
Table (LPT) and a PPA to LPA Table (PLT) to record the
address reflection between the LPA in the OS and PPA in
the storage. For the PPA, we reserve 1-bit Dev to indicate the
storage media type and use 63 bits to represent the physi-
cal address on the storage device. When the Dev bit is 0, the

PPA represents the physical address of the NVM. Otherwise,
the PPA indicates a flash memory address. The NVM physi-
cal address is composed of channel number (CH), NVM die
number on the channel (LUN), segment number in the NVM
storage space (SEG), and page number in the NVM chip (PG).
The physical address in the flash memory is similar to the
NVM physical address except for the plane number within
a flash die (PL), the data block number in a plane (BLK),
and the sector number in a flash page (SEC). In addition,
NASA will exploit the hotness for data eviction. As shown
in Fig. 4, the data frequency table (DFT) is used to record
the I/O access frequency of each data page (i.e., LPA), and
segment frequency table (SFT) records the I/O access to the
segment. In addition, we create an old frequency table (OFT)
to record the segment access frequency in the last eviction
process for hotness decaying purpose in Section V-C. To eval-
uate the hotness of data, NASA calculates the hotness using the
read frequency (FREQpg) and the write frequency (FREQy)
with the following equation:

HOTNESS = FREQp * Wg + FREQy * Wy

where Wp, is the read weight, and Wy is the write weight in a
time period. NASA monitors the read and write percentage for
every 1000 I/O requests. Thus, NASA allocates Wp and Wy
with read and write percentages. Therefore, NASA can judge
the hotness flexibly with different I/O access conditions. For
example, a read-intensive workload has a higher Wg, and a
write-intensive workload will have a larger Wy.

C. Hybrid Evictor

Hybrid Evictor will exploit the characteristics (i.e., recency
and hotness) of real-world workloads to decrease data updating
in flash memory. Since NASA leverages the spatial local-
ity of the evicted data in the flash memory for SHOCK in
Section V-D, NASA will select data with segment granular-
ity and then flush them into the flash memory in parallel.
Moreover, we devise a recency buffer to record the recency
of the accessed NVM segments. Recency buffer is a list that
is able to represent the accessed sequence to the segments;
the head of recency bujffer indicates the most recent accessed

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



3784

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Algorithm 2 Data Eviction With Hybrid Evictor

Algorithm 3 Data Prefetching With SHOCK

Input: SEG_SET = the segments set in the NVM
RECENCY_BUF = the recency buffer

1: Evic_SEGS = {}

2: for each segment SEG in Seg_SET do

3 if SEG in RECENCY_BUF then

4 Continue

5: end if
6: if the size of Evic_SEGS < THRES then
7: Insert SEG into Evic_SEGS

8
9

Continue
: end if
10: if the HOTNESS of SEG < the smallest HOTNESS in Evic_SEGS then
11: Insert SEG into Evic_SEGS
12: Delete a segment with largest HOTNESS in the Evic_SEGS
13: end if
14: end for

15: SEG_ID =0

16: while Evic_SEGS is not empty do

17: SEG = Evic_SEGS[SEG_ID]

18: Evict a page from SEG to flash memory

19: SEG_ID = (SEG_ID + 1) 9% THRES

20: if All the pages in the SEG are evicted then

21: Remove SEG from Evic_SEGS
22: end if
23: end while

segment, and the tail means the segment that is not accessed
with the longest time on the list. The incoming I/O requests
will update the recency buffer. Thus, NASA will first query the
LPT for the incoming I/O request. If the accessed data locate
in the NVM, we extract the segment number (SEG) from its
PPA and then update the recency buffer by inserting the SEG
into the head of recency buffer. Otherwise, the accessed data
does not reside in the NVM, and NASA allocates a new page
using Algorithm 1 and updates the recency buffer with seg-
ment SEG of the page. In addition, the number of segments
within the recency buffer is no more than the buffer threshold
(12% of segments in the NVM based on our evaluation).

We select a limited number THRES of segments for eviction,
and the THRES is determined by the following equation:

THRES = FLASH_CH %« FLASH_LUN

where FLASH_CH represents the channels (CHs) number, and
FLASH_LUN indicates the dies (LUNs) number in the flash
memory. As shown in Algorithm 2, for each segment SEG in
the SEG_SET, if SEG is in the recency buffer, NASA avoids the
eviction of it and skip to the next segment. Otherwise, NASA
leverages the hotness value HOTNESS of the SEG by searching
the SFT to determine whether to select it for the eviction. If
the HOTNESS of SEG is smaller than all the segments in the
selected eviction segments set Evic_SEGS, NASA will insert
the SEG into Evic_SEGS and then remove the segment with
the largest HOTNESS when the segment number exceeds the
THRES. Once the eviction segments selection finishes, Hybrid
Evictor will flush the data in the Evic_SEGS in parallel as
shown in Fig. 4, and the data pages within a segment could
be stored within a flash block. Since NASA writes the new
data into the NVM segment sequentially in Section V-B, the
data’s spatial locality is maintained within a segment, and the
spatial locality could be ensured within a flash block.

We need a hotness decay system to degrade the HOTNESS
because data pages with high HOTNESS can be read or written
with a high frequency in a period of time but will not be

Input: Page = the updated data page in the flash memory
1: BLK = the flash block of the Page

: HOT_PG_SET = {}

: for each page PG in BLK do

if the hotness value HOTNESS of PG > HOT_THRES then
Insert PG into HOT_PG_SET

end if

: end for

: for each page T_PG in BLK do
if T_PG in HOT_PG_SET or (the LPA of T_PG - a LPA in the

HOT_PG_SET) < DIST then

10: Prefetch T_PG to NVM

11: else

12: Copy T_PG to other flash blocks

13: end if

14: end for

15: Erase BLK

accessed in the future. Since the high HOTNESS data pages
in flash memory will not affect eviction, NASA only decays
the HOTNESS of the data in NVM. When eviction happens,
NASA queries all the segments with DFT and SFT. If the
HOTNESS value of the current segment in DFT is not changed
a lot (no more than 10) compared with the HOTNESS in OFT,
we deem this segment is not accessed frequently for a long
time. Therefore, NASA will halve the read and write frequency
of this segment and all of the data pages in the segment. In
addition, NASA also updates the OFT with the new frequencies
of the decayed segment for the subsequent eviction.

