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Abstract

Central pattern generators are characterized by a heterogeneous cellular composition, with different cell types playing distinct
roles in the production and transmission of rhythmic signals. However, little is known about the functional implications of
individual variation in the relative distributions of cells and their connectivity patterns. Here, we addressed this question
through a combination of morphological data analysis and computational modeling, using the pacemaker nucleus of the
weakly electric fish Apteronotus leptorhynchus as case study. A neural network comprised of 60—110 interconnected pace-
maker cells and 15-30 relay cells conveying its output to electromotoneurons in the spinal cord, this nucleus continuously
generates neural signals at frequencies of up to 1 kHz with high temporal precision. We systematically explored the impact
of network size and density on oscillation frequencies and their variation within and across cells. To accurately determine
effect sizes, we minimized the likelihood of complex dynamics using a simplified setup precluding differential delays. To
identify natural constraints, parameter ranges were extended beyond experimentally recorded numbers of cells and connec-
tions. Simulations revealed that pacemaker cells have higher frequencies and lower within-population variability than relay
cells. Within-cell precision and between-cells frequency synchronization increased with the number of pacemaker cells and
of connections of either type, and decreased with relay cell count in both populations. Network-level frequency-synchronized
oscillations occurred in roughly half of simulations, with maximized likelihood and firing precision within biologically
observed parameter ranges. These findings suggest the structure of the biological pacemaker nucleus is optimized for gen-
erating synchronized sustained oscillations.

Keywords Apteronotus leptorhynchus - Central pattern generator - Computational modeling - Neural network - Pacemaker
nucleus - Weakly electric fish

1 Introduction

Central pattern generators (CPGs) are neural networks
that can produce rhythmic activity without cues provided
by sensory feedback or input mediated by descending neu-
rons (for reviews, see Bucher, 2009; Frigon, 2012; Grillner,
2006; Guertin, 2009; Katz, 2016; Marder & Bucher, 2001;
Selverston, 2010). Their periodic output activity underlies,
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in both invertebrates and vertebrates, numerous rhythmic
behaviors, including respiration, locomotion (walking, fly-
ing, swimming), and gut movements. A characteristic feature
of CPGs is their heterogenous cellular composition, with the
involved cell types showing differences in morphological
features, molecular signatures, electrophysiological proper-
ties, and synaptic input or output patterns (for review, see
Hudson et al., 2010).

The relative contributions of the different cell types,
including their synaptic connectivity patterns, have a major
impact on the activity of the network, and thus on the behav-
ioral function controlled by CPGs, as shown in the stomato-
gastric ganglion of decapod crustaceans (Harris-Warrick
et al., 1992; Hudson et al., 2010) and in the pre-Botzinger
complex of mammals (Garcia et al., 2011). However, until
now it has remained elusive (i) whether any inter-individual
differences exist in absolute or relative numbers of different

@ Springer


http://orcid.org/0000-0002-2727-324X
http://orcid.org/0000-0001-8715-9994
http://crossmark.crossref.org/dialog/?doi=10.1007/s10827-022-00835-7&domain=pdf

88

Journal of Computational Neuroscience (2023) 51:87-105

cell types and neuronal connections, and (ii) what the func-
tional consequences of such morphological variability are
in a given CPG.

In the present study, we addressed these issues by com-
bining quantitative morphological analysis with computa-
tional modeling, using the pacemaker nucleus (Pn) of the
weakly electric fish Apteronotus leptorhynchus as a well-
established CPG. Like other apteronotids, this species fea-
tures an electric organ formed by massively enlarged axonal
terminals of electromotoneurons derived from spinal moto-
neurons (Bennett, 1971; de Oliveira-Castro, 1955; Waxman
et al., 1972). Electric organ discharges (EODs) are produced
by synchronous depolarization of the individual electrogenic
cells. Discharges are generated continuously at frequencies
of up to 1 kHz, reaching amplitudes of several hundred milli-
volts. As the duration of the electric pulse is comparable
to the interpulse interval, the resulting discharge pattern
resembles a train of quasi-sinusoidal electric signals. The
frequency of the EOD of individual fish is highly constant
(Bullock, 1969, 1970; Moortgat et al., 1998), surpassing
in its stability any other known periodic signal generated
by biological systems. The base EODs, together with com-
plex transient frequency and amplitude modulations of the

Fig. 1 Morphology of the

A. leptorhynchus Pn. (A)
Immunolabeling against the
neuronal marker Hu C/D
(blue) uncovers two distinct
populations of large neurons,
pacemaker cells (¥) and relay
cells (r), as well as numerous
small interneurons with no
documented role in the genera-
tion of Pn oscillations. These
neuronal types are embedded in
a dense astrocytic syncytium,
revealed by immunostaining
against the glial cell marker
S100B (green). The counts of
pacemaker and relay cells do
not correlate across fish, differ
between males (blue triangles)

discharges during electric interactions (Dunlap et al., 1998;
Engler & Zupanc, 2001; Zupanc & Maler, 1993; Zupanc
et al., 2006), play important roles in active electrolocation,
species and sex recognition, as well as intraspecific commu-
nication (for review, see Zupanc, 2018; Zupanc & Bullock,
2005).

EODs are driven in a one-to-one fashion by volleys of
command spikes from the Pn (for review, see Dye & Meyer,
1986). Axons from relay cells, its output neurons, descend
from the medulla oblongata to form electrotonic junctions
with the electromotoneurons in the spinal cord. Together
with an additional population of approximately 90 inter-
connected pacemaker cells, the roughly 20 relay cells form
the network that generates the intrinsic oscillations of the
Pn (Fig. 1A) (Sirbulescu et al., 2014). Each pacemaker cell
synapses, via gap junctions, with a limited number of pace-
maker and relay cells (Dye & Heiligenberg, 1987; Elekes
& Szabo, 1985; Moortgat et al., 2000a). An isolated Pn
can generate the basic EOD activity, whereas input from
descending neural pathways is required for the production
of transient modulations (Dye, 1988). The frequency of the
basic Pn oscillations, and thus of the EOD, is determined
by several factors, including intrinsic properties of the

N ONNN
o N BAOO

Number of relay cells 00
»

-
(2]

60 70 80 90 100 110
Number of pacemaker cells

(] female

male

Cc

and females (red circles) (B), or
correlate with an individual’s
length, weight, or Pn volume
(C). Tissue processing, digital
imaging, and cell count quantifi-
cation as described previously

100

80

Number of
pacemaker cells

60

(Sirbulescu et al., 2014)

25

20

Number of
relay cells

12 14 16

Length (cm)

@ Springer

18

4 6 8 10
Weight (g)

12 14 015 0.2 025

Pn volume (mm3)

0.3



Journal of Computational Neuroscience (2023) 51:87-105

89

pacemaker and relay cells (e.g., size, ion channel densities),
and the potassium buffering capacity of the extensive astro-
cytic syncytium enveloping them (Fig. 1A) (Hartman et al.,
2021; Zupanc et al., 2014).

The quantitative analysis performed as part of this study
revealed substantial variability in the morphological struc-
ture of the Pn network among individual fish. Computer
simulations using a simplified model of the Pn, designed
to minimize the likelihood of complex dynamics, identi-
fied frequency-synchronized, spontaneous, and sustained
oscillations with high temporal precision within the range
of morphological variability. These dynamics were charac-
terized by all cells firing at the same frequency, though not
necessarily in phase, consistently across time and with no
external inputs. However, we found increasing absence of
such oscillations when testing network structure parameter
values beyond those found in biological samples, with the
notable exception of (likely biologically unfeasible) very
large, densely connected networks. Thus, the present inves-
tigation suggests that the structure of the biological Pn is
optimized for generating frequency-synchronized spontane-
ous sustained oscillations.

