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Abstract
Central pattern generators are characterized by a heterogeneous cellular composition, with different cell types playing distinct 
roles in the production and transmission of rhythmic signals. However, little is known about the functional implications of 
individual variation in the relative distributions of cells and their connectivity patterns. Here, we addressed this question 
through a combination of morphological data analysis and computational modeling, using the pacemaker nucleus of the 
weakly electric fish Apteronotus leptorhynchus as case study. A neural network comprised of 60–110 interconnected pace-
maker cells and 15–30 relay cells conveying its output to electromotoneurons in the spinal cord, this nucleus continuously 
generates neural signals at frequencies of up to 1 kHz with high temporal precision. We systematically explored the impact 
of network size and density on oscillation frequencies and their variation within and across cells. To accurately determine 
effect sizes, we minimized the likelihood of complex dynamics using a simplified setup precluding differential delays. To 
identify natural constraints, parameter ranges were extended beyond experimentally recorded numbers of cells and connec-
tions. Simulations revealed that pacemaker cells have higher frequencies and lower within-population variability than relay 
cells. Within-cell precision and between-cells frequency synchronization increased with the number of pacemaker cells and 
of connections of either type, and decreased with relay cell count in both populations. Network-level frequency-synchronized 
oscillations occurred in roughly half of simulations, with maximized likelihood and firing precision within biologically 
observed parameter ranges. These findings suggest the structure of the biological pacemaker nucleus is optimized for gen-
erating synchronized sustained oscillations.

Keywords  Apteronotus leptorhynchus · Central pattern generator · Computational modeling · Neural network · Pacemaker 
nucleus · Weakly electric fish

1  Introduction

Central pattern generators (CPGs) are neural networks 
that can produce rhythmic activity without cues provided 
by sensory feedback or input mediated by descending neu-
rons (for reviews, see Bucher, 2009; Frigon, 2012; Grillner, 
2006; Guertin, 2009; Katz, 2016; Marder & Bucher, 2001; 
Selverston, 2010). Their periodic output activity underlies, 

in both invertebrates and vertebrates, numerous rhythmic 
behaviors, including respiration, locomotion (walking, fly-
ing, swimming), and gut movements. A characteristic feature 
of CPGs is their heterogenous cellular composition, with the 
involved cell types showing differences in morphological 
features, molecular signatures, electrophysiological proper-
ties, and synaptic input or output patterns (for review, see 
Hudson et al., 2010).

The relative contributions of the different cell types, 
including their synaptic connectivity patterns, have a major 
impact on the activity of the network, and thus on the behav-
ioral function controlled by CPGs, as shown in the stomato-
gastric ganglion of decapod crustaceans (Harris-Warrick 
et al., 1992; Hudson et al., 2010) and in the pre-Bötzinger 
complex of mammals (Garcia et al., 2011). However, until 
now it has remained elusive (i) whether any inter-individual 
differences exist in absolute or relative numbers of different 
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cell types and neuronal connections, and (ii) what the func-
tional consequences of such morphological variability are 
in a given CPG.

In the present study, we addressed these issues by com-
bining quantitative morphological analysis with computa-
tional modeling, using the pacemaker nucleus (Pn) of the 
weakly electric fish Apteronotus leptorhynchus as a well-
established CPG. Like other apteronotids, this species fea-
tures an electric organ formed by massively enlarged axonal 
terminals of electromotoneurons derived from spinal moto-
neurons (Bennett, 1971; de Oliveira-Castro, 1955; Waxman 
et al., 1972). Electric organ discharges (EODs) are produced 
by synchronous depolarization of the individual electrogenic 
cells. Discharges are generated continuously at frequencies 
of up to 1 kHz, reaching amplitudes of several hundred milli-
volts. As the duration of the electric pulse is comparable 
to the interpulse interval, the resulting discharge pattern 
resembles a train of quasi-sinusoidal electric signals. The 
frequency of the EOD of individual fish is highly constant 
(Bullock, 1969, 1970; Moortgat et al., 1998), surpassing 
in its stability any other known periodic signal generated 
by biological systems. The base EODs, together with com-
plex transient frequency and amplitude modulations of the 

discharges during electric interactions (Dunlap et al., 1998; 
Engler & Zupanc, 2001; Zupanc & Maler, 1993; Zupanc 
et al., 2006), play important roles in active electrolocation, 
species and sex recognition, as well as intraspecific commu-
nication (for review, see Zupanc, 2018; Zupanc & Bullock, 
2005).

EODs are driven in a one-to-one fashion by volleys of 
command spikes from the Pn (for review, see Dye & Meyer, 
1986). Axons from relay cells, its output neurons, descend 
from the medulla oblongata to form electrotonic junctions 
with the electromotoneurons in the spinal cord. Together 
with an additional population of approximately 90 inter-
connected pacemaker cells, the roughly 20 relay cells form 
the network that generates the intrinsic oscillations of the 
Pn (Fig. 1A) (Sîrbulescu et al., 2014). Each pacemaker cell 
synapses, via gap junctions, with a limited number of pace-
maker and relay cells (Dye & Heiligenberg, 1987; Elekes 
& Szabo, 1985; Moortgat et al., 2000a). An isolated Pn 
can generate the basic EOD activity, whereas input from 
descending neural pathways is required for the production 
of transient modulations (Dye, 1988). The frequency of the 
basic Pn oscillations, and thus of the EOD, is determined 
by several factors, including intrinsic properties of the 

Fig. 1   Morphology of the 
A. leptorhynchus Pn. (A) 
Immunolabeling against the 
neuronal marker Hu C/D 
(blue) uncovers two distinct 
populations of large neurons, 
pacemaker cells (*) and relay 
cells (r), as well as numerous 
small interneurons with no 
documented role in the genera-
tion of Pn oscillations. These 
neuronal types are embedded in 
a dense astrocytic syncytium, 
revealed by immunostaining 
against the glial cell marker 
S100β (green). The counts of 
pacemaker and relay cells do 
not correlate across fish, differ 
between males (blue triangles) 
and females (red circles) (B), or 
correlate with an individual’s 
length, weight, or Pn volume 
(C). Tissue processing, digital 
imaging, and cell count quantifi-
cation as described previously 
(Sîrbulescu et al., 2014)
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pacemaker and relay cells (e.g., size, ion channel densities), 
and the potassium buffering capacity of the extensive astro-
cytic syncytium enveloping them (Fig. 1A) (Hartman et al., 
2021; Zupanc et al., 2014).

The quantitative analysis performed as part of this study 
revealed substantial variability in the morphological struc-
ture of the Pn network among individual fish. Computer 
simulations using a simplified model of the Pn, designed 
to minimize the likelihood of complex dynamics, identi-
fied frequency-synchronized, spontaneous, and sustained 
oscillations with high temporal precision within the range 
of morphological variability. These dynamics were charac-
terized by all cells firing at the same frequency, though not 
necessarily in phase, consistently across time and with no 
external inputs. However, we found increasing absence of 
such oscillations when testing network structure parameter 
values beyond those found in biological samples, with the 
notable exception of (likely biologically unfeasible) very 
large, densely connected networks. Thus, the present inves-
tigation suggests that the structure of the biological Pn is 
optimized for generating frequency-synchronized spontane-
ous sustained oscillations.

