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Abstract—Details of Monarch butterfly migration from the
US. to Mexico remain a mystery due to lack of a proper
localization technology to accurately localize and track butterfly
migration. In this paper, we propose a deep learning based
butterfly localization algorithm that can estimate a butterfly’s
daily location by analyzing a light and temperature sensor data
log continuously obtained from an ultra-low power, millimeter
(mm)-scale sensor attached to the butterfly. To train and test
the proposed neural network based multi-modal sensor fusion
localization algorithm, we collected over 1500 days of real world
sensor measurement data by 82 volunteers all over the U.S. The
proposed algorithm exhibits a mean absolute error of < 1.7° in
latitude and < 0.6° in longitude Earth coordinate, satisfying our
target goal for the Monarch butterfly migration study.

Index Terms—Ilight-level geolocation, Monarch migration, neu-
ral networks, maximum likelihood estimation

I. INTRODUCTION

Each fall, millions of Monarch butterflies across central
and eastern U.S. and southern Canada migrate up to 2,500
miles to overwinter in the same location in central Mexico.
In spring these migrants mate and remigrate northwards to
repopulate their northern breeding territory over 3 — 5 partially
overlapping generations. Because no migrant Monarch lives
long enough to make a return trip to the overwintering site, this
navigational task cannot be learned and must be a genetically-
encoded spatiotemporal program.

At present, only the largest animal migrators can be tracked
continuously for significant portions of their migratory jour-
ney (e.g., [1]). Monarch butterflies, as small insects, cannot
be tracked using the same strategy due to the weight and
power constraints for mounted devices. A recent effort tracked
Monarchs and green darner dragonflies up to hundreds of
miles using the Motus Wildlife Tracking System [2]. While a
substantial advance, this method has several limitations, such
as unacceptable tracker weight, excessive power consumption,
and very limited coverage of the Monarch migration territory.

While the global positioning system (GPS) is the most
conventional method for determining locations, the smallest
commercial GPS solution [3] has a total weight of 1 gram and
size of Scm, which is vastly too heavy and large for butterflies
to carry. As an alternate to GPS, we propose to use daylight
and temperature logging that are able to be integrated into
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the Michigan Micro Mote (M?) platform [4]-[6], which has
a potential of weight less than 50 milligram and a size of
8x8x2.6 mm?. Its duty-cycled operation is sustained by solar
energy harvesting and it supports 50 meter distance wireless
readout at the Monarch overwintering site. A new M? platform
customized for Monarch butterfly mounting is currently under
manufacturing and evaluation.

This paper introduces a deep neural network based Monarch
butterfly localization algorithm that utilizes the light intensity
and temperature measurement data logged on the M3 plat-
form. The proposed algorithm will be performed offline to
analyze the migration trajectory when the log data is wirelessly
retrieved from the butterfly at the overwintering site (it is
possible because all butterflies migrate to the same site).
To train and evaluate the proposed neural networks before
deploying the final M3 system, we have conducted a data
measurement campaign with 82 volunteers across the U.S.
to record solar light intensity (in Lux) and temperature (in
Celsius) using commercial HOBO sensors [7] as an emulator
of the final M3 platform for the duration of Monarch fall
migration in 2018.

II. RELATED WORK

Light intensity based localization has been applied to track-
ing marine animals that remain submerged and out of the reach
of GPS [8]-[11]. Prior attempts tried to explicitly estimate the
sunrise and sunset time from recorded light intensity curve.
Then longitude and latitude coordinates are determined based
on the estimated day center and day length respectively using
standard astronomical equations [12]-[15]. However, it has
the fundamental limitation of large latitude ambiguity around
the equinox days (September 22 and March 20) when the
day length is globally the same regardless of latitude. A
second main challenge is the significant local light intensity
variation due to weather and terrain factors that an ideal
sunlight intensity model is unable to capture. In addition to
light sensing modality, prior works [16], [17] augmented sea-
surface temperature to improve the accuracy of tracking large
sea animals for GPS-failing conditions (i.e., underseas). These
approaches first construct a sea-surface temperature contour
map based on satellite data and then localize the sensor by
finding the position on the map where the temperature matches
to the sensor reading. Although it is effective for sea animal
tracking, the same method is not directly applicable to on-
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/above-ground butterfly localization where the temperature is
significantly affected by the local terrain and weather.

