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Abstract—Activity Recognition (AR) models perform well with
a large number of available training instances. However, in the
presence of sensor heterogeneity, sensing biasness and variability
of human behaviors and activities and unseen activity classes pose
key challenges to adopting and scaling these pre-trained activity
recognition models in the new environment. These challenging
unseen activities recognition problems are addressed by applying
transfer learning techniques that leverage a limited number of
annotated samples and utilize the inherent structural patterns
among activities within and across the source and target domains.
This work proposes a novel AR framework that uses the pre-
trained deep autoencoder model and generates features from
source and target activity samples. Furthermore, this AR frame-
work establishes correlations among activities between the source
and target domain by exploiting intra- and inter-class knowledge
transfer to mitigate the number of labeled samples and recognize
unseen activities in the target domain. We validated the efficacy
and effectiveness of our AR framework with three real-world data
traces (Daily and Sports, Opportunistic, and Wisdm) that contain
41 users and 26 activities in total. Our AR framework achieves
performance gains ≈ 5-6% with 111, 18, and 70 activity samples
(20% annotated samples) for Das, Opp, and Wisdm datasets. In
addition, our proposed AR framework requires 56, 8, and 35
fewer activity samples (10% fewer annotated examples) for Das,
Opp, and Wisdm, respectively, compared to the state-of-the-art
Untran model.

Index Terms—Activity Recognition, Transfer Learning, HAR,
Heterogeneous Learning,Imbalanced Activity Recognition, Per-
vasive Computing.

I. INTRODUCTION

Activity recognition (AR) is a prolific research area in the

era of Internet-of-Things (IoT), pervasive, wearable and smart

computing [1] [2] [3]. The proliferation of smart sensing de-

vices (i.e., smartphone, smartwatch, etc.) integrated with vari-

ous sensors (e.g., accelerometer, gyroscope, etc.) help develop

applications related to health care monitoring, rehabilitation

system, interactive gaming, etc., have constantly been evolving

to improve the human-centric services in the smart living

environments. These activity recognition systems are typically

built to recognize a predefined and limited set of activities

(i.e., sitting, standing) using annotated sensor signals of body-

part movements in a similar environment. These AR systems’

performance degrades while recognizing similar activities in

different environments due to variations like the same sensor

with heterogeneous devices, sensor biases, the user’s daily

lifestyle and activity pattern, etc. To maintain the similar

performance of the AR system in the deployed environment

without building a new AR system and mitigate variations of

the new target environment, we incorporate transfer learning

techniques. More specifically, we employ transfer learning-

enabled maximum mean discrepancy (MMD) to mitigate the

variations in the target environment.

Usually, the AR model is trained on handcrafted features,

requires domain expert knowledge, and depends specifically

on the performed activities and environment. On the other

hand, the deep learning techniques help extracts features

automatically. However, deep learning techniques [4] are data-

hungry processes and require computationally expensive re-

sources and a large volume of annotated activity samples.

Moreover, these deep models overfit in the presence of a

limited amount of target domain activity samples. Therefore,

we overcome these challenges by leveraging the unsupervised

deep learning techniques and extracting the sensor signals’

inherent characteristics.

A major aspect of the deep model is that it learns generic

features in the beginning layers and the deep layer closer to

the classifier learns domain-specific features [5]. [6] uses

the inherent characteristics of the deep model and transfers

a few layers of the source domain that helps reduce the

computation time and transfer domain-dependent features in

the target domain. However, the partial network (few layers)

transfers lose the source domain’s activity pattern knowledge

that can be incorporated during model learning and improve

the activity recognition performance in the target domain.

Therefore, to maximize the relationship of the activity classes

with the represented features, we keep all the layers from

the source trained autoencoder-based classifier (except the

classifier layer) and generated features in the source domains.

As a result, the finetuning process also reduces computational

time and maximizes source domain knowledge in the target

environment.

A scalable and adaptable AR model can recognize new

activities in the target environment to meet the application

scenarios and user needs. The AR model can ask the users to

provide annotated activity samples to learn new activities in the

target environment. However, collecting numerous annotated

examples and training a new AR model is not feasible. Instead
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of employing limited annotated samples and utilizing existing

knowledge from the source domain help maintain the AR

model performance in the target domain. Therefore, we utilize

existing domain knowledge from the source domain, minimize

domain discrepancy in the target domain in an unsupervised

way, and use limited annotated activity samples to build our

target classifier. We summarize the key contributions of our

work below.

• Maximizing Existing Knowledge: To maximize do-

main knowledge utilization, we exploit transfer-learning

techniques. First, we train a deep autoencoder using

source domain annotated samples. Second, this autoen-

coder model is finetuned with unannotated samples in

the target domain. The benefits of this approach are that

the finetuning process is entirely unsupervised.

• Minimizing Domain Discrepancy: Structural pattern

mapping techniques help minimize intra-class (i.e., same

activity in both domains) distance and maximize inter-

class (i.e., two different activities) distances during do-

main discrepancy minimization process using Maximum

Mean Discrepancy.