D. SHOCK Prefetching

NASA leverages erasure operation to dispose of the old data
within the flash memory. To alleviate the negative impact of
erasure operation, SHOCK prefetches data pages to the NVM.
As shown in Algorithm 3, SHOCK will first query the data
page PG within BLK, and then insert the PG into a hot data
page set HOT_PG_SET if the hotness value HOTNESS of PG
is larger than the hotness threshold HOT THRES (we set it
to 10 based on empirical observation of workloads). Then,
NASA traverses the pages within BLK again for spatial locality
judgment using HOT _PG_SET. If the traversed page T_PG is
in the HOT_PG_SET, NASA prefetches the T_PG to NVM.
The spatial locality is still maintained for data pages with small
address stride [52]. If the LPA distance between the T PG and
a page in HOT_PG_SET is smaller than the threshold DIST
(2 * page number of a flash block), NASA deems T_PG has
a good spatial locality with the hot pages and copies it to the
NVM. Otherwise, the unprefetched data pages in BLK will be
copied to another flash block. Finally, NASA leverages block
erasure operation to sanitize the BLK.

E. Security Analysis

This section illustrates how NASA can provide strong secure
deletion guarantees in presence of a strong adversary defined
in Section IV.

Secure Deletion in NVM: To demonstrate secure deletion
within NVM, we must address the following two concerns:
1) whether the NVM can perform in-place overwrite (i.e.,
update or delete) when it receives requests from OS and
2) whether the in-place overwrite can guarantee the old data
is unrecoverable. The current NVM-augmented SSDs (i.e.,

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



ZHU AND BUTLER: NASA

Intel Optane SSD) adopt an LBA-based mapping policy [36]
to process the incoming I/O request. Therefore, overwritten
requests are processed in place. For the NVM media (i.e.,
3-D-XPoint), the in-place overwrite means switching between
crystalline phase and amorphous phase as we discussed in
Section II-C. Moreover, the required temperature for switching
to the amorphous phase is much higher than the temperature
to the crystalline. For example, GeSbTe [53], which is one
kind of chalcogenide glass, needs 600 °C to hit the amorphous
phase, but it only needs to maintain the temperature between
100 °C and 150 °C for a period of time to hit crystalline phase.
The phase change requires a specific electrical current to gen-
erate a suitable temperature, and the overwrite can explicitly
change the physical phase of the NVM material. Additionally,
since the conductivity in the crystalline phase is stable without
the evidence of changing for indicating the stale data [25], we
overwrite the deleted data with Os (i.e., crystalline phase) in
the NVM. Therefore, the in-place overwrite in the NVM can
guarantee the nonrecoverability of obsolete data.

Considering Reardon ef al.’s [54] taxonomy of secure dele-
tion adversaries, this approach provides security against the
unbounded coercive adversary, who can arbitrarily access the
physical media after the data is securely deleted. Note that the
“peek-a-boo” attacker defined by Reardon ef al. [13] is not
considered in this setting as we are concerned with post-delete
access to data, not an adversary who is allowed to obtain the
content of the storage media prior to its compromise. However,
it may be possible to apply an approach such as DNEFS [13]
to our scheme by storing keys in NVM; we consider this an
interesting extension for future work.

Secure Deletion in NAND Flash: In the NAND flash, there
are two ways to delete the stale data: 1) scrubbing and 2) block
erasure. The scrubbing strategy reprograms the obsolete page
by charging the remaining 1s NAND cell. However, the charged
floating gate will leak continuously and make unreprogramed
bits voltage lower than reprogramed bits voltage. Therefore,
the scrubbed data can be recovered by exploiting this property
that scrubbed flash cells have strong 0Os, and unscrubbed flash
cells have weak 0s. Although Hasan and Ray [19] proposed
partial page programming to make scrubbed data unrecov-
erable by performing different scrubbing time based on the
creation time of the page, the prediction of the scrubbing time
is very challenging. Since every write to the flash memory
will make the oxide layer of the NAND flash cell to degrade
slightly, the NAND flash cell’s charge is more likely to be
leaked with the increase of writes. They cannot accurately
predict scrubbing time. Thus, scrubbing cannot guarantee data
secure deletion. On the contrary, block erasure is performed
by removing the charge in the flash cell. So, electrical leakage
will not be a problem for block erasure.

Latency of Secure Deletion: The deletion latency of a secure
deletion approach is important to understand the window of
opportunity an adversary has to access data between the time
the deletion operation commences and the time in which data
is removed from the storage medium. Reardon et al. [54]
observed that some secure deletion schemes have an inde-
terminate period between the commencement of the secure
delete operation and the erasure of storage medium due to
factors such as waiting to batch data. In our approach, the
secure deletion operation is immediate: as data is moved to
NVM, the stale data block is erased. At worst, given an erase

3785

block comprising 256 pages as shown in Table I, this 256-page
block would be erased, and 255 (excluding the stale data page)
pages would be written to NVM, incurring read overhead from
reading the flash memory and write overhead from the NVM.
Our calculations, based on the empirical parameters in the
Table I, bound this operation at 13.28 ms. Moreover, this is
not a time in which an attacker can profitably gain access to
data in an intermediate deletion state. Consider the case where
the adversary is able to cut the power to the device immedi-
ately after a secure deletion request. SSDs contain capacitors
that ensure even in the event of sudden power loss, operations
can be completed; historically, all secondary storage devices
demonstrate similar mechanisms (e.g., magnetic hard drives
allow the safe parking of drive heads in the event of power
loss). We anticipate that the implementation of these devices
will allow for the safe conclusion of read and write activity
before the drive loses power.

A caveat to this guarantee is considering the case where
explicit secure deletion of the entire drive is requested to
occur instantaneously. In the case of magnetic storage, one
could perform a whole-drive overwrite or an operation such
as degaussing the drive, and the EM properties of such an
operation would destroy the drive data. Such an approach
would not work with NASA because of the reliance on block
erasure by the drive for secure deletion. However, such oper-
ations can occur in the background, which is the primary use
case that we are concerned about, and full block erasure over
the entire device can occur efficiently and without significant
performance degradation.

