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ABSTRACT

Exploratory data analysis tools designed to measure global and local spatial auto-
correlation (e.g. Moran’s I statistic) have become standard in modern GIS software.
However, there has been little development in amending these tools for visualization
and analysis of patterns captured in spatio-temporal data. We design and implement
an exploratory mapping tool, VASA (Visual Analysis for Spatial Association), that
streamlines analytical pipelines in assessing spatio-temporal structure of data and
enables enhanced visual display of the patterns captured in data. Specifically, VASA
applies a set of cartographic visual variables to map local measures of spatial au-
tocorrelation and helps delineate micro and macro trends in space-time processes.
Two visual displays are presented: recency and consistency map and line-scatter
plots. The former combines spatial and temporal data view of local clusters, while
the latter drills down on the temporal trends of the phenomena. As a case study,
we demonstrate the usability of VASA for the investigation of mobility patterns in
response to the COVID-19 pandemic throughout 2020 in the United States. Us-
ing daily county-level and grid-level mobility metrics obtained from three different
sources (SafeGraph, Cuebiq and Mapbox), we demonstrate cartographic function-
ality of VASA for a swift exploratory analysis and comparison of mobility trends at
different regional scales.
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1. Introduction

The COVID-19 pandemic affected our communities in a variety of ways: from ubig-
uitous telecommuting, to state-wide lockdowns and tier-based contagion mitigation
strategies. The shifts in mobility patterns over the course of the pandemic have been
unprecedented, and we still observe shifts in daily mobility compared to the pre-
pandemic era (Li, Giabbanelli, et al., 2021). At the same time, never before have
researchers had access to so much fine-grained mobility data to closely investigate the
effect of non-pharmaceutical interventions (NPI) on mobility (Iacus et al., 2020), as
well as their effectiveness to contain the virus (Haug et al., 2020; Hsiang et al., 2020).
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The data provided by Google, Facebook, Apple, SafeGraph, Cuebiq, and others (Noi,
Rudolph, & Dodge, 2021a) have opened new avenues for mapping and understanding
the compound mobility indices and complex structures of human mobility across time,
space and scale. While there are many ways to assess and model the spread of the
coronavirus, the Geographic Information Systems and Science (GIScience) are crucial
in enabling the analysis (Rosenkrantz, Schuurman, Bell, & Amram, 2021) and are
frequently used for disease mapping (Lyseen et al., 2014).

Various metrics capturing human mobility and potential exposure have been used to
establish the connection between human movement and virus transmission (Kraemer
et al., 2020; Nouvellet et al., 2021; Xiong, Hu, Yang, Luo, & Zhang, 2020). These data
sets describe aggregated mobility and are compiled from variety of sources: GPS,
cellphone units, call-detailed records (CDR), closed-circuit television (CCTV), logs,
check-in records, and transaction data. More importantly, these mobility metrics can
provide us with better understanding of the COVID-19 pandemic, when coupled with
powerful visual analytics (Leung et al., 2020; Reinert et al., 2020; Sahnan et al.,
2021). In particular, only a limited number of tools exist that allow simultaneous
spatio-temporal analysis of associations at different scales.

The task of mapping a dynamic spatial process across various levels of aggre-
gation is non-trivial. One must select the appropriate cartographic symbology and
techniques for effective mapping (Andrienko, Andrienko, & Gatalsky, 2003; Vasiliev,
1997). Through the course of the pandemic, the use of dashboards generated a lot
of interests among scholars, policymakers and the general public (Ivankovié¢ et al.,
2021; Pietz, McCoy, & Wilck, 2020). Starting with the John Hopkins University dash-
board (Dong, Du, & Gardner, 2020), this medium of information visualization became
an industry standard across multiple organizations and governments (Boulos & Ger-
aghty, 2020; Ivankovié et al., 2021). While dashboards are indeed appropriate for near
real-time disease tracking and decision-making support, they are primarily used for
communication of raw and summarized data (e.g. COVID-19 case counts, infection
rates, hospitalization and death rates, etc.) and are less effective for depicting complex
information about the space-time patterns captured in data. While communicating
knowledge is important in many aspects of governmental work and in informing the
public, the primary interest of scientific inquiry lies in knowledge discovery. As our
data grows in volume, complexity, and dimensionality, new interactive and exploratory
spatio-temporal analytical tools are needed to better enable knowledge discovery in
GIScience (Keim et al., 2008). Such tools can help researchers reveal a bigger picture
that goes beyond monitoring data by uncovering, for example, spatial determinants
of patterns (Andersen, Harden, Sugg, Runkle, & Lundquist, 2021; Cos, Castillo, &
Cantarero, 2020) for the underlying socio-economic and health disparities (Chowk-
wanyun & Reed Jr, 2020; Mein, 2020; Phillips, Park, Robinson, & Jones, 2021).

This paper leverages cartographic and geographic analysis techniques to introduce
an exploratory visual analysis tool, named VASA (Visual Analysis for Spatial As-
sociation)!, that can help assess spatio-temporal patterns of dynamic processes and
pinpoint interesting cases for further analysis. By using a well-established concept of
spatial autocorrelation from quantitative geography, VASA is able to illustrate how
the clusters of hotspots and coldspots evolve during the observation period and thus
point to the underlying locational determinants of various socioeconomic phenomena.
In contrast to other existing spatial analysis tools, VASA can be used to investigate
the spatio-temporal patterns by focusing on the temporal trends (e.g. recency and fre-
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quency) of spatial clustering behavior, while also providing convenient visual displays
to examine such behavior at different scales of analysis. Further, the paper assesses
the usability of VASA outputs for the investigation of mobility patterns in response to
the COVID-19 pandemic throughout 2020 in the United States. While we assess the
applicability of VASA using aggregate mobility data, the tool can be used to visualize
spatio-temporal patterns across diverse data series summarized at different spatial
and temporal levels of analysis.

2. Background

2.1. Geovisualization for COVID-19

The role of GIScience in spatio-temporal analysis, epidemic modeling and mapping
has been enormous during the ongoing pandemic (Franch-Pardo, Napoletano, Rosete-
Verges, & Billa, 2020). In fact, the geographic maps of Hubei province were the first
visual display of the soon-to-be COVID-19 epidemic (Guan, Wei-jie and Ni, Zheng-yi
and Hu, Yu and Liang, Wen-hua and Ou, Chun-quan and He, Jian-xing and Liu, Lei
and Shan, Hong and Lei, Chun-liang and Hui, David SC and others, 2020). What came
next was the avalanche of user-generated visualizations to help understand and curb
the spread of SARS-CoV-2 virus, a number of which suffered from major limitations
from problems with projections, classification schemes, and scaling issues (Field, 2020).
The academic community also contributed immensely?, developing maps and visual
analytics tools to help understand the spatial structure of the coronavirus (Boulos &
Geraghty, 2020). Several (geo)visualizations have been devised and presented to find
more intuitive and efficient visual displays for mapping COVID-19 (Lan, Desjardins,
Hohl, & Delmelle, 2021), including glyph maps (Beecham, Dykes, Hama, & Lomax,
2021); bivariate, spike and space-time cube (Lan et al., 2021), hotspot cluster mapping
(Hohl, Delmelle, Desjardins, & Lan, 2020), time geography (Yin et al., 2021), risk
mapping (Loo, Tsoi, Wong, & Lai, 2021), and flow-maps (Ponce-de Leon et al., 2021).