2 � Methods

2.1 � Modeling of pacemaker and relay cells

Pacemaker and relay cells were modeled in NEURON ver-
sion 8.0 (Hines & Carnevale, 1997) via Python version 
3.8 (Hines et al., 2009), building upon previous models of 
the neural network of the Pn (Hartman et al., 2021; Lucas 
et al., 2019; Moortgat et al., 2000b; Zupanc et al., 2019). 
In line with these earlier models, each cell consisted of 
two cylindrical sections with sizes derived from morpho-
logical data: (i) somatic, with diameter and length set to 
the average diameter of the cell soma (Dye & Heiligenberg, 
1987); (ii) axonal, with dimensions equal to corresponding 

measurements of the initial segment (Elekes & Szabo, 1985; 
Heiligenberg et al., 1996) (Table 1). Consistent with prior 
studies, dendritic compartments were excluded from the 
model as they only receive inputs from other brain regions 
responsible for frequency modulation (Elekes & Szabo, 
1985; Moortgat et al., 2000b).

Each cell section was divided into 1-μm long segments 
expressing Hodgkin-Huxley ion channels (Hodgkin & Huxley, 
1952), with maximum conductances, equilibrium potentials, 
and other electrical properties based on prior modeling stud-
ies (Hartman et al., 2021; Moortgat et al., 2000b) (Table 1). 
Since somatic and axonal segments differed in morphological 
and/or electrical properties, small phase lags were induced 
within as well as between cells (see Fig. 1d in Hartman et al., 
2021). Parameters for ion channel gate functions were set to 
NEURON defaults (i.e., giant squid axon, per Hodgkin & 
Huxley, 1952), consistent with previous Pn models. Ion chan-
nel kinetics were scaled to 27 °C, the average ambient water 
temperature in the natural habitat of this species. K+- and 
Na+-related parameters for somatic compartments were set to 
values most likely to result in sustained spontaneous oscilla-
tions with frequencies within biologically observed ranges for 
A. leptorhynchus (per Fig. 2 in Hartman et al., 2021). All other 
parameters, including ion channel dynamics of axonal com-
partments, were set to the values employed in Moortgat et al. 
(2000b), which were generally chosen to match experimental 
measurements of cell properties (e.g., input resistances) or 
action potential characteristics (e.g., spike width).

2.2 � Modeling of pacemaker nucleus network

The Pn network was modeled as a random directed graph 
using the NetworkX package (version 2.5) within Python. 
Consistent with morphological data (Dye & Heiligenberg, 
1987; Elekes & Szabo, 1985) and prior modeling work 
(Hartman et al., 2021; Moortgat et al., 2000b; Zupanc et al., 
2019), the axons of pacemaker cells synapsed with relay 
cells as well as other pacemaker cells, whereas relay cells 

Table 1   Morphological and 
biophysical parameters of 
model pacemaker and relay 
cells. Values were derived 
from experimental data (Dye 
& Heiligenberg, 1987; Elekes 
& Szabo, 1985; Heiligenberg 
et al., 1996) (italic) or based 
on previous modeling studies 
(Hartman et al., 2021; Moortgat 
et al., 2000b). Underlined: 
values observed to produce 
spontaneous oscillations at 
biologically relevant frequencies 
in Hartman et al. (2021). See 
Sect. 2.1 for more details

Parameter Pacemaker Relay

Group Name Unit Soma Axon Soma Axon

Morphological measurements Length µm 32 42 76 35
Diameter µm 32 5 76 6

Electrical properties Axial resistivity Ω⋅cm 100 100 100 500
Membrane capacitance µF/cm2 1 1 1 1

Channel conductances Sodium maximum S/cm2 1.3 0.5 0.9 0.5
Potassium maximum mS/cm2 160 20 160 50
Leak mS/cm2 0.1 1 0.3 1

Equilibrium potentials Sodium mV  +61  +61  +61  +61
Potassium mV  −61  −61  −61  −61
Leak mV  −70  −70  −70  −70
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did not make synaptic contact with either pacemaker cells 
or other relay cells. Consequently, the Pn network was gen-
erated as a union of two subgraphs: (i) a random directed 
graph, connecting pacemaker cells with a defined prob-
ability; and (ii) a random bipartite directed graph, linking 
pacemaker cells to relay cells with another defined prob-
ability. Given the lack of empirical data on axonal lengths of 
pacemaker cells, these network connections did not include 
any information on spatial distribution. Accordingly, action 
potential transmission delays were the same for all pairs 
of connected cells, decreasing the likelihood of complex 
dynamics.

To explore the impact of network size and density on 
Pn oscillation patterns, the numbers of pacemaker and 
relay cells were varied from 3 to 200 in 11 geometric steps, 
respectively from 2 to 80 in 9 geometric steps, and the aver-
age counts of pacemaker-to-pacemaker and pacemaker-to-
relay connections were varied from 1 to 13 in increments of 
2 (Table 2). Each combination of parameters was evaluated 
10 times, using a different randomly generated graph in each 
case. To minimize the interference from other sources of 
variation in firing frequency, such as differences in action 
potential travel times from pre-synaptic neurons projecting 
to any individual cell in the network, we fixed all other con-
trollable factors, including soma and axon dimensions, and 
initial conditions of Hodgkin-Huxley equations governing 
each cell segment.

2.3 � Modeling of network synaptic connections

Consistent with experimental data (Elekes & Szabo, 1985; 
Yamamoto et al., 1989), synaptic connections between Pn 
cells were implemented as rectifying gap junctions with 
instantaneous rectification using the model description lan-
guage NMODL (Hines & Carnevale, 2000). Gap junctions 
were modeled in NEURON as half-gap objects (Gutierrez 
& Marder, 2013) affixed to the last axonal segment of the 
presynaptic cell and the first somatic segment of the post-
synaptic cell (Hartman et al., 2021). Their conductivity was 
set to vary from 0.5 to 10 nS proportionally to the membrane 
potential difference between the two cells, consistent with 
experimentally determined properties (Gutierrez & Marder, 

2013). Since there are no data on coupling strength differ-
ences between pacemaker cells connecting with other pace-
maker cells, as opposed to relay cells, conductances for these 
two junction types were assumed to be the same. Using iden-
tical parameters for all modeled gap junctions additionally 
ensured they do not introduce phase delays between signals 
arriving to post-synaptic cells from phase-synchronized pre-
synaptic cells.

2.4 � Numerical simulation of activity patterns

Pn networks were simulated under spontaneous condi-
tions only (i.e., without injecting current). Initial potentials 
(applied to all segments in all cells), simulation durations, 
and action potential detection thresholds were determined 
following simulation of a minimal network consisting of a 
pacemaker cell connected to a relay cell for 100 ms, with 
membrane potentials initialized at −60 mV. The first 33 ms 
of the preliminary simulation were discarded to minimize 
contamination by initial transient patterns. The initial poten-
tial for whole-network simulations was set to −60.7 mV, the 
minimum membrane potential recorded during this prelimi-
nary simulation (used here as a proxy for the resting value). 
All other initial conditions (e.g., ion channel gate variables) 
were set to NEURON defaults (giant squid axon) for all 
cells, in all conducted simulations (including the prelimi-
nary one). This ensured all modeled cells started near their 
steady state (limit cycle) in each whole-network simulation, 
decreasing the duration of initial transients and the likeli-
hood of complex, non-stationary network dynamics. The 
action potential threshold was set to −10.2 mV, the average 
midpoint between the minimum and maximum potentials 
recorded in the preliminary simulation. The full simulation 
duration was set to 143 ms, corresponding to 100 interspike 
intervals of the slowest firing cell. Numerical simulations 
were performed on a Dell OptiPlex 9020 desktop computer 
equipped with a 4-core Intel Core i7 CPU at 3.4 GHz and 
16 GB RAM, and on a Dell Precision T7810 workstation 
equipped with dual 10-core Intel Xeon CPUs at 2.2 GHz and 
128 GB RAM. To decrease computation times, numerical 
integration was performed with a variable time step, using 
NEURON’s adaptive integration feature.