VI. IMPLEMENTATION

There is currently no NVM-based SSD emulator avail-
able. Thus, to demonstrate NASA‘s properties, we leverage
FEMU [55], a QEMU-based NVMe SSD emulator with an
accurate delay emulation module and scalability for support-
ing high bandwidth of 1/O requests. NASA incorporates an
NVM-based simulator that we develop as an additional mod-
ule for FEMU, and link the modules together to model an
NVM-based SSD accurately.

Based on our evaluation, FEMU could provide bandwidth
with 7 GB/s at the maximum that greatly outperforms the
existing NVM-based SSD. For example, the read and write
bandwidths of Intel Optane SSD 905P [35] are 2.6 and 2.2 GB.
For the incoming I/O request, FEMU will generate a latency
and then emulates a real delay using delay emulation module.
Therefore, to build a NVM-based SSD using FEMU, we need
to devise a latency simulation method to determine the access
latency to the NVM. Since NVM is parallelized by channel,
each channel will be blocked until the read or write is finished,
we therefore set variables to represent the next available time
on each channel. If a new I/O request comes to a channel
where the next available time of it iS TAyailOfChannel and the
current time TCypent iS larger than TayailOfChannel, the simu-
lated access latency is Trmpsfer + T1y0 and we will update
the next available time of this channel by TAyailOfChannel =
Tcurent + Trransfer + T1/0, Where T'rvansfer represents the trans-
ferring time on the channel and Tyjo represents the read or
write latency to a page on NVM. Otherwise, if Tcyment iS
less than T AvailOfChannel. the simulated access latency will be

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



3786

T AvaitofChannel — TCurrent + TTransfer + T1/0- Thus, the simu-
lated access latency will be sent to the delay emulation module
for emulating the real latency. In addition, the calculations of
indicators, such as frequencies, are included in the simulator
and, thus, their overhead will be incorporated into the emulated
latency.

VII. EVALUATION

1) Goals: We seek to answer the following research ques-
tions in our evaluation: (RQ0) Is NVMU accurate for demon-
strating the efficiency of NASA? (RQI) Does stale data exist
in with regard to current caching systems? (RQ2) Is NASA
efficient (i.e., performance and cache hit ratio)? (RQ3) Does
NASA affects the lifetime of flash memory? For RQO, in
Section VII-A, we test the latency of NVMU to compare
with a real NVM-based SSD. To answer RQI, we perform
experiments with multiple caching policies across different
real-world workloads in Section VII-B. For RQ2 and RQ3,
we compare NASA against existing caching systems and secure
deletion schemes in Section VII-C.

2) Experimental Setup: We conduct experiments with an
Inte]l Xeon E3-1245 v5 @ 3.50-Hz 8-core processor with
64-GB DRAM. Ubuntu 20.04.4 with kernel 5.13.4 is deployed
as the host OS. We allocate a 50-GB QCOW?2 image file for
the guest and install Ubuntu 18.04 along with kernel 4.15.0.
The emulated SSD consists of 128-GB flash memory and
300-MB NVM using parameters shown in Table 1. We allocate
4-GB DRAM to the guest with four vCPUs.

3) Comparison Selection and Workloads: To demonstrate
the accuracy of NVMU, we compare the latency of NVMU
with Intel Optane SSD 905P [35]. We reimplement the exist-
ing caching policies (i.e., FIFO [56], [57] and LRU [58])
without secure deletion to compare with NASA. Moreover,
we compare NASA with existing secure deletion methods by
combining immediate block erasure (i.e., LRU-IE and FIFO-
IE) and scrubbing (i.e., LRU-Scrub and FIFO-Scrub) strategies
with LRU and FIFO. When updates or deletions occur within a
specific data block, the block erasure scheme copies all valid
pages to other free blocks, then performs an erasure opera-
tion to purge the stale data. For scrubbing, we emulate its
latency by rewriting the updated flash page. When the scrub-
bing number of a flash block is over 16, we use the same
method of erasure scheme to sanitize this block as we dis-
cussed in Section III-B. For the update in cache (i.e., NVM),
we overwrite the stale data by performing an in-place write. To
demonstrate the efficiency of SHOCK, we remove the SHOCK
from NASA as a comparison NASA-NoSHOCK and use block
erasure for sanitizing the stale data in the flash memory. We
use the flexible /0 tester (FIO) benchmark [59] and real-world
enterprise workloads from microsoft research (MSR) [60] and
virtual desktop infrastructure (Systor [61]) to evaluate NVMU
and NASA.

4) SSD Warmup: To testify the efficiency of a cache system,
we need to warm up the storage device to fill up the cache
before running the experiment. Therefore, we first use FIO
with a sequential write workload to ensure the cache is filled
up. Then, for each trace workload, we run one million traces
as shown in Table II for warmup before starting the formal
experiments. In addition, the ratio of warmup traces number
to the formal experiment traces is 10:1.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE II
CHARACTERISTICS OF OUR EVALUATION WORKLOADS

Name Write Ratio | Warmup Traces Number
SeqWrite 100% -
FIO RandWrite 100% -
hm_0 73.7% 1 million
prxy_0 96.9% T million
MSR rsrch_( 90.7% 1 mullion
wdev_0 79.9% 1 million
mds_0 88.1% 1 million
LUNO 36.9% 1 million
Systor LUNI1 18.8% 1 million
¥ LUNZ 25.1% T million
LUN3 25.4% I million
Fuo A
E 50 a Z
f, )
o -
4 8 16 a2 64 128 256
Request Size (KB)

= 4 =SeqWrite-Optanessn
SeqRead-OptanessD

& SeqWrite-NVIMU
SeqRead-NVMU

Fig. 5. Average latency comparison between NVMU and Intel Optane SSD.

0% 8% 28.68%

by 22.56%

14.44%

11.46%
e 10.09%

0%
10% 6.09%
35 3.70%
%% mI l L 10
0.04% 0.05% 0.16% 0.03% 0.13% 0.00% 0.0
o | o oosg -

¢ S IR R
& “'@@'\sy‘s’@ &
o
N LRU WFIFO

Fig. 6. Stale data percentage to all the writes in FIFO and LRU with different
workloads.