2.2. Exploratory Spatial Data Analysis

Considering an infectious disease as a spatio-temporal phenomenon which spreads in
space and time, we can examine the underlying structure of its prevalence by looking
at how different factors co-vary at different locations. Various spatial autocorrelation
metrics have been proposed to measure the amount of spatial dependence, including
Getis and Ord’s G (Getis & Ord, 1992), Ripley’s K (Ripley, 1976), Geary’s C' (Geary,
1954), Matheron’s Semivariance y(h) (Matheron, 1963), and Moran’s I (Moran, 1948).
While global metrics of spatial association are good at establishing the magnitude of
the autocorrelation, local measures can pinpoint locations, where it is strongest or
weakest. For instance, Local Indicators of Spatial Association (LISA) (Anselin, 1995)
have been adopted from spatial econometrics and applied across multiple domains
in exploratory spatial data analysis (ESDA) with numerous case studies related to
COVID-19 (Murgante, Borruso, Balletto, Castiglia, & Dettori, 2020; Noi et al., 2021a;
Ramirez-Aldana, Gomez-Verjan, & Bello-Chavolla, 2020; Scarpone et al., 2020; Tokey,
2021; Xie et al., 2020). In addition to monitoring trends and hotspot detection, local
indicators of spatial association can be used to investigate the effect of governmental
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non-pharmaceutical interventions (e.g. isolation, contact tracing, physical distancing,
school and business closures) on the transmission of the disease (Haug et al., 2020;
Hsiang et al., 2020; Kucharski et al., 2020).

2.3. Mapping Spatial Association

From the cartographic perspective, the maps generated from LISA typically illustrate
statistically significant local clusters (coldspots and hotspots) and local outliers using
a choropleth map. While these visual displays work really well for purely spatial data,
developing analogous uncluttered visual displays for mapping spatio-temporal data
(e.g. mobility data) remains an active area of research. For example, differential Local
Moran (Anselin & Rey, 2014), which assesses the standardized differences between the
original values of the variable, collapses the observation period to two points in time,
while the emerging hot spot analysis (ESRI, 2021) tool breaks down the uncovered
clusters into 17 types based on their spatial and temporal proximity, making the maps
cluttered and hard to assess.

Inspired by traditional LISA visualizations, our proposed tool, VASA (first intro-
duced in Noi, Rudolph, and Dodge (2021b)), seeks to overcome these limitations by
providing cartographic representations of spatial clusters over time. These amended
spatio-temporal views simplify the assessment of spatial associations, making ex-
ploratory spatial data analysis more accessible. VASA further adds flexibility that
allows the user to run an analysis at different temporal and spatial levels of ag-
gregation. As an exploratory visual analysis tool, VASA is designed to synthesize
information from massive mobility data into easily interpretable insights.

2.4. Describing Spatio- Temporal Patterns

Throughout the paper we characterize both our data and induced spatial clusters in
the number of ways. We use the term ‘structure’ to refer specifically to data and how
it is structured, as well as describe its attributes. On the other hand, we use the term
‘patterns’ to describe the extracted spatial and/or temporal distributions. Finally, we
utilize the word ‘trend’ to characterize patterns of mobility with respect to time and
temporal progression of patterns throughout the observation period.

3. VASA: Visual Analysis for Spatial Association.

VASA consists of three modules as illustrated in Figure 1: import module, process-
ing module and visualization module. The tmport module contains various routines
for managing spatio-temporal series and construction of adjacency matrices (Rey &
Anselin, 2007). The processing module enables aggregation of data to various levels of
analysis: either spatial (e.g. tract, county, state, grid cells) and/or temporal (weeks,
months, etc.) units. The visualization module handles the graphic object representa-
tions and provides plotting functions for two multivariate cartographic visualizations:
a stacked recency and consistency map, and a line-path scatter plot. Both techniques
use LISA (Anselin, 1995) as the base, and utilize the Local Moran’s I and permuted
p-values. The techniques are best suited for areal data (e.g. county, Census blocks,
Census tracts, etc.) capturing aggregated information at different temporal and spatial
levels.



For illustration purposes, consider a typical data set of mobility metrics, where
the data is provided as spatio-temporal series at the county-level for each day of the
2020 in the USA. The stacked recency and consistency map allows to ascertain the
spatio-temporal structure of mobility for the entire data set (i.e. national level) or a
sub-sample of locations (e.g. state level). The line-path visualization enables a detailed
analysis of patterns at the individual or local level (e.g. as counties within a specific
state) over time. For example, the trends in counties identified as hotspots/coldspots
for the state of California can be explored. The algorithms used to generate each of
these visual displays are described in the initial conference paper Noi et al. (2021b),
and the supplemental reproducible code is provided in GitHub. Here, we focus on
describing the cartographic details, and provide a number of illustrative examples to
demonstrate the applicability of the tool. More technical information on the visual-
ization routines can be found in the Appendix.

Import Module
Adjacency |-----------omooomoooooooo \

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
H Spatial H
1 1
: Weights PySAL :
1 \ 1
1 1
1 1
1 raw data geometry 1
1 e " . 1
1 Mobility Indices VASA Spatial Features 1
: Pandas GeoPandas :
i i
L g R J
e b

\
Processing Module | Aggregate

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 o 1
| Impute Missing |
1 1
1 1
1 1
1 1
1 1
1 LISA 1
1 1
1 1

Line Path Scatter
Plot

Recency and
Consistency Map

Figure 1. VASA analytical framework. The inputs are denoted in yellow quadrilaterals, package objects and
classes are denoted in purple hexagons, intermediate processing methods are illustrated using blue rectangles,
and visual displays are represented using arrow-like green boxes. The modules are denoted in dashed rectangles.

3.1. Importing and Pre-Processing Data

The user interface of VASA includes a component for data import and processing,
which accepts tabular data and spatial data supported via Pandas (Wes McKinney,
2010) and GeoPandas (Jordahl et al., 2020). During the import, the analyst specifies
the spatial and temporal unit for aggregation. For instance, when importing daily



time series data at the county-level, one might group the data by ‘state’ (spatial
aggregation) and/or ‘week’ (temporal aggregation). This step is crucial as it will define
the regional scale of analysis (e.g. national/state level). At the same time, VASA runs
a series of checks to identify and handle missing values in the prepossessing step,
which could potentially cause issues in further analysis (see Section 5 for discussion
of missingness in data). Currently, VASA provides three options for handling missing
data. First, the overall average can be used to impute the missing values. For example,
for county-level data that is aggregated at the weekly level, the arithmetic average
for the entire sample of the county will be used for the week with missing values.
Second, a rolling average can be used to infer the missing data for partially missing
data points within a specific spatial unit (e.g. county). Finally, there is a method to
count the percentage of missing data per each spatial unit and an option to filter the
data if it is above a specific user-defined threshold.