2 Methods
2.1 Modeling of pacemaker and relay cells

Pacemaker and relay cells were modeled in NEURON ver-
sion 8.0 (Hines & Carnevale, 1997) via Python version
3.8 (Hines et al., 2009), building upon previous models of
the neural network of the Pn (Hartman et al., 2021; Lucas
et al., 2019; Moortgat et al., 2000b; Zupanc et al., 2019).
In line with these earlier models, each cell consisted of
two cylindrical sections with sizes derived from morpho-
logical data: (i) somatic, with diameter and length set to
the average diameter of the cell soma (Dye & Heiligenberg,
1987); (ii) axonal, with dimensions equal to corresponding

measurements of the initial segment (Elekes & Szabo, 1985;
Heiligenberg et al., 1996) (Table 1). Consistent with prior
studies, dendritic compartments were excluded from the
model as they only receive inputs from other brain regions
responsible for frequency modulation (Elekes & Szabo,
1985; Moortgat et al., 2000b).

Each cell section was divided into 1-pm long segments
expressing Hodgkin-Huxley ion channels (Hodgkin & Huxley,
1952), with maximum conductances, equilibrium potentials,
and other electrical properties based on prior modeling stud-
ies (Hartman et al., 2021; Moortgat et al., 2000b) (Table 1).
Since somatic and axonal segments differed in morphological
and/or electrical properties, small phase lags were induced
within as well as between cells (see Fig. 1d in Hartman et al.,
2021). Parameters for ion channel gate functions were set to
NEURON defaults (i.e., giant squid axon, per Hodgkin &
Huxley, 1952), consistent with previous Pn models. Ion chan-
nel kinetics were scaled to 27 °C, the average ambient water
temperature in the natural habitat of this species. K*- and
Na™-related parameters for somatic compartments were set to
values most likely to result in sustained spontaneous oscilla-
tions with frequencies within biologically observed ranges for
A. leptorhynchus (per Fig. 2 in Hartman et al., 2021). All other
parameters, including ion channel dynamics of axonal com-
partments, were set to the values employed in Moortgat et al.
(2000b), which were generally chosen to match experimental
measurements of cell properties (e.g., input resistances) or
action potential characteristics (e.g., spike width).

2.2 Modeling of pacemaker nucleus network

The Pn network was modeled as a random directed graph
using the NetworkX package (version 2.5) within Python.
Consistent with morphological data (Dye & Heiligenberg,
1987; Elekes & Szabo, 1985) and prior modeling work
(Hartman et al., 2021; Moortgat et al., 2000b; Zupanc et al.,
2019), the axons of pacemaker cells synapsed with relay
cells as well as other pacemaker cells, whereas relay cells

Table 1 Morphological and

0 . Parameter Pacemaker Relay
biophysical parameters of
model pacemaker and relay Group Name Unit Soma Axon Soma Axon
cells. Values were derived
from experimental data (Dye Morphological measurements  Length um 32 42 76 35
& Heiligenberg, 1987; Elekes Diameter um 32 5 76 6
& Szabo, 198,5; He1llgenberg Electrical properties Axial resistivity Q-cm 100 100 100 500
et al., 1996) (italic) or based . 5
on previous modeling studies Membrane capacitance  uF/cm 1 1 1 1
(Hartman et al., 2021; Moortgat Channel conductances Sodium maximum S/em? 13 0.5 0.9 0.5
et al., 2000b). Underlined: Potassium maximum mS/cm? 160 20 160 50
values observed Fo p.roduce Leak mS/em? 0.1 1 03 1
spontaneous oscillations at . . .
biologically relevant frequencies Equilibrium potentials Sodium mV +61 +61 +61 +61
in Hartman et al. (2021). See Potassium mV =61 =61 =61 =61
Sect. 2.1 for more details Leak mV -70 =70 -70 =70
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did not make synaptic contact with either pacemaker cells
or other relay cells. Consequently, the Pn network was gen-
erated as a union of two subgraphs: (i) a random directed
graph, connecting pacemaker cells with a defined prob-
ability; and (ii) a random bipartite directed graph, linking
pacemaker cells to relay cells with another defined prob-
ability. Given the lack of empirical data on axonal lengths of
pacemaker cells, these network connections did not include
any information on spatial distribution. Accordingly, action
potential transmission delays were the same for all pairs
of connected cells, decreasing the likelihood of complex
dynamics.

To explore the impact of network size and density on
Pn oscillation patterns, the numbers of pacemaker and
relay cells were varied from 3 to 200 in 11 geometric steps,
respectively from 2 to 80 in 9 geometric steps, and the aver-
age counts of pacemaker-to-pacemaker and pacemaker-to-
relay connections were varied from 1 to 13 in increments of
2 (Table 2). Each combination of parameters was evaluated
10 times, using a different randomly generated graph in each
case. To minimize the interference from other sources of
variation in firing frequency, such as differences in action
potential travel times from pre-synaptic neurons projecting
to any individual cell in the network, we fixed all other con-
trollable factors, including soma and axon dimensions, and
initial conditions of Hodgkin-Huxley equations governing
each cell segment.

2.3 Modeling of network synaptic connections

Consistent with experimental data (Elekes & Szabo, 1985;
Yamamoto et al., 1989), synaptic connections between Pn
cells were implemented as rectifying gap junctions with
instantaneous rectification using the model description lan-
guage NMODL (Hines & Carnevale, 2000). Gap junctions
were modeled in NEURON as half-gap objects (Gutierrez
& Marder, 2013) affixed to the last axonal segment of the
presynaptic cell and the first somatic segment of the post-
synaptic cell (Hartman et al., 2021). Their conductivity was
set to vary from 0.5 to 10 nS proportionally to the membrane
potential difference between the two cells, consistent with
experimentally determined properties (Gutierrez & Marder,

2013). Since there are no data on coupling strength differ-
ences between pacemaker cells connecting with other pace-
maker cells, as opposed to relay cells, conductances for these
two junction types were assumed to be the same. Using iden-
tical parameters for all modeled gap junctions additionally
ensured they do not introduce phase delays between signals
arriving to post-synaptic cells from phase-synchronized pre-
synaptic cells.

2.4 Numerical simulation of activity patterns

Pn networks were simulated under spontaneous condi-
tions only (i.e., without injecting current). Initial potentials
(applied to all segments in all cells), simulation durations,
and action potential detection thresholds were determined
following simulation of a minimal network consisting of a
pacemaker cell connected to a relay cell for 100 ms, with
membrane potentials initialized at —60 mV. The first 33 ms
of the preliminary simulation were discarded to minimize
contamination by initial transient patterns. The initial poten-
tial for whole-network simulations was set to —60.7 mV, the
minimum membrane potential recorded during this prelimi-
nary simulation (used here as a proxy for the resting value).
All other initial conditions (e.g., ion channel gate variables)
were set to NEURON defaults (giant squid axon) for all
cells, in all conducted simulations (including the prelimi-
nary one). This ensured all modeled cells started near their
steady state (limit cycle) in each whole-network simulation,
decreasing the duration of initial transients and the likeli-
hood of complex, non-stationary network dynamics. The
action potential threshold was set to —10.2 mV, the average
midpoint between the minimum and maximum potentials
recorded in the preliminary simulation. The full simulation
duration was set to 143 ms, corresponding to 100 interspike
intervals of the slowest firing cell. Numerical simulations
were performed on a Dell OptiPlex 9020 desktop computer
equipped with a 4-core Intel Core i7 CPU at 3.4 GHz and
16 GB RAM, and on a Dell Precision T7810 workstation
equipped with dual 10-core Intel Xeon CPUs at 2.2 GHz and
128 GB RAM. To decrease computation times, numerical
integration was performed with a variable time step, using
NEURON’s adaptive integration feature.

