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Abstract—We explore the effect of auxiliary labels in im-
proving the classification accuracy of wearable sensor-based
human activity recognition (HAR) systems, which are primarily
trained with the supervision of the activity labels (e.g. running,
walking, jumping). Supplemental meta-data are often available
during the data collection process such as body positions of
the wearable sensors, subjects’ demographic information (e.g.
gender, age), and the type of wearable used (e.g. smartphone,
smart-watch). This information, while not directly related to
the activity classification task, can nonetheless provide auxiliary
supervision and has the potential to significantly improve the
HAR accuracy by providing extra guidance on how to handle
the introduced sample heterogeneity from the change in domains
(i.e positions, persons, or sensors), especially in the presence
of limited activity labels. However, integrating such meta-data
information in the classification pipeline is non-trivial — (i) the
complex interaction between the activity and domain label space
is hard to capture with a simple multi-task and/or adversarial
learning setup, (ii) meta-data and activity labels might not be
simultaneously available for all collected samples. To address
these issues, we propose a novel framework Conditional Domain
Embeddings (CoDEm). From the available unlabeled raw samples
and their domain meta-data, we first learn a set of domain
embeddings using a contrastive learning methodology to handle
inter-domain variability and inter-domain similarity. To classify
the activities, CoDEm then learns the label embeddings in a
contrastive fashion, conditioned on domain embeddings with a
novel attention mechanism, enforcing the model to learn the
complex domain-activity relationships. We extensively evaluate
CoDEm in three benchmark datasets against a number of multi-
task and adversarial learning baselines and achieve state-of-the-
art performance in each avenue.

Index Terms—human activity recognition, domain embedding,
attention, multi-task learning, adversarial learning, meta-data

I. INTRODUCTION

Wearable sensor-based human activity recognition (HAR)
systems have enjoyed meteoric popularity in the past few
years in a number of application areas such as health-care,
depression prediction [1], sleep [2] and fitness monitoring [3],
cognitive [4] and mental health assessment [5] due to their
widespread availability (in the form of smartwatches, smart-
phones, etc), flexible and unobtrusive nature, and the ability
capture and infer users activity in real-time. The recent ad-
vancement in data-driven supervised deep learning algorithms
have significantly lessened the need for training HAR mod-
els with complex signal processing and hand-crafted feature
engineering pipelines. The performance of these supervised
models is, however, highly dependent on the amount and

quality of the labels provided which makes developing scalable
HAR models a challenging task. Compared to the traditional
use cases of deep learning (e.g. NLP and computer vision),
human motion data is much more nuanced in nature. Due
to the wider variation introduced by the modality (sensor
type), placement (on-body or contact-less), and the personal
and temporal variability (resulting from the users’ lifestyle
and contextual differences), both the marginal and conditional
distributions of the data can experience a significant shift.
Traditional methods of building a supervised classifier only
focus on learning the mappings between the raw samples and
the activity labels. However, the meta-data information (e.g.
position, device, or user demographic) is often not utilized
in building these classifiers. We argue that these auxiliary
labels carry significant supervision information and when
utilized in a regulated manner, can considerably improve the
performance of the activity classifiers, especially when limited
activity labels are present. More importantly, these meta-data
are often easily available during the data collection process,
hence enabling one to independently assign these auxiliary
labels to the raw data samples irrespective of the availability
of the corresponding activity labels.

The straightforward way of integrating these auxiliary su-
pervisions is to build a multi-task model that simultaneously
predicts the activity labels and the meta-labels (e.g. position,
gender, device), assuming a globally cooperative relationship.
However, as we will see later in Section VI, this assumption
is not completely valid. One might also assume that learning
a set of features that are invariant to these heterogeneities
(e.g. with adversarial multi-task learning, assuming a globally
adversarial relationship) will result in better performance, but
in reality that also results in performance degradation. This
leads us to believe that there exists a more complex, local
(per sample) relationship between the primary (from activity
label) and auxiliary (i.e. from domain/meta-data label) feature
space and special care must be taken to learn that relationship
to improve the performance of the activity classifiers. These
multi-task learning setups often require careful tuning of the
weights of the individual task losses so that the auxiliary tasks
do not overwhelm the primary one, which requires either (a)
a time-consuming manual hyper-parameter search regiment
or (b) incorporating complex loss balancing algorithms [6]—
[8], especially when multiple auxiliary tasks need balancing
against each other in addition to the primary task. Moreover,

2693-8340/22/$31.00 ©2022 IEEE 9
DOI 10.1109/SMARTCOMP55677.2022.00017

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.



these models assume that both primary and auxiliary labels
are available for each training sample, thus they are unable
to exploit any easily available unlabeled samples that only
contain auxiliary (domain/meta) labels.