Table 2   Experimentally 
manipulated pacemaker 
network structural parameters. 
Values in italic denote size 
parameters evaluated only at 
subsets of the corresponding 
density parameters due 
to natural constraints 
(pacemaker-pacemaker 
connections < pacemaker 
cells, and pacemaker-relay 
connections ≤ relay cells)

Group Parameter Notation Values

Pacemaker cells np 3, 4, 6, 10, 16, 24, 37, 56, 86, 131, 200
Network size

Relay cells nr 2, 3, 5, 7, 12, 20, 31, 50, 80
Pacemaker-pacemaker 

connections per cell
npp 1, 3, 5, 7, 9, 11, 13

Network density
Pacemaker-relay 

connections per cell
npr 1, 3, 5, 7, 9, 11, 13
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2.5 � Determination of oscillation frequencies

Membrane potential traces (minimal networks and a small 
sample of whole-network simulations, randomly selected 
from across the parameter search space) and action poten-
tial time stamps (all simulations) were collected from the 
somatic section of each model cell adjacently to the axonal 
section (equivalent to the axon hillock in the biological 
cell). Action potentials were defined as membrane potential 
crossovers from below to above the −10.2 mV activation 
threshold. Their time stamps were used to compute instan-
taneous firing frequencies as inverses of interspike intervals. 
The frequency of each cell was defined as its median instan-
taneous frequency. It was considered stable if (i) the slope 
of frequency versus time past the first third of the simula-
tion (to exclude any initial transient periods) did not differ 
significantly from 0 (p < 0.01), and (ii) the timespan from 
the last action potential to the simulation end did not exceed 
the median interspike interval by more than 2 interquartile 
ranges (IQRs). The network frequency was similarly defined 
as the median across all cells. It was labeled stable if (i) the 
frequency of each cell was stable, and (ii) all network cells 
were frequency-synchronized, operationalized here as the 
frequency difference between the slowest and fastest firing 
cells not exceeding 1 Hz. This threshold was selected to 
account for numerical precision in interspike interval and 
firing frequency measurements, estimated at ~1 Hz based on 
inspection of membrane potential traces generated in NEU-
RON using adaptive integration as part of previous studies 
and preliminary testing.

2.6 � Statistical analysis of simulation outputs

To quantify the effects of network size and density on spon-
taneous oscillation frequencies of Pn cells and synchroniza-
tion thereof, the following four metrics were computed for 
the full network, pacemaker cell subnetwork, and relay cell 
population: (i) median frequency across all applicable cells; 
(ii) frequency IQR across all cells; (iii) median of within-cell 
instantaneous frequency IQR, a measure of firing precision; 
and (iv) proportion of cells exhibiting stable sustained oscil-
lations. While more complex measures of stability and syn-
chronicity that can distinguish between more complex types 
of dynamical states are available (e.g., Borges et al., 2017; 
Lodi et al., 2020; Stiefel & Ermentrout, 2016), the selection 
above are easy to compute at scale, and sufficiently sensi-
tive to common non-stationary patterns. For example, burst-
ing, waves, multi-stability, and spiral-like behaviors would 
result in high within-cell IQRs, while increasing and damped 
oscillations would lead to statistically significant deviations 
from within-cell frequency stability. Thus, they enable the 
identification of parameter combinations leading to high-
precision, frequency-synchronized network oscillations (all 

cells have nearly identical frequencies, very low IQRs, and 
do not show significant trends in frequency over time) – the 
primary research question of this study.

These metrics, along with network frequency stability 
(defined above) as direct measure of frequency-synchronized 
sustained oscillations, were analyzed using generalized lin-
ear models with polynomial designs (including linear and 
quadratic terms for main effects, and all pairwise and higher 
order interactions between the linear terms) and distribution-
appropriate (normal or binomial) link functions. Unfeasible 
parameter combinations (e.g., fewer relay cells than average 
pacemaker-to-relay connections) were excluded from the 
analysis. Independent variables (counts of cells and connec-
tions of each type) were centered to an average of 0 before 
analysis to enable accurate evaluation of nonlinear terms. Sig-
nificance levels of model coefficient estimates were computed 
via conversion to t-statistics and adjusted for multiple testing 
using the Benjamini–Hochberg method. Coefficient absolute 
values were used as a measure of effect size for ranking of 
model terms (main and interactions). Corresponding standard 
errors are reported as measures of estimate precision, and are 
proportional to the residual error of the fitted linear model 
in each case (pooled across all observations, i.e., all network 
parameter sets and simulation replicates).

3 � Results

3.1 � Patterns of variation in the biological 
pacemaker nucleus network

The numbers of pacemaker and relay cells and their pos-
sible correlations to other morphological characteristics of 
A. leptorhynchus individuals have been investigated in 3 
experimental studies to date. Dye and Heiligenberg (1987) 
reported Pn networks consisting of 97 ± 25 (average ± SD) 
pacemaker cells and 25 ± 7 relay cells (n = 11 individuals), 
identifying 2 non-trivial associations with other metrics: a 
correlation of 0.89 between pacemaker cell count and fish 
size (n = 8), and one of 0.61 between relay cell diameters 
and EOD frequency (n = 12). More recently, Zupanc et al. 
(2014) computed pacemaker cell counts of 120 ± 2 (aver-
age ± SE) for males and 135 ± 15 for females, and relay cells 
counts of 26 ± 2 and 24 ± 2, respectively (n = 6), with no 
sex differences in the number or profile area of either cell 
type (p > 0.5). In a separate investigation, Sîrbulescu et al. 
(2014) reported networks including 87 ± 4 (average ± SE) 
pacemaker cells and 20 ± 1 relay cells (n = 15), with neither 
count correlating significantly with fish size (p > 0.1).

We reanalyzed the data from the Sîrbulescu et al. (2014) 
study, and found nearly twofold differences between the min-
imum and maximum counts of pacemaker (59 to 110) and 
relay cells (16 to 27). These findings are consistent with the 
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earlier report by Dye and Heiligenberg (1987), and indicate 
substantial inter-individual variability in the composition of 
this CPG. There was no correlation between the numbers of 
pacemaker and relay cells (p > 0.8; Fig. 1B), suggesting that 
Pn oscillations are not dependent on specific ratios between 
the two underlying cell populations. In addition, there was 
no correlation between either cell count and fish length, fish 
weight, or Pn volume (Fig. 1C; p > 0.05), nor were there any 
significant differences between male and female individuals 
(p > 0.3), suggesting that the empirically observed ranges of 
pacemaker and relay cell counts do not reflect morphologi-
cal constraints.

3.2 � Occurrence of frequency‑synchronized 
spontaneous sustained oscillations

A systematic grid-based method, involving 2,640 parameter 
combinations, each evaluated at 10 randomly generated net-
work graphs, was used for unbiased assessment of the effect 
of network size and density on Pn firing patterns in A. lep-
torhynchus. To identify any intrinsic constraints, parameters 
ranges were extended beyond biologically observed values 
(above), from minimal networks of 3 pacemaker and 2 relay 
cells or very sparse networks with one connection of each 
type per pacemaker cell, to twice the average numbers of 
pacemaker cells and connections and 4 times the average 
relay cell count.