III. PROPOSED METHOD
A. Overview

For the butterfly daily localization problem, the relationship
between the measurements (light intensity and temperature),
locations and time can be modelled by an observation model,
which can be expressed as [Ip,tp]" = g(xp)+np where D
is the day index (with a unit of a day), xp denotes the state
vector that represents the latitude and longitude coordinate
of the butterfly on the day D, and 1p and tp denotes the
discrete sequence of light intensity and temperature sensor
data measured on the day D, respectively. np represents the
sequence of process noise and observation noise, respectively
and g is the observation function relating the state vector to
measurements.

In this paper, we mainly focus on the likelihood
p(1p,tplxp) to localize the butterfly’s daily position. As it
is practically infeasible to find an exact expression of g for
Monarch butterfly migration, we rely on deep neural networks
to learn the implicit observation model based on real world
data. Then, we treat the output of the neural network as
the estimation of likelihood, which can either be used for
direct localization through maximum likelihood estimation
(MLE), or can be combined with adaptive filtering/smoothing
techniques (e.g., particle filtering/smoothing). Because light
intensity and temperature measurements have different prop-
erties as discussed in Section III.C, we apply two distinct
neural networks to learn their likelihoods separately. That
is, p(Ip|x) =~ ®;(1p,%) and p(tp|X) =~ Pp(tp,X) where
®; and P, denote the two neural networks, X denotes an
arbitrary location. Then, with a simplifying assumption that
light intensity and temperature measurement are conditionally
independent given the state vector, we have p(lp,tp|x) =
p(1D|)~()p(tD|)~() ~ (I)Z(ID,)E)(I)t(tD,f(). We call ®; the light
intensity discriminator and ®, the temperature discriminator.

B. Light Intensity Discriminator

In this section, we propose a light discriminator network
to estimate p(l1p|X). For the network input, we first define a
reshape function r: 1p = r(lp, %, D) where 1p is the normal-
ized light intensity data obtained by shifting and resampling
the original 1p based on the coordinate state x and the date
information D so that the night center is located at the center
and the length of the night is scaled to 12 hours as depicted
in Fig. 1 (blue curve). The reason we normalize the light
intensity curve based on the night center and length instead
of the day center and length is because Monarch butterflies
are known to rest without changing the location during the
night. In our problem, the date information D is known for
the light intensity data measurement 15, but the true coordinate
state x is unknown. Therefore, the normalized light intensity
output Ip = r(1p, %, D) becomes symmetric around the time
reference (time of 24:00) with 12-hour night length only if a
correct coordinate state X is used in the normlization function
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Fig. 1. Example normalized light intensity (log scale) curves. The blue curve
shows a matched location case where its night center is centered at time 24:00
and its night has the length of 12 hours after location dependent shifting
and scaling. The yellow and red curve show mismatched location examples;
location error results in longer/shorter night length and night center offset.

as illustrated in Fig. 1. The objective of the light discriminator
network ®; is to discriminate a correct vs. incorrect coordinate
state X given iD, 1p, and D.

The input to the light discriminator network is 1p in log
scale reshaped from the observation 1p based on a state candi-
date x given the measurement date information D. The neural
network is trained to discriminate (i.e., binary classification)
whether x matches to the true measurement location or not
by observing the shape of 1p normalized based on %. To
generate the training dataset for this discriminator network,
we use both matched and mismatched pairs of (1p,%). The
final activation of the discriminator network is the sigmoid
function. Hence the output ®;(1p, X) can be interpreted as the
likelihood probability p(1p|x).

The length of 1p as the input of the discriminator is set
to 8 hours (2 hours around the expected sunrise and sunset
time) as shown in Fig. 1. Longer window length increases
the complexity of the neural network unnecessarily without
improving the discriminator accuracy as it mostly rely on the
light intensity data shape near the sunrise and sunset time for
binary classification. Data around the night center are excluded
from the discriminator input as the light measurement around
midnight is mostly noise.

C. Temperature Discriminator

The temperature discriminator network is designed to esti-
mate p(t|X). However, unlike the light intensity model that can
be trained using a location dependent normalization function
r(1p, X, D), the temperature data does not significantly depend
on the longitude location coordinate while it is significantly
affected by the local weather. Thus, we utilize the weather
station data as a reference and train the discriminator to
compare the two inputs; the temperature measurement data
from the sensor and the weather station measurement data at
a particular location on the same day. It produces the binary
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Fig. 2. Volunteer sensor data log locations in the U.S.

classification result; matched or mismatched depending on
whether the location of the weather station is closest to X or
not. The final sigmoid function of the discriminator network
quantifies the temperature data pattern similarity between the
sensor and weather station data at a particular location x and
date D estimating O, (tp, X) ~ p(tp|X). We restrict the length
of the temperature discriminator input t to be £8 hours around
the night center because it is the time when butterflies rest
without moving.

