
CoDEm: Conditional Domain Embeddings for
Scalable Human Activity Recognition

Abu Zaher Md Faridee*, Avijoy Chakma*, Zahid Hasan*, Nirmalya Roy*, Archan Misra**
*Information Systems, University of Maryland, Baltimore County

**Computing & Information Systems, Singapore Management University

Email: *{faridee1, achakma1, zhasan3, nroy}@umbc.edu, **archanm@smu.edu.sg

Abstract—We explore the effect of auxiliary labels in im-
proving the classification accuracy of wearable sensor-based
human activity recognition (HAR) systems, which are primarily
trained with the supervision of the activity labels (e.g. running,
walking, jumping). Supplemental meta-data are often available
during the data collection process such as body positions of
the wearable sensors, subjects’ demographic information (e.g.
gender, age), and the type of wearable used (e.g. smartphone,
smart-watch). This information, while not directly related to
the activity classification task, can nonetheless provide auxiliary
supervision and has the potential to significantly improve the
HAR accuracy by providing extra guidance on how to handle
the introduced sample heterogeneity from the change in domains
(i.e positions, persons, or sensors), especially in the presence
of limited activity labels. However, integrating such meta-data
information in the classification pipeline is non-trivial – (i) the
complex interaction between the activity and domain label space
is hard to capture with a simple multi-task and/or adversarial
learning setup, (ii) meta-data and activity labels might not be
simultaneously available for all collected samples. To address
these issues, we propose a novel framework Conditional Domain
Embeddings (CoDEm). From the available unlabeled raw samples
and their domain meta-data, we first learn a set of domain
embeddings using a contrastive learning methodology to handle
inter-domain variability and inter-domain similarity. To classify
the activities, CoDEm then learns the label embeddings in a
contrastive fashion, conditioned on domain embeddings with a
novel attention mechanism, enforcing the model to learn the
complex domain-activity relationships. We extensively evaluate
CoDEm in three benchmark datasets against a number of multi-
task and adversarial learning baselines and achieve state-of-the-
art performance in each avenue.

Index Terms—human activity recognition, domain embedding,
attention, multi-task learning, adversarial learning, meta-data

I. INTRODUCTION

Wearable sensor-based human activity recognition (HAR)

systems have enjoyed meteoric popularity in the past few

years in a number of application areas such as health-care,

depression prediction [1], sleep [2] and fitness monitoring [3],

cognitive [4] and mental health assessment [5] due to their

widespread availability (in the form of smartwatches, smart-

phones, etc), flexible and unobtrusive nature, and the ability

capture and infer users activity in real-time. The recent ad-

vancement in data-driven supervised deep learning algorithms

have significantly lessened the need for training HAR mod-

els with complex signal processing and hand-crafted feature

engineering pipelines. The performance of these supervised

models is, however, highly dependent on the amount and

quality of the labels provided which makes developing scalable

HAR models a challenging task. Compared to the traditional

use cases of deep learning (e.g. NLP and computer vision),

human motion data is much more nuanced in nature. Due

to the wider variation introduced by the modality (sensor

type), placement (on-body or contact-less), and the personal

and temporal variability (resulting from the users’ lifestyle

and contextual differences), both the marginal and conditional

distributions of the data can experience a significant shift.

Traditional methods of building a supervised classifier only

focus on learning the mappings between the raw samples and

the activity labels. However, the meta-data information (e.g.

position, device, or user demographic) is often not utilized

in building these classifiers. We argue that these auxiliary

labels carry significant supervision information and when

utilized in a regulated manner, can considerably improve the

performance of the activity classifiers, especially when limited

activity labels are present. More importantly, these meta-data

are often easily available during the data collection process,

hence enabling one to independently assign these auxiliary

labels to the raw data samples irrespective of the availability

of the corresponding activity labels.

The straightforward way of integrating these auxiliary su-

pervisions is to build a multi-task model that simultaneously

predicts the activity labels and the meta-labels (e.g. position,

gender, device), assuming a globally cooperative relationship.