Table 2 Experimentally

- Group Parameter Notation Values
manipulated pacemaker
network structural parameters. Pacemaker cells np 3,4, 6,10, 16, 24, 37, 56, 86, 131, 200
Values in italic denote size .
Network size
parameters evaluated only at
subsets of the corresponding Relay cells nr 2,3,5 7 12,20, 31, 50, 80

density parameters due

to natural constraints
(pacemaker-pacemaker
connections < pacemaker
cells, and pacemaker-relay
connections <relay cells)

Network density

Pacemaker-pacemaker npp
connections per cell

Pacemaker-relay npr
connections per cell

1,3,5,7,9,11, 13

1,3,5,7,9,11, 13
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2.5 Determination of oscillation frequencies

Membrane potential traces (minimal networks and a small
sample of whole-network simulations, randomly selected
from across the parameter search space) and action poten-
tial time stamps (all simulations) were collected from the
somatic section of each model cell adjacently to the axonal
section (equivalent to the axon hillock in the biological
cell). Action potentials were defined as membrane potential
crossovers from below to above the —10.2 mV activation
threshold. Their time stamps were used to compute instan-
taneous firing frequencies as inverses of interspike intervals.
The frequency of each cell was defined as its median instan-
taneous frequency. It was considered stable if (i) the slope
of frequency versus time past the first third of the simula-
tion (to exclude any initial transient periods) did not differ
significantly from 0 (p <0.01), and (ii) the timespan from
the last action potential to the simulation end did not exceed
the median interspike interval by more than 2 interquartile
ranges (IQRs). The network frequency was similarly defined
as the median across all cells. It was labeled stable if (i) the
frequency of each cell was stable, and (ii) all network cells
were frequency-synchronized, operationalized here as the
frequency difference between the slowest and fastest firing
cells not exceeding 1 Hz. This threshold was selected to
account for numerical precision in interspike interval and
firing frequency measurements, estimated at~1 Hz based on
inspection of membrane potential traces generated in NEU-
RON using adaptive integration as part of previous studies
and preliminary testing.

2.6 Statistical analysis of simulation outputs

To quantify the effects of network size and density on spon-
taneous oscillation frequencies of Pn cells and synchroniza-
tion thereof, the following four metrics were computed for
the full network, pacemaker cell subnetwork, and relay cell
population: (i) median frequency across all applicable cells;
(ii) frequency IQR across all cells; (iii) median of within-cell
instantaneous frequency IQR, a measure of firing precision;
and (iv) proportion of cells exhibiting stable sustained oscil-
lations. While more complex measures of stability and syn-
chronicity that can distinguish between more complex types
of dynamical states are available (e.g., Borges et al., 2017,
Lodi et al., 2020; Stiefel & Ermentrout, 2016), the selection
above are easy to compute at scale, and sufficiently sensi-
tive to common non-stationary patterns. For example, burst-
ing, waves, multi-stability, and spiral-like behaviors would
result in high within-cell IQRs, while increasing and damped
oscillations would lead to statistically significant deviations
from within-cell frequency stability. Thus, they enable the
identification of parameter combinations leading to high-
precision, frequency-synchronized network oscillations (all

cells have nearly identical frequencies, very low IQRs, and
do not show significant trends in frequency over time) — the
primary research question of this study.

These metrics, along with network frequency stability
(defined above) as direct measure of frequency-synchronized
sustained oscillations, were analyzed using generalized lin-
ear models with polynomial designs (including linear and
quadratic terms for main effects, and all pairwise and higher
order interactions between the linear terms) and distribution-
appropriate (normal or binomial) link functions. Unfeasible
parameter combinations (e.g., fewer relay cells than average
pacemaker-to-relay connections) were excluded from the
analysis. Independent variables (counts of cells and connec-
tions of each type) were centered to an average of 0 before
analysis to enable accurate evaluation of nonlinear terms. Sig-
nificance levels of model coefficient estimates were computed
via conversion to z-statistics and adjusted for multiple testing
using the Benjamini—Hochberg method. Coefficient absolute
values were used as a measure of effect size for ranking of
model terms (main and interactions). Corresponding standard
errors are reported as measures of estimate precision, and are
proportional to the residual error of the fitted linear model
in each case (pooled across all observations, i.e., all network
parameter sets and simulation replicates).

3 Results

3.1 Patterns of variation in the biological
pacemaker nucleus network

The numbers of pacemaker and relay cells and their pos-
sible correlations to other morphological characteristics of
A. leptorhynchus individuals have been investigated in 3
experimental studies to date. Dye and Heiligenberg (1987)
reported Pn networks consisting of 97 +25 (average + SD)
pacemaker cells and 25 + 7 relay cells (n=11 individuals),
identifying 2 non-trivial associations with other metrics: a
correlation of 0.89 between pacemaker cell count and fish
size (n=28), and one of 0.61 between relay cell diameters
and EOD frequency (n=12). More recently, Zupanc et al.
(2014) computed pacemaker cell counts of 120 +2 (aver-
age + SE) for males and 135 + 15 for females, and relay cells
counts of 26 +2 and 24 + 2, respectively (n=6), with no
sex differences in the number or profile area of either cell
type (p>0.5). In a separate investigation, Sirbulescu et al.
(2014) reported networks including 87 +4 (average + SE)
pacemaker cells and 20 + 1 relay cells (n=15), with neither
count correlating significantly with fish size (p>0.1).

We reanalyzed the data from the Sirbulescu et al. (2014)
study, and found nearly twofold differences between the min-
imum and maximum counts of pacemaker (59 to 110) and
relay cells (16 to 27). These findings are consistent with the
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earlier report by Dye and Heiligenberg (1987), and indicate
substantial inter-individual variability in the composition of
this CPG. There was no correlation between the numbers of
pacemaker and relay cells (p > 0.8; Fig. 1B), suggesting that
Pn oscillations are not dependent on specific ratios between
the two underlying cell populations. In addition, there was
no correlation between either cell count and fish length, fish
weight, or Pn volume (Fig. 1C; p> 0.05), nor were there any
significant differences between male and female individuals
(p>0.3), suggesting that the empirically observed ranges of
pacemaker and relay cell counts do not reflect morphologi-
cal constraints.

3.2 Occurrence of frequency-synchronized
spontaneous sustained oscillations

A systematic grid-based method, involving 2,640 parameter
combinations, each evaluated at 10 randomly generated net-
work graphs, was used for unbiased assessment of the effect
of network size and density on Pn firing patterns in A. lep-
torhynchus. To identify any intrinsic constraints, parameters
ranges were extended beyond biologically observed values
(above), from minimal networks of 3 pacemaker and 2 relay
cells or very sparse networks with one connection of each
type per pacemaker cell, to twice the average numbers of
pacemaker cells and connections and 4 times the average
relay cell count.