A. NVMU Accuracy Testing

We use FIO to test the latency of NVMU and compare
it with Intel Optane SSD 905P. The latency of Intel Optane
SSD is evaluated from a real device using the FIO bench-
mark. As shown in Fig. 5, the average read and write request
latency is lower than the Intel Optane SSD by 4.8% and
5.7%, respectively. Since NVMU’s latency is lower than phys-
ical devices; we can accurately model their latency by adding
delays to I/O operations. Since the channel number is con-
figurable in NVMU, we can define the parallelism of the
NVM device. Since more channels allow for better parallelism,
NVMU can exhibit higher bandwidth with more channels. We
select three channels for the NVM based on our experiment.
NVMU exhibits accurate write and read bandwidths with 2.3
and 2.7 GB/s that are close to the bandwidths (2.2 GB/s for
write and 2.6 GB/s for read) of Intel Optane 905p SSD.

B. Stale Data Testing

We test FIFO and LRU caching strategies with MSR and
Systor traces to demonstrate the stale data generation in
caching systems. Before we calculate the stale data percent-
age, we perform the aforementioned warmup process, then
run the formal workload experiment. In Fig. 6, stale data are

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



ZHU AND BUTLER: NASA

100%

311111l

J F LRSS E S

Hit Ratio
g ¢

»...
]
o

HLRU NFFO ENASA B NASA-NoSHOCK

Fig. 7. Hit ratio of I/O requests processed by NVM to all I/Os in FIFO,
LRU, and NASA with different workloads.
100,000
E 10,000
; 1,000
i
e 1]
. ° ol d
"f‘ Ql“v@éc\é@ é’&‘g\?“\?&\?@
&
WLRU-Scrub WILAU-IE mFIFO-scrub = FIFO-IE MINASA B NASA-NoSHOCK

Fig. 8. Block erasure number of LRU-Scrub, LRU-IE, FIFO-Scrub, FIFO-IE,
and with different workloads.

inevitably generated in both FIFO and LRU within all work-
loads. The average percentage of stale data to all written data
under LRU and FIFO caching schemes are 9.5% and 18.9%,
respectively. The stale data generation is determined by the
access pattern of workloads and caching policies.

To testify the stale data generation if no preemption exists
in the cache, we use a sequential write benchmark of FIO to
write 400-MB data into the SSD and then use the sequen-
tial write benchmark to update 100-MB data in the flash
memory (i.e., SW-NoPre). LRU and FIFO exhibit the same
stale data percentage because no cache hit happens for serv-
ing the incoming request. In addition, random write (RW)
generates RW requests, and there is no specific I/O access
pattern can be leveraged by caching policy. Thus, LRU and
FIFO are showing similar stale data generation rates. For real-
world workloads (MSR and Systor), LRU has a lower stale
data percentage than FIFO. Since LRU exploits the recency of
real-world workloads, it can decrease the data eviction from
NVM to flash memory. As shown in Fig. 7, the average NVM
hit ratio of LRU and FIFO schemes is 99.2% and 94.3%,
respectively, in the MSR and Systor workloads. LRU method
will generate much fewer stale data than FIFO. In addition,
although a good caching algorithm can decrease the generation
of stale data, Since the stale data generation in the secondary
storage (i.e., flash memory) is inevitable, a secure deletion
strategy needs to be deployed to the current storage hierarchy.

C. Performance and Block Erasure Testing

For the performance, we compare our method with exist-
ing caching policies (FIFO and LRU) and sanitization-enabled
caching strategies (i.e., LRU-Scrub, LRU-IE, FIFO-Scrub, and
FIFO-IE). In addition, we run each experiment three times.

Fig. 9 shows NASA will increase the average response time
over LRU by 0.01% and decrease the response time over
FIFO by 2.1% on average. In the workload SW-NoPre, NASA
decreases the average response time over LRU and FIFO by
93.6% and 93.5%, respectively. Since NASA leverages SHOCK

3787

s

S

&

&

Dl

e o@ 9 S I
@v“‘*@@& FFFS

el

Normalized Average Response Time
=
&

WLIRU wFIFD mNASA  m NASA-NoSHOCK

Fig. 9. Normalized average response time of FIFO, LRU, and NASA with
different workloads.

to prefetch the unpreempted data to the cache, NASA can
achieve a high hit ratio (99.1%) with few block erasure (100)
in SW-NoPre. In addition,NASA achieves a high hit ratio
because it exploits the workloads’ characteristics (i.e., recency,
hotness and spatial locality) to decrease eviction. In Fig. 7,
NASA achieves 97.9% average NVM hit ratio that is higher
than 90.4% of LRU and higher than 86.5% of FIFO. Due
to the high hit ratio, NASA can conceal the low-speed access
to flash memory and incurs trivial response time overhead.
At worst, in the workload him_0, the average response time of
NASA increases by 47% and 42% compared to LRU and FIFO,
respectively. NASA incurs nontrivial performance degradation
in this case because the hit ratio (93.4%) of NASA is not high
enough to conceal the overhead of block erasure operations
(1738) in flash memory.

NASA greatly improves the performance compared with
existing secure deletion methods. In Fig. 10, NASA decreases
average response time over LRU-IE, FIFO-IE, and FIFO-Scrub
by 74.1%, 93.8%, and 5.2%, respectively. Moreover, NASA
only increases 0.1% average response time over LRU-Scrub.
Erasure-based secure deletion schemes generate tremendous
erasure operations in the flash memory. In Fig. 8, LRU-IE and
FIFO-IE leads to 3152 and 14279 block erases on average,
respectively. Since NASA efficiently manages data within the
NVM and decreases block erasure in flash memory, NASA gen-
erates much fewer block erases (only 317). Therefore, NASA
is able to decrease significant I/O access latency over erasure-
based secure deletion strategies. Moreover, scrubbing-based
methods still need to exploit block erasure to sanitize data
when the scrubbing number in a flash block exceeds the scrub-
bing threshold, as we discussed in Section III-B. LRU-Scrub
and FIFO-Scrub can lead to block erasure operations in flash
memory, and they are 161 and 776 on average, respectively.
NASA leads more block erasure than LRU-IE in workloads
of rsrch_0, wdev_0, LUNO, LUNI, and LUN2. NASA gen-
erates 217.8 block erases on average in these workloads,
whereas LRU-IE incurs 107.8 block erases. Moreover, NASA
only causes 66, 6, and 71 block erases in wdev_0, LUNI,
and LUN2, respectively. Since their block erasure numbers
are small, they can only impose limited negative effects to
the performance and lifetime of the storage device. Therefore,
NASA achieves a longer lifetime than other erasure-based
secure deletion strategies and scrubbing-based methods with
inefficient caching policy.