To address these challenges, we propose Conditional
Domain Embeddings (CoDEm). From the unlabeled samples
and their domain meta-data, CoDEm first learns a set of
domain-specific low dimensional embeddings. It is trained
with a contrastive learning methodology so that samples
originating from similar domains (e.g. same body position,
person, or device) reside in the same neighborhood in the
learned embedding space while at the same time samples
from dissimilar domains are pushed apart. This effectively
enables us to learn unique encoding for each meta-label
from the raw data samples such that the knowledge from
these encodings can later be used as input into another
model, removing the need to have meta-labels for the labeled
samples that will be used to train the activity classifier. To
train the classifier from the activity labels, we again employ
a contrastive learning methodology during feature extraction
to induce clustering behavior in the low dimensional learned
space, so that activities become easily separable by the
classifier. We then introduce a novel attention mechanism to
learn the complex interaction between the pre-trained domain
feature space (learned from the meta-labels) and activity
label feature space — allowing the network to choose per
sample basis how much domain information to retain (and
discard) to improve the task label classification — removing
the need for complicated loss balancing or choosing between
complementary/adversarial relationship between the primary
and auxiliary tasks. By efficiently utilizing meta-data label
information and conditioning the activity classifier on it,
CoDEm significantly improves HAR classification accuracy
beyond single/multi-task baselines.

Key Contributions: We make the following key contributions:

o Ability to Utilize Meta-data (Domain) Information from
Unlabeled Data to Improve the HAR Classification
Accuracy: We motivate and propose CoDEm, a novel HAR
classification approach that exploits the often overlooked
meta-data information from the unlabeled data to learn
unique representations of each meta-data label (e.g. device
position, type, user demographics such as gender, hand-
dominance) and their associated domain heterogeneities. We
propose a methodology to learn low dimensional embedding
of the domains — samples of each distinct domain coalesce
into their unique neighborhood resulting in unique encoding
for each domain/meta-data label. We utilize these pre-trained
encoding as a source of auxiliary supervision when training
activity classifiers with limited labeled samples and achieve
improved accuracy with the same number of labels samples
over a normal supervised classification pipeline.

« Automatic Discovery and Exploitation of the Relation-
ship Between Domain (meta-data) and Label Space with
a Hyper-parameter Free Attention Mechanism: We pro-
pose a novel attention mechanism that automatically learns

the complex relationship between the meta-data/domain
embeddings and the activity label embedding, selectively
choosing only the relevant features from the domain em-
beddings per sample basis to improve the activity label
classification performance. Instead of having a classical
global co-operative/adversarial multi-task learning setup and
choosing a loss balancing term with a long hyper-parameter
search (especially when the number of tasks becomes more
than two), our model learns the type and strength of this
relationship per sample basis. Since encodings of the meta-
data labels can be learned separately from the activity labels,
the decoupling allows the classifier to be trained without
any meta-data information on its training samples, in stark
contrast to traditional multi-task learning setups.

« Demonstration of CoDEm’s Efficacy and Robustness:
We demonstrate the efficacy of CoDEm in improving the
activity classification performance by utilizing meta-data
information from unlabeled samples on 3 distinct bench-
mark datasets (SHAR [9], PAMAP2 [10], and OPPOR-
TUNITY [!1]). The 3 datasets capture a range of low-
level human activities/gestures (e.g. sitting, standing, lying),
more complex short-lived transient activities (e.g. jumping,
ascending, descending stairs), and typical ADLs (Activities
of Daily Living), and are characterized by sample hetero-
geneities across users with different body positions. We
experimentally establish that CoDEm outperforms normal
supervised classification baseline (which does not utilize
any meta-data information) by =~ 11% in macro-F1 score.
We also show that, when meta-data information is available,
CoDEm also outperforms traditional multi-task co-operative
and adversarial learning setups by ~ 9.5% in terms of
macro-F1 scores. We also visualize and measure the intra-
class cohesion and iter-class separation of the embedding
space learned by CoDEm — which shows that CoDEm
generates feature spaces with up to 17.51% higher silhouette
score across the datasets, justifying CoDEm’s improvement
over the baselines.