Analysis of membrane potential recordings of pacemaker
and relay cells from a selection of 25 parameter combina-
tions revealed typically small initial transients and no com-
plex network dynamics, in line with the simplified model
setup. Since all simulated cells were able to produce sta-
ble sustained oscillations if left in isolation, networks with
parameter configurations unable to result in frequency
synchronization did not exhibit any time periods or sub-
networks with no or substantially different activity levels.
Instead, we observed individual cells firing at different, and
in some instances non-constant, rates (Fig. 2). Correspond-
ingly, frequency-locked cells appeared to be firing largely
at the same time, up to a small delay between pacemaker
and relay cells (Fig. 2A), as also observed in our prior work
using the same model (Hartman et al., 2021). On average,
modeled cells reached stability within 3 ms of simulation
start, with only the first action potential and first interspike
interval exceeding the value range (median+ 1.5 IQR)
observed after the first third of the simulation, when firing
patterns are stabilized (Fig. 2B). We did not find evidence
of large-scale non-stationarity at the individual cell level,
even in parameter combinations resulting in non-synchro-
nized networks (20 out of the 25 examined). Typical devia-
tions from frequency stability included low magnitude (up
to about 10%) modulation of spike amplitude and firing

@ Springer

Fig.2 Example outputs of A. leptorhynchus Pn network model. A »
Spike raster plots of initial 50 ms of simulated neural activity of all
pacemaker cells (dark blue) and all relay cells (dark red) within the
modeled network for three different parameter combinations: left,
small, relay-biased, densely-connected network, consisting of 16 pace-
maker and 31 relay cells, with an average of 9 pacemaker-to-pacemaker
and 9 pacemaker-to-relay junctions per pacemaker cell, and exhibiting
largely desynchronized oscillations; middle, small, sparsely-connected
network consisting of 37 pacemaker and 12 relay cells, with an aver-
age of 3 connections of each type per pacemaker cell, and showing
predominantly frequency-synchronized oscillations; right, small, cell
type balanced, densely-connected network comprised of 24 pacemaker
and 20 relay cells, with an average of 13 connections of each type per
pacemaker cell, and exhibiting frequency-synchronized oscillations.
Each row corresponds to one cell (identifier shown on the vertical axis,
ranging from 1 to 44-49). Magenta double arrows mark cells with
membrane potential plots illustrated in more detail in B-C. For each
cell in each network, vertical lines along the horizontal axis mark the
times when its membrane potential crossed the action potential thresh-
old (—10.2 mV) on an ascending trend. B Membrane potential (con-
tinuous blue line) and corresponding upper peak envelope (dashed red
line) over time for representative pacemaker and relay cells from each
of the networks in A. To facilitate interpretation, cells are labeled by
their concatenated network and cell identifiers. Peak envelopes were
obtained through spline interpolation of local maxima (=action poten-
tial peaks). C Scatter plots of interspike interval versus spike ampli-
tude as a function of spike index for the representative cells shown in
B. Spike amplitude was defined as the peak (maximum) membrane
potential recorded during the action potential, with the corresponding
interspike interval defined as the time from each such peak to the sub-
sequent one. Individual measurements are color coded by spike index
during the complete simulation (143 ms), ranging from 6 (dark blue)
to 111 (dark red). The initial 5 spikes were conservatively removed
from these plots to allow visualization of patterns and value ranges
after initial transients. Relay cells 4-23, 443, and 1046 show periodic
changes in both interspike interval (firing frequency) and spike ampli-
tude, with 1046 showing a preference for values similar to those of
pacemaker cells, while relay cell 4-32 slowly converges to the latter.
Pacemaker cells 4-7 and 10-17, which are not as connected to other
pacemaker cells as 23—12, show greater variation in interspike interval
and spike amplitude, but no periodic trend. Note different scales on both
horizontal and vertical axes across the different plots

frequency, and/or delayed convergence to pacemaker-like
frequencies, in relay cells with too few inputs from pace-
maker cells (Fig. 2C).

Quantitative analysis of network frequency stability
measures uncovered widespread occurrence of frequency-
synchronized sustained oscillations, with about 45% of the
evaluated parameter combinations yielding networks com-
prised of cells firing within 1 Hz of each other consistently
over time (Fig. 3). Frequency-synchronized oscillations
were common within biologically observed parameter ranges
(Fig. 3A) as well as in very large and densely connected net-
works (91% of all parameter combinations), but increasingly
rarer in smaller networks (58%), and particularly so in large
and weakly connected networks (21%) (Fig. 3B). Statistical
analysis using a logistic model revealed very strong positive
dependences on network connectivity with clear diminish-
ing returns (manifested as large negative quadratic terms),
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Fig.3 Rate of frequency-synchronized sustained oscillations in the
simulated A. leptorhynchus Pn as a function of network size (numbers
of pacemaker and relay cells) and network density (average numbers
of pacemaker-to-pacemaker and pacemaker-to-relay connections)
parameters. Univariate (A) and bivariate (B) histograms show propor-
tions (%) of parameter combinations yielding frequency-synchronized
oscillations for each parameter value (bars in A) and for each pair of
parameter values (pixels in B), pooled across replicates (10 randomly

as well as a moderate negative dependence on the number
of relay cells (Table 3), indicating that each cell requires a
minimum number of inputs from other network cells in order
to maintain frequency synchrony with the rest of the cells
(Fig. 3B). This notion was additionally supported by signifi-
cant positive interactions between each cell count and the
corresponding number of incoming connections (Table 3).
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Average pacemaker-to-
pacemaker connections

generated networks per each parameter combination) and across all
examined value combinations for the remaining parameters (44—-540
in A, 1-99 in B). Bins are color coded by magnitude according to the
scale shown to the right. Note different vertical axis scales in top two
plots versus bottom two plots in A. White pixels in middle row plots
in B mark unfeasible parameter combinations. Parameter values were
sampled using geometric (cell counts) and linear (connection counts)
grids (total of 2,640 combinations)

3.3 Effects of network structure on population
average firing frequencies

All examined network parameters significantly impacted
the spontaneous oscillation frequencies of individual Pn
cells, albeit in opposite directions depending on cell type
(Table 4). The median frequency of pacemaker cells ranged
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Table 3 Impact of network structure parameters and their interactions
on the synchronization of sustained spontaneous oscillation frequencies
within the A. leptorhynchus Pn network and the 2 neuronal subpopula-
tions forming it. The network was considered frequency-synchronized
if the firing frequency range across all cells did not exceed 1 Hz, and
if no cell showed a statistically significant trend in frequency measure-
ments over time (p<0.01, linear regression). Analysis was performed

using a logistic regression model with linear and quadratic terms, as
well as two-, three-, and four-way interactions. Reported values include
regression coefficient estimates (f), corresponding standard errors (SE)
and odds ratios (OR), and effect size ranks when statistically signifi-
cant (p <0.05, adjusted for multiple comparisons using the Benjamini—
Hochberg method). For parameter name abbreviations, see Table 2; —,
not ranked (not significant)

Model factors 1] SE OR rank
Linear terms [/100] np +9.19 0.17 1.096 4
nr -27.0 0.48 0.763 3
npp +51.0 1.89 1.665 2
npr +125 242 3.483 1
Quadratic terms [/1,000] np X np —-0.44 0.01 1.000 15
nr X nr +1.53 0.10 1.002 11
npp X npp —-72.3 2.16 0.930 6
npr X npr —83.8 3.18 0.920 5
Pairwise interactions [/1,000] np X nr +1.05 0.06 1.001 13
np X npp +1.38 0.29 1.001 12
np X npr —-245 0.33 0.998 10
nr X npp +2.72 0.89 1.003 9
nr X npr +17.8 1.06 1.018
n pp X npr —-11.1 4.38 0.989 8
Higher-order effects [/10,000] np X nr X npp -0.75 0.08 1.000 18
np X nr X npr —-1.59 0.07 1.000 17
np X npp X npr +3.36 0.51 1.000 16
nr X npp X npr —7.47 1.24 0.999 14
np X nr X npp X npr +0.03 0.02 1.000 —

from 755 to 826 Hz across tested parameter combinations,
decreasing by 1.5 Hz for each additional pacemaker-to-
relay connection per pacemaker cell, and by 0.26 Hz for
each pacemaker-to-pacemaker connection per cell or every
10 pacemaker cells, while increasing by 0.51 Hz for every
10 relay cells (Fig. 4). Correspondingly, the median relay
cell frequency varied between 694 and 785 Hz, increas-
ing by 0.41 Hz per pacemaker cell, and by 0.6 Hz per each
additional pacemaker-to-pacemaker connection per cell
(albeit with diminishing returns), decreasing by 0.8 Hz
per relay cell, and exhibiting a quadradic-like dependence
(sharp increase, then slow decrease) on the average number
of pacemaker-to-relay connections (Fig. 4). Network-level
patterns followed relay cell trends despite pacemaker cells
being more numerous (average of 64 versus 32 cells), likely
due to the stronger effect sizes. The analysis additionally
uncovered many significant interactions in each cell popula-
tion (Table 4), some with relatively high magnitudes (e.g.,
between the two average connection counts in both cell
populations, and between the number of relay cells and the
average number of pacemaker-to-relay connections at net-
work level and in relay cells alone) — indicative of complex
nonlinear dependencies between network structure param-
eters and Pn oscillation frequencies.