After data preprocessing, the adjacency matrix is constructed to run LISA analysis.
Following the recommendations by Anselin and Rey (1991); Farber, Pdez, and Volz
(2009); Florax and Rey (1995); Stakhovych and Bijmolt (2009), VASA uses the first
order Queen’s contiguity to infer spatial weights by default, although other spatial
weights construction methods are available including distance bands and k-nearest
neighbors. Queen’s contiguity provides a sufficient approximation of the true weight
specification (Smith, 2009). The readers are referred to the Discussion section and
Appendix for more information. For constructed weight matrices, Local Moran’s I are
calculated for each temporal unit and each of the spatial units is classified as either a
local hotspot or local coldspot. The result of this process is a classification where every
spatial unit is denoted as either a hotspot, a coldspot or not-significant observation
for each temporal unit over the observation period. It is important to add that while
traditional visualizations of LISA include both the clusters (hotspots/coldspots) and
outliers, VASA uses clusters only. The reason is to simplify visualizations and control
the number of visual variables in the proposed displays. The classification is used as
an input to the visualization techniques outlined below. Mathematically, the Local
Moran’s I coefficient is calculated for each unit of analysis:

d; WijziZj
I = =%, (1)

i%i

where w;; is the spatial-weight matrix, z; = ri—X, 2j = T — X and X is the sample
mean. Thus calculated Local Moran’s I coefficients will depend on the specification of
spatial weights matrix and the sample mean. If our sample is the entire United States,
then Local Moran’s I will be calculated in relation to the national average. We can as
easily calculate Local Moran’s I values at the state level, by only including mobility
metrics for a specific state. This is further demonstrated in the case studies in Section
4.

3.2. Stacked Recency and Consistency Map (RECO)

The main geographic visual display available within VASA is called recency and con-
sistency map (RECO). For illustration, Figure 2 schematically shows how the car-
tographic visualization is created for county-level analysis of data in South Dakota.
First, the counties are depicted using their centroids (Figure 2a). After running LISA,
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Figure 2. (a) Centroids are generated and mapped as circle markers; (b) LISA is run to generate
hotspots/coldspots, which are mapped to red/blue colors; (c) Recency is mapped to color value; (d) Con-
sistency (number of times a county (or other object-level unit) is a cluster) is mapped to a marker size; (e)
Recency and consistency are finalized in a RECO map.
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Figure 3. (a) Cumulative hotspot/coldspot line segments are generated and connected; (b) Line endpoints

for the most recent hotspot/coldspot behavior are added to lines; (c) Line-paths for hotspot/coldspots are
colored in red/blue; (d) Line endpoints for hotspot/coldspots are colored red/blue, counties with both hotspots
and coldspots (i.e. flippers) are not filled. The tally of hotspots, coldspots and flips is added to the plot.

the centroids (shown as circle markers) are colored in blue if the associated counties
are coldspots at the selected point in time, otherwise if the counties are identified as
hotspots, the centroids are colored red (Figure 2b). The centroids of the counties that
are not significant clusters remain invisible. The color value (darkness or lightness) rep-
resents the recency (observations toward the end of time series) of hotspots/coldspots
in the time series (Figure 2c). A darker color shows that a statistically significant
clustering behavior was observed late in the observation period (more recent), while a
lighter color denotes a statistically significant clustering behavior early in the observa-
tion period (less recent). The visual variable size is used to represent the consistency
of hotspots and coldspots (Figure 2d). The consistency reflects the frequency at which
a county became a significant cluster (hotspot/coldspot) through the observation pe-
riod. The radius of the centroid marker shows the total number of times that county
was either a hotspot or coldspot in the given period (i.e. larger markers indicate more
frequent clusters).

3.3. Line-Path Scatter Plot

The second visual display available within VASA is called line-path scatter plot, which
provides a temporal view and an aspatial data representation. The visualization pro-
cess is illustrated schematically in Figure 3 for county-level analysis in South Dakota.
Each county is represented as a line, denoting a clustering behavior of a county over
time: the cumulative number of hotspot or coldspot classifications is mapped onto
y-axis and the time is mapped onto z-axis (Figure 3a). The line is constructed by



% sheltered (Safegraph) % sheltered (Safegraph) % sheltered (Safegraph) % sheltered (Safegraph)

40 50 o 10 20
Week Number

Figure 4. (a) Cumulative hotspot/coldspot line segments are generated and connected; (b) Line end-
points for the most recent hotspot/coldspot behavior are added to lines; (c) Line segments are classified as
hotspot/coldspots depending on the county’s most recent significant value and colored red/blue, endpoints are
colored by the county’s last week behavior (d) The week the flipped behavior occurred is marked by an X.

connecting the points representing a cumulative number of times the county was clas-
sified as either a hotspot or a coldspot at different points in time. For instance, for
a county that was a hotspot during weeks 5, 9, 10, 15 the following points will be
generated and connected: Point 1 (5,1), Point 2 (9,2), Point 3 (10,3), Point 4 (15,4).
Once the line segments are connected into a trajectory, the endpoints (the last time
the county was a statistically significant hotspots/coldspot) are depicted with a cir-
cle marker (Figure 3b). Next, LISA outputs are used to differentiate hotspots and
coldspots: hotspots are colored in red and coldspots are colored in blue (Figure 3c).
Finally, the line endpoints are colored based on the majority rule: for counties that
were consistent hotspots - red, otherwise - blue (Figure 3d). The counties that were
classified as hotspots/coldspots once or were not classified at all are not rendered on
the plot.

The clustering consistency for different spatial units depends on multiple factors and
varies depending on the assessed data set. Three basic types of behavior are common:
a consistent hotspot (i.e. a county was classified as a hotspots only), a consistent
coldspot (i.e. a county was classified as a coldspot only) and a flipper (i.e. a county
was identified both a coldspot and a hotspot within the observation period). Flips
are mapped on the main line-path scatter plot with an empty circle marker and a
thick edge endpoint (Figure 3d). We also added the total tally for these three types
of behavior as a text box in the top right corner.

Additionally, a variation of the line-path scatter plot, which only looks at flipping
behavior was developed (see Figure 4). In these plots, the color of the line changes
to reflect the clusters’s most recent hotspot or coldspot behavior. The week at which
the cluster changes behavior is marked by an ‘X’ on the line. The endpoint marker
for each cluster can either be a circle denoting a hotspot/coldspot classification or a
flip (‘x” marker).