II. OVERVIEW

Figure 1 depicts a high-level overview of our proposed Co-
DEm architecture. Our vision for CoDEm is to support robust
HAR classification with a limited number of training samples
by utilizing the meta-data information from unlabeled samples.
Unlike the classical multi-task learning approach that provides
auxiliary supervision from such-meta data information but
requires the activity labels and meta-labels are associated
with the same set of data samples, CoDEm can work with a
completely disjoint set of samples that contain either the meta-
data information or the activity label information — thereby
making it possible to exploit a larger set of unlabeled of
samples to improve model’s performance.

In order to achieve this feat, CoDEm first trains a set
of feature extractors and projects the features into low di-
mensional embeddings. It trains these Domain Embeddings
separately with each set of domain labels (i.e. position, device,
and genders) with the unlabeled samples, after which all the
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Fig. 1: Overview of CoDEm Framework

resulting embeddings are concatenated, resulting in the Com-
bined Domain Embeddings. Similarly, with the limited activity
labeled samples, CoDEm also independently extracts a set of
features — the projected Activity Embedding vectors, in this
case, are assumed to be sub-optimal for downstream classifica-
tion task due to (i) being trained with limited activity labeled
samples, and (ii) not containing any supervision on how to
handle the potential heterogeneity (e.g. difference in position,
gender or device) in the input samples. Hence, the main
challenge becomes finding the optimal way to integrate only
the salient features from the Combined Domain Embeddings
into the Activity Embedding. CoDEm introduces a Domain-
Activity Attention block to automatically learn the optimal
interaction between these two embeddings space through back-
propagation, resulting in a Domain Aware Activity Embed-
ding space where the activity labels are optimally distributed.
Final classification results are obtained by training a Classifier
on top of the Domain Aware Activity Embedding with the same
set of limited activity samples.

One key ingredient of CoDEm’s success is the utilization
of contrastive learning [12], [13] to generate the Activity and
Domain Embeddings and induce clustering characteristics in
the learned unit normalized embedding spaces. This design
choice has multiple benefits. First, this enables a geometric
interpretation of the embedding space. The Domain Aware
Activity Embedding is essentially a corrected re-projection
of the Activity Embedding space and the Domain-Activity
Attention block provides the necessary parameters for this
re-projection learned from the Domain Embedding. As each
of the embeddings resides in euclidean space, the Domain-
Activity Attention block can be modeled with a simple attention
mechanism (later detailed in Section IV-B3) greatly reducing
the extra number of parameters to be learned. The clustering
behavior in the embeddings also makes both the domain and
activity labels easily separable with a simple classifier.

We would like to note that CoDEm is not intended as a re-

placement for other frameworks that aim to leverage unlabeled
data [14]-[16] to improve the HAR classification performance.
However, these frameworks never intentionally take advantage
of the meta-data information available in the unlabeled data
samples, and CoDEm is specially designed to address that
gap. Hence, we anticipate CoDEm to be compatible with the
majority of off-the-shelf HAR classification frameworks.

III. BACKGROUND

Before delving deeper into the details of each component of
CoDEm, we provide a quick review of the primary mechanism
to learn a compact representation of the domains and activity
labels. In CoDEm, we primarily employ Contrastive Center
Loss that aims to learn representations with large inter-class
separability and minimal intra-class variability.

Wen et al. [17] first proposed an auxiliary loss function
to supervised Softmax loss called center-loss that introduces a
prototypical class center for each of the classes and adds a cri-
terion that penalizes the distance of each classes representation
from their respective class centers, which can be described by
the following equation.

c 1 %
L= 52”21 — Cy;
i=1

Here z; € R? denotes the learned deep representation for input
sample x; and ¢, € R? denotes the y;-th activity class center.
d denotes the feature dimension and m denotes the number of
training samples in a batch.

While the center loss function described in Equation 1
penalizes large intra-class distances, it does not consider
inter-class separability. In the resulting embedding space, the
class centers might still end up close by to each other —
hence reducing the discriminative power of the classifier. To
address this issue, Qi et al. [13] proposed an extension to it
called contrastive center-loss which additionally penalizes the
closeness of the class centers.