• Extensive Evaluation with Limited Annotation: We

study the problem of limited annotation in the target

domain and their challenges. To demonstrate the ef-

fectiveness and efficacy of our proposed approach, we

conducted experiments on three real-world datasets.

II. RELATED WORK

In the wearable pervasive computing era, the activity recog-

nition (AR) models infer activities from various sensors using

classical supervised machine learning approaches [7] [8] [2].

Classical AR are both data-driven and knowledge-based ap-

proaches. AR models heavily depend on domain knowledge-

dependent handcrafted features and use machine learning algo-

rithms [9]. Activity recognition models use annotated samples

to train classifier algorithms in a supervised fashion and infer

activities in the target environment. These supervised machine

learning classifiers consider environment-specific settings and

underperform in diverse environments where user activity

patterns, sensing devices, and sensing biases are present [10]

[2] [3]. These handcrafted features hinder the scalability of AR

models. Therefore, automated features extraction is warranted.

To automate the feature extraction process and reduce

the dependency of domain expert knowledge, the researcher

exploited the deep learning-based feature extraction process

in the activity recognition domain [11] [12] [13]. These

approaches learn hidden activity patterns from the sensor data

traces and discover meaningful patterns without the human

intervention [14] [15] [16]. Deep learning models are data-

hungry and also require a lot of annotation. Researchers also

explored unsupervised deep learning methods that demand a

large set of unlabeled training samples [13] [15]. These meth-

ods are computationally expensive and require a significant

training time to adjust the network parameters. None of these

approaches work well in the presence of limited annotated

activity samples. Various deep learning models such as CNN,

LSTM, etc. used to infer activities [17] [18] [17]. [18] pro-

posed convolutional neural network-based activity recognition

approach to learn activity patterns in a semi-supervised fashion

and infer activites. [17] proposed ensembles of deep LSTM

(Long short-term memory) recurrent neural network model

to infer human activities from sensor signals. None of these

approaches work well with limited annotated activity samples

and consider traditional AR settings. These methods did not

consider dataset diversity, different activity styles, etc. Domain

discrepancy needs to minimize to create a scalable activity

recognition model.

Transfer learning approaches help improve adaptability and

scalability issues and reduce domain discrepancy. Recently a

limited number of aspects of transfer learning-enabled activity

recognition have been investigated in AR domain [19] [20]

[21]. [20] proposed an uninformed transfer learning algorithm

that helps minimize cross-subject variability to scale human

activity recognition. The authors proposed to transfer label

information from the source domain to recognize unlabeled

activities in the target domain and assumed the availability of

a large set of unlabeled data samples with similar activities

in the target domain. [22] addressed the versatility of sensor

modality and sensor position independence by transferring a

similar set of activity labels from an existing trained sensor

node to a new sensor node without any user intervention. In

transductive transfer learning, a.k.a Domain Adaptation set-

tings, similar classes present both domains, and the AR model

learns parameters during the training phase from both domain

data. This technique reduces the required annotated data in

the target domain [23] [24] [25] [26] [27]. [25] proposed

cross-domain domain transductive transfer techniques and

minimized domain data distributions using MMD ( maximum

mean discrepancy ) techniques and predict unlabeled images

in the target domain. [28] proposed majority voting-based

cross-subject transfer learning techniques that minimize the

intra-class distance between the source and the target domain

and infer activities. In this work, we consider both intra- and

inter-class distance minimization. These AR models consider

similar activities in both domains and can not recognize new

activities in the target domain.

Unseen activity recognition approaches investigated in the

recent past. To address recognizing unseen activities using

unannotated data, researchers proposed various attribute-based

approaches [29] [7]. These attribute-based activity recogni-

tion models assume that each activity has a unique set of

attributes. The performance of these models degrades in the

presence of existing and new activities. Though fusion-based

models combine the attributes- and features-based models and

improve performance in the target environment, these models

failed to consider sensing baisness, activity patterns, variations,

and user diversity in the targeted domain. In addition, these

approaches also depend on the expert domain knowledge. To

alleviate the annotated samples, researchers also investigated

semi-supervised methods and learned classifier parameters

using both labeled and unlabeled activity samples [30] [31].

However, these methods are error-prone and typically unable
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to replace the need for ground-truth annotated data from

experts. In an attempt to bootstrap an existing trained activity

model, in this work, we advocate using a small subset of

unlabeled samples in addition to a small subset of labeled

activity samples in the target domain.

This work exploits the benefits of the existing pre-trained

deep sparse autoencoder-enabled activity recognition model

in the source domain to reduce the required samples in the

target domain. Our proposed method minimized both within-

and cross-domain inter-and intra-class distances. As a result,

our framework can infer unseen activities in the presence of a

limited number of annotated samples in the target domain. This

work reduces this effort by transferring the knowledge from

the source to the target domain autonomously by using deep

transfer learning techniques. Our proposed AR framework

helps mitigate the scarcity of labeled activity samples by

utilizing label information from the source domain to the target

domain.

III. THE PROPOSED ACTIVITY RECOGNITION

FRAMEWORK

We propose and design an AR Model for recognizing

unseen activities in the presence of user activity patterns

diversity, sensing biases, and limited activity samples in the

target domain. We assume that the source domain has a

significant amount of labeled activities samples and a pre-

trained AR model. The proposed AR model constructs a

common feature space where similar activity samples help

generate similar feature space to tackle this problem. Fig. 1

represents the overview of our activity recognition approach.