3.4 Effects of network structure
on within-population frequency variability

Variability in firing frequency between pacemaker cells was
generally very low, with a median population-level IQR of
0.13 Hz, 87% of the tested parameter combinations result-
ing in IQRs below 1 Hz, and 95% of observations below
2 Hz (Fig. 5). Statistical modeling uncovered many highly
significant, but low magnitude dependencies, with the
average number of pacemaker-to-pacemaker connections
and the number of relay cells having the largest impacts, a
roughly 0.07 Hz decrease per additional connection, respec-
tively increase for every 5 relay cells (Table 5). By contrast,
relay cells frequently showed greater variability in firing
frequency, with similar global median (0.1 Hz) but 38% of
the observations exceeding 1 Hz, and 10% exceeding 30 Hz
(Fig. 5). Network structure significantly and nonlinearly
impacted heterogeneity in relay cell frequencies, with the
between-cells frequency IQR increasing by 0.28 Hz for each
relay cell, and by 0.07 Hz per each additional pacemaker-
to-pacemaker connection, respectively decreasing by 1.1 Hz
for each additional pacemaker-to-relay connection per pace-
maker cell, and by 0.7 Hz for every 10 pacemaker cells
within networks with at least 10 pacemaker cells (Table 5).

@ Springer



96

Journal of Computational Neuroscience (2023) 51:87-105

Table 4 Impact of network parameters on median firing frequencies in
the A. leptorhynchus Pn network and the 2 neuronal populations form-
ing it. Regression coefficients (f3), corresponding standard errors (SE),
and effect size ranks where statistically significant (p <0.05, Benja-

mini-Hochberg adjustment) are given for linear and quadratic terms,
as well as for two-, three-, and four-way interactions. Parameter name
abbreviations as in Table 2; —, not ranked

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect [} SE rank 1] SE rank i) SE rank

Linear terms [/100] np -264 006 6 +409 025 4 +386 024 4
nr +5.08 013 4 -380.3 057 2 -59.7 0.55 2
npp -26.1 0.61 2 +60.0 259 3 +64.0 252 1
npr —150 0.66 1 +287 2.83 1 +50.5 2.75 3

Quadratic terms [/1,000] np X np +0.35  0.01 14 -2.59 0.03 15 -2.61 0.03 13
nr X nr -0.05 0.04 — +8.36  0.19 10 +449  0.18 11
npp X npp +28.3 162 5 —66.1 694 6 -634 674 6
npr X npr —1.85 .70 — -399 728 5 -926 707 5

Pairwise interactions [/1,000] np X nr —-1.23 0.01 11 +3.63 0.06 13 +5.21 0.06 10
np X npp +2.20  0.10 10 —17.81 0.41 11 -9.33 040 9
np X npr +3.15 0.10 7 -19.3 0.41 9 -157 040 8
nr X npp -237 023 9 —-543 0.97 12 +2.98 0.94 12
nr X npr +2.99 025 8 +42.5 1.07 7 +31.9 1.04 7
n pp X npr —55.8 1.50 3 +38.0 641 8 +9.55 622 —

Higher-order effects [/10,000] np X nr X npp -0.03 004 — +120 0.16 18 -036 015 —
np X nr X npr —-1.65 0.04 15 +1.88  0.16 17 -450 0.15 15
np X npp X npr +7.90 0.24 13 —7.64 1.03 16 -1.92 1.00 —
nr X npp X npr -9.23 0.57 12 +29.9 2.46 14 +20.5 2.39 14
np X nr X npp X npr +0.09 0.01 16 —-0.47 0.04 19 -0.30 0.04 16

Higher order terms had low amplitude effect sizes, with the
notable exception of a negative interaction between the two
average connection counts (Table 5), indicating that the
negative dependence of cell-to-cell frequency variability
on pacemaker-to-pacemaker connectivity levels is accentu-
ated for relay cell populations that receive few inputs from
pacemaker cells, respectively reduced or even reversed for
strongly connected relay populations. Network-level statis-
tics again paralleled those observed for relay cells (Fig. 5),
likely due to the much larger variation recorded in this popu-
lation (nearly one order of magnitude difference).

3.5 Effects of network structure on within-cell
frequency variability

Pacemaker and relay cells exhibited similar levels of within-
cell frequency variability, reaching median IQRs of 1.1 and
1.3 Hz, and maximum IQRs of 80 and 52 Hz, respectively
(Fig. 6). In both cell types, the within-cell IQR decreased
with the number of pacemaker cells (by 0.71 Hz, respectively
0.89 Hz, for every 10 cells) and with the average count of
pacemaker-to-pacemaker connections (by 0.34 Hz, respec-
tively 0.15 Hz, for each additional connection), and increased

@ Springer

with the number of relay cells (by 0.1 Hz per cell for pace-
maker cells, respectively 0.18 Hz for relay cells) (Table 6).
By contrast, the average count of pacemaker-to-relay connec-
tions showed a differential effect, increasing within-cell IQRs
in pacemaker cells by 0.1 Hz per connection, while greatly
decreasing IQRs in relay cells, by an average of 0.77 Hz per
additional connection. This difference was qualified by a
similarly strong negative interaction between the two aver-
age connection counts in both cell types (Table 6), indica-
tive of a diminished, respectively enhanced, impact of the
average number of pacemaker-to-relay connections within
Pn networks with dense pacemaker sub-networks, resulting
in low within-cell IQRs for both cell populations in strongly
connected networks. Further higher order terms with large
magnitudes included quadratic terms for the two average con-
nection counts in pacemaker cells (and, to a lesser degree, in
relay cells), indicative of diminished effects for higher values
(Fig. 6). Network-level results mirrored those obtained in
pacemaker cells (Fig. 6, Table 6), likely due to the larger con-
tribution as dominant cell type and broader range observed in
this population. Taken together, these findings indicate that
the pacemaker cell sub-network drives the Pn firing preci-
sion, with relay cells opposing this effect as they are added
to the network.
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Fig.4 Impact of network size and density on firing frequencies of
cells in the A. leptorhynchus Pn network. Boxplots show distributions
of within-population median frequencies for pacemaker cells (fop),
relay cells (middle), and the whole Pn network (bottom) for each
tested value of each parameter (columns), pooled across replicates
and value combinations of remaining parameters. Solid boxes mark
the span between the lower and upper quartiles, with corresponding
medians denoted by black dots inside white circles. Whiskers extend
above and below each box to 1.5 interquartile ranges or the fur-
thest data point in each direction, whichever is closest. Data points