Analysis of membrane potential recordings of pacemaker 
and relay cells from a selection of 25 parameter combina-
tions revealed typically small initial transients and no com-
plex network dynamics, in line with the simplified model 
setup. Since all simulated cells were able to produce sta-
ble sustained oscillations if left in isolation, networks with 
parameter configurations unable to result in frequency 
synchronization did not exhibit any time periods or sub-
networks with no or substantially different activity levels. 
Instead, we observed individual cells firing at different, and 
in some instances non-constant, rates (Fig. 2). Correspond-
ingly, frequency-locked cells appeared to be firing largely 
at the same time, up to a small delay between pacemaker 
and relay cells (Fig. 2A), as also observed in our prior work 
using the same model (Hartman et al., 2021). On average, 
modeled cells reached stability within 3 ms of simulation 
start, with only the first action potential and first interspike 
interval exceeding the value range (median ± 1.5 IQR) 
observed after the first third of the simulation, when firing 
patterns are stabilized (Fig. 2B). We did not find evidence 
of large-scale non-stationarity at the individual cell level, 
even in parameter combinations resulting in non-synchro-
nized networks (20 out of the 25 examined). Typical devia-
tions from frequency stability included low magnitude (up 
to about 10%) modulation of spike amplitude and firing 

frequency, and/or delayed convergence to pacemaker-like 
frequencies, in relay cells with too few inputs from pace-
maker cells (Fig. 2C).

Quantitative analysis of network frequency stability 
measures uncovered widespread occurrence of frequency-
synchronized sustained oscillations, with about 45% of the 
evaluated parameter combinations yielding networks com-
prised of cells firing within 1 Hz of each other consistently 
over time (Fig. 3). Frequency-synchronized oscillations  
were common within biologically observed parameter ranges 
(Fig. 3A) as well as in very large and densely connected net-
works (91% of all parameter combinations), but increasingly 
rarer in smaller networks (58%), and particularly so in large 
and weakly connected networks (21%) (Fig. 3B). Statistical 
analysis using a logistic model revealed very strong positive 
dependences on network connectivity with clear diminish-
ing returns (manifested as large negative quadratic terms), 

Fig. 2   Example outputs of A. leptorhynchus Pn network model. A 
Spike raster plots of initial 50  ms of simulated neural activity of all 
pacemaker cells (dark blue) and all relay cells (dark red) within the 
modeled network for three different parameter combinations: left, 
small, relay-biased, densely-connected network, consisting of 16 pace-
maker and 31 relay cells, with an average of 9 pacemaker-to-pacemaker 
and 9 pacemaker-to-relay junctions per pacemaker cell, and exhibiting 
largely desynchronized oscillations; middle, small, sparsely-connected 
network consisting of 37 pacemaker and 12 relay cells, with an aver-
age of 3 connections of each type per pacemaker cell, and showing 
predominantly frequency-synchronized oscillations; right, small, cell 
type balanced, densely-connected network comprised of 24 pacemaker 
and 20 relay cells, with an average of 13 connections of each type per 
pacemaker cell, and exhibiting frequency-synchronized oscillations. 
Each row corresponds to one cell (identifier shown on the vertical axis, 
ranging from 1 to 44–49). Magenta double arrows mark cells with 
membrane potential plots illustrated in more detail in B-C. For each 
cell in each network, vertical lines along the horizontal axis mark the 
times when its membrane potential crossed the action potential thresh-
old (−10.2  mV) on an ascending trend. B Membrane potential (con-
tinuous blue line) and corresponding upper peak envelope (dashed red 
line) over time for representative pacemaker and relay cells from each 
of the networks in A. To facilitate interpretation, cells are labeled by 
their concatenated network and cell identifiers. Peak envelopes were 
obtained through spline interpolation of local maxima (= action poten-
tial peaks). C Scatter plots of interspike interval versus spike ampli-
tude as a function of spike index for the representative cells shown in 
B. Spike amplitude was defined as the peak (maximum) membrane 
potential recorded during the action potential, with the corresponding 
interspike interval defined as the time from each such peak to the sub-
sequent one. Individual measurements are color coded by spike index 
during the complete simulation (143 ms), ranging from 6 (dark blue) 
to 111 (dark red). The initial 5 spikes were conservatively removed 
from these plots to allow visualization of patterns and value ranges 
after initial transients. Relay cells 4–23, 4–43, and 10–46 show periodic 
changes in both interspike interval (firing frequency) and spike ampli-
tude, with 10–46 showing a preference for values similar to those of 
pacemaker cells, while relay cell 4–32 slowly converges to the latter. 
Pacemaker cells 4–7 and 10–17, which are not as connected to other 
pacemaker cells as 23–12, show greater variation in interspike interval  
and spike amplitude, but no periodic trend. Note different scales on both  
horizontal and vertical axes across the different plots

◂
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as well as a moderate negative dependence on the number 
of relay cells (Table 3), indicating that each cell requires a 
minimum number of inputs from other network cells in order 
to maintain frequency synchrony with the rest of the cells 
(Fig. 3B). This notion was additionally supported by signifi-
cant positive interactions between each cell count and the 
corresponding number of incoming connections (Table 3).

3.3 � Effects of network structure on population 
average firing frequencies

All examined network parameters significantly impacted 
the spontaneous oscillation frequencies of individual Pn 
cells, albeit in opposite directions depending on cell type 
(Table 4). The median frequency of pacemaker cells ranged 
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Fig. 3   Rate of frequency-synchronized sustained oscillations in the 
simulated A. leptorhynchus Pn as a function of network size (numbers 
of pacemaker and relay cells) and network density (average numbers 
of pacemaker-to-pacemaker and pacemaker-to-relay connections) 
parameters. Univariate (A) and bivariate (B) histograms show propor-
tions (%) of parameter combinations yielding frequency-synchronized 
oscillations for each parameter value (bars in A) and for each pair of 
parameter values (pixels in B), pooled across replicates (10 randomly 

generated networks per each parameter combination) and across all 
examined value combinations for the remaining parameters (44–540 
in A, 1–99 in B). Bins are color coded by magnitude according to the 
scale shown to the right. Note different vertical axis scales in top two 
plots versus bottom two plots in A. White pixels in middle row plots 
in B mark unfeasible parameter combinations. Parameter values were 
sampled using geometric (cell counts) and linear (connection counts) 
grids (total of 2,640 combinations)
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from 755 to 826 Hz across tested parameter combinations, 
decreasing by 1.5 Hz for each additional pacemaker-to-
relay connection per pacemaker cell, and by 0.26 Hz for 
each pacemaker-to-pacemaker connection per cell or every 
10 pacemaker cells, while increasing by 0.51 Hz for every 
10 relay cells (Fig. 4). Correspondingly, the median relay 
cell frequency varied between 694 and 785 Hz, increas-
ing by 0.41 Hz per pacemaker cell, and by 0.6 Hz per each 
additional pacemaker-to-pacemaker connection per cell 
(albeit with diminishing returns), decreasing by 0.8 Hz 
per relay cell, and exhibiting a quadradic-like dependence 
(sharp increase, then slow decrease) on the average number 
of pacemaker-to-relay connections (Fig. 4). Network-level 
patterns followed relay cell trends despite pacemaker cells 
being more numerous (average of 64 versus 32 cells), likely 
due to the stronger effect sizes. The analysis additionally 
uncovered many significant interactions in each cell popula-
tion (Table 4), some with relatively high magnitudes (e.g., 
between the two average connection counts in both cell 
populations, and between the number of relay cells and the 
average number of pacemaker-to-relay connections at net-
work level and in relay cells alone) – indicative of complex 
nonlinear dependencies between network structure param-
eters and Pn oscillation frequencies.