Problem Statement

Mathematically we define our problem as follows. Let

source domain training data Ds = {x(s)
i , y

(s)
i }Ns

i=1 =

{Xs,y(s)}, where x
(s)
i ∈ Rd denotes d-dimensional source-

domain instance and y
(s)
i denotes the corresponding label of

Cs categories. We assume that the target domain contains

d-dimensional unlabeled data instances and target domain

data are represented as Dt = {x(t)
j , y

(t)
j } = {X(t),y(t)}

where y(t) is the class label to infer. We also assume that

target domain constitutes both seen and unseen activities and

contains activity categories, Ct = {Cun ∪ Csn}, where seen

activities categories, Csn and Cun represents unseen activity

categories. Due to the heterogeneity in the target domain,

marginal probability distributions of data between these two

domains are different (P (Xs) �= P (Xt)). It is worth to note

here that transfer learning based approach works when both

the source and target domains are related, which implies that

the generated feature space between two domains has explicit

or implicit relationship to each other.

For example, the source and target domains activity sets

are {‘Sitting’, ‘Standing’, ‘Cooking’, ‘Eating’} and {‘Sitting’,
‘Standing’, ‘Cooking’, ‘Biking’, ‘Jogging’}, respectively and

both the domains contain accelerometer sensor signal traces.

In this scenario, the target domain has two unseen activities,

and the total number of activity categories is imbalanced.

Framework Architecture

Our AR framework feed sensor signals to the autoencoder to

generate deep features. Furthermore, the latent structural pat-

tern mapping module minimizes feature discrepancy between

the domains, and finally, we used these discrepancy minimized

features to predict activity in the target domain. Fig. 2 shows

the overall architecture of our AR framework.

Data Processing: We pass the accelerometer sensor signals

through a low-ass median filter to filter the noise. Next, we

determine the band of the filter by applying FFT to the data.

Finally, each frame is created from the filtered accelerometer

sensor signals using a fixed-width sliding window with 50%

overlap per frame. These activity frames then pass through the

auto-encoder to train and generate deep features later.

Deep Feature Encoding (DFE): Autoencoder, a feed-

forward neural network [32] [33] help learn unannotated

sensor signal features automatically in two steps - i) encoding

and ii) decoding. Our proposed four layers deep autoencoder

discovers activity patterns by first compressing the given input

sensor signals x in the encoder step. Then the decoding step

generates a similar output vector x̄ by decompressing it.

The encoder works similarly as PCA [34]. This compression

(encoding) of the signals helps capture inherent features when

the dimensions of the hidden layers are smaller than the

input sensor signals. As a result, reconstructing similar output

as the raw sensor signals in the decoding process becomes

challenging. We, therefore, construct a sparse hidden layer as

the first hidden layer by adding sparsity constraint and feed

sensor signals into this layer. This technique helps maintain

a larger dimension of our sparse layer to get the meaningful

feature representation after the encoding step. Furthermore,

the additional three layers of our encoder help capture non-

linear correlations among the activities. We named this mod-

ified autoencoder as Deep Sparse Autoencoder (DSAE). Our

DSAE learns the hidden layers’ weights matrices and bias

vectors by minimizing the following reconstruction error.

Jaen(W, b) = min
W,b

||x− x̄||2 + α

NL1∑
i=1

Φkl(ρ||ρ̂i) (1)

ρ̂j =
1

m

m∑
i=1

[
aL1
j xi

]
(2)

The first term of Eqn. 1 represents the reconstruction cost

of our DSAE where W and b denote weights and biases

of encoding and decoding layers, respectively. The second

term, of Eqn. 1, represents Kullback-Leibler (KL) divergence

between the sparsity constraint ρ (empirically set to 0.05 for

all the neurons in the first layer) and average activation ρ̂ of

the first hidden layer. The average activation of a hidden unit,

j is computed using Eqn. 2, where m denotes the number

of sensor signal samples, and aL1
j represents activation unit

j of first layer (denoted as L1). We employ the mini-batch

gradient descent (MGD) [35] method to determine the changes

of weights and biases and update the network parameters

accordingly. This automatic feature extraction process learns

features space without considering the distribution of activity

labels.
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Fig. 1: Overview of our activity recognition approach. (a) Source domain labeled activity instances, (b) Target domain contains

both unlabeled and few labeled activity instances, (c) Common feature space for classification, and (d) Resulting activities

after classification. Note that different shapes correspond to different activities.

Fig. 2: Overall Framework Architecture.

Source Domain Knowledge Encoding: DSAE helps learn

inherent activity characteristics unsupervised. However, estab-

lishing the correlation between the activity and corresponding

features requires tuning the network parameter for the activity

classes. Since the source domain has annotated activity sam-

ples, we append a softmax classifier at the encoding layer’s end

to encode class labels in the source domain and fine-tune our

DASE model parameters. We use the following cross-entropy

objective function to optimize this source domain classifier

model.

min
θ

(
− 1

n

n∑
i=1

k∑
j=1

1{yi = j} log eθ
T
j xi

k∑
l=1

eθ
T
l xi

)
(3)

where 1(.) is an indicator function and provides 1 when the

condition is true otherwise 0. θ denotes softmax classifier

parameters - weights and biases. We employ the mini-batch

gradient descent [36] method to tune the network parameters.