3.6 Effects of network structure on within-cell
frequency stability

Cell frequency stability, defined here as the slope of instan-
taneous frequency measurements over time being statisti-
cally indistinguishable from 0, was nearly universal, reach-
ing averages of 97% in both pacemaker and relay cells across
all parameter combinations (Fig. 7). Statistical analysis
uncovered similar dependence patterns in these two popu-
lations, as well as for the Pn network as a whole (Table 7).
The likelihood of frequency stability increased with the
average number of pacemaker-to-pacemaker connections
in a concave quadratic manner (sharp increase followed
by gradual increase), while following a convex quadratic
function with respect to the average count of pacemaker-to-
relay connections (first decreasing, then increasing). These
patterns suggest the existence of a minimum connectivity
threshold for the pacemaker cell sub-network, potentially
moderated by the number of projections from pacemaker
to relay cells. Most other terms showed negligible or non-
significant effects (Table 7), with the exception of a negative

pacemaker connections relay connections

beyond these values (outliers) are depicted by colored dots, with
random noise added along the horizontal axis to minimize overlaps.
To facilitate interpretation, extreme high outliers (values above the
dashed black line in top plots) are compressed to a narrow section of
the vertical axis (delimited by continuous grey lines), while boxes are
color coded by median values, increasing from dark blue to dark red
through light green (similar to the color map from Fig. 3), separately
for each plot. Note different frequency scale for pacemaker cells (fop)
relative to relay cells and the whole network

interaction effect of increasing the average counts of both
connection types simultaneously, most likely indicative of
diminishing returns, and of small negative dependences on
the counts of pacemaker and relay cells, possibly as a result
of the increased chance to observe statistically significant
trends in cell frequency when the number of tests performed
(here, one per cell) becomes large.

4 Discussion

The present study investigated, to our knowledge for the
first time, the impact of variations in the structure of the
underlying neural network on the function of heterogene-
ous CPGs. Quantitative analysis indicated significant and
uncorrelated variation in the numbers of pacemaker and
relay cells in the Pn of A. leptorhynchus, reaching twofold
ratios between the largest and smallest values observed,
with no codependences to morphological measurements
(e.g., fish length and weight). Prompted by these observa-
tions, we systematically explored the effects of pacemaker
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Fig.5 Impact of network size and density on between-cells firing fre-
quency variation in the A. leptorhynchus Pn network. Boxplots show
distributions of population interquartile ranges (IQR) of frequencies
for pacemaker cells (fop), relay cells (middle), and the whole Pn net-
work (bottom) as a function of the numbers of pacemaker (leff) and
relay (center left) cells, and average counts of pacemaker-to-pacemaker
(center right) and pacemaker-to-relay (right) connections. Data were

and relay cell counts, and of average pacemaker-to-pace-
maker and pacemaker-to-relay connection counts, on Pn
oscillation frequencies and their variation across and
within cells.

Computer simulations using parameter combinations well
beyond biologically observed ranges uncovered numerous
multilinear and polynomial dependencies of Pn oscillation
patterns on the size and density of the underlying neural
network and its constituent sub-networks. While a major-
ity of cells across experiments were able to generate sus-
tained oscillations at a consistent pace over time (Figs. 6-7),
there was considerable variability in frequency, particularly
between the two types (Figs. 4-5). Pacemaker cells fired
at higher rates and with lower levels of between-cells vari-
ability relative to relay cells, with network-level oscillation
patterns tilted toward either of the populations depending on
their sizes and how tight they were connected to each other.

Notably, both within-cell firing precision (Fig. 6) and
between-cells synchronization in frequency (Figs. 3, 5)
increased with the counts of pacemaker cells and pacemaker-
to-pacemaker and pacemaker-to-relay connections, while
decreasing with the number of relay cells. Inspection of mem-
brane potential recordings from individual cells uncovered
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pacemaker connections relay connections

combined across replicates and examined values of remaining param-
eters in each case. Box plot interpretation and color coding as in Fig. 4.
To facilitate visualization, extreme low outliers (with values below
dashed black line) are compressed to a narrow section of the vertical
axis (marked by continuous grey lines). Note different frequency scale
for pacemaker cells (fop) compared to relay cells and the whole net-
work. Note logarithmic vertical scale in all cases

reduced frequency variability and increased action potential
amplitude with additional incoming connections in both cell
types (Fig. 2). Pacemaker cells with fewer connections from
other pacemaker cells exhibited broader interspike interval
distributions, while relay cells with insufficient inputs cycled
between relay-like and pacemaker-like firing frequencies, tilt-
ing towards the latter as the number of incoming connections
increases, then simply converging once they are numerous
enough.

Overall, frequency IQRs for both cell types reached their
minimum levels at the lower bound of experimentally deter-
mined pacemaker cell counts, respectively the upper bound
of empirical numbers of relay cells (Figs. 4-5), indicating
that the biological Pn is likely optimized for generating fre-
quency-synchronized oscillations. Decreasing the number of
pacemaker cells below about 50, e.g., to limit energy con-
sumption, would dramatically reduce firing precision. Simi-
larly, increasing the number of relay cells above 30, e.g., to
enhance the signal provided to electromotoneurons, would
also result in greatly decreased firing precision, unless pro-
portionally incrementing the number of pacemaker cells or
of pacemaker-to-relay connections, likely beyond biological
feasibility ranges (Fig. 3B).
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Table 5 Impact of network parameters on between-cells variation in
firing frequency within the A. leptorhynchus Pn network and the 2
neuronal populations forming it. Between-cells variation was meas-

ured as the interquartile range of median instantaneous frequen-
cies. Values given as in Table 4; parameter name abbreviations as in
Table 2

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect 1] rank p SE rank [i] SE rank

Linear terms [/100] np -049 002 5 -705 022 3 -206 034 3
nr +1.41 003 2 +283 050 2 +51.0 076 2
npp -7.59 0.16 1 +7.01 229 4 +486 348 —
npr -085 017 4 —113 2.49 1 —267 3.79 1

Quadratic terms [/1,000] np X np +0.02 0.01 16 +0.34  0.03 17 +1.09  0.04 14
nr X nr -0.13  0.01 13 -5.05 0.16 11 -742 025 9
npp X npp +12.0 0.42 3 -19.4 6.12 6 +9.69 9.30 —
npr X npr —-2.26 0.44 7 +13.4 6.42 8 +186 9.76 4

Pairwise interactions [/1,000] np X nr —0.06 0.01 15 +0.35 0.06 16 —-1.36 0.08 12
np X npp +034  0.02 10 —-143 036 12 -2.11 0.55 11
np X npr -026 0.02 11 -5.60 0.36 10 +13.0 055 7
nr X npp -126 006 8 +112 08 9 +28.2 130 6
nr X npr +0.91 0.06 9 +138 095 7 —13.0 1.44
n pp X npr -422 038 6 -555 565 5 -78.6  8.59

Higher-order effects [/10,000] np X nr X npp —0.01 0.01 — —-1.94 0.14 18 —4.80 0.21 15
np X nr X npr -0.10 0.01 17 -477 0.14 15 -347 021 16
np X npp X npr +1.15  0.06 14 +9.35 090 14 +12.3 1.37 13
nr X npp X npr -1.89 0.15 12 +11.7 217 13 -304 330 10
np X nr X npp X npr +0.02  0.01 18 -0.17  0.03 19 +043  0.05 17

4.1 Quantitative morphological analysis
across different studies

Our quantitative morphological characterization of pace-
maker and relay cell populations in the Pn of A. leptorhyn-
chus is in good agreement with previous studies (Dye &
Heiligenberg, 1987; Sirbulescu et al., 2014; Zupanc et al.,
2014). Besides confirming several earlier findings, it adds
some notable details to the knowledge of Pn morphology,
particularly in terms of inter-individual variability. Each of
the four investigations has reported similar mean ratios of
pacemaker to relay cells, as well as distinct, non-overlapping
somatic size distributions for these two neuronal types. Using
retrograde tracing from the spinal cord, Dye and Heiligenberg
(1987) demonstrated that backfilled cells in the Pn (i.e., cells
with the projecting pattern of relay cells) belong exclusively
to the large-sized cell population, providing strong evidence
that relay and pacemaker cells in the Pn can be distinguished
unambiguously by difference in size.