IV. EXPERIMENTS
A. Hardware & Data Collection

We used HOBO sensors [7] as an emulator of the final
M? platform to record the light intensity and temperature
data. To collect the real world data, we disseminated HOBO
sensors to 82 volunteers in the U.S. This volunteer data contain
measurements of 1625 days with a time resolution of 10
sec for light intensity and 15 sec for temperature from Ist
September to 19th December in 2018. The volunteer sensor
placement locations are shown in the map (Fig. 2) of the U.S.
We access the night temperature weather station data with time
resolution of 1 hour using WeatherBit API [18]. The time
offset and resampling factor for the light intensity reshaping
function 1p = 7(Ip,%, D) are obtained by the astronomical
equation MATLAB function [19], which calculates the sunrise
and sunset time (which are converted to the night center time
and night length) for a given coordinate x on the day D.

B. Data Processing and Preparation

1625 days of sensor measurement data are divided into 1300
training and 325 testing data. The light intensity data are down-
sampled to 1 minute interval and then the intensity is converted
to log scale to magnify the change in low light level (near
sunrise and sunset) while suppressing the temporal variation
(due to shadow) in bright conditions. Since the WeatherBit
weather station temperature data has time resolution of 1
hour, we also down-sample sensor temperature data to 1 hour
interval to match the sampling rate.

For each of the 1300 training light intensity data 1p, we
prepare one matched pair (l D, %) and 24 mismatched pairs by
applying random night center and night length offset in the
range of 4 — 120 minutes. We end up with a training set of size
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Fig. 3. Light (left) and temperature (right) discriminator neural networks

32500 in which 1300 entries are labeled Class 1 (match) and
31200 entries are Class O (mismatch) for binary classification.
A similar process is applied to generate the training dataset for
the temperature discriminator. For each of 1300 temperature
measurements tp, we prepare one matched pair using the
weather station data at the nearest location to label it Class
1 (matched). In addition, we create 15 mismatched pairs with
the Class O label for each sensor measurement tp using
the weather station data randomly selected from 15 different
locations within the range of £20 degrees in both latitude and
longitude around the ground-truth location. When there is no
weather station data in the vicinity of a random position, we
simply treat it as an outlier without adding it to the training
dataset. This approach leads to 17198 Class 0 data and 1300
Class 1 data in total.

C. Network structure and training

The network structures for the proposed discriminators are
shown in Fig. 3. The light intensity discriminator contains
4 convolution layers (conv - batch normalization - ReLU -
max pooling) and 3 fully connected layers. The size of each
layer is specified in Fig. 3. The temperature discriminator
network shown on the right in Fig. 3 only contains three
fully connected layer and a dropout layer with p = 0.25
placed after the first fully connected layer. These proposed
networks were found after testing various network hyper-
parameters to enhance the performance. Since the size of
Class 0 dataset is much larger than that of Class 1 for
both networks, we adopt a weighted sampling technique that
samples the dataset unevenly so that the two classes are equally
probable for each batch. Both discriminators are trained with
the ADAM optimizer with betas = (0.9, 0.999) and a learning
rate of 5 x 10~%. The light discriminator is trained for 50
epochs while the temperature discriminator is trained for 200
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Fig. 4. Example likelihood outputs for three different days, (a) top row: Sep.
28, (b) middle row: Oct. 15, (¢) bottom row: Dec. 04.

epochs. We randomly selected 260 days of measurements to
generate matched and mismatched pairs as our validation set.
Considering the fact that our classification problem is highly
imbalanced between Class O and 1, we searches for a network
that produces the highest Fj 5 score instead of the highest
validation accuracy, where Fjg score is defined as:

recall x precision

Fg=(1+4% (1)

B2 x precision + recall

Here, we choose 8 = 0.5 to prioritize precision because
a higher precision score implies that our network eliminates
false positives more aggressively producing high likelihood
scores only for fewer candidate coordinate X’s.