3.4 � Effects of network structure 
on within‑population frequency variability

Variability in firing frequency between pacemaker cells was 
generally very low, with a median population-level IQR of 
0.13 Hz, 87% of the tested parameter combinations result-
ing in IQRs below 1 Hz, and 95% of observations below 
2 Hz (Fig. 5). Statistical modeling uncovered many highly 
significant, but low magnitude dependencies, with the 
average number of pacemaker-to-pacemaker connections 
and the number of relay cells having the largest impacts, a 
roughly 0.07 Hz decrease per additional connection, respec-
tively increase for every 5 relay cells (Table 5). By contrast, 
relay cells frequently showed greater variability in firing 
frequency, with similar global median (0.1 Hz) but 38% of 
the observations exceeding 1 Hz, and 10% exceeding 30 Hz 
(Fig. 5). Network structure significantly and nonlinearly 
impacted heterogeneity in relay cell frequencies, with the 
between-cells frequency IQR increasing by 0.28 Hz for each 
relay cell, and by 0.07 Hz per each additional pacemaker-
to-pacemaker connection, respectively decreasing by 1.1 Hz 
for each additional pacemaker-to-relay connection per pace-
maker cell, and by 0.7 Hz for every 10 pacemaker cells 
within networks with at least 10 pacemaker cells (Table 5). 

Table 3   Impact of network structure parameters and their interactions 
on the synchronization of sustained spontaneous oscillation frequencies 
within the A. leptorhynchus Pn network and the 2 neuronal subpopula-
tions forming it. The network was considered frequency-synchronized 
if the firing frequency range across all cells did not exceed 1 Hz, and 
if no cell showed a statistically significant trend in frequency measure-
ments over time (p < 0.01, linear regression). Analysis was performed 

using a logistic regression model with linear and quadratic terms, as 
well as two-, three-, and four-way interactions. Reported values include 
regression coefficient estimates (β), corresponding standard errors (SE) 
and odds ratios (OR), and effect size ranks when statistically signifi-
cant (p < 0.05, adjusted for multiple comparisons using the Benjamini–
Hochberg method). For parameter name abbreviations, see Table 2; —, 
not ranked (not significant)

Model factors β SE OR rank

Linear terms [/100] np  + 9.19 0.17 1.096 4
nr  − 27.0 0.48 0.763 3
npp  + 51.0 1.89 1.665 2
npr  + 125 2.42 3.483 1

Quadratic terms [/1,000] np × np  − 0.44 0.01 1.000 15
nr × nr  + 1.53 0.10 1.002 11
npp × npp  − 72.3 2.16 0.930 6
npr × npr  − 83.8 3.18 0.920 5

Pairwise interactions [/1,000] np × nr  + 1.05 0.06 1.001 13
np × npp  + 1.38 0.29 1.001 12
np × npr  − 2.45 0.33 0.998 10
nr × npp  + 2.72 0.89 1.003 9
nr × npr  + 17.8 1.06 1.018 7
n pp × npr  − 11.1 4.38 0.989 8

Higher-order effects [/10,000] np × nr × npp  − 0.75 0.08 1.000 18
np × nr × npr  − 1.59 0.07 1.000 17
np × npp × npr  + 3.36 0.51 1.000 16
nr × npp × npr  − 7.47 1.24 0.999 14
np × nr × npp × npr  + 0.03 0.02 1.000 —
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Higher order terms had low amplitude effect sizes, with the 
notable exception of a negative interaction between the two 
average connection counts (Table 5), indicating that the 
negative dependence of cell-to-cell frequency variability 
on pacemaker-to-pacemaker connectivity levels is accentu-
ated for relay cell populations that receive few inputs from 
pacemaker cells, respectively reduced or even reversed for 
strongly connected relay populations. Network-level statis-
tics again paralleled those observed for relay cells (Fig. 5), 
likely due to the much larger variation recorded in this popu-
lation (nearly one order of magnitude difference).

3.5 � Effects of network structure on within‑cell 
frequency variability

Pacemaker and relay cells exhibited similar levels of within-
cell frequency variability, reaching median IQRs of 1.1 and 
1.3 Hz, and maximum IQRs of 80 and 52 Hz, respectively 
(Fig. 6). In both cell types, the within-cell IQR decreased 
with the number of pacemaker cells (by 0.71 Hz, respectively 
0.89 Hz, for every 10 cells) and with the average count of 
pacemaker-to-pacemaker connections (by 0.34 Hz, respec-
tively 0.15 Hz, for each additional connection), and increased 

with the number of relay cells (by 0.1 Hz per cell for pace-
maker cells, respectively 0.18 Hz for relay cells) (Table 6). 
By contrast, the average count of pacemaker-to-relay connec-
tions showed a differential effect, increasing within-cell IQRs 
in pacemaker cells by 0.1 Hz per connection, while greatly 
decreasing IQRs in relay cells, by an average of 0.77 Hz per 
additional connection. This difference was qualified by a 
similarly strong negative interaction between the two aver-
age connection counts in both cell types (Table 6), indica-
tive of a diminished, respectively enhanced, impact of the 
average number of pacemaker-to-relay connections within 
Pn networks with dense pacemaker sub-networks, resulting 
in low within-cell IQRs for both cell populations in strongly 
connected networks. Further higher order terms with large 
magnitudes included quadratic terms for the two average con-
nection counts in pacemaker cells (and, to a lesser degree, in 
relay cells), indicative of diminished effects for higher values 
(Fig. 6). Network-level results mirrored those obtained in 
pacemaker cells (Fig. 6, Table 6), likely due to the larger con-
tribution as dominant cell type and broader range observed in 
this population. Taken together, these findings indicate that 
the pacemaker cell sub-network drives the Pn firing preci-
sion, with relay cells opposing this effect as they are added 
to the network.

Table 4   Impact of network parameters on median firing frequencies in 
the A. leptorhynchus Pn network and the 2 neuronal populations form-
ing it. Regression coefficients (β), corresponding standard errors (SE), 
and effect size ranks where statistically significant (p < 0.05, Benja-

mini–Hochberg adjustment) are given for linear and quadratic terms, 
as well as for two-, three-, and four-way interactions. Parameter name 
abbreviations as in Table 2; —, not ranked

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect β SE rank β SE rank β SE rank

Linear terms [/100] np  − 2.64 0.06 6  + 40.9 0.25 4  + 38.6 0.24 4
nr  + 5.08 0.13 4  − 80.3 0.57 2  − 59.7 0.55 2
npp  − 26.1 0.61 2  + 60.0 2.59 3  + 64.0 2.52 1
npr  − 150 0.66 1  + 287 2.83 1  + 50.5 2.75 3

Quadratic terms [/1,000] np × np  + 0.35 0.01 14  − 2.59 0.03 15  − 2.61 0.03 13
nr × nr  − 0.05 0.04 —  + 8.36 0.19 10  + 4.49 0.18 11
npp × npp  + 28.3 1.62 5  − 66.1 6.94 6  − 63.4 6.74 6
npr × npr  − 1.85 1.70 —  − 399 7.28 5  − 92.6 7.07 5

Pairwise interactions [/1,000] np × nr  − 1.23 0.01 11  + 3.63 0.06 13  + 5.21 0.06 10
np × npp  + 2.20 0.10 10  − 7.81 0.41 11  − 9.33 0.40 9
np × npr  + 3.15 0.10 7  − 19.3 0.41 9  − 15.7 0.40 8
nr × npp  − 2.37 0.23 9  − 5.43 0.97 12  + 2.98 0.94 12
nr × npr  + 2.99 0.25 8  + 42.5 1.07 7  + 31.9 1.04 7
n pp × npr  − 55.8 1.50 3  + 38.0 6.41 8  + 9.55 6.22 —