5 (1)
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Here £~¢ denotes the contrastive center loss, k denotes
the number of classes, and 6 = 1 as default. The modifica-
tion in the denominator of Equation 2 allows simultaneous
minimization of intra-class variability and maximization of
inter-class separability. By optimizing the ratio of intra-class
separation and inter-class separation (contrastive part), the
network ensures a higher relative distance between different
class prototypes.

IV. METHODOLOGY

A. Preliminary Assumptions

As stated previously, instead of jointly learning a com-
mon feature embedding from the domain and activity labels,
CoDEm opts for a decoupled architecture where the do-
main and activity-specific features are learned separately from
unlabeled and labeled sets respectively. A labeled training
set, L = {(xl(z),yl(z)) Y, consist of N number of train-
ing samples xl( and their associated activity labels y( ),
A traditional supervised approach will model E(y ())
P(y, @ \x(i)) Let us assume that an encoding of the associated
subject label Sz( ), device label d() and position label p A(l)
can be inferred. CoDEm postulates that modeling E(y l())
as P(yl(i)|xli), §l(i), Jl(i)jl(i)) leads to increased performance,
especially when IV is small. Since, the labeled set L does not
provide these encodings of the domain labels s(z) d(l) , ﬁl(l)
take advantage of the meta-data labels from the an unlabeled

training set, U = {(zy, @ sgf),dg),pu))}M to model E(s ())

E(dgf)), : E(p §j>) which can be used later to infer s(z) d(l),;ﬁl(z)
given ;. U consists of M training samples and is fully

disjoint from L. We also assume that N < M.

B. Functional Components

Next we provide an breakdown different components of
our proposed CoDEm framework including the Activity
Embedding (E..;), Domain Embedding (Ep), the Domain
Activity Attention (Ap_,..) between them and the Activity
Classifier (C), and explain how these components are utilized
in both the learning and inference stages of CoDEm (as
illustrated in Fig. 1).

1) Activity Embedding, E,.¢: Given the labeled training set
L, Activity Embedding E,.; is a learnable parameterized pro-
jection function [18] which maps each input sample xl(l € X
to a vector

E(lc)t(l) Eace(a;”) € R &)
We optimize the parameters of E.cy with £7¢(x; @ ,yl( ))

where the objective is to minimize intra-class dlstance and
maximize inter-class distance (as shown in Figure 2).
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2) Domain Embedding, Ep: From the unlabeled training
set U, we fist learn the following embeddings independently
(i) User Embedding, E., (ii) Position Embeddings E,
(iii) Device Embedding, Es.,. Here Eygr, Epos and Egey are
three learnable parameterized projection functions [18] which
maps each input sample a:ff ) e X, to three vectors

2oy = Ener(@) € R” 4)
22 ) = Epos(z))) € R ©)
2fony = Eaen(a)) € R ©)

All of these embeddings are trained in the same fashion as
Activity Embedding (Section IV-B1), but with their respective
domain labels. We then concatenate the three vectors to derive

the final domain encoding vector zé(z)

MO, MO

D(u) usr(u)

(#) (#)
pos(u) ® Zdev(u) (7

For simplicity of iti i ()

plicity of exposition, we interpret 2 , as outcome of
applying a Combined Domain Embedding function Ep € R™
(where m = p + q + r) so that the following holds,

oDz

Ep(z()) = 2! ®)

D(u)
—Eusr( ())@Epos( ())@Edev( ())
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3) Domain Activity Attention, Ap_a.ct: With E,¢ trained
on a labeled training set L and Ep trained on unlabeled training
set U, the challenge now lies in finding a way to incorporate
domain heterogeneity information from Ep into Eact to create
a Domain Aware Activity Embedding Vector zact - To that
end, the labeled samples in L are passed through Ep to get
the corresponding domain encoding vector zDZ(l).

230 = Eusr(2]) @ Epos(2)”) @ Eawe(zf”)  9)

The Domain Activity Attention block Ap_ ... takes both zilc)t W
(i)

and Zp(p) as input and produces our Domain Aware Activity

fm)t - Since our intention is to incorporate
(4)

small domain-specific corrections from Zp() into Za(w)t(z)’
can first learn a projection of z]g&) into the same dimension as

Sc)t(l) € R”™ and then take the dot product between the two

vectors to derive the attention score [19].

Embedding Vector %

we

@ @ (@)
Sact(l) = Zact() () X W (10)
This score can then be used to provide necessary correction

t(z )zic)t(l) to get the final ic)t(l) Instead of fully overwriting

Zact(l) with the updated values, we employ a residual connec-
tion as it allows the network to pick and choose which features
to update.