D. Results

The proposed neural network based likelihood estimation
(®;(1p,%x) and P.(tp,%)) is performed by collecting the
neural network output for each test data 1p and tp evaluated
at various coordinates X in a grid surrounding the ground-truth
sensor location with a range of [—10, 10] degrees in latitude
and longitude. The x grid resolution for the initial (coarse)
likelihood evaluation of ®;(1p, %) and ®;(tp, %) is 1 degree
for both longitude and latitude. The spatial resolution of the
likelihood estimation is refined to 0.1 degree by upsampling
and interpolating the coarse evaluation results.

Three example likelihood estimations on three different
days are shown in Fig. 4 where red and blue color corre-
sponds to high and low likelihood, respectively. The plots
on the left, center, and right column show the (interpolated)
neural network output ®;(1p, %), ®+(tp, %), and the product
D;(1p,%x)P(tp, X), respectively, for randomly selected sen-
sor data instances (1p,tp,x) while the ground-truth sensor
locations xp are shifted to (0,0) for plotting. The sensor
measurement data on the row (a), (b), and (c) were collected
on the date of Sep. 28, Oct. 15, and Dec. 4, respectively. We
observed that the light discriminator neural network mostly
relies on the night length information to estimate the latitude
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Fig. 5. Mean absolute error of latitude and longitude evaluated biweekly.
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Fig. 6. False negative rates for September, October and November.

while it uses the night center time information to estimate the
longitude. Thus, when the night length is globally the same
regardless of the coordinate around the equinox day (row (a)
on Sep. 28), the light discriminator network fails to estimate
the latitude and it produces a pattern of ®;(1p,X) spread out
along the latitude as shown on the top left of Fig. 4.

While the light discriminator has high ambiguity in latitude
around the equinox and maintains low ambiguity in longi-
tude, the opposite is true for the temperature discriminator
as temperature varies significantly along latitude but less so
along longitude as shown in Fig. 4 middle column. There-
fore, light and temperature discriminator networks uniquely
complement each other, resulting in significant accuracy im-
provement. When two neural network outputs are multiplied,
it provides more reliable results to estimate the likelihood
O;(1p,%x)P4(tp,%x) ~ p(lp,tp|x) as shown in Fig. 4 right
column. In general, the output has smaller error in December
(Fig. 4 row (c)) when both the light and temperature dis-
criminators work reliably due to significant variations in night
length, night center, and temperature across latitude and/or
longitude.

Finally, we perform maximum likelihood estimation based
localization to evaluate accuracy of the proposed method. We
also measure false negative rates to quantify the reliability of
the proposed likelihood estimator. Here, we compare the pro-
posed approach to a baseline where the sunrise and sunset time
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Fig. 7. Localization results in Nov and Dec near U.S. Southwest cities. Red
stars are the ground truth and blue circles are estimated locations.

are estimated by comparing the light intensity to a threshold
calibrated for the minimum error. An optimal threshold value
for the baseline method was found by exhaustively searching
for the value that minimizes the night length and night center
error.

The average longitude and latitude localization errors for
different time intervals are shown in Fig. 5. All meth-
ods (threshold based baseline, light discriminator only, light
and temperature discriminator combined) have similar per-
formance in longitude estimation exhibiting less than 0.6°
average absolute error for all periods. For latitude, our light
discriminator significantly outperforms the baseline method
for all periods. By combining the likelihood estimation from
the light and temperature networks, the average error in
latitude reduces dramatically from 11° to 1.5° around the
fall equinox and remains under 0.7° over November and
December.

Fig. 6 shows the false negative rate which is defined as the
proportion of the absolute latitude localization error greater
than 2°. In September (around the fall equinox), both the base-
line method and our light discriminator produce > 80% false
negatives while the combined estimation reduces it to around
20%. The light discriminator starts to significantly outperform
the baseline from October and the proposed combined method
exhibits only 1.23% false negative rate in November.

Fig. 7 shows the localization results in the Southwest U.S. in
November and December using the proposed method, which
demonstrates accuracy of 55.11km error on average. Most
estimations are localized within the same city (Kansas City,
Dallas, etc.) where actual measurements were made.

V. CONCLUSION

We present a neural network based butterfly localization
algorithm that learns the observation model implicitly. The
proposed method is applicable to ultra-low power ultra-small
light and temperature sensors that can be attached to Monarch
butterflies without impeding their migration. The maximum
likelihood localization confirms that neural networks can learn
implicit observation models to outperform traditional thresh-

olding method. Testing results exhibit an average error under
1.7° in latitude and 0.6° in longitude, which is sufficient to
study Monarch migration. We will continue collecting more
volunteer measurements to improve the robustness of the
neural networks.
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