Higher-order effects [/10,000] np × nr × npp  − 0.03 0.04 —  + 1.20 0.16 18  − 0.36 0.15 —
np × nr × npr  − 1.65 0.04 15  + 1.88 0.16 17  − 4.50 0.15 15
np × npp × npr  + 7.90 0.24 13  − 7.64 1.03 16  − 1.92 1.00 —
nr × npp × npr  − 9.23 0.57 12  + 29.9 2.46 14  + 20.5 2.39 14
np × nr × npp × npr  + 0.09 0.01 16  − 0.47 0.04 19  − 0.30 0.04 16
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3.6 � Effects of network structure on within‑cell 
frequency stability

Cell frequency stability, defined here as the slope of instan-
taneous frequency measurements over time being statisti-
cally indistinguishable from 0, was nearly universal, reach-
ing averages of 97% in both pacemaker and relay cells across 
all parameter combinations (Fig. 7). Statistical analysis 
uncovered similar dependence patterns in these two popu-
lations, as well as for the Pn network as a whole (Table 7). 
The likelihood of frequency stability increased with the 
average number of pacemaker-to-pacemaker connections 
in a concave quadratic manner (sharp increase followed 
by gradual increase), while following a convex quadratic 
function with respect to the average count of pacemaker-to-
relay connections (first decreasing, then increasing). These 
patterns suggest the existence of a minimum connectivity 
threshold for the pacemaker cell sub-network, potentially 
moderated by the number of projections from pacemaker 
to relay cells. Most other terms showed negligible or non-
significant effects (Table 7), with the exception of a negative 

interaction effect of increasing the average counts of both 
connection types simultaneously, most likely indicative of 
diminishing returns, and of small negative dependences on 
the counts of pacemaker and relay cells, possibly as a result 
of the increased chance to observe statistically significant 
trends in cell frequency when the number of tests performed 
(here, one per cell) becomes large.

4 � Discussion

The present study investigated, to our knowledge for the 
first time, the impact of variations in the structure of the 
underlying neural network on the function of heterogene-
ous CPGs. Quantitative analysis indicated significant and 
uncorrelated variation in the numbers of pacemaker and 
relay cells in the Pn of A. leptorhynchus, reaching twofold 
ratios between the largest and smallest values observed, 
with no codependences to morphological measurements 
(e.g., fish length and weight). Prompted by these observa-
tions, we systematically explored the effects of pacemaker 
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Fig. 4   Impact of network size and density on firing frequencies of 
cells in the A. leptorhynchus Pn network. Boxplots show distributions 
of within-population median frequencies for pacemaker cells (top), 
relay cells (middle), and the whole Pn network (bottom) for each 
tested value of each parameter (columns), pooled across replicates 
and value combinations of remaining parameters. Solid boxes mark 
the span between the lower and upper quartiles, with corresponding 
medians denoted by black dots inside white circles. Whiskers extend 
above and below each box to 1.5 interquartile ranges or the fur-
thest data point in each direction, whichever is closest. Data points 

beyond these values (outliers) are depicted by colored dots, with 
random noise added along the horizontal axis to minimize overlaps. 
To facilitate interpretation, extreme high outliers (values above the 
dashed black line in top plots) are compressed to a narrow section of 
the vertical axis (delimited by continuous grey lines), while boxes are 
color coded by median values, increasing from dark blue to dark red 
through light green (similar to the color map from Fig. 3), separately 
for each plot. Note different frequency scale for pacemaker cells (top) 
relative to relay cells and the whole network
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and relay cell counts, and of average pacemaker-to-pace-
maker and pacemaker-to-relay connection counts, on Pn 
oscillation frequencies and their variation across and 
within cells.

Computer simulations using parameter combinations well 
beyond biologically observed ranges uncovered numerous 
multilinear and polynomial dependencies of Pn oscillation 
patterns on the size and density of the underlying neural 
network and its constituent sub-networks. While a major-
ity of cells across experiments were able to generate sus-
tained oscillations at a consistent pace over time (Figs. 6–7), 
there was considerable variability in frequency, particularly 
between the two types (Figs. 4–5). Pacemaker cells fired 
at higher rates and with lower levels of between-cells vari-
ability relative to relay cells, with network-level oscillation 
patterns tilted toward either of the populations depending on 
their sizes and how tight they were connected to each other.

Notably, both within-cell firing precision (Fig. 6) and 
between-cells synchronization in frequency (Figs.  3, 5) 
increased with the counts of pacemaker cells and pacemaker-
to-pacemaker and pacemaker-to-relay connections, while 
decreasing with the number of relay cells. Inspection of mem-
brane potential recordings from individual cells uncovered 

reduced frequency variability and increased action potential 
amplitude with additional incoming connections in both cell 
types (Fig. 2). Pacemaker cells with fewer connections from 
other pacemaker cells exhibited broader interspike interval 
distributions, while relay cells with insufficient inputs cycled 
between relay-like and pacemaker-like firing frequencies, tilt-
ing towards the latter as the number of incoming connections 
increases, then simply converging once they are numerous 
enough.

Overall, frequency IQRs for both cell types reached their 
minimum levels at the lower bound of experimentally deter-
mined pacemaker cell counts, respectively the upper bound 
of empirical numbers of relay cells (Figs. 4–5), indicating 
that the biological Pn is likely optimized for generating fre-
quency-synchronized oscillations. Decreasing the number of 
pacemaker cells below about 50, e.g., to limit energy con-
sumption, would dramatically reduce firing precision. Simi-
larly, increasing the number of relay cells above 30, e.g., to 
enhance the signal provided to electromotoneurons, would 
also result in greatly decreased firing precision, unless pro-
portionally incrementing the number of pacemaker cells or 
of pacemaker-to-relay connections, likely beyond biological 
feasibility ranges (Fig. 3B).
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Fig. 5   Impact of network size and density on between-cells firing fre-
quency variation in the A. leptorhynchus Pn network. Boxplots show 
distributions of population interquartile ranges (IQR) of frequencies 
for pacemaker cells (top), relay cells (middle), and the whole Pn net-
work (bottom) as a function of the numbers of pacemaker (left) and 
relay (center left) cells, and average counts of pacemaker-to-pacemaker 
(center right) and pacemaker-to-relay (right) connections. Data were 

combined across replicates and examined values of remaining param-
eters in each case. Box plot interpretation and color coding as in Fig. 4. 
To facilitate visualization, extreme low outliers (with values below 
dashed black line) are compressed to a narrow section of the vertical 
axis (marked by continuous grey lines). Note different frequency scale 
for pacemaker cells (top) compared to relay cells and the whole net-
work. Note logarithmic vertical scale in all cases
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4.1 � Quantitative morphological analysis 
across different studies

Our quantitative morphological characterization of pace-
maker and relay cell populations in the Pn of A. leptorhyn-
chus is in good agreement with previous studies (Dye & 
Heiligenberg, 1987; Sîrbulescu et al., 2014; Zupanc et al., 
2014). Besides confirming several earlier findings, it adds 
some notable details to the knowledge of Pn morphology, 
particularly in terms of inter-individual variability. Each of 
the four investigations has reported similar mean ratios of 
pacemaker to relay cells, as well as distinct, non-overlapping 
somatic size distributions for these two neuronal types. Using 
retrograde tracing from the spinal cord, Dye and Heiligenberg 
(1987) demonstrated that backfilled cells in the Pn (i.e., cells 
with the projecting pattern of relay cells) belong exclusively 
to the large-sized cell population, providing strong evidence 
that relay and pacemaker cells in the Pn can be distinguished 
unambiguously by difference in size.