Target Domain Feature Extraction: The performance of

the source trained classifier degrades while deploying in the

target domain due to the marginal distributions of the data

between two domains and unseen activity samples. We discard

the softmax classifier portion, keep the source trained encoder

(four layers), and generate features for the source and target

domain sensor signals. The feature generation shown in Fig. 2.

The generated target domain features show a discrepancy with

the source for the similar activities. Therefore, we explic-

itly emphasize source domain knowledge and maximize this

knowledge transfer by maximizing inter-class distance and

minimizing intra-class distance by employing the structural

pattern mapping technique and reducing the discrepancy be-

tween these two domains’ feature space.

Latent Structural Pattern Mapping:

Our proposed DSAE generated features may maximize

the intra-class distance and minimize inter-class distances in

the target domain. Nevertheless, this problem space becomes

complex in the presence of new activities. Therefore, we

employ intra-class compactness and maximize inter-class sep-

arability that helps reduce the cross-domain discrepancy. Dur-

ing mapping the structural pattern between the domains, we

also minimize the within-domain intra-class distance, cross-

domain intra-class distance and maximize within-domain and

cross-domain inter-class distances. Fig. 3 shows the detailed

schematic diagram of our proposed approach. These DSAE

generated feature spaces that are unable to establish the rela-

tionship between the source and target domain class labels and

cannot utilize source domain class information to infer target

domain activities. We explicitly incorporate the correlation

among activities within and between the domains using intra-

class compactness and inter-class separability information by

projecting the DSAE generated features to separate kernel

space by deriving the following matrix that considers these

distances into account.

Sφ = Sc − γSs =

[
S(ss) S(st)

S(ts) S(tt)

]
(4)

Fig. 3: Schematic diagram of structural pattern mapping. The

blue dotted line represents within-domain inter-class distances.

The deep yellow color line and the red dotted line depict intra-

class class distances and intra-class distances, respectively.

Note that different shapes correspond to different activities.

After applying the structural pattern mapping techniques, we

assume that both the source and target domain share similar

feature spaces that minimize the intra-class distance and

maximize the inter-class distance.

where γ is the model parameter that helps balances
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between the intra-class compactness (Sc) and inter-class

separability (Ss). The Sφ matrix contains both within

(S(ss), S(tt)) and cross-domain (S(st), S(ts)) information and

S ∈ R(ns+nt)×(ns+nt). The major benefits of this matrix is

that it ables to handle imbalanced classes between the domains

and also considers the relationship among the instances explic-

itly. We define individual component Sci,j and Ssi,j of Sc and

Ss, respectively for every pair of instances (x̂i, x̂j) for within-

domain and across-domain. These individual component Sci,j

and Ssi,j is a scalar and defined as follows.

Sci,j = W
(c)
i,j g(φ(x̂i), φ(x̂j)) (5)

Ssi,j = W
(s)
i,j g(φ(x̂i), φ(x̂j)) (6)

where W
(c)
i,j and W

(s)
i,j represent the intra-class and inter-

class nearest graph. We define these graph as follows.

W
(c)
i,j (φ(x̂i), φ(x̂j)) =

{
1, if yi = yj

0, otherwise

W
(c)
i,j (φ(x̂i), φ(x̂j)) =

{
1, if yi = yj

0, otherwise

We construct the within- and across-domain neighbor graph

using the k-nearest neighbor classifier. Every instances of

S matrix is generated using equation 5and 6. Source do-

main annotated activity samples are used to construct the

neighbor graph by following the standard K-nearest algorithm

and generating all instances of S(ss) matrix. Each of these

matrices, S(st), S(ts), S(tt), require knowing both source and

target domain annotation. The target domain pseudo labels are

generated using similar techniques as joint distribution adap-

tation algorithm (JDA) [37]. Both pseudo-labels and provided

limited annotation of the target activities and annotated sources

activity samples are used to construct the nearest neighbor

graph matrix. After constructing these neighbor graphs, we

apply softmax function (g) over the cosine similarity distance

(dc) within- and across-domain to measure the similarity

for each instances pair. We define the similarity function

g(φ(x̂s
i ), φ(x̂

t
j)) as follows.

g(φ(x̂s
i ), φ(x̂

t
j)) =

exp(dc(φ(x̂
s
i ),φ(x̂

t
i))

nt∑
j=1

exp(dc(φ(x̂s
i ),φ(x̂

t
i))

(7)

The function g is normalized and computes the similarity

score using the cosine distance function for each pair of

instances. This function helps distinguish similar and dis-

similar instances. Sφ matrix is formulated without explicitly

minimizing conditional data distribution.