D. SHOCK Testing

Since data eviction is essential for a caching system, we only
evaluate the effectiveness of SHOCK. As shown in Figs. 8-10,

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



3788

4. 92 199,68
26. 9.08

S o =

M

Normalized Average Response Time

o|"L__|II||I|||I||||||| ol ol ol ol
‘g*Pq@ & ‘@9 Q@? \46‘9&&‘9 @B‘? \9& Vsz‘" \9& \\)&
o

MLRU-Scrub mLRU-IE FIFO-Scrub = FIFO-IE mNASA W NASA-NoSHOCK

Fig. 10. Normalized average response time of LRU-Scrub, LRU-IE, FIFO-
Scrub, FIFO-IE, and NASA with different workloads.

NASA-NoSHOCK significantly degrades the performance and
lifetime of flash memory. NASA-NoSHOCK increases average
response time and block erasure over NASA by 109x and 19x,
respectively. SHOCK is an critical part of NASA because it can
efficiently leverage the spatial locality to decrease block era-
sure in the flash memory. Moreover, Hybrid Eviction can retain
the spatial locality of data in the flash memory with a high hit
ratio. Although the hit ratio might decrease in some workloads,
NASA incurs fewer block erasure. Therefore, NASA avoids
significant performance and storage lifetime degradation.

VIII. DISCUSSION

This section primarily discusses the practicality of NASA.

NVM Technologies: Since the recoverability of deleted data
in the NVM depends on the NVM material, we should con-
sider the physical characteristics of NVM before developing
the secure deletion method. ReRAM [24] has a resistance
switching property that the resistance of a ReRAM cell could
be changed by deploying the voltage with specific magni-
tude, polarity and duration. Thus, the resistance of a ReRAM
cell has a high-resistance state (HRS) and low-resistance state
(LRS) to represents 0 and 1, respectively. Since the LRS
and HRS are decided by the different physical status of
the stable material, adversaries are unlikely to uncover the
overwritten data. For example, a SiO, ReRAM device has
no resistance degradation under the room temperature [62].
Assuming a deletion operation overwrites all the Os to 1s, the
resistance of newly writing 1s will be the same as the old 1s.
Therefore, adversaries cannot differentiate the stale data from
the overwritten data.

Magnetoresistive random access memory (MRAM) [63]
leverages the magnetic tunnel junction (MTIJ) to carry the
data. An MT]J consists of two ferromagnetic layers (free and
pinned layer) and a tunnel barrier. Free layer has various mag-
netization directions, which decide the resistance of MTJ. If
the magnetization directions of the free and pinned layers
are parallel, the MTJ has a stable low resistance indicating
a 0. Otherwise, the MTJ has a stable high resistance that
represents 1. Although the MRAM has durable resistance,
not all the MRAM methods can ensure secure deletion. For
example, in the STI-MRAM, the write current can lead to a
time-dependent degradation [64] of the MTJ, indicating the
possibility of deleted data recovery. On the contrary, SOT-
MRAM incurs no resistance degradation [64] and, thus, it can
provide a secure deletion guarantee.

Caching Policy: Different caching policies incur different
performance and reliability impacts on flash-based storage.
Since the cache (i.e., NVM) has a higher performance than
the secondary storage device (i.e., flash memory), more I/O

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

requests served by the cache will indicate the system has
a higher performance. In addition, the erasure operation is
time consuming, and it can shorten the lifetime of the flash
memory. Therefore, when we design an ad hoc cache system
while supporting secure deletion, we should achieve the fol-
lowing targets: a high hit ratio of the cache and few erasure
operations in flash memory. To ensure a high hit ratio, NASA
exploits the hotness and recency properties of real-world work-
loads to decrease the eviction of those most possibly accessed
data. Moreover, NASA leverages the spatial locality of the data
within the flash memory to prefetch data pages for potential
access in the future. Therefore, NASA could achieve afore-
mentioned the two targets and provide better performance and
reliability to the user with a strong secure deletion guarantee.

Extensibility: NASA could use other NVMs than Intel
Optane memory if secure deletion within those memories
can be assured. Moreover, NASA can also be deployed to
other caching architectures as discussed in Fig. 2(a) and (b).
Therefore, the OS should be able to operate the raw flash
memory and have the following functions: single block era-
sure, page read, and page write. To achieve this, it would be
possible to implement the secure deletion scheme on memory
technology device (MTD [65]) and manage physical pages and
blocks by using unsorted block images (UBI [66]). Moreover,
OpenChannel SSD [67] is an alternative since it opens the
internal structure of SSD and allows the user to control the
physical data within the flash memory directly.

IX. RELATED WORK

Reardon et al. [54] surveyed secure deletion and its impli-
cations when implemented at different layers of the storage
hierarchy across different media, including flash memory;
however, this survey did not consider the emerging NVM. The
state-of-the-art secure deletion methods for flash-based SSDs
are as follows:

Secure Deletion With Inherent Flash Operations: Erasure
and scrubbing operations are exploited for sanitizing deleted
data from the flash memory. GC leverages erasure to reclaim
the invalidated (i.e., deleted) data periodically [68], [69].
However, GC can only be triggered by specific conditions,
such as insufficient free space for serving new I/O requests
and, thus, cannot assure secure deletion since attacks can
happen before GC occurs. In addition, a large number of
erasure operations could act to degrade performance signif-
icantly. Evanesco [47] assumes that retrieving raw data within
3-D NAND flash memory is difficult due to the complexity
of its architecture. Therefore, two new flash commands are
devised to prevent data access to the unsanitized flash block
before the erasure operation. However, existing work [70],
[71] demonstrates that 3-D flash memory can be profiled with
high resolution to distinguish flash cells. Therefore, Evanesco
cannot provide a secure deletion guarantee in our threat model.