3.4. Utility Functions

We added several utility functions to VASA to complement exploratory analysis: jitter
and sampling. In some tested applications, large sample size may result in layering of
lines with similar behavior for line-path scatter plots. For counties whose endpoints
terminate at the same coordinates, the jitter (i.e. minute variation of coordinate val-
ues) was added to differentiate such cases. Sampling functionality is intended to sim-



plify information overload for large sample sizes. The sampling is used to ‘thin out’ the
visual display by randomly selecting a subset of spatial units (e.g. counties) and can
be adjusted by the user by setting a sampling ratio (i.e. percentage of observations to
keep in a sample). Sampling can be applied to both line-path scatter plot and recency
and consistency map.

3.5. Mapping Spatio- Temporal Information to Visual Variables

Originally summarized by Bertin (2010), visual variables describe how the informa-
tion can be encoded into graphical dimensions, describing basic building blocks of
any visualization. Bertin believed that visual variables are assessed in an immediate
(preconceptual) manner, and not understood cognitively, yielding different types of
processing and perception: association perception, selective perception, ordered per-
ception and quantitative perception. We followed general design principles and recom-
mendations for visual semiotics and information visualization, when designing visual
displays for VASA (Hegarty, 2011; Slocum, MacMaster, Kessler, & Howard, 2009).
In particular, we used color hue (an associative and selective variable) to distinguish
hotspots and coldspots clusters to put an equal weight on the two types of clusters,
allowing the user to perceive variations in color hue as two distinct groups and visually
isolate these two phenomena. At the same time color values (a dissociative, selective,
ordered variable) was used to make the outlined patterns over time (e.g. clusters of
hotspots and coldspots) more discernible, such that the user’s eye is attracted to this
variation. Finally, the size (selective, ordered and quantitative variable) allows the user
to assess the consistency and frequency of a clustering behavior through the notion of
‘more’ or ‘less’. The recency denoted by color values is also ‘ordered’ and enables the
user to differentiate between ‘more’ or ‘less’ recent clustering behavior. Finally, time
is captured in multiple ways: RECO represents time using color value (the darker the
more recent cluster). It also provide a dynamic representation of RECO, which can
animate the development of the clusters over time. Finally, the line-path plots provide
a time-line view, representing the changes in the clusters over time.

4. Case Study

This section describes two case studies to demonstrate the capacities of VASA in as-
sessing mobility patterns in response to the COVID-19 pandemic through exploratory
data analysis and visualization at multiple geographic scales (e.g. county-level, state-
level, and 100m grid-level). The first case study applies VASA to investigate and com-
pare county mobility patterns at the state and national levels using data structured
as polygonal layers, while the second case study shows how VASA visual displays can
be adapted to assess data that are structured as grid or other forms of tessellation.
Leveraging data obtained from multiple sources (SafeGraph and Cuebiq, Mapbox),
the case studies aim to 1) investigate and compare mobility trends at different regional
levels; 2) explore the intra-urban spatial heterogeneity of human mobility. Since LISA
is essentially a cross-product statistics between a spatially lagged variable and a vari-
able itself expressed in terms of deviation from the mean, by changing the scope of
analysis (national versus state) we can explore the structure of mobility in relation to
a different point of reference. For case one, two regional scales of analysis are used:
national and state. For analysis at the national level all of the available data from
3,200 counties is used to calculate the Local Moran’s I, while for the state-level anal-



ysis only the data for counties within a specific state is used to generate the Local
Moran’s values. Finally, in case study 2 using Mapbox grids, only the data for the
greater Los Angeles area are used.

4.1. Mobility Data Sets and Mobility Metrics

The case studies utilize data from three different sources: SafeGraph, Cuebiq and
Mapbox for 2020. SafeGraph and Mapbox provide mobility data openly through an
initiative Data for Good, while Cuebiq provides the data on a commercial basis and
requires license fees. While SafeGraph and Cuebiq publish several metrics of aggregate
mobility at different spatial and temporal granularity, we utilize the following two
metrics as detailed in Noi et al. (2021a): Cuebiq % sheltered in place quantifies the
percentage of users staying at home in any given state or county. It is calculated daily
by measuring the number of users moved less than 330 feet from home. SafeGraph %
sheltered in place is calculated as: completely_home_device_count/device_count, where
completely_home_device_count represents the number of devices that did not leave the
geohash-7 (153m x 153m) area in which their home is located during the aggregation
time period. These data are structured in aggregate form at the county level for each
of the 366 days in 2020, representing the percentage of population staying at home
across all geographic units. The differences in how the two sources define and estimate
‘home’, as well as measurement biases inherent from smartphone data are likely to
influence the analytical outcomes and inferences as discussed in Noi et al. (2021a).
The Mapboz activity index reflects the level of movement activity based on cell-phone
records on a given day within a spatial unit (OpenStreetMap tiles: 100m by 100m).
The index value ranges from 0 (no activity) to oo (high activity) and is normalized
by a scaling factor calculated from the “99.9*" percentile of anonymized counts across
all geographic units and days in the baseline time span” (Mapbox, 2022).

% Sheltered (Cuebiq) % Sheltered (Safegraph)

Recency Number of Weeks
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Figure 5. Recency and consistency map for 3,200 US counties over the 2020 COVID-19 pandemic calculated
for Cuebiq and SafeGraph %-sheltered in place metric.
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4.2. Case Study 1: Comparing Pandemic Mobility Responses in Georgia
and South Dakota Using SafeGraph and Cuebiq Data

This case study focuses on the state of Georgia and South Dakota because these
states exhibited distinct geographic differences (see Figure 5) stemming from regional
mobility patterns. They also exhibited high levels of spatial heterogeneity and pro-
nounced differences between the mobility metrics across the two data sets. We use
social distancing metrics representing the percentage of population staying at home
obtained from SafeGraph and Cuebiq. Therefore, the inferred hotspots (described in
the following sections) can be interpreted as counties with higher percentage of people
sheltering at home, located next to other counties with higher percentage of people
sheltering at home. In contrast, the coldspots are interpreted as counties with lower
percentage of people sheltering at home, located next to other counties with lower
percentage of people staying in.

4.2.1. Mobility Patterns in Georgia

For Georgia, the recency and consistency map is provided in two views: Figure 6a
captures induced clusters comparing the county data to the national average, while
Figure 6b captures clusters deduced by comparing the county data to the state aver-
age. Atlanta (denoted as a set of contiguous beige county polygons) exhibits a hotspot
behavior (more people staying at home), while the rest of the state exhibits a coldspot
behavior (less people staying at home). This makes sense, since large metropolitan ar-
eas are more densely populated and there is an increased risk of transmission with
every trip (Hamidi, Sabouri, & Ewing, 2020; Souch, Cossman, & Hayward, 2021).
Another confounding factor could be an increasingly democratic political affiliation
(Grossman, Kim, Rexer, & Thirumurthy, 2020) for the majority of the population
in Atlanta metro area, that are generally more supportive of non-pharmaceutical in-
terventions. While both SafeGraph and Cuebiq agree on this divide, the ‘amount of
agreement’ varies: SafeGraph classifies five counties around Atlanta as recent and con-
sistent hotspots (i.e. darker and bigger markers), while for Cuebiq only two counties
are identified as hotspots, with much lower recency and consistency (smaller lighter
red markers). There seems to be a lot more agreement between the two data sources
with respect to coldspots recency and consistency, particularly in the Northeast and
the Southeast of the state (as indicated by similar color values and marker sizes).