L (4)

_ (@) (%) (%)
Zade(t) = Zact(t) T Zact(l)Sace(l) (In

Here w € R™*"™ is a learnable learnable parameters. Hence

Ap_act can be rewritten as following,

(@) (& — ) (@) (@) ()
AD_aCt(Zalct(l)’ZDzl)) = Zalct(l)+zaz:t(l)(Zalct(l).ZDzl) xw) (12)

4) Activity Classifier, C: Once we get the Domain Aware
Activity Embedding Vector, the next task is to apply a classi-
fication head with a Softmax activation.

B0 = CCEw) (13)

The full training procedure is summarized in Algorithm 1

Algorithm 1: Learning Algorithm for CoDEm

Input: Labeled Dataset, L = {x(l),ylz)}f\[ 1, N =1L
Input: Unlabeled Dataset
U= { Ef),SSJZ)y u ,pu)}z 17 - |U|
Assumption: N < M
QOutput: Activity Embedding, E,..
Output: Domain Embedding, Ep
Output: Domain Activity Attention, Ap_act
Output: Activity Classifier, C
for 2 € X, do

1 Train Eyer, Epos, Eqev using Equation 2 so that
2oy = En (@) = Ever(2])) ©Epos (2 SEaey (x)))
for x( 2 € X do
2 Traln Eact using Equation 2 so that

2 = Eact (xl(z)) eR”

act(l) —

3 Infer Zlg(%) = Busr( (l)) @ Epos (@ (Z)) @ Eaev(z (l))
4 Train Ap_act using Equation 12 so that

L) _ (1) (@)

Zalct(l) = AD_aCt(zazct(l)’ ZDl(l))

5 Train C so that :gc(tic)t(l) =C

2(4)
(Za::t(l))

V. EXPERIMENT

In the following section, we discuss the details of a number
of representative Activities-of-Daily-Living (ADL) datasets,
which we use to demonstrate the efficacy of our proposed
CoDEm approach. We also summarize alternative approaches
that help provide competitive baselines.

A. Baselines

To demonstrate the effectiveness of CoDEm, we compare its
performance with 3 different baselines: (i) Single Task Learn-
ing/Classification (STL), (ii) Co-operative Multi-task Learning
(CoOp-MTL), (iii) Adversarial Multi-task Learning [8] (Adv-
MTL). By STL, we refer to training the model with the activity
labels only. During the CoOp-MTL setup, a single feature ex-
tractor is shared with two classification heads — one for activity
label classification and the other for meta-label classification.
This setup is then modified with a gradient reversal layer [&]
to create the Adv-MTL baseline. These baselines serve to
demonstrate different ways the auxiliary labeling information
can be integrated into the activity classification pipeline.

Table I shows the primary difference between the baselines
and CoDEm. As we can see, CoDEm is the only framework
that can work with a fully disjoint set of labeled (activity) and
unlabeled (with meta-label) training sets. In addition, CoDEm
is the only framework that does not require an additional
hyper-parameter to balance the primary (activity classification)
and auxiliary (domain classification) losses which makes it

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.



possible to gain optimal classification results without a time-
consuming hyper-parameter search.

As previously stated, we are mainly interested in exploring
the effect of auxiliary supervision on activity classification in
this work, hence our benchmark selection purposefully does
not include models that use purely unlabeled samples [14]—
[16], [20]. CoDEm’s novel contributions (contrastive domain
and activity embedding and residual attention between them)
are generalizable enough to be compatible with the above-
mentioned frameworks but the study of that behavior is beyond
the scope of this paper.

TABLE I: Feature Matrix Comparison of the Baselines

. . Adversarial
Model S‘]j‘gle'.TaSk Mult-Task  ypoii Task — CoDEm
earning Learning Learni
earning
Works with fully disjoint
labeled and unlabeled dataset N/A No No Yes
Does not need loss-balancing N/A No No Yes

hyper-parameter tuning

B. Datasets

We showcase the effectiveness of our proposed framework
on three publicly available datasets: (i) PAMAP2 Physical
Activity Monitoring Dataset [10], (ii) OPPORTUNITY Ac-
tivity Recognition Dataset [11], and (iii) UniMiB SHAR [9].
A summary of the datasets is provided in Table II and the
label distributions (full dataset) are shown in Figure 5. Pre-
processing details for the datasets are provided in Section V-C.
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Fig. 5: Label distribution of the three benchmark datasets

C. Implementation Details

1) Runtime Environment: We conducted our experiments
on a Linux Server (Ubuntu 18.04) running on Intel Core i7-
6850K CPU and 64GB DDR4 RAM, with an Nvidia 1080Ti
Graphics card (11GB VRAM). Python was used for all
coding tasks except. For the signal processing, filtering, we
used scikit — learn, scipy and numpy libraries. For deep
learning tasks, we used PyTorch.