Wei et al. [11] proposed an efficient secure deletion scheme
by exploiting scrubbing technology without expensive block
erasure. Since scrubbing could result in disturbance and bit
errors, Wang et al. [12] combined block erasure and scrubbing
to minimize secure deletion overhead. Hasan and Ray [19]
demonstrated that scrubbed data could be partially recovered
due to the analog property of NAND flash cells.

Secure Deletion With Encryption: This method encrypts all
the data and then performs deletion by sanitizing the key.

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



ZHU AND BUTLER: NASA

Some works [13], [72], [73] deploy secure deletion within
the filesystem. DNEFS [13] deploys secure deletion in the
filesystem, while providing fine-grained data access, wear-
leveling, and efficiency. Since the keys of data are still stored
within the flash memory, the deleted data are vulnerable in
DNEFS if an attacker accesses the raw data to retrieve the
keys. Swanson and Wei [14] proposed SAFE combining the
erasure operation with encryption to sanitize the obsolete data
within the flash memory. However, SAFE is a global sanitiza-
tion method that deletes all the data in the drive. Therefore, it
cannot provide real-time secure data deletion.

SSDs With NVM: We further discuss the NVM-assisted
SSDs to demonstrate the difference between NASA and other
SSDs. PMR [40] exposes the internal NVM of the NVMe
SSD to the host with byte accessing granularity. 2B-SSD [38]
furthers PMR by designing two independent block- and byte-
1/0 paths and allowing internal data transfer between the NVM
and flash memory. Lee ef al. [39] considered the high capac-
ity of NVM and integrate the NVM into the flash-based SSD
as a cache. Then, they devise a cooperative data management
to avoid data copies during GC. Tarihi et al. [52] analyzed
the characteristic of real I/O workloads and proposed a hybrid
DRAM-PCM SSD cache architecture to ensure flash memory’s
energy efficiency, performance, and lifetime. Although exist-
ing NVM-assisted SSDs explore to improve the performance
and reliability of the storage, they cannot securely delete stale
data from storage medium with trivial overhead.

X. CONCLUSION

Securely deleting data from storage media is a signifi-
cant aspect of data security, but the current secure deletion
schemes cannot provide both secure deletion guarantee and
performance. In this article, we presented NASA to solve the
secure deletion problem in the flash memory by leveraging the
emerging NVM and block erasure operation of flash memory.
Moreover, we experimentally demonstrated the existence of
stale data in the current caching architecture. NASA assures no
data remanence through stale data remaining within the storage
device. Our evaluation showed that NASA can assure secure
data deletion while incurring trivial performance degradation
and a few flash block erasure.

REFERENCES

[1] H. F. Korth and A. Silberschatz, “Database research faces the
information explosion,” Commun. ACM, vol. 40, no. 2, pp. 139-142,
1997.

[2] A. Biryukov and D. Khovratovich, “Egalitarian computing,” in Proc.
25th USENIX Security Symp. (USENIX Security), 2016, pp. 315-326.

[3] L. Vargas et al., “Mitigating risk while complying with data retention
laws,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security (CCS),
2018, pp. 2011-2027.

[4] “Health insurance portability and accountability act of 1996 (HIPAA).”
2022. [Online]. Available: https://www.cdc.gov/phlp/publications/topic
/hipaa.html

[5] “How to secure with the PCI data security standard.” Accessed:
2020. [Online]. Available: https://www.pcisecuritystandards.org/pci_
security/how

[6] “Facebook ordered to stop collecting user data by Belgian court.” 2018.
[Online]. Available: https://www.theguardian.com/technology/2018/feb/
16/facebook-ordered-stop-collecting-user-data-fines-belgian-court

[71 “DoD 5220.22-M—The secure wiping standard to get rid of data.” 2022.
[Online]. Available: https://www .bitraser.com/blog/dod-wiping-the-sec
ure-wiping-standard-to-get-rid-of-data/

(8]

91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(7

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

3789

“ATA secure erase” 2013. [Online]. Available: https:/industrial.
apacer.com/en-ww/Technology/ATA-Secure-Erase#:~:text=A%20Secu
920Comma%20era%20is,a%20cann%20%20permanent%20retrieved
“NVMe secure erase.” 2022. [Online]. Available: https:/industrial.
apacer.com/en-ww/Technology/NVMe-Secure-Erase#: ~:text=NV%20S
ecu%20Era%20%20an,era%20a%20us%20da%20areas

S. Diesburg, C. Meyers, M. Stanovich, A.-I. A. Wang, and G. Kuenning,
“TrueErase: Leveraging an auxiliary data path for per-file secure dele-
tion,” ACM Trans. Storage, vol. 12, no. 4, pp. 1-37, 2016.

M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably erasing
data from flash-based solid state drives,” in Proc. 9th USENIX Conf.
File Storage Technol. (FAST), 2011, p. 8.

W.-C. Wang, C.-C. Ho, Y.-H. Chang, T.-W. Kuo, and P.-H. Lin,
“Scrubbing-aware secure deletion for 3-D NAND flash,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 11,
pp. 2790-2801, Nov. 2018.

J. Reardon, S. Capkun, and D. Basin, “Data node encrypted file system:
Efficient secure deletion for flash memory,” in Proc. 21st USENIX
Security Symp. (USENIX Security), 2012, pp. 333-348.

S. Swanson and M. Wei, “Safe: Fast, verifiable sanitization for SSDs,”
Dept. Comput. Sci. Eng., Univ. California, San Diego, CA, USA,
Rep. TR-cs2011-0963, Jan. 2010.

1. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard (Information Security and Cryptography). Berlin,
Germany: Springer, 2002.

J. A. Halderman et al., “Lest we remember: Cold-boot attacks on
encryption keys,” Commun. ACM, vol. 52, no. 5, pp. 91-98, 2009.