Overall, assessing data in relation to the national mobility average helps to un-
cover the underlying gradient in mobility responses between urban and rural areas
in Georgia. This effect is not necessarily discernible for every state (for instance in
South Dakota as described in the next section), and may be attributed to the Modifi-
able Areal Unit Problem (Fotheringham & Wong, 1991) and how well the urban-rural
gradient is fitted into the administrative boundaries where aggregation occurs.

On the other hand, the spatial configuration of clusters produced with data from
Georgia counties (using the state average) is more uniform across the two data sources
(Figure 6b), albeit with slight differences in recency and consistency levels. For Safe-
Graph the coldspots are less recent and consistent (smaller markers with lower color
intensity). More generally, we observe the state is segmented into two parts: the North-
west, where the counties with high percentage of sheltered people are clustered with
other counties with high share of sheltering people; and the Southeast, where the
counties with low percentage of sheltered people are clustered with other counties
with low share of sheltering people. Once again, this is most likely attributed to the
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Figure 6. Recency and consistency mapping for aggregate mobility in Georgia.(a) Comparing mobility pat-
terns in GA counties to national average; (b) Comparing mobility patterns in GA counties to the state average.
The counties that intersect with the Atlanta metro area are denoted in beige.

urban-rural gradient, but the effect of this gradient is less attenuated because we are
only looking at 159 counties in Georgia. These outcomes suggest a more homogeneous
mobility pattern across the counties within the state, which may be indicative of the
state-wide NPI policies.

All RECO maps point to the differences in social distancing behavior across the
urban-rural divide: with urbanized areas exhibiting higher levels of social distancing.
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The hotspots identified in relation to the national average are not as consistent as
other hotspots in large dense metro areas in different states (e.g. Chicago, New York).
This is likely caused by the sprawling type of urbanization in Atlanta, which might
attenuate social distancing values within urbanized areas.
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Figure 7. Line-path scatter plot for % sheltered in place in Georgia. (a) Comparing mobility patterns in GA
to the national average; (b) Comparing mobility patterns in GA counties to the state average.

Figure 7 provides the line-path scatter plots of mobility behavior for individual
counties in GA: Figure 7a illustrates county trajectories during the 2020 with the
Local Moran’s I values calculated in relation to the national average, and Figure 7b
illustrates county trajectories with the Local Moran’s I values calculated in relation
to the state averages. The blue line-paths inferred from mobility patterns dominate
the visual display (Figure 7a), pointing to the fact that compared to counties nation-
wide, majority of counties in Georgia were classified as coldspots: counties with lower
percentage of people clustered together with other counties with lower percentage
of people sheltering at home. We can see that the state stay-at-home order (dated
April 4, 2020) was more effective in Atlanta-Sandy Springs-Alpharetta metro area,
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Figure 8. Recency and consistency mapping for aggregate mobility in South Dakota.(a) Comparing mobility
patterns in SD counties to the national average; (b) Comparing mobility patterns in SD counties to the state
average. The Missouri River is denoted in blue, the counties where majority of population is Native American
is denoted in beige.

captured by red lines that start to exhibit a hotspot behavior from week 12 across
both data sources. Furthermore, there are roughly two groups of coldspots: those
that remain consistent (i.e. frequently became a cluster) throughout pandemic (lines
with slope close to 1), and those whose consistency rose in the first 20 weeks of 2020
and then stabilized until week 44 started increasing again as a result of the Pres-
idential Election (November 3, 2020) and the Thanksgiving holiday (November 26,
2020). Not-surprisingly the only significant hotspots for both data sources stopped
being significant shortly before the Presidential Election (Cuebiq) or sometime be-
tween these two dates (SafeGraph). This trend is attenuated at the state-level (Figure
7b). When using the state average, there are less counties classified as statistically
significant hotspots/coldspots (as quantified by the number of lines and a counter
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Figure 9. Line-path scatter plot for % sheltered in place in South Dakota. (a) Comparing mobility patterns
in SD counties to the national average; (b) Comparing mobility patterns in SD counties to the state average.

of clusters). Looking at the time aspect of clustering, two groups of counties can be
identified: before and after week 25. The former contains the counties that stopped
exhibiting clustering behavior around week 25 (June 2020), which could be indica-
tive of the changing mobility patterns (less sheltering, more movement). The other
group of counties remained a hotspot/coldspot at least once during the weeks 25-52.
The number of flipping counties in Georgia is relatively low compared to the overall
number of counties.

4.2.2. Mobility Patterns in South Dakota

The recency and consistency map of mobility in South Dakota is provided in two
views: Figure 8a shows clusters deduced by comparing the county data to the na-
tional average, while Figure 8b captures clusters deduced by comparing the county
data to the state average. Compared to Georgia, the influence of the rural-urban gra-
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dient is not observed in these mobility patterns. None of the most populated counties
exhibit uniform behavior: Pennington County (home of the Rapid City) exhibits a
very inconsistent hotspot behavior, while Minnehaha county (home of Sioux Falls)
is a very recent and consistent coldspot. Nonetheless, some geographic and temporal
differences are captured: coldspots on the east of the state (east of Missouri River)
and hotspots on the west of the state (west of Missouri River). The coldspots drawn
on the Cuebiq data appear more recent and consistent (markers of larger size with
higher color intensity); more counties with lower percentage of people clustering next
to other counties with lower percentage of sheltering people through the course of
the pandemic. For SafeGraph data, the clusters are less recent with lower degrees of
consistency. South Dakota is often partitioned into West and East River regions, with
the Missouri River splitting the territory of the state into roughly two halves. The
West River is predominantly ranch and dryland farming oriented, while the East river
is mostly corn and wheat agricultural production. Furthermore, most of SD mining
operations are in West River. In South Dakota, there are eight counties, where the
majority of population is Native American (Bennett, Buffalo, Corson, Dewey, Mel-
lette, Oglala Lakota, Todd, and Ziebach), seven of which are located in West River.
Both Cuebiq and SafeGraph agree on classification for two counties only: Buffalo is
a coldspot, while Bennett is a hotspot. The Corson county is classified as a recent
hotspot by Cuebiq and as a non-recent coldspot by SafeGraph. Further research is
necessary to establish what caused such inconsistencies in the classification across the
two data sources. It is possible that the coverage and representativeness of the sample
is at fault.