Minimize conditional data distribution: We adopt Max-

imum Mean Discrepancy (MMD) techniques to reduce the

cross-domain conditional data discrepancy, embed cross-

domain latent structures, and generate common feature sub-

space. Hence our optimization problem becomes as follows.

∑
i,j

Sst
ij∑

k

Sss
ki

∑
l S

tt
lj

∣∣∣∣φ(x̂s
i )− φ(x̂t

j)
∣∣∣∣2 = tr(ATKMcK

TA)

(8)

where the trace of a matrix is represented by tr(.) and X ∈
R(ns+nt) is the cross-domain activity data. The kernel matrix

is represented as K = φ(X̂)φ(X̂) and A ∈ Rn×k is the

projection matrix. We adopt the presented technique in [25]

and construct the MMD matrix Mc that involves the latent

class structure (The matrix, S is constructed from intra- and

inter-class separability information) as follows.

Mc =
∑
i,j

sijmijm
T
ij (9)

where mij =
[ (sssi )T

||sssi ||1 ,−
(sttj )T

||sttj ||1
]
. The i and jth column

vectors of Sss is denoted as sssi and sttj , respectively. Our

objective is to minimize the class-conditional distribution

between the domains and incorporate the inherent structural

activity patterns.

Optimization: Our DSAE generated features are non-linear,

we employ kernel K instead of X̂ and incorporate regu-

larization term in our optimization function and rewrite the

optimization problem as follows.

min
ATKHKTA=I

tr (ATKMcK
TA) + β ||A|| (10)

We solve the Equation 10 using Lagrange multiplier

technique. We denote the Lagrange multiplier as Λ =
diag(λ1, λ2, ..., λk) ∈ Rk×k and derive Lagrange function

from equation 10 as follows.

L = tr (AT(KMcK
T + βI)A)+ tr ((I−ATKHKTA)Λ)

(11)

We take the partial derivative with respect to A and set

the derivative δL
δA = 0 then Equation 11 becomes generalized

eigen-decomposition and can be written as follows.

(KMcK
T + βI)A = KHKTAΛ (12)

We apply iterative optimization to find k smallest eigen

vectors and compute the projection matrix A. The transformed

feature space then computed as Z = AX . Any classifier can

be used to train with the projected cross-domain activity data

and infer activities.

Activity Classification:

The proposed method optimizes the intra- and inter-class

distance between the source and target domain instances.

Furthermore, the generated features space segregate different

class instances farther and agglomerate similar class instances.

Therefore, the k-nearest neighbor classifier works well to

infer activities in the target domain. In this work, we de-

ploy a k-nearest neighbor classifier trained with the cross-

domain data to infer target domain activities. To compare

the performance of our proposed AR framework, we consider

Transfer Component Analysis (TCA) [38], Joint Distribution

Adaptation (JDA) [37], and Untran [6]. During the embedding

(distribution difference minimization) step, we apply linear

kernel for TCA, JDA, our proposed method to construct kernel

matrix as suggested by [38] and [37].
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IV. EXPERIMENTAL EVALUATION

In this section, we discuss the details of our experiments.

A. DataSets Description

We validate our proposed activity recognition framework

with three publicly available datasets. We use accelerometer

sensor signals from these datasets. The dataset descriptions are

discussed below.

i) Opportunity dataset (Opp) [39] [40] contains naturalistic

17 activities of daily living (ADL) from four participants. The

activities include drinking, cleaning table, eating sandwich etc.

Data was recorded at 64 Hz for about 6 hours of recording

from 5 Inertial Measurement Unit (IMU) on the upper limbs

and torso comprising of 3D accelerometers, 3D gyroscope and

3D magnetic field sensor. We consider 10 activities and use

only accelerometer sensors data to evaluate our framework.

ii) WISDM Actitracker dataset (Wisdm) [41] contains 6

distinctive human activities including walking, jogging, sitting

etc. belongs to 29 users. Data was collected at 20 Hz using

a smartphone accelerometer sensor kept on front pants leg

pocket.

iii) Daily and Sports dataset (Das) [42] containing 19

activities performed naturally by 8 subjects. Data was collected

at 25 Hz sampling frequency. Each activity duration was

5 min for each subject. The activity set includes sitting,

playing basketball, cycling etc. Five motion tracker (MTx)

units were used to collect the activity dataset where each

MTx unit contains 3D accelerometer, 3D gyroscope, and 3D

magnetometer sensors. MTx units were placed on the torso,

right arm, left arm, right leg and left leg.

B. Implementation Details

We implemented our framework using python based deep

learning platform, Tensorflow [43]. Accelerometer sensor data

was segmented into 128, 200 and 125 samples with 50%

overlap for Opp, Wisdm, and Das. Frames were filtered with

a low-pass median filter to remove noises. These frames were

then fed into the DSAE to extract features from the sensor

signals. We implemented transfer learning baseline methods,

TCA, and JDA with python. Our DSAE is comprised of four

layers. We concatenated the softmax function at the end of

the encoder to build the DSAE classifier and fine-tuned the

classifier parameter for the source domain annotated data. We

ran our AR framework on a server equipped with four NVIDIA

GTX 1080-Ti GPUs and 64 GB memory with an Intel Core

i7-6850K processor.