C. Meijer and B. van Gastel, “Self-encrypting deception: Weaknesses in
the encryption of solid state drives,” in Proc. 41st IEEE Symp. Security
Privacy (S P), 2019, pp. 72-87.

T. Ristenpart and S. Yilek, “When good randomness goes bad: Virtual
machine reset vulnerabilities and hedging deployed cryptography,” in
Proc. 17th Netw. Distrib. Syst. Security Symp. (NDSS), 2010, pp. 1-18.
M. M. Hasan and B. Ray, “Data recovery from *Scrubbed” NAND flash
storage: Need for analog sanitization,” in Proc. 29th USENIX Security
Symp. (USENIX Security), 2020, pp. 1399-1408.

X. Zhang, H. Li, S. Yang, and S. Han, “On a high-performance and
balanced method of hardware implementation for AES,” in Proc. IEEE
7th Int. Conf. Softw. Security Rel. Companion, 2013, pp. 16-20.

J. Lee, K. Ganesh, H.-J. Lee, and Y. Kim, “FeSSD: A fast encrypted
SSD employing on-chip access-control memory,” IEEE Comput. Archit.
Lett., vol. 16, no. 2, pp. 115-118, Jul.—Dec. 2017.

Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai, “Program interference in
MLC NAND flash memory: Characterization, modeling, and mitigation,”
in Proc. IEEE 31st Int. Conf. Comput. Des. (ICCD), 2013, pp. 123-130.
D. Apalkov et al., “Spin-transfer torque magnetic random access
memory (STT-MRAM),” ACM J. Emerg. Technol. Comput. Syst., vol. 9,
no. 2, pp. 1-35, 2013.

H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)
based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 22372251,
Dec. 2010.

H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 22012227, Dec. 2010.

“3D XPoint: A breakthrough in non-volatile memory technology.”
Accessed: 2022. [Online]. Available: https://www.intel.com/content/w
ww/us/en/architecture-and-technology/intel- micron-3d-xpoint-webcas
t.html

A. Dan and D. Towsley, “An approximate analysis of the LRU and FIFO
buffer replacement schemes,” in Proc. ACM SIGMETRICS Conf. Meas.
Model. Comput. Syst., 1990, pp. 143-152.

C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, “SFS: Random
write considered harmful in solid state drives.” in Proc. 10th USENIX
Conf. File Storage Technol. (FAST), 2012, p. 12.

S. Jiang, L. Zhang, X. Yuan, H. Hu, and Y. Chen, “S-FTL: An efficient
address translation for flash memory by exploiting spatial locality,” in
Proc. 27th Symp. Mass Storage Syst. Technol. (MSST), 2011, pp. 1-12.
“Intel® Ol:il:alne-rM memory—Revolutionary memory.” Accessed: 2022.
[Online]. Available: https://www.intel.com/content/www/us/en/architect
ure-and-technology/optane-memory.html

A. Zakery and S. Elliott, Optical Nonlinearities in Chalcogenide Glasses
and their Applications. Berlin, Germany: Springer, 2007.

J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and fixing
performance pathologies in persistent memory software stacks,” in Proc.
24th Int. Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS),
2019, pp. 427-439.

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.



3790

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46

=)

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

571

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” in Proc. 26th Symp. Oper. Syst.
Principles (SOSP), 2017, pp. 460-477.

R. Dulong et al., “NVCache: A plug-and-play NVMM-based I/O booster
for legacy systems,” in Proc. 51st Annu. IEEE/AIFIP Int. Conf. Depend.
Syst. Netw. (DSN), 2021, pp. 186-198.

“Intel® Optane™ SSD 9 series” Accessed: 2021. [Online].
Available: https://www.intel.com/content/www/us/en/products/memory-
storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html

K. Wu, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Towards an unwrit-
ten contract of Intel Optane SSD.” in Proc. 11th USENIX Workshop Hot
Topics Storage File Syst. (HotStorage), 2019, p. 3.

“Inte] Optane memory H10 with solid state storage.” Accessed: 2021.
[Online]. Available: https://fwww.intel.com/content/www/us/en/product
s/memory-storage/optane-memory/optane-memory-h10-solid-state-stor
age.html

D. Bae et al., “2B-SSD: The case for dual, byte- and block-addressable
solid-state drives,” in Proc. ACM/IEEE 45th Annu. Int. Symp. Comput.
Archit. (ISCA), 2018, pp. 425-438.

E. Lee, J. Kim, H. Bahn, S. Lee, and S. H. Noh, “Reducing write
amplification of flash storage through cooperative data management with
NVM,” ACM Trans. Storage, vol. 13, no. 2, pp. 1-13, 2017.

C. Chadha. “NVMe SSD with persistent memory region.” 2017.
[Online]. Available: https://www.flashmemorysummit.com/English/Col
laterals/Proceedings/2017/20170810pM31chanda. pdf

P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proc. 6th USENIX Security Symp. (USENIX Security), 1996,
p- 8.

“Eraser.” Accessed: 2022. [Online]. Available: https:/feraser.heidi.ie/
R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish:
Increasing data privacy with self-destructing data,” in Proc. 18th
USENIX Security Symp. (USENIX Security), 2009, pp. 299-316.

Z. Jiang, H. Jin, G. E. Suh, and Z. Zhang, “Designing secure crypto-
graphic accelerators with information flow enforcement: A case study
on AES.” in Proc. 56th Annu. Des. Autom. Conf. (DAC), 2019, p. 59.
TCG Storage Security Subsystem Class: Opal Specification Version 2.01,
Trusted Comput. Group, Beaverton, OR, USA, 2015.
“CVE-2018-12037.” 2018. [Online]. Available: https://cve.mitre.org/cgi
-bin/cvename.cgi?’name=CVE-2018-12037

M. Kim et al., “Evanesco: Architectural support for efficient data san-
itization in modern flash-based storage systems,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), 2020,
pp. 1311-1326.

J. Huang, J. Xu, X. Xing, P. Liu, and M. K. Qureshi, “FlashGuard:
Leveraging intrinsic flash properties to defend against encryption ran-
somware,” in Proc. 24th ACM Conf. Comput. Commun. Security (CCS),
2017, pp. 22312244,

L. Zhao and M. Mannan, “TEE-aided write protection against privileged
data tampering,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS),
2019, pp. 1-15.