There is much more disagreement between the sources for LISA values calculated
based on the state average (Figure 8b): for Cuebiq two hotspots are very recent and
centered in the southwestern corner of the state, with less recent coldspots located
along the Missouri River. For SafeGraph, the less recent hotspots are clustered along
the western state border and the coldspot counties are located in the middle of the
state. The consistency of clusters is noticeably lower (noted in smaller marker size)
across local clusters when compared to the clusters deduced from the national aver-
ages. The Missouri divide cannot be clearly observed here, and the overall number
of counties that were not statistically significant (counties with no circle marker over
them) is larger. Looking at both figures and comparing them across two regional scales
of analysis, we notice that mobility patterns uncovered in comparison to the national
averages do not persist through comparison to the state averages. We also observe
fair amount of inconsistencies between data sources that could be attributed to data
quality issues, resulting in representative bias.

The line-path scatter plot provides additional insights into how the counties behaved
during the pandemic (Figure 9). First, for mobility patterns calculated at the national
level (Figure 9a), Cuebiq captures consistent coldspot behavior across counties starting
from week 20. South Dakota is an example of the state that never implemented a strict
state-wide shelter-in-place order (Blackwell, 2021) for the entire population (only the
residents of Minnehaha and Lincoln counties who were at least 65 years old or with
underlying medical conditions had to stay home). Generally with a statewide stay-
at-home order, we typically expect a hotspot behavior (more people staying home
across counties concentrated in a specific location). The comparison to the national
average mobility patterns points to the fact that multiple coldspots (fewer people
staying at home than on average across the United States). This signal is attenuated
for coldspots generated from SafeGraph data: the slope of lines remains flat until
week 35 when the lines start rising. For LISA clusters generated from state averages
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(Figure 9b), only a few counties exhibit a consistent behavior. Overall, there are
no counties that were statistically significant clusters for more than 10 weeks (no
values with Count [y-axis] higher than 10). This also points to higher uniformity
in individual mobility patterns across the counties and very little predisposition to
clustering behavior. Another important observation revealed in Figure 9 is the high
number of flipping counties. In fact, 23/66 counties for both Cuebiq and SafeGraph
change their clustering behavior during the observation period. Looking closely at the
flipper scatter-path (Figure ?7), most of the flips are observed for counties that were
classified as hotspots within the first 10-20 weeks of 2020 (between January 1 and
June 1), followed by some coldspots towards the second half of 2020.

4.3. Case Study 2: Investigating Intra-Urban Mobility in Greater Los
Angeles in 2020

Los Angeles is a major metropolitan area and is also the second-largest city in the
United States with a population of 3.9 million. Furthermore, this area provides a
good mix of urban and semi-urban land-use patterns that can influence mobility in
different ways, including commercial areas (Glendale, Downtown Los Angeles), tourist
areas (Huntington Beach, Santa Monica), logistic centers (Long Beach Port), and oth-
ers. Since the Mapbox data is highly detailed, only grid cells within the US Census
Populated Place Areas for Los Angeles County were considered, thus excluding areas
with low population density, forested areas and over-the-sea grid cells. To simplify
the analysis and computations, we generate the recency and consistency map and the
line-path scatter plot (Figure 10) by aggregating a 100m grid (OpenStreetMap zoom
level 18) to the ‘neighborhood’ level of 2000m grid (OpenStreetMap zoom level 14).
One major difference between SafeGraph/Cuebiq and Mapbox data, is the tessellation
type. Mapbox provides regular gridded data which is continuously distributed over the
entire study area including forested areas and ocean tiles, whereas SafeGraph/Cuebiq
aggregate mobility at Census designated areal units drawn over land only. This ne-
cessitates extra data processing and filtering for gridded Mapbox data due to unequal
volume and distribution of mobility over different types of surface (e.g. land / ocean).

The RECO map (Figure 10a) shows the amount of recency and consistency of local
clusters, corresponding to the underlying aggregate mobility values of the entire LA
region. The hotspots (shown in red) highlight the tiles with higher activity levels
located next to other tiles with high values, whereas coldspots (in blue) correspond
to tiles with lower activity levels located next to other tiles with low values.

Figure 10a highlights the spatial distribution of clusters in Los Angeles. First, we
notice two large recent hotspots: in central Los Angeles (Hollywood, Fashion District,
Skid Row, Koreatown, Beverly Groves) and in coastal Santa Monica and Venice. More
localized hotspots are also noticeable in Van Nuys, Costa Mesa, and Newport Beach,
where many local points of interest, such as shopping and recreational activities are
located. The coldspots are situated in Long Beach (home to the second largest port in
the United States). Since COVID-19 disrupted many world supply chains, the signal
we observe here is mostly due to a drastic decrease in cargo shipping. Other coldspots
are also localized around Cypress and Santa Ana areas. A series of coldspots to the
South-East of the Newport beach is observed in areas that have a large number of
coastal rental properties. Looking at Figure 10b we see that the hotspots (areas of high
mobility) remain consistent throughout 2020, while the coldspots consistency remains
low (below 5-10 weeks during 2020). The consistency of hotspots peaks around 30
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Figure 10. Mobility patterns captured in Mapbox activity index data: (a) the Recency and consistency map;
and (b) the Line-path scatter plot.
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weeks. The consistency of coldspots is significantly lower, with maximum around 10
weeks. Ideally, we would observe the effect of the stay-at-home order on mobility in the
increased number of coldspots (areas of low mobility situated next to other areas of low
mobility), but the effect seems to be delayed by five weeks. We observe a sharp increase
in the amount of statistically significant coldspots around April 15, 2020, when the
new social distancing guidelines for the city of Los Angeles were established. Both
the RECO map and the line-path scatter plot uncover mobility patterns in relation
to the overall average of the study area (i.e. the greater Los Angeles metro area).
Therefore, it makes sense that the areas with most activity are concentrated around
downtown Los Angeles, where there are many businesses and commercial areas. The
concentration of high activity tiles in Newport Beach and in Santa Monica/Venice
Beach can be attributed to clustering of hotels, resorts and other tourist attractions.
At this level of analysis, we are unable to differentiate any major transportation
arteries: the aggregated spatial grid size is too large to capture the outline of the
highways and freeways. The number of flipper tiles is pretty low and is not clustered
within a specific geographical area.

5. Discussion: Analytical Challenges and Future Development

In this section, we summarize VASA features and limitations in the light of existing
literature, and outline some possible avenues for further development. We also provide
a few general recommendations on VASA’s application with regard to data type and
size, geography of features, interactivity, and missingness in the data.