2) Pre-processing: For each dataset, we first take the data
stream of each trial through a multi-variate iterative data
imputer [21] to deal with missing values. We isolated the
gravity component from the accelerometer signals with a
Butterworth low-pass filter (with a cutoff frequency of 0.3Hz)
and then negated this component from the original signal.
We then re-sampled the data from all the sensors to 30Hz
to have a common sampling rate among all datasets. We
divided the accelerometer data into individual windows of 90
samples, with a sliding window offset of 45; this results in
50% overlap between consecutive windows and a 3 seconds
per window. The choice of a 3-second window allows for a
full cycle of many of the activities (e.g. 2 steps) to be captured
— since the cadence of an average person walking is 90 — 130
steps/min [22].

3) Evaluation: During our experiments, we split the sam-
ples into two equal user groups: A and B, each containing half
of the total number of users in a dataset while maintaining an
equal ratio of gender and position between the two groups.
To train the Activity Embedding part of CoDEm, we treat
group A as having the activity labeled training set and group
B as the test set. To learn the Domain Embeddings in CoDEm,
we treat group B as the training set containing the meta-
data information and test on group A. This ensures that the
activity and domain embeddings are trained on disjoints set
of samples, reflecting a more realistic scenario (as mentioned
in Section II). However, the multi-task learning baselines do
not support training with a disjoint set of samples for activity
and meta-data labels. Hence, for those baselines, we use both
activity and meta-data labels from group A.

Within each training subset, we employ an 80/20
train/validation split. To emphasize the statistical significance
of our results, we repeat run our experiment 10 times with
different user/trial combinations in groups A and B and report
the average metrics (Section V-D). We run a paired Wilcoxon
signed-rank test between the 10 runs of each baseline, calcu-
late the p value CoDEm and only report the result if p < 0.01
in Section VI, emphasizing that all the reported findings are
statistically significant.

4) Model Architecture & Hyper-parameters: Each of the E,
function is represented by a convolutional Encoder followed
by multi-layer perceptron Projector. To make sure CoDEm
can be potentially run efficiently in small wearables, we
developed a lightweight convolutional architecture inspired
by MobileNet [23]. Our Encoder consists of three layers
of Depth-wise Separable Convolution operations, each having
their associated Batch Normalization and 2:1 Max Pooling
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TABLE II: Summary of Three Public Datasets Used in Our Experiments

Dataset Subjects Positions Labels Sampling

Frequency

SHAR 30 2 9 (standing up from laying, lying down to standing, standing up from sitting, 100H
(24 Female, 6 Male) (Left & Right Trouser Pocket) running, sitting down, going downstairs, going upstairs, walking, and jumping) “
PAMAP2 9 3 11 (lying down, sitting, standing, walking, running, cycling, ascending stairs, 30H:
(8 Males, 1 Female) (Wrist, Chest, Ankle) descending stairs, vacuum cleaning, ironing, rope jumping) z

5 (BACK, Right Upper Arm (RUA),

OPPORTUNITY 4 Right Left Arm (RLA), Left Upper Arm (LUA), 4 (sitting, standing, walking, lying) 50Hz

Left Lower Arm (LLA))

operation. The final convolution is followed by Global Av-
erage Pooling [24] operation and directly fed to the MLP
Projector. The output of the Projector is L2 normalized
so that the resulting embedding vector resides in a unit
normalized hyper-sphere. Finally, this vector is fed to the
classifier C, a single fully-connected layer with a Softmax
activation. The resultant network contains only 53K trainable
parameters, making it very suitable for small low-powered
wearable devices.