C. Performance Metrics

We evaluated and compared the performance of our AR

framework based on the following metrics. i) Precision P =
( TP
TP+FP ), ii) Recall R = ( TP

TP+FN ), iii) F-1 Score = 2×P×R
P+R

and, iv) Accuracy = TP+TN
TP+TN+FP+FN , where TP, FP, TN, and

FN are the number of instances of true positive, false positive,

true negative and false negative, respectively.

Dataset Source Domain Target Domain
Opp 3 1
DAS 6 2

WISDM 21 8

TABLE I: Number of users in the source and target domain

Datasets
Number of Unseen Activities

1 2 3 4 5
Das 86.77 81.70 76.11 72.45 68.02
Opp 82.94 70.98 68.70 63.05 60.67
Wisdm 80.09 68.18 65.25 - -
Avg. 83.58 73.62 70.02 67.75 64.35

TABLE II: AR framework performance accuracy (%) on a

varying number of unseen activities in the target domain while

maintaining an equal number of activities in the source and

target domains.

D. Experimental Results

Each dataset is partitioned into two groups, and each group

contains distinct users. Users are selected randomly to create

source and target domain. Table I shows the number of users

in the source and target domain for each of the datasets.

We evaluated our model performance in presence of varying

number of unseen activities and varying number of annotation.

E. Performance under the varying number of unseen activi-
ties:

Two experimental settings are considered to showcase the

effectiveness of the proposed model, i) an equal number of

activities in both domains, and ii) an increasing number of

activities in the target domain.

i) An equal number of activity classes with varying unseen
activities: In this experiment, both the source and target

domain contain an equal number of activities while varying the

number of unseen activities in the target domain. In the case of

the Opp and Das dataset, both the source and the target domain

contain five activities, and in the Wisdm dataset, both domains

contain three activities. In the first step of this experiment, the

target domain contains one unseen activity, and the rest of

the activities are similar to the source activities. We report the

average result by conducting this experiment for all the unseen

activities. In the next step, the target domain contains two

unseen activities. In this way, we repeat this process until the

target domain contains all the unseen activities. The classifier

is trained with 20% annotated target domain activities. On

average, 111, 17, and 70 annotated activity samples (activity

samples distribution shown in table IV) are selected from Das,

Opp, and Wisdm, respectively.

Datasets
Number of Unseen Activities

1 2 3 4 5
Das 93.39 89.89 84.14 85.27 83.59
Opp 72.72 67.69 63.16 60.00 56.87
Wisdm 96.96 89.21 81.98 - -
Avg. 87.69 82.23 76.43 72.64 70.23

TABLE III: AR framework performance accuracy (%) in the

presence of a varying number of unseen activities in the

target domain while the target domain contains all the source

activities and additional unseen activities
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Table II represents the performance of our AR framework.

We see that our AR framework achieves accuracy ≈ 87%, 83%

and 80% for Das, Opp, and Wisdm dataset, respectively, for

single unseen activity in the target domain. The proposed AR

framework achieves lower accuracy because the Opp dataset

consists of more diverse user activity styles, sensing biases,

and device heterogeneity. In addition, this dataset also contains

a small number of annotated activity samples (17 samples) and

missing values. We notice that our AR framework performance

decreases with the increased number of unseen activities in

the target domain. This result is expected because we add

more unseen activities in the target domain and treat these new

activities samples as noise. Our classifier fetches difficulties

transferring knowledge from source to target with more new

instances.

ii) An increased number of activities in the target with
varying unseen activities: In this experimental setting, the

target domain contains all the activities present in the source

domain. In addition, the target domain has a varying num-

ber of unseen activities. The proposed AR framework is

trained with 20% annotated data in the target domain; on

average, 159, 24, and 131 annotated activity samples (activity

samples distribution shown in table V) are selected from

Das, Opp, and Wisdm, respectively. Both seen and unseen

activities in the source and target domain help establish the

minimized cross-domain and in-domain intra- and inter-class

distance minimization. Table III represents AR framework

performance. For two unseen activities in the target domain,

our AR framework achieves 89.89%, 67.69%, 89.21% for

Das, Opp, and Wisdm datasets, respectively. Similar source

domain activities in the target domain help reduce the cross-

domain intra- and inter-class distances between the domains.

Our AR framework performance depends on the pseudo labels

for the unannotated samples to construct the neighbor graph

that explicitly participates in optimization. Therefore, more

common activities between the domains help improve the

accuracy of our model.

F. Performance under varying labeled activities

We investigate our model performance in the presence of a

variable number of annotated data in the target domain for the

following scenarios - i)A an equal number of activity classes

in the target domain, and ii) an increased number of activity

classes in the target domain.

An equal number of activities in target domain: In

this experiment, we vary the number of annotated activity

samples in the target domain while maintaining an equal

number of activities in both environments. The average activity

annotation distributions shown in table IV. In addition, the

target domain varies the number of unseen activities. The

average performance of our AR framework is shown in

figure 4. We observe that our AR framework performance

increases with the increasing number of annotated samples in

the target domain for all three datasets. Furthermore, we see

that the Opp and Das dataset performs better than the Wisdm

dataset because the Wisdm dataset contains fewer activities

in both domains. Our AR framework creates a neighbor graph

composed of intra- and inter-class distances within- and cross-

domains. We infer that more activities help create this neighbor

graph, minimizing discrepancies and maximizing knowledge

transfer. Therefore, the less common activities in both domains

degrade our model performance.