5.1. Effective Mapping of Spatial and Spatio-Temporal Autocorrelation
Indices

Overall, there are multiple challenges to mapping COVID-19 and its mobility re-
sponses effectively (Juergens, 2020), which VASA tries to address. Building on the
well-established LISA, VASA is designed for swift exploratory analysis with a par-
ticular focus on the spatial and temporal patterns across various levels of analysis.
VASA allows assessing the spatial clusters over time across multiple geographic scales,
by adding recency and consistency metrics to the available hotspot/coldspot choro-
pleth displays. It further enables the user to track the behavior of individual counties,
states and other political units via the line-path scatter plot. In contrast to differen-
tial Local Moran (Anselin, 2019), our visual displays contain more information on the
temporal aspects and can capture the change points in time at each spatial unit (for
instance, change in county-level responses to imposing/lifting nationwide or statewide
stay-at-home orders). In comparison with the space-time scan statistic (Hohl et al.,
2020), which allows to effectively monitor and identify COVID-19 clusters, the pro-
posed visualization technique is more appropriate for exploratory data analysis and
does not require the user to specify the size of the spatial and temporal window. While
space-time cube may be used as a viable alternative for mapping raw or gridded dy-
namic series (Mo et al., 2020; Purwanto et al., 2021), the visual display becomes easily
cluttered when the areal units (e.g. county, state) are rendered in 3D over time.
While there are multiple implementations of combined spatio-temporal autocor-
relation (Gao, Cheng, Meng, & Liu, 2019; Griffith & Heuvelink, 2012; Lee & Li,
2017), we opted to use purely spatial Local Moran’s I for three reasons. First, Local
Moran’s I is easier to interpret and is more commonly used across various disciplines,
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including regional science, spatial econometrics, economics, spatial statistics, and ge-
ography. Second, it provides an easy mapping from I to four clustering types (which
are more easily interpreted than continuous unit-less I values). Third, for combined
spatio-temporal indices, it might be harder to separate the individual effect of spa-
tial and temporal variations. By coupling the spatial Local Moran’s I with temporal
representation we were able to demonstrate temporal mobility trends in relation to
non-pharmaceutical interventions.

5.2. Specification of Spatial Weight Matrices

The configuration of local spatial clusters depends on the specification of spatial
weights matrices. VASA provides most commonly used weight construction methods,
including kNN, Queen’s and Rook’s (and their combination). We generated a series of
visualizations to investigate how different specifications affect the overall spatial pat-
terns in data using recency and consistency maps (see Figure 5, 7?7, 7?7 in Appendix).
Overall, for national-level county data we observe very similar cluster configurations,
with the highest number of statistically significant clusters for Queens weights, sec-
ond highest for Rook’s, and third largest for kNN. The observed spatial distribution
of clusters appears very similar across all three figures.

5.3. Dealing with Big Data

While the case studies outlined in this paper provide a good combination of possible
analytical scenarios, where VASA can be used, the size of the problem and, specifically,
the number of units under analysis should be carefully managed to avoid information
overload. With larger data sets, the computational time is likely to increase and make
the visual displays more cluttered. Consider a national map of the United States gen-
erated for 3,200 counties (Figure 5). The map provides an easy-to-read visual display
to ascertain major mobility patterns: Pacific-West and the Northeast are hotspots
(more people sheltering at home), Illinois is divided along the urban-rural gradient,
with Chicago exhibiting a hotspot behavior and the south of the state is a coldspot.
At the same time, looking specifically at Northeast is troublesome in terms of graphic
representation, due to high concentration of counties and high consistency coldspot
behavior, which results in the clumping of larger markers. The RECO map can be used
to chart a few thousand features. However, the density of features matters, particu-
larly for Census units which are attached to the population (i.e. Census block groups).
Therefore, depending on the context, it may be required to aggregate the data one
level up (i.e. Census tracts) and tweak the size of centroid markers to remove occlusion
from the map (see Figure 5).

For the generated line-path scatter plots above, the number of visualized features
was 159 in Georgia and 66 in South Dakota. As the number of features (lines) increases,
the visual display may get more cluttered. For cases with over 1000 observations on the
plot, we recommend utilizing VASA’s ‘sampling’ functionality that makes such visual
displays easier to read and differentiate between clusters. Thus, sampling sufficient
amount of observations could help assess the temporal structure of clustering behavior,
which is a primary purpose of the line-path scatter plot. At the same time, it is also
important to keep the duration of observation of the study period relatively high
(e.g. above 10). For example, with only 5 days/weeks of observations the amount of
variation within a ~5000 geographic features might be very low, rendering the line-
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path scatter plot useless. For such cases, we recommend the users to use ‘jitter’ and
‘sampling’ functionality. In future developments, we plan to add bundling to the lines,
to highlight the trend better in such situations.

5.4. Handling Missing Data

Missing data can have major impacts on the assessment. For the proposed analyt-
ical pipeline, the data is assessed sequentially, with Local Moran’s I calculated for
each time step. Therefore, a missing value may result in unconnected/broken spatial
matrix. VASA provides functionality to assess missingness or gaps in the provided
data and different options for constructing spatial weights matrices (e.g. contiguity,
kNN, distance-bands and others). Normally, there are two ways of dealing with such
scenarios: imputing missing values and adjusting the type of neighborhood (i.e. using
distance threshold instead of Queen neighborhood). Depending on the type of missing-
ness (missing at random, missing completely at random, missing not at random), the
imputation methods should be tuned appropriately for each data set (Rubin, 1976).
Since the gaps in spatio-temporal data are rarely random, the spatial and tempo-
ral neighborhood structure should be considered. At this beta-stage of development,
VASA utilizes commonly used time-series tools for such imputation: the global average
and the rolling average. We recommend that the spatial units that are missing values
for the substantial amount of time (i.e. several weeks) are dropped from the analysis.
Otherwise, the imputation techniques can not provide a good enough approximation.
In the future, more advanced spatio-temporal interpolation methods can be added to
the package.

5.5. Handling Areal data and Tessellations

Evidently, the analysis on the regular Mapbox grid posed multiple challenges as com-
pared to the polygonal data used here. These challenges are mostly related to the
format and specifications of the Mapbox data and not VASA’s visual displays. First,
because the square grid does not extend naturally to the spatial features of the urban
forms (as in Census Blocks), the tool may yield coldspots at locations, where there is no
or very little movement, for instance in forested areas and open waters. Additionally,
filtering out the ‘no-movement’ tiles generates additional difficulties for constructing
the adjacency matrices (especially for contiguity defined spatial weights matrices - e.g.
Rooks, Queens) as many tiles may be removed rendering a disjoint study area. One
possible solution would be to filter the tiles that are specifically located within city
limits, where there is more movement. Unfortunately, this would skew the focus of the
studies towards investigating business areas and commercial districts due to the way
the data is collected and aggregated by Mapbox, which effectively limits the signal in
residential areas via privacy algorithms.

The fine spatial resolution for Mapbox poses two major challenges for visual ana-
lytics: 1) RAM limitations for in-memory processing, and 2) occluded visual display
due to the large size of the study area. To make computations more manageable, ag-
gregation is required. At this stage of development, VASA does not contain automatic
procedures to identify an ideal sampling scale. As a rule of thumb, we recommend
using OpenStreetMap tile zoom levels: town (12), village (13), small road (15), street
(16), block/park (17), some buildings (18). For analysis in this paper, we selected the
zoom level 14, which is situated between ’village’ and ’small road’ and is indicative

21



of the neighborhoods. Additionally, aggregation based on administrative units can
be considered (e.g. Census block groups). Future extensions, may consider applying
a multi-scale rendering where the aggregation level changes on the fly based on the
selected zoom level.