We applied Dropout regularization between each layer and
used Adam optimizer with weight decay, which provided
another form of regularization. We also opted for a learning
rate scheduler that reduced the learning rate by a factor of
10 with a patience factor of 10. The batch sizes were set
to 256 during all the experiments as we noticed that the
large batch size leads to faster convergence for the contrastive
center loss. We optimized our model hyper-parameters with
Randomized Search on the validation sets, the final parameters
used throughout the experiments are listed in Table III. Our
implementation of CoDEm is available at GitHub'.

TABLE III: List of Hyper-parameters

Hyper-Parameters Values

Layers 3

Convolution | Filters 128, 128, 128

Encoder Kernels 9,9,9
Layers 2

MLP Neurons 64, 64

Classifier Neurons 64
Batch Size 256
Dropout Rate 0.1
Epochs 100
Learning Rate 0.001

D. Evaluation Metrics

1) Silhouette Score: To evaluate the quality of the learned
Activity and Domain Embeddings, we use Mean Silhouette
Coefficient [25] for all the samples in the validation sets. This
score measures, in the embedding space, how each sample
is similar is to its own class (cohesion) compared to other
classes (separation). If the mean distance between embedding
vector z(9) and all other vectors in the same class is a(¥), and
the mean distance between z(Y) and all other vectors in the

Uhttps://github.com/azmfaridee/codem- smartcomp-2022

next nearest class in the embedding space is b("), the Mean
Silhouette Coefficient is defined as,

b — o)

=N Z max(a®, @) 1
The coefficient score ranges between -1 and +1. A high
positive value indicates the embedding vectors lie in close
proximity to other vectors of their own classes and far away
from vectors of other classes. A negative value indicates
that embeddings vectors from different classes occupy close
neighborhoods which is indicative of bad embedding. Values
close to 0 indicate overlapping clusters.

2) F1 Score: Driven by observation of imbalanced class
distribution in the three datasets (Figure 5) and accuracy being
a misleadingly optimistic metric [26] in such a scenario, we
choose to use macro-F1 score as the primary performance
metric. This prevents easily classifiable high support activity
labels from dominating the performance metric.

VI. RESULTS

1) Primary Analysis: In this section, we compare the clas-
sification performance of CoDEm against the baselines with
the three benchmark datasets. In Table IV we show the mean
macro-F1 and Silhouette Score from 10 independent runs.

For the Single Task (activity classification) baseline, we
show the performance with and without the contrastive cen-
ter loss. We note that minimizing intra-class variability and
maximizing inter-class separability through the contrastive
center loss provides 3.24%, 9.98%, 10% improvement in
silhouette score in SHAR, PAMAP2, and OPPORTUNITY
dataset, corresponding to 4.3%, 3.6%, 4.8% improvement in
macro-F1 scores, respectively. This validates our intuition to
use contrastive learning to improve classification performance.

In Multi-task baselines, we evaluate the performance of
both CoOp-MTL and Adv-MTL with two types of auxiliary
supervision: (i) gender and (ii) position information and their
combination (OPPORTUNITY dataset only has position in-
formation). We notice that in all cases, both the silhouette
and macro-F1 scores take a considerable hit compared to STL
results. There is also inconsistency on the level of performance
dip — in CoOp-MTL setup, using the gender and position meta-
data together results in the biggest performance dip, while in
Adv-MTL the degradation is the least. This further hints that
the simplistic assumptions of global co-operative or adversarial
MTL models are not well suited to integrate the auxiliary
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supervision from the meta-data labels and a learnable, local,
per sample relationship should help improve the HAR model’s
performance.

Finally, we analyze the performance of CoDEm on similar
types of auxiliary supervision. As we can clearly see, using the
gender and position information together results in the highest
amount of performance improvement by CoDEm. CoDEm
outperforms all baselines both in terms of silhouette and
macro-F1 score. More specifically, CoDEm achieves 9.63%,
12.07%, 11.94% higher macro-F1 score and 11.22%, 16.66%,
24.65% higher silhouette scores in SHAR, PAMAP2, and
OPPORTUNITY, respectively compared to the STL baseline.
That is an average of 11.21% macro-F1 and 17.51% silhouette
score improvement.