Datasets
Percentage of annotated activity samples

10% 20% 30% 40% 50% 60% 70% 80% 90%
Das 55 111 167 223 278 334 390 445 500
Opp 8 18 26 35 45 53 62 71 80

Wisdm 35 70 105 140 176 211 246 281 316

TABLE IV: The number of activity samples in percentage

distribution for an equal number of activities in target domain.

Fig. 4: Our AR framework Performance (Accuracy(%)) on

varying labeled data in the target domain. Note that both

domain contains same number of activities

Datasets
Percentage of annotated activity samples

10% 20% 30% 40% 50% 60% 70% 80% 90%
Das 80 160 239 320 400 480 560 639 720
Opp 12 24 37 49 62 74 86 99 111

Wisdm 65 131 196 262 328 394 459 524 590

TABLE V: The number of activity samples in percentage

distribution for an increased number of activities in the target

domain.

An increased number of activities in the target do-
main: In this experimental setting, we vary the number of

labeled activities from 10% to 100% while maintaining similar

activities and additional unseen activities in the target. The

average activity annotation distributions shown in table V.

Furthermore, we increase unseen activities by adding one other

unseen activity in the target in each step. The average results

are reported for each corresponding percentage of annotated

data in Figure 5. With the varying labels, the performance of

our classifier follows similar trends as with the equal number

of classes in the target domain. However, the AR framework

fetches difficulties constructing neighbor graphs for the Opp

dataset as the total number of activity samples is smaller.

In addition, it contains missing values and idle body part

movement.

G. Individual Activity Recognition Performance

We investigate the individual activity recognition perfor-

mance of our AR framework. In this experiment, we varied

the number of unseen activities from 1 to n in the target

domain for each activity while using 20% annotated target
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Fig. 5: Our AR framework Performance (Accuracy(%)) on

varying labeled data in the target domain. Note that both

domain contains increased number of unseen activities

Dataset Our AR UnTran JDA TCA
Das 81.70 74.75 51.23 45.24
Opp 63.15 65.86 50.92 26.77

Wisdm 80.68 69.51 42.61 34.68
Avg. 75.18 70.07 48.25 35.56

TABLE VI: Baseline performance comparison (Accuracy (%))

for an equal number of activities in the target domain

domain samples. The average individual activity recognition

performance for each dataset is shown in Figure 6a, 6b, and 6c,

respectively. From figure 6a, we see that our model achieves

F1 scores ≈65%, 60%, 62% for activities ‘Running’, ‘Lying’,

and ‘Exercising’, respectively for Opp dataset. In the case

of the ‘Running’ activity, a few instances are detected as

‘Lying’ or ‘Exercising.’ Similarly, ‘Lying’ and ‘Exercising’

activities are also falsely detected as ‘Exercising’ or ‘Running’

and vice-versa. This misclassification happens as a result

of similar features present in those activities. Therefore, we

can infer that activities with distinct patterns improve our

model’s performance. In the case of the Opp dataset, we notice

that ‘Clean Table,’ ‘Open Fridge’ shows F1 scores ≈ 43%

and 48%, respectively. Opp dataset has missing values and

also contains non-movement-related activities. These activities

share less knowledge during neighbor graph generation, and

hence performance degrades our AR framework. In the case

of the Wisdm dataset, we see that our model achieves F1,

precision, and recall values of ≈ 86%, 83%, 89%, respectively.

This dataset contains no missing values and less heterogeneous

instances in the source and target domain that help improve

the performance of our model.

H. Baseline Performance Comparison

To show the efficacy and effectiveness of our AR frame-

work, we compare the performance of our model with the

following baseline methods UnTran, JDA and TCA. We follow

similar experimental settings as UnTran to compare the per-

formance with the state-of-the-art algorithm. The experiment

was conducted with two unseen activities in the target domain

for both cases - (i)) an equal number of activities and ii) an

increased number of unseen activities in the target domain.

These two unseen activities are randomly selected from the

target domains. We repeated these random unseen activity

selections for all the unseen activities and reported our AR

framework’s average performance in tables VI and VII.