S. Baek, Y. Jung, D. Mohaisen, S. Lee, and D. Nyang, “SSD-assisted
ransomware detection and data recovery techniques,” IEEE Trans.
Comput., vol. 70, no. 10, pp. 1762-1776, Oct. 2021.

“IBM spectrum scale with TRIM-supporting NVMe SSDs.” 2022.
[Online].  Awvailable:  https://www.ibm.com/docs/en/spectrum-scale/
5.0.5Mopic=devices-spectrum-scale-trim-supporting-nvme-ssds

M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-Azad,
“A hybrid non-volatile cache design for solid-state drives using com-
prehensive I/O characterization,” IEEE Trans. Comput., vol. 65, no. 6,
pp. 1678-1691, Jun. 2016.

“GeSbTe.” 2022. [Online]. Available: https://fen.wikipedia.org/wiki/Ge
SbTe

J. Reardon, D. A. Basin, and S. Capkun, “SoK: Secure data deletion,”
in Proc. 34th IEEE Symp. Security Privacy (S&P), 2013, pp. 301-315.
H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjgrling, and
H. S. Gunawi, “The CASE of FEMU: Cheap, accurate, scalable and
extensible flash emulator,” in Proc. 16th USENIX Conf. File Storage
Technol. (FAST), 2018, pp. 83-90.

M. S. Bhaskaran, J. Xu, and S. Swanson, “Bankshot: Caching slow
storage in fast non-volatile memory,” ACM SIGOFS Oper. Syst. Rev.,
vol. 48, no. 1, pp. 73-81, May 2014.

Y. Oh, E. Lee, C. Hyun, J. Choi, D. Lee, and S. H. Noh, “Enabling
cost-effective flash based caching with an array of commodity SSDs,”
in Proc. 16th Annu. Middlew. Conf. (Middleware), 2015, pp. 63-74.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-WSR: Integration
of LRU and writes sequence reordering for flash memory,” IEEE Trans.
Consum. Electron., vol. 54, no. 3, pp. 1215-1223, Aug. 2008.
“Flexible I/O tester.” Accessed: 2022. [Online]. Available: https://github
.com/axboe/fio

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” in Proc. 6th
USENIX Conf. File Storage Technol. (FAST), 2008, pp. 1-23.

C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and
M. Sugawara, “Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure,” in Proc. 10th ACM Int. Syst. Storage
Conf. (SYSTOR), 2017, pp. 1-11.

A. Mehonic ef al., “Intrinsic resistance switching in amorphous silicon
oxide for high performance SiOx ReRAM devices,” Microelectron. Eng.,
vol. 178, pp. 98-103, Jun. 2017.

D. Apalkov, B. Dieny, and J. M. Slaughter, “Magnetoresistive ran-
dom access memory,” Proc. IEEE, vol. 104, no. 10, pp. 17961830,
Oct. 2016.

K. Garello, E Yasin, and G. S. Kar, “Spin-orbit torque MRAM for ultra-
fast embedded memories: From fundamentals to large scale technology
integration,” in Proc. IEEE 11th Int. Memory Workshop (IMW), 2019,
pp- 1-4.

“Memory technology device (MTD) subsystem for Linux.” Accessed:
2020. [Online]. Available: http://www.linux-mtd.infradead.org/index.h
tml

“UBI—Unsorted block images.” Accessed: 2022. [Online]. Available:
http:/fwww.linux-mtd.infradead.org/doc/ubi.html

M. Bjgrling, J. Gonzilez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conf. File Storage
Technol. (FAST), 2017, pp. 359-373.

S. Yan et al., “Tiny-tail flash: Near-perfect elimination of garbage col-
lection tail latencies in NAND SSDs,” in Proc. 15th USENIX Conf. File
Storage Technol. (FAST), 2017, pp. 15-28.

W. Choi, M. Jung, M. Kandemir, and C. Das, “Parallelizing garbage
collection with I/O to improve flash resource utilization,” in Proc. 27th
Int. Symp. High-Perform. Parallel Distrib. Comput., 2018, pp. 243-254.
1. Hirota, K. Yamasue, and Y. Cho, “Profiling of carriers in a 3D flash
memory cell with nanometer-level resolution using scanning nonlin-
ear dielectric microscopy,” Microelectron. Rel., vol. 114, Nov. 2020,
Art. no. 113774,

M. Fan, R. Ranjit, A. Thurber, and D. Engelhard, “High resolution
profiles of 3D NAND pillars using X-ray scattering metrology,” in
Proc. Metrol. Inspect. Process Control Semicond. Manuf. XXXV, 2021,
Art. no. 1161108.

J. Lee, J. Heo, Y. Cho, J. Hong, and S. Y. Shin, “Secure deletion for
NAND flash file system,” in Proc. ACM Symp. Appl. Comput. (SAC),
2008, pp. 1710-1714.

L. Yang, T. Wei, F. Zhang, and J. Ma, “SADUS: Secure data deletion in
user space for mobile devices,” Comput. Security, vol. 77, pp. 612-626,
Aug. 2018.

Weidong Zhu (Student Member, IEEE) received the
bachelor’s degree from the Huazhong University of
Science and Technology, Wuhan, China, in 2016,
and the master’s degree from Xiamen University,
Xiamen, China, in 2019.

He is a Ph.D. Research Assistant with the
Computer and Information Science and Engineering
Department, University of Florida, Gainesville, FL,
USA. His research focuses on system security, espe-
cially leveraging storage to handle security problem.

Kevin R. B. Butler (Senior Member, IEEE) received
the Ph.D. degree in computer science and engineer-
ing from the Pennsylvania State University, State
College, PA, USA, in 2010.

He is a Professor of Computer and Information
Science and Engineering with the University of
Florida, Gainesville, FL, USA, and the Director
of the Florida Institute for Cybersecurity Research,
Gainesville. His research focuses on establishing the
trustworthiness of computer systems and embedded
devices.

Prof. Butler is a Senior Member of ACM and IEEE.

Authonzed licensed use limited to: University of Florida. Downloaded on April 13,2023 at 23:06:36 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