On the other hand, a discrepancy exists between the Dye 
and Heiligenberg (1987) study and the analyses carried out 
by our laboratory previously (Sîrbulescu et al., 2014; Zupanc 
et al., 2014) and in the present study. Whereas we failed to 
detect any significant correlation between the numbers of 
the pacemaker or relay cells and fish size (defined by either 
total length or body weight), Dye and Heiligenberg (1987) 

reported a significant correlation between fish size and num-
ber of pacemaker cells in the Pn, suggesting new pacemaker 
cells are added as the fish get older. It is likely that this dis-
crepancy can be explained by differences in the composition 
of the samples taken. While body weight ranged from 1.3 to 
15.7 g in the Sîrbulescu et al. (2014) and the present study, 
the sample collected by Dye and Heiligenberg (1987) was 
biased towards much larger fish, ranging from 6.8 to 60.4 g. 
It is, therefore, possible that age-related differences in the 
number of pacemaker cells become evident only when very 
large fish are included in the analysis, a size they reach near 
the end of their life expectancy.

4.2 � Methodological considerations

The present analysis used nonparametric measures of cen-
tral tendency (median) and dispersion (IQR), rather than 
the commonly employed average and SD, SE, or coefficient 
of variation (CV), to guard against outlier measurements 
due to irregular neuronal firing patterns. With over 2,600 
parameter combinations screened, many that did not result 
in frequency-synchronized or stable oscillations, and with 
no a priori information on which combinations might yield 
such outcomes (given the stochasticity of randomly gen-
erated network structures), using nonparametric statistics 
provided a way to generate robust measurements that can 

Table 5   Impact of network parameters on between-cells variation in 
firing frequency within the A. leptorhynchus Pn network and the 2 
neuronal populations forming it. Between-cells variation was meas-

ured as the interquartile range of median instantaneous frequen-
cies. Values given as in Table 4; parameter name abbreviations as in 
Table 2

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect β SE rank β SE rank β SE rank

Linear terms [/100] np  − 0.49 0.02 5  − 7.05 0.22 3  − 20.6 0.34 3
nr  + 1.41 0.03 2  + 28.3 0.50 2  + 51.0 0.76 2
npp  − 7.59 0.16 1  + 7.01 2.29 4  + 4.86 3.48 —
npr  − 0.85 0.17 4  − 113 2.49 1  − 267 3.79 1

Quadratic terms [/1,000] np × np  + 0.02 0.01 16  + 0.34 0.03 17  + 1.09 0.04 14
nr × nr  − 0.13 0.01 13  − 5.05 0.16 11  − 7.42 0.25 9
npp × npp  + 12.0 0.42 3  − 19.4 6.12 6  + 9.69 9.30 —
npr × npr  − 2.26 0.44 7  + 13.4 6.42 8  + 186 9.76 4

Pairwise interactions [/1,000] np × nr  − 0.06 0.01 15  + 0.35 0.06 16  − 1.36 0.08 12
np × npp  + 0.34 0.02 10  − 1.43 0.36 12  − 2.11 0.55 11
np × npr  − 0.26 0.02 11  − 5.60 0.36 10  + 13.0 0.55 7
nr × npp  − 1.26 0.06 8  + 11.2 0.86 9  + 28.2 1.30 6
nr × npr  + 0.91 0.06 9  + 13.8 0.95 7  − 13.0 1.44 8
n pp × npr  − 4.22 0.38 6  − 55.5 5.65 5  − 78.6 8.59 5

Higher-order effects [/10,000] np × nr × npp  − 0.01 0.01 —  − 1.94 0.14 18  − 4.80 0.21 15
np × nr × npr  − 0.10 0.01 17  − 4.77 0.14 15  − 3.47 0.21 16
np × npp × npr  + 1.15 0.06 14  + 9.35 0.90 14  + 12.3 1.37 13
nr × npp × npr  − 1.89 0.15 12  + 11.7 2.17 13  − 30.4 3.30 10
np × nr × npp × npr  + 0.02 0.01 18  − 0.17 0.03 19  + 0.43 0.05 17
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be safely aggregated across cells and experiments. Impor-
tantly, these statistics can be easily converted to their usual 
counterparts if the underlying data are well-behaved (e.g., 
mean = median, SD ≈ 3/4 IQR, CV ≈ 4/3 median/IQR for 
Gaussian distributions). Additionally, using nonparametric 
measures also alleviated the need to (manually or automati-
cally) account for short-duration transient patterns at simula-
tion start with no data loss – neither of the reported statistics 
are affected by initial outlier interspike intervals.

We relied on frequency synchronization as primary meas-
ure of cell population coherence, rather than the related but 
more restricted notion of phase synchronization, for several 
theoretical and computational reasons. First, based on our 
previous work (Hartman et al., 2021; Zupanc et al., 2019), 
we anticipated that firing frequencies of individual pace-
maker and relay cells might vary substantially, particularly 
within weakly connected Pn networks. While frequency 
synchronized networks might exhibit a variety of tempo-
ral alignment patterns, e.g., a mix of time-synchronous and 
anti-synchronous cells, and arbitrary phase shifts for each 
cell, phase synchrony necessitates frequency synchrony. 
Second, observation of phase synchrony in the simplified 
model used here, with axons limited to their initial segments, 

would not necessarily translate to the biological Pn, which 
features axons with variable lengths that might introduce 
differential delays. Conversely, phase synchrony of relay 
cell neural signals within the spinal cord, as needed to drive 
the EOD, or at the point where the relay cell axons exit the 
Pn, might not require phase synchrony between pacemaker 
and relay cell soma, given the variability in action potential 
travel times along axons with varying lengths and electric 
properties. Third, our previous results using the same mode-
ling paradigm (Hartman et al., 2021) indicated no noticeable 
phase shifts, except in weakly connected relay cells. Fourth, 
accurately quantifying phase differences at high firing rates 
(700–800 Hz) would require very precise action potential 
timing data (i.e., very small integration time steps) or very 
large sample sizes (e.g., thousands of interspike intervals), 
which would be computationally prohibitive, particularly 
for larger networks. Fifth, inspection of membrane potential 
traces from a random set of simulations exhibiting desyn-
chronized Pn networks did not reveal any complex dynam-
ics (e.g., bursting) whose identification might require more 
advanced frequency or phase measures.

Finally, due to the focus on network topology, the present 
model used simplified neurons with identical geometries and 
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Fig. 6   Impact of network size and density on within-cell variation 
in firing frequencies in the A. leptorhynchus Pn network. Boxplots 
illustrate distributions of between-cells medians of within-cell inter-
quartile ranges (IQR) of instantaneous frequencies for pacemaker 
cells (top), relay cells (middle), and the whole network (bottom) for 
each individual value of each parameter (columns). Data were pooled 

across replicates and value combinations of remaining parameters in 
each case. Box plot interpretation, outlier scaling, and color coding 
as in Fig. 5. Note logarithmic vertical scale in all cases, and different 
frequency scale for pacemaker cells (top) relative to relay cells and 
the whole network
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initial conditions, axons restricted to their initial segments, 
and gap junctions with identical localization and conduc-
tivity. These design choices ensured the modeled cells and 
junctions do not induce differential phase lags between 
synchronous incoming signals, decreasing the likelihood 
of complex network dynamics such as waves, bursting, and 
prolonged transients (see fifth point above). While changes 
in electrical properties between somatic and axonal com-
partments can introduce small conduction delays between 
pre- and post-synaptic cells (Moortgat et al., 2000b) (see 
also Fig. 1d in Hartman et al., 2021), the homogeneous 
cell models (within each type) and simplified spatial layout 
used here resulted in short, uniform travel times of action 
potentials from one cell to the next. In combination with the 
identical initial conditions (no differential starts), this ena-
bled the quantification of network size and density effects 
on Pn frequency synchronization independently from the 
impact of heterogeneities in the spatial layout and electrical 
properties of involved cells. Further research will be needed 
to determine whether the quantified effect sizes are dimin-
ished or augmented by interactions with such confounders 
in models with more realistic geometries and heterogeneity, 
as well as whether they translate from frequency synchrony 
to the more specific, but biologically relevant concept of 
phase synchrony (all cells fire at the same time) in such 
expanded models.