Dataset Our AR UnTran JDA TCA
Das 89.89 78.92 69.51 68.25
Opp 67.69 74.57 69.96 36.26

Wisdm 89.21 81.32 66.67 67.03
Avg. 82.63 78.27 68.71 57.18

TABLE VII: Baseline performance (Accuracy (%)) compari-

son for an increased number of unseen activities in the target

domain

With both an equal number of activities and an increased

number of activities scenarios, the proposed AR is trained with

20% labeled data in the target domain. In contrast, other base-

line methods are trained with 30% annotated target domain

activity samples. We choose 30% annotated target domain

data because the state-of-the-art UnTran model works well

with 30% labeled data. Table VI represents the performance

comparison of our AR framework for balanced activities

between the source and target domain in the presence of

two unseen activities in the target domain. From Table VI

we see that our AR framework achieves superior performance

compared to other baselines. Our AR framework achieves an

average performance accuracy of 75%. Compared to UnTran
our model performance gain is ≈ 5-6% with only 20% labeled

activity samples in the target domain. Our AR framework

achieves performance gain ≈ 26-39% compare to other meth-

ods (JDA, TCA). These results clearly show the effectiveness

of explicit structural mapping between the source and target

domain. It is noted that our proposed AR framework requires

10% lesser annotated activity samples to achieve performance

gain 5-6% accuracy compared to the state-of-the-art Untran
method. In other words, the proposed AR framework requires

56, 8, and 35 fewer activity samples for Das, Opp, and Wisdm

datasets to achieve the performance gain of 5-6% accuracy.

Table VII shows the detailed comparison results of our AR

framework with the existing methods for an increased number

of unseen activities in the target domain. Our AR framework

achieves performance gain ≈ 4-5% compared to UnTran
model with 10% less annotation. In other words, the proposed

AR framework requires 79, 13, and 65 fewer activity samples

for Das, Opp, and Wisdm datasets to achieve a performance

gain of 4-5% accuracy. We also notice that UnTran model

performs better for the Opp dataset. We suspect that decision

fusion from multiple classifiers helps better performance gain

for more diverse, heterogeneous, and noisy environments. This

experimental setup helps understand additional activities in the

target domain capable of learning from the existing activities

in the source domain.

I. Parameter Sensitivity

In this section, we investigate our AR framework perfor-

mance on the following model parameters setting- i) similarity

balancing parameter (γ), ii) regularizing parameter (β), and

iii) number of kernel subspace (k). We change one parameter

and keep the other two parameters unchanged during the

experiment. We sample the value of the γ and β from

{0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. We also sam-

ple the parameter k ∈ [10, 100] and report the accuracy of
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(a) Our AR framework Performance (Accu-
racy(%)) for Das Dataset

(b) Our AR framework Performance (Accu-
racy(%)) for Opp Dataset

(c) Our AR framework Performance (Accu-
racy(%)) for Wisdm Dataset

(a) The parameter influence of γ (b) The parameter influence of β (c) The parameter influence of k

Fig. 7: Influence of learning parameter on our AR framework

our AR framework. Note that we train our classifier in the

presence of 20% labeled data in the target domain. Both the

source and target domains contain eight activities in common.

In addition, our target domain contains two unseen activities.

Figure 7 showcase the parameter impact of our AR framework

performance for all three datasets. Our model approximately

performs best at γ = 0.5 therefore, we choose γ = 0.5
for all three datasets throughout our experiments. Note that

(Fig. 7a) our model achieves accuracy ≈ 85%, 89% and 71%

for γ = 0.5 for Das, Wisdm and Opp dataset, respectively.

We also notice that the performance of our model for the

parameter β = 0.5 is ≈ 88%, 89%, and 74% for Das, Wisdm,

and Opp datasets, respectively. Therefore, we choose γ = 0.5
throughout our experiments. From Figure 7c, we see that our

model performs better for k = 80. Theoretically, k = 0
means an ill-defined problem, and k = ∞ means cross-domain

adaptation has not been performed.

V. DISCUSSION

Our proposed activity recognition framework addresses a

significant promising problem of unseen activities with the

help of limited annotation in the target environment. There

are, however, a few limitations of our AR framework. First, we

evaluated our framework with wearable accelerometer sensors

signal only. Though performance examination against three

public datasets implicitly attests to the efficacy of our frame-

work against users, environmental heterogeneity, and sensing

biasness. However, additional investigations are required to

understand the effect of heterogeneous sensors (i.e., camera,

PIR, etc.) and devices (smartwatch, smart-necklace, etc.).

Furthermore, our AR helps reduce the amount of annotation

required in the target domain but could not diminish the

required annotation efforts. In this work, we focus on aver-

age performance for recognizing unseen activities. However,

additional investigation is needed to understand the impact of

the presence and absence of specific activities in the target

domain.

VI. CONCLUSION

Human activity recognition techniques help develop vari-

ous smart applications in different domains such as health-

care, obesity management, sports analytic, etc. Our transfer

learning-enabled activity recognition technique helps infer

unseen activities with limited annotated activity samples in

the target environment. This paper proposes a novel activity

recognition framework to minimize within- and cross-domain

intra-class distance, maximize inter-class distance, and recog-

nize seen and unseen activities in the target domain. First, we

exploit the deep sparse autoencoder to generate source and

target domains features. We then utilized the MMD distance

minimization techniques to reduce the discrepancy between

the domains and recognize activities in the target domain.

Finally, we evaluated our proposed framework performance

with several state-of-the-art transfer learning baseline models.

The recognition performance of our framework suggests that

our AR framework is scalable and adaptable in large-scale,

diverse target environments.
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on classifying human activities with miniature inertial and magnetic
sensors. Pattern Recognition, 43(10):3605–3620, 2010.

[43] Martı́n Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

693

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:06:27 UTC from IEEE Xplore.  Restrictions apply. 