Similarly CoDEm achieves 13.77%, 13.36%, 8.41% macro-
F1 and 21.62%, 13.47%, 13.23% silhouette score improvement
compared to CoOp-MTL and 11.57%, 8.98%, 7.85% macro-
F1 and 16.95%, 10.46%, 23.65% silhouette score improve-
ment compared to Adv-MTL baselines in SHAR, PAMAP2
and OPPORTUNITY dataset. On average CoDEm achieves
9.07%, 9.46% macro-F1 score and 16.10%, 17.02% sil-
houette score improvement over CoOp-MTL and Adv-MTL
baselines. We would like to note that, both the MTL baselines
are trained samples that contain both activity and meta-data
labels whereas CoDEm is trained with samples that contain
either the activity or meta-data label (not both). Hence a
macro-F1 score improvement of ~9.5% by CoDEm in such a
challenging scenario is very encouraging.

2) Visual Analysis: To understand how samples in the

Domain Aware Activity Embedding vector éa(li)t(l) are better
(@)

distributed than the single task embedding vector Zacr(l) for
higher classification performance, we employ 2D TSNE vi-
sualization on one of the runs on SHAR dataset, the result
of which is shown in Figure 6. As shown in Figure 6a,
there is a high amount of overlap between samples of Ly-
ingDownF'S, StandingUpFS, SittingDown and StandingUpFL
activities. This results in poor F1 scores in those classes
(Figure 8a) as they are confused with each other majority of
the time (Figure 7a). CoDEm, on the other hand, can learn a
higher quality embedding space (11% better silhouette score),
which is reflected in Figure 6b, and results in a much higher
(35% more) F1 score for those classes (Figure 8b).

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented CoDEm, a novel framework to
exploit meta-data information (user attributes such as gender,
device position, etc.) to improve HAR classification accuracy
in three benchmark datasets. In contrast to Co-operative or
Adversarial MTL learning methods that learn a shared repre-
sentation from samples containing both meta-data and activity
labels, CoDEm offer hyper-parameter free learning of separate
embeddings from a disjoint set of samples containing meta-
data and activity labels. Combining contrastive learning with
a novel residual attention mechanism to learn highly compact
representation with an average 17.5% improved silhouette
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score, CoDEm offer an average 9.5 —11% improved macro-F1
score over the baselines in the three benchmark datasets.
Although we envisioned CoDEm as being able to handle
device or other types of heterogeneity in addition to per-
son/gender and positions, in this work we did not explore
device heterogeneity due to the lack of device labels in the
three benchmark datasets. In the future, we would like to
conduct extensive experiments to include a diverse set of
heterogeneities. Despite being designed to handle multiple-
positional heterogeneity, the input to CoDEm actually consists
of a single positional data at a time which makes CoDEm,
at its current form unsuitable input streams consisting of
multiple positional data [27], [28]. Our future work would
investigate means to mitigate this limitation. We would also
like to investigate whether the integration of recent contrastive-
learning architectures (e.g. SupContrast [12], SIimCLR [29])
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TABLE IV: F1 and Mean Silhouette Coefficient (in parentheses) in SHAR, PAMAP2, and OPPORTUNITY dataset. ‘CC’
denotes Contrastive Center loss.

Model Single Task Multi-Task CoDEm
Relationship N/A Co-operative Adversarial Learnable
Loss Softmax | Softmax+CC | Softmax | Softmax ] Softmax Softmax | Softmax ] Softmax Softmax+CC | Softmax+CC [  Softmax+CC
Extra Supervision N/A ] N/A Gender | Position | Gender+Position | Gender | Position | Gender+Position Gender [ Position | Gender+Position
SHAR 0.7493 0.7925 0.7301 0.7284 0.7079 0.7271 0.7289 0.7299 0.8312 0.8305 0.8456
(0.5404) (0.5729) (0.4921) | (0.4683) (0.4364) (0.4701) | (0.4747) (0.4831) (0.6122) (0.6026) (0.6526)
PAMAP2 0.6567 0.6928 0.6407 0.6322 0.6438 0.6629 0.6412 0.6876 0.7282 0.7315 0.7774
(0.3108) (0.4106) (0.3521) | (0.3330) (0.3427) (0.3731) | (0.3395) (0.3728) (0.4191) (0.4318) (0.4774)
0.7339 0.7821 0.7692 0.7748 0.8533
OPPORTUNITY (0.4327) 0.5327) N/A (0.4869) N/A N/A (0.4427) N/A N/A 0.6792) N/A
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labels. Nevertheless, we would like to perform an in-depth
investigation along this avenue in our future work.

would provide further improvements CoDEm’s performance.
As the Domain Embedding module can be trained to learn

the embedding of sensitive personal information (e.g., personal

identity, gender), a valid question on the practical use case of
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