On the other hand, a discrepancy exists between the Dye
and Heiligenberg (1987) study and the analyses carried out
by our laboratory previously (Sirbulescu et al., 2014; Zupanc
et al., 2014) and in the present study. Whereas we failed to
detect any significant correlation between the numbers of
the pacemaker or relay cells and fish size (defined by either
total length or body weight), Dye and Heiligenberg (1987)

reported a significant correlation between fish size and num-
ber of pacemaker cells in the Pn, suggesting new pacemaker
cells are added as the fish get older. It is likely that this dis-
crepancy can be explained by differences in the composition
of the samples taken. While body weight ranged from 1.3 to
15.7 g in the Sirbulescu et al. (2014) and the present study,
the sample collected by Dye and Heiligenberg (1987) was
biased towards much larger fish, ranging from 6.8 to 60.4 g.
It is, therefore, possible that age-related differences in the
number of pacemaker cells become evident only when very
large fish are included in the analysis, a size they reach near
the end of their life expectancy.

4.2 Methodological considerations

The present analysis used nonparametric measures of cen-
tral tendency (median) and dispersion (IQR), rather than
the commonly employed average and SD, SE, or coefficient
of variation (CV), to guard against outlier measurements
due to irregular neuronal firing patterns. With over 2,600
parameter combinations screened, many that did not result
in frequency-synchronized or stable oscillations, and with
no a priori information on which combinations might yield
such outcomes (given the stochasticity of randomly gen-
erated network structures), using nonparametric statistics
provided a way to generate robust measurements that can
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Fig.6 Impact of network size and density on within-cell variation
in firing frequencies in the A. leptorhynchus Pn network. Boxplots
illustrate distributions of between-cells medians of within-cell inter-
quartile ranges (IQR) of instantaneous frequencies for pacemaker
cells (top), relay cells (middle), and the whole network (bottom) for
each individual value of each parameter (columns). Data were pooled

be safely aggregated across cells and experiments. Impor-
tantly, these statistics can be easily converted to their usual
counterparts if the underlying data are well-behaved (e.g.,
mean =median, SD ~ 3/4 IQR, CV =~ 4/3 median/IQR for
Gaussian distributions). Additionally, using nonparametric
measures also alleviated the need to (manually or automati-
cally) account for short-duration transient patterns at simula-
tion start with no data loss — neither of the reported statistics
are affected by initial outlier interspike intervals.

We relied on frequency synchronization as primary meas-
ure of cell population coherence, rather than the related but
more restricted notion of phase synchronization, for several
theoretical and computational reasons. First, based on our
previous work (Hartman et al., 2021; Zupanc et al., 2019),
we anticipated that firing frequencies of individual pace-
maker and relay cells might vary substantially, particularly
within weakly connected Pn networks. While frequency
synchronized networks might exhibit a variety of tempo-
ral alignment patterns, e.g., a mix of time-synchronous and
anti-synchronous cells, and arbitrary phase shifts for each
cell, phase synchrony necessitates frequency synchrony.
Second, observation of phase synchrony in the simplified
model used here, with axons limited to their initial segments,
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across replicates and value combinations of remaining parameters in
each case. Box plot interpretation, outlier scaling, and color coding
as in Fig. 5. Note logarithmic vertical scale in all cases, and different
frequency scale for pacemaker cells (fop) relative to relay cells and
the whole network

would not necessarily translate to the biological Pn, which
features axons with variable lengths that might introduce
differential delays. Conversely, phase synchrony of relay
cell neural signals within the spinal cord, as needed to drive
the EOD, or at the point where the relay cell axons exit the
Pn, might not require phase synchrony between pacemaker
and relay cell soma, given the variability in action potential
travel times along axons with varying lengths and electric
properties. Third, our previous results using the same mode-
ling paradigm (Hartman et al., 2021) indicated no noticeable
phase shifts, except in weakly connected relay cells. Fourth,
accurately quantifying phase differences at high firing rates
(700-800 Hz) would require very precise action potential
timing data (i.e., very small integration time steps) or very
large sample sizes (e.g., thousands of interspike intervals),
which would be computationally prohibitive, particularly
for larger networks. Fifth, inspection of membrane potential
traces from a random set of simulations exhibiting desyn-
chronized Pn networks did not reveal any complex dynam-
ics (e.g., bursting) whose identification might require more
advanced frequency or phase measures.

Finally, due to the focus on network topology, the present
model used simplified neurons with identical geometries and
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Table 6 Impact of network parameters on within-cell variation in fir-
ing frequency within the A. leptorhynchus Pn network and the 2 neu-
ronal populations forming it. Within-cell variation was measured as the

median of within-cell interquartile ranges of instantaneous frequencies.
Values given as in Table 4; parameter name abbreviations as in Table 2

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect 1] SE rank p SE rank [i] SE rank

Linear terms [/100] np -7.05 006 4 -890 016 4 -7.10 0.08 4
nr +102 014 3 +17.7 037 2 +9.62 019 3
npp -339 0.63 1 —-152 1.67 3 -256  0.87 1
npr +104 069 2 -77.4 1.82 1 +146 095 2

Quadratic terms [/1,000] np X np +0.51 0.01 16 +0.56  0.02 14 +049  0.01 14
nr X nr -0.64 0.05 14 -312  0.12 10 -1.09 0.06 12
npp X npp +39.7 1.68 6 +13.3 4.48 6 +24.7 2.33 7
npr X npr —-354 1.77 7 +9.53 4.70 9 —-60.3 2.44 5

Pairwise interactions [/1,000] np X nr -0.85 0.02 12 +0.28 0.04 16 —-0.46 0.02 15
np X npp +3.41 0.10 10 +1.14  0.26 12 +2.31 0.14 11
np X npr -2.51 0.10 11 -2.58 0.27 11 -339 0.14 10
nr X npp -376 024 9 +112 063 8 +538 033 9
nr X npr +8.03 026 8 +11.8 069 7 +9.09 036 8
n pp X npr -52.6 1.56 5 -67.1 413 5 -530 215 o6

Higher-order effects [/10,000] np X nr X npp +0.06 0.04 — —-2.18 0.10 17 —1.38 0.05 17
np X nr X npr -094  0.04 17 -3.61 0.10 15 -094  0.05 18
np X npp X npr +8.36 025 13 +10.9  0.66 13 +8.79  0.34 13
nr X npp X npr -6.09 0.60 15 +3.33 .59 — +3.25 0.82 16
np X nr X npp X npr +0.06  0.01 18 -0.06  0.03 18 -0.06 0.01 19

initial conditions, axons restricted to their initial segments,
and gap junctions with identical localization and conduc-
tivity. These design choices ensured the modeled cells and
junctions do not induce differential phase lags between
synchronous incoming signals, decreasing the likelihood
of complex network dynamics such as waves, bursting, and
prolonged transients (see fifth point above). While changes
in electrical properties between somatic and axonal com-
partments can introduce small conduction delays between
pre- and post-synaptic cells (Moortgat et al., 2000b) (see
also Fig. 1d in Hartman et al., 2021), the homogeneous
cell models (within each type) and simplified spatial layout
used here resulted in short, uniform travel times of action
potentials from one cell to the next. In combination with the
identical initial conditions (no differential starts), this ena-
bled the quantification of network size and density effects
on Pn frequency synchronization independently from the
impact of heterogeneities in the spatial layout and electrical
properties of involved cells. Further research will be needed
to determine whether the quantified effect sizes are dimin-
ished or augmented by interactions with such confounders
in models with more realistic geometries and heterogeneity,
as well as whether they translate from frequency synchrony
to the more specific, but biologically relevant concept of
phase synchrony (all cells fire at the same time) in such
expanded models.