5.6. Adding Interactivity

The developed visualizations can be made interactive and web-based, enhancing user
experience and VASA exploration capabilities. Examples of such visualizations have
been developed and are available on the Lab website®. In future extensions of VASA,
we also plan to add an interactive version of the RECO and the line-path scatter
plot. Specifically, by utilizing Altair API, we plan to make the following adjustments:
1) enable the zooming and panning over the map canvas; 2) interactive selection of
hotspots / coldspots from the legend entries; 3) adding a dropdown selection widget
to look at states (or other units of analysis) individually; 4) using a slider widget
to investigate temporal trends; 5) adding linking and brushing to couple RECO and
line-path scatter plots; 6) Adding pipeline to switch between spatial and temporal
units of aggregation.

5.7. Animated Movement

Animation plays an important role for cartographic visualization of spatial patterns
in time (DiBiase, MacEachren, Krygier, & Reeves, 1992). When prototyping VASA,
we implemented various animated views to demonstrate how the spatio-temporal pat-
terns of mobility changed over 2020. These visualizations are provided on the Lab
website. The animated choropleth maps are able to show weekly county behavior over
time. The weekly LISA classification of counties are shown by hotspot/coldspots be-
ing colored red/blue and non-significant counties not being colored. The animation
cycles through each week, updating the maps as it plays. The user has the ability to
pause the animation, skip forward or backwards a week or drag the timeline cursor
to a specific week. There is an additional option to make the animation cumulative,
layering classifications of previous weeks together with current week, while also fading
away distant classifications as the animation plays forward. There is some interactiv-
ity to these maps as well. Clicking on a state will center a view on that state. This
also opens a table which lists all of the counties in the state and displays the counties’
raw mobility indicators values used and the derived LISA classifications.

6. Conclusion

This paper introduced an analytical framework for exploratory analysis on aggregate
movement data along with the corresponding package VASA. We demonstrated how
mobility data can be effectively mapped to infer spatial and temporal structure of pat-
terns in response to the COVID-19 pandemic and relevant non-pharmaceutical inter-
ventions. Using examples with regular and irregular tessellation data, we showed how
VASA can be adapted for ESDA across scales: for national, state and regional-level
analysis using multiple data sets such as SafeGraph, Cuebiq and Mapbox mobility
indices. VASA can be an important and effective tool in a spatial analyst toolbox,

3See interactive examples on a Lab’s website.
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helping guide the knowledge creation and hypothesis generation process at the start
of data analysis pipelines. By looking into three different cases, we were able to de-
scribe the evolution of spatial clusters of mobility during the COVID-19 pandemic
in different areas. The preliminary findings from these research cases can be used to
guide further research: 1) the differences between urban and rural counties in Georgia;
2) the influence of political affiliation on movement patterns; 3) the mobility patterns
in counties with predominantly American Indian populations. Overall, VASA demen-
strated to be more effective for large scale areal (county-level) data. The assessment
of the regular finer resolution gridded data poses a number of challenges for spatial
analysts: the influence of scale and modifiable areal unit problem might affect the con-
figuration of spatial clusters in an unpredictable manner. Further research is needed
to investigate these effects. Another major thread of future research will focus on as-
sessing the effectiveness of the proposed visual displays and visual encodings in typical
user tasks for exploratory data analysis.
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Appendix

The figures below illustrate the changes in uncovered spatial clusters based on different
spatial weights configurations. The total number of statistically significant clusters in
depicted in Figure ??. The highest number of hotspots/coldspots is estimated for
Queen’s contiguity, second largest - for Rook’s, and third largest - for kINN.
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Algorithm 1: Recency and consistency mapping algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;

for each aggregate spatial (i) and temporal unit (j) do

calculate Local Moran’s I (/;;) and permuted p-value;

recode statistically significant values (« = 0.05) of I;; according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);

calculate cumulative sum of classifications for coldspots (S.) and hotspots
(Sh)-;

retain the week number the county was classified as either coldspot (W,) or
hotspot (W},).;

end

map county polygons to centroids and display as a marker;

map retained hotspots to red color and coldspots to blue color;

map the cumulative sums (S., Sp,) to the size of the marker;

map retained week numbers (W,, W},) to the intensity of marker color;

Algorithm 2: The line-path scatter plot algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;

for each aggregate spatial (i) and temporal unit (j) do

calculate Local Moran’s I (I;;) and permuted p-value;

recode statistically significant values (a = 0.05) of I;; according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);

calculate cumulative sum of classifications for coldspots (S.) and hotspots
(Sh)-;

retain the week number the county was classified as either coldspot (W,) or
hotspot (W},).;

end

plot the cumulative sums (S, Sy) against the week number;

map retained hotspots to red color and coldspots to blue color;

mark the cumulative sum on the last week number of classification with a
circle;
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Algorithm 3: Categorical strip (dot) plot algorithm.

set spatial (e.g. county) and temporal (e.g. week) unit for aggregation;
for each aggregate spatial (i) and temporal unit (j) do
calculate Local Moran’s I (I;;) and permuted p-value;
recode statistically significant values (a = 0.05) of I;; according to Moran’s
scatterplot quadrants (i.e. hotspots and coldspots);
calculate cumulative percentage of classifications for coldspots (P.) and
hotspots (P,).;
end
aggregate cumulative percentage (P., Py) at the state level into Ps., Psp;
map aggregated percentages (Ps., Ps,) on the z-axis;
map states on the y-axis;
map retained hotspots to red color and coldspots to blue color;

30



	Introduction
	Background
	Geovisualization for COVID-19
	Exploratory Spatial Data Analysis
	Mapping Spatial Association
	Describing Spatio-Temporal Patterns

	VASA: Visual Analysis for Spatial Association.
	Importing and Pre-Processing Data
	Stacked Recency and Consistency Map (RECO)
	Line-Path Scatter Plot
	Utility Functions
	Mapping Spatio-Temporal Information to Visual Variables

	Case Study
	Mobility Data Sets and Mobility Metrics
	Case Study 1: Comparing Pandemic Mobility Responses in Georgia and South Dakota Using SafeGraph and Cuebiq Data
	Mobility Patterns in Georgia
	Mobility Patterns in South Dakota

	Case Study 2: Investigating Intra-Urban Mobility in Greater Los Angeles in 2020

	Discussion: Analytical Challenges and Future Development
	Effective Mapping of Spatial and Spatio-Temporal Autocorrelation Indices
	Specification of Spatial Weight Matrices
	Dealing with Big Data
	Handling Missing Data
	Handling Areal data and Tessellations
	Adding Interactivity
	Animated Movement

	Conclusion