4.3 � Impact of network structure on firing precision

Extensive theoretical work using multiple in silico systems 
has provided some insight into how heterogeneity of neural 
oscillators affects network dynamics (Brunel, 2000; Grabow 
et al., 2010, 2011; Tönjes et al., 2010; White et al., 1998). Most 
importantly, one of the cardinal features of heterogeneity — 
network size — has been demonstrated to influence the preci-
sion of individual oscillators in CPGs and their synchronization. 
Congruently, early in vitro research using cultured ventricular 
cells from chicken (Clay & DeHaan, 1979) had found that clus-
ter size has no impact on the average inter-beat interval, whereas 
beat-to-beat variation in this metric, as quantified by the CV, 
scaled inversely proportional to the square root of the number 
of cells in the cluster. Recent modeling studies have uncovered 
similar inverse square root dependencies of interspike inter-
val variability, including for FitzHugh-Nagumo oscillators 
(Kori et al., 2012), circadian clock cells in the suprachiasmatic 
nucleus of mammals (Vasalou et al., 2009), and relay cells in 
the A. leptorhynchus Pn (Moortgat et al., 2000b).

Irregularities in CPG inter-beat intervals have been 
hypothesized to arise from membrane potential noise, e.g., 
stochastic opening and closing of ion channels (Clay & 
DeHaan, 1979). In cell culture clusters, membrane fluc-
tuations can be shown to be roughly inversely proportional 
to cluster diameter, and thus to the square root of the cell 

Table 6   Impact of network parameters on within-cell variation in fir-
ing frequency within the A. leptorhynchus Pn network and the 2 neu-
ronal populations forming it. Within-cell variation was measured as the 

median of within-cell interquartile ranges of instantaneous frequencies. 
Values given as in Table 4; parameter name abbreviations as in Table 2

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect β SE rank β SE rank β SE rank

Linear terms [/100] np  − 7.05 0.06 4  − 8.90 0.16 4  − 7.10 0.08 4
nr  + 10.2 0.14 3  + 17.7 0.37 2  + 9.62 0.19 3
npp  − 33.9 0.63 1  − 15.2 1.67 3  − 25.6 0.87 1
npr  + 10.4 0.69 2  − 77.4 1.82 1  + 14.6 0.95 2

Quadratic terms [/1,000] np × np  + 0.51 0.01 16  + 0.56 0.02 14  + 0.49 0.01 14
nr × nr  − 0.64 0.05 14  − 3.12 0.12 10  − 1.09 0.06 12
npp × npp  + 39.7 1.68 6  + 13.3 4.48 6  + 24.7 2.33 7
npr × npr  − 35.4 1.77 7  + 9.53 4.70 9  − 60.3 2.44 5

Pairwise interactions [/1,000] np × nr  − 0.85 0.02 12  + 0.28 0.04 16  − 0.46 0.02 15
np × npp  + 3.41 0.10 10  + 1.14 0.26 12  + 2.31 0.14 11
np × npr  − 2.51 0.10 11  − 2.58 0.27 11  − 3.39 0.14 10
nr × npp  − 3.76 0.24 9  + 11.2 0.63 8  + 5.38 0.33 9
nr × npr  + 8.03 0.26 8  + 11.8 0.69 7  + 9.09 0.36 8
n pp × npr  − 52.6 1.56 5  − 67.1 4.13 5  − 53.0 2.15 6

Higher-order effects [/10,000] np × nr × npp  + 0.06 0.04 —  − 2.18 0.10 17  − 1.38 0.05 17
np × nr × npr  − 0.94 0.04 17  − 3.61 0.10 15  − 0.94 0.05 18
np × npp × npr  + 8.36 0.25 13  + 10.9 0.66 13  + 8.79 0.34 13
nr × npp × npr  − 6.09 0.60 15  + 3.33 1.59 —  + 3.25 0.82 16
np × nr × npp × npr  + 0.06 0.01 18  − 0.06 0.03 18  − 0.06 0.01 19
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count, suggesting a possible dependence. Recent theoretical 
modeling (Kori et al., 2012) has identified the inverses of 
network size and of average connection strength as the vari-
ance components of membrane potential noise, supporting 
earlier postulates while also suggesting that increasing the 
number of cells cannot improve firing precision indefinitely. 
Subsequent numerical experiments found that CVs of inter-
spike intervals scale with the inverse square root of network 
size only up to a system-specific maximum number of cells, 
which in turn increases with average coupling strength (Kori 
et al., 2012). These findings were consistent across topolo-
gies ranging from nearest-neighbors lattice to fully con-
nected, with addition of long-range connections providing 
greater precision increases compared to local ones.

Connectivity patterns also play an important role in the 
emergence of network synchrony. Using CPG models con-
sisting of sparsely connected integrate-and-fire neurons, 
two research groups (Golomb & Hansel, 2000; Tattini et al., 
2012) have demonstrated that occurrence of (partially or 
fully) synchronized oscillations requires a minimum aver-
age connectivity. The critical number of connections grows 
logarithmically with network size, eventually converging to 
a constant value (Tattini et al., 2012), indicating that the 
minimal connectivity threshold is largely independent of 

network density. The asynchronous state becomes unstable 
above this critical value (Golomb & Hansel, 2000), suggest-
ing that coherent activity can spontaneously occur even in 
weakly coupled CPGs if each network cell receives enough 
inputs from other network cells. Accordingly, a small world 
topology (with small numbers of local connections and a 
few distant ones) may provide an optimal tradeoff between 
energy expenditure on signal transmission and control of 
firing patterns – including in more realistic heterogenous 
oscillator models (Vasalou et al., 2009).

The present study supports the natural condition that 
each CPG cell receives sufficiently many synapses from 
other network cells to allow synchronous activity, with addi-
tional incoming connections subject to diminishing returns. 
A secondary population of oscillators (here, the relay cells) 
might therefore be essential to transmit CPG output signals 
to the spinal cord, depending on local morphological condi-
tions (e.g., available volume, axonal geometry constraints). 
While the core network (here, pacemaker cells) can gener-
ate highly precise oscillations if above some minimum size 
and density, the output cell population, with their weaker 
connectivity patterns and different morphologies (consider-
ably larger somata, different ion channel densities) may act 
as a destabilizer and/or modulator. This notion is consistent 
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with the observation that chirping, a major type of transient 
EOD modulation, is mediated by excitatory input from the 
diencephalic prepacemaker nucleus to the relay cells (Heili-
genberg et al., 1996). Taken together, the present findings 
indicate that the structural organization of the Pn network 
may lead to CPG performance trade-offs and function-
ally optimal ranges for the sizes of the two involved cell 
populations.
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