4.3 Impact of network structure on firing precision

Extensive theoretical work using multiple in silico systems
has provided some insight into how heterogeneity of neural
oscillators affects network dynamics (Brunel, 2000; Grabow
etal., 2010, 2011; Tonjes et al., 2010; White et al., 1998). Most
importantly, one of the cardinal features of heterogeneity —
network size — has been demonstrated to influence the preci-
sion of individual oscillators in CPGs and their synchronization.
Congruently, early in vitro research using cultured ventricular
cells from chicken (Clay & DeHaan, 1979) had found that clus-
ter size has no impact on the average inter-beat interval, whereas
beat-to-beat variation in this metric, as quantified by the CV,
scaled inversely proportional to the square root of the number
of cells in the cluster. Recent modeling studies have uncovered
similar inverse square root dependencies of interspike inter-
val variability, including for FitzHugh-Nagumo oscillators
(Kori et al., 2012), circadian clock cells in the suprachiasmatic
nucleus of mammals (Vasalou et al., 2009), and relay cells in
the A. leptorhynchus Pn (Moortgat et al., 2000b).
Irregularities in CPG inter-beat intervals have been
hypothesized to arise from membrane potential noise, e.g.,
stochastic opening and closing of ion channels (Clay &
DeHaan, 1979). In cell culture clusters, membrane fluc-
tuations can be shown to be roughly inversely proportional
to cluster diameter, and thus to the square root of the cell
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Number of pacemaker cells

Fig. 7 Impact of network size and density on firing frequency stabil-
ity in the A. leptorhynchus Pn network. Boxplots show the distribu-
tions of proportions of pacemaker cells (fop), relay cells (middle), and
pacemaker and relay cells combined (botfom), that did not show sig-
nificant trends in instantaneous frequency over time, as a function of
the numbers of pacemaker and relay cells (left) and the average num-

count, suggesting a possible dependence. Recent theoretical
modeling (Kori et al., 2012) has identified the inverses of
network size and of average connection strength as the vari-
ance components of membrane potential noise, supporting
earlier postulates while also suggesting that increasing the
number of cells cannot improve firing precision indefinitely.
Subsequent numerical experiments found that CVs of inter-
spike intervals scale with the inverse square root of network
size only up to a system-specific maximum number of cells,
which in turn increases with average coupling strength (Kori
et al., 2012). These findings were consistent across topolo-
gies ranging from nearest-neighbors lattice to fully con-
nected, with addition of long-range connections providing
greater precision increases compared to local ones.
Connectivity patterns also play an important role in the
emergence of network synchrony. Using CPG models con-
sisting of sparsely connected integrate-and-fire neurons,
two research groups (Golomb & Hansel, 2000; Tattini et al.,
2012) have demonstrated that occurrence of (partially or
fully) synchronized oscillations requires a minimum aver-
age connectivity. The critical number of connections grows
logarithmically with network size, eventually converging to
a constant value (Tattini et al., 2012), indicating that the
minimal connectivity threshold is largely independent of
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Number of relay cells

Average pacemaker-to-
pacemaker connections

Average pacemaker-to-
relay connections

bers of pacemaker-to-pacemaker and pacemaker-to-relay connections
(right). In each case, measurements were pooled across replicates and
examined values of the remaining parameters. Box plot interpretation
as in Fig. 4. Boxes are color coded by the fraction of observations
equal to 1, increasing from dark blue to dark red through light green,
separately for each plot. Note logit vertical scale in all cases

network density. The asynchronous state becomes unstable
above this critical value (Golomb & Hansel, 2000), suggest-
ing that coherent activity can spontaneously occur even in
weakly coupled CPGs if each network cell receives enough
inputs from other network cells. Accordingly, a small world
topology (with small numbers of local connections and a
few distant ones) may provide an optimal tradeoff between
energy expenditure on signal transmission and control of
firing patterns — including in more realistic heterogenous
oscillator models (Vasalou et al., 2009).

The present study supports the natural condition that
each CPG cell receives sufficiently many synapses from
other network cells to allow synchronous activity, with addi-
tional incoming connections subject to diminishing returns.
A secondary population of oscillators (here, the relay cells)
might therefore be essential to transmit CPG output signals
to the spinal cord, depending on local morphological condi-
tions (e.g., available volume, axonal geometry constraints).
While the core network (here, pacemaker cells) can gener-
ate highly precise oscillations if above some minimum size
and density, the output cell population, with their weaker
connectivity patterns and different morphologies (consider-
ably larger somata, different ion channel densities) may act
as a destabilizer and/or modulator. This notion is consistent
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Table 7 Impact of network parameters on firing frequency stability
within the A. leptorhynchus Pn network and the 2 neuronal popula-
tions forming it. Cell-level frequency stability was defined as absence

of statistically significant trends in instantaneous frequency measure-
ments over time. Values given as in Table 4; parameter name abbre-

viations as in Table 2

Model factors Pacemaker cells Relay cells Whole network

Type Parameter / Effect 1] SE rank p SE rank 1] SE rank

Linear terms [/100] np -195 017 6 -157 016 6 —-1.81 016 6
nr -187 052 7 -1.07 047 — -157 050 7
npp +404 230 1 +31.8  2.00 1 +37.0  2.17 1
npr -22.5 278 2 -179 257 2 -209 269 2

Quadratic terms [/1,000] np X np +0.19 0.01 13 +0.15 0.01 12 +0.17 0.01 13
nr X nr +0.82  0.08 11 +0.80  0.09 10 +0.81 0.08 11
npp X npp —-47.7 3.95 5 —45.3 3.90 3 —46.9 3.93 4
npr X npr +49.6 3.83 3 +45.0 4.19 4 +48.6 4.02 3

Pairwise interactions [/1,000] np X nr -0.34 0.06 12 —-0.37 0.06 11 —-0.34 0.06 12
np X npp -1.76  0.30 10 -1.11 028 9 -139  0.29 10
np X npr +3.66 039 9 +3.10 0.38 8 +342 038 9
nr X npp +1.33 1.01 — +1.60 093 — +1.01 097 —
nr X npr -5.05 1.17 8 -6.38 1.11 7 -5.51 1.14
n pp X npr —48.3 547 4 -358 504 5 —453 5.31

Higher-order effects [/10,000] np X nr X npp +0.34 0.12 14 +0.22 0.11 — +0.31 0.12 14
np X nr X npr -0.31 0.13 — -0.16 012 — -0.25 013 —
np X npp X npr +0.15 0.69 — +0.05 0.68 — +0.14 0.69 —
nr X npp X npr +4.56 2.19 — +0.92 1.95 — +3.65 2.08 —
np X nr X npp X npr —0.06 0.03 — —-0.03 0.02 — —0.05 0.03 15

with the observation that chirping, a major type of transient
EOD modulation, is mediated by excitatory input from the
diencephalic prepacemaker nucleus to the relay cells (Heili-
genberg et al., 1996). Taken together, the present findings
indicate that the structural organization of the Pn network
may lead to CPG performance trade-offs and function-
ally optimal ranges for the sizes of the two involved cell
populations.
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