However, as we will see later in Section VI, this assumption

is not completely valid. One might also assume that learning

a set of features that are invariant to these heterogeneities

(e.g. with adversarial multi-task learning, assuming a globally

adversarial relationship) will result in better performance, but

in reality that also results in performance degradation. This

leads us to believe that there exists a more complex, local

(per sample) relationship between the primary (from activity

label) and auxiliary (i.e. from domain/meta-data label) feature

space and special care must be taken to learn that relationship

to improve the performance of the activity classifiers. These

multi-task learning setups often require careful tuning of the

weights of the individual task losses so that the auxiliary tasks

do not overwhelm the primary one, which requires either (a)

a time-consuming manual hyper-parameter search regiment

or (b) incorporating complex loss balancing algorithms [6]–

[8], especially when multiple auxiliary tasks need balancing

against each other in addition to the primary task. Moreover,

9

2022 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/22/$31.00 ©2022 IEEE
DOI 10.1109/SMARTCOMP55677.2022.00017

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
(S

M
AR

TC
O

M
P)

 |
 9

78
-1

-6
65

4-
81

52
-6

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SM
AR

TC
O

M
P5

56
77

.2
02

2.
00

01
7

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

these models assume that both primary and auxiliary labels

are available for each training sample, thus they are unable

to exploit any easily available unlabeled samples that only

contain auxiliary (domain/meta) labels.
To address these challenges, we propose Conditional

Domain Embeddings (CoDEm). From the unlabeled samples

and their domain meta-data, CoDEm first learns a set of

domain-specific low dimensional embeddings. It is trained

with a contrastive learning methodology so that samples

originating from similar domains (e.g. same body position,

person, or device) reside in the same neighborhood in the

learned embedding space while at the same time samples

from dissimilar domains are pushed apart. This effectively

enables us to learn unique encoding for each meta-label

from the raw data samples such that the knowledge from

these encodings can later be used as input into another

model, removing the need to have meta-labels for the labeled

samples that will be used to train the activity classifier. To

train the classifier from the activity labels, we again employ

a contrastive learning methodology during feature extraction

to induce clustering behavior in the low dimensional learned

space, so that activities become easily separable by the

classifier. We then introduce a novel attention mechanism to

learn the complex interaction between the pre-trained domain

feature space (learned from the meta-labels) and activity

label feature space – allowing the network to choose per

sample basis how much domain information to retain (and

discard) to improve the task label classification – removing

the need for complicated loss balancing or choosing between

complementary/adversarial relationship between the primary

and auxiliary tasks. By efficiently utilizing meta-data label

information and conditioning the activity classifier on it,

CoDEm significantly improves HAR classification accuracy

beyond single/multi-task baselines.

Key Contributions: We make the following key contributions:

• Ability to Utilize Meta-data (Domain) Information from
Unlabeled Data to Improve the HAR Classification
Accuracy: We motivate and propose CoDEm, a novel HAR

classification approach that exploits the often overlooked

meta-data information from the unlabeled data to learn

unique representations of each meta-data label (e.g. device

position, type, user demographics such as gender, hand-

dominance) and their associated domain heterogeneities. We

propose a methodology to learn low dimensional embedding

of the domains – samples of each distinct domain coalesce

into their unique neighborhood resulting in unique encoding

for each domain/meta-data label. We utilize these pre-trained

encoding as a source of auxiliary supervision when training

activity classifiers with limited labeled samples and achieve

improved accuracy with the same number of labels samples

over a normal supervised classification pipeline.

• Automatic Discovery and Exploitation of the Relation-
ship Between Domain (meta-data) and Label Space with
a Hyper-parameter Free Attention Mechanism: We pro-

pose a novel attention mechanism that automatically learns

the complex relationship between the meta-data/domain

embeddings and the activity label embedding, selectively

choosing only the relevant features from the domain em-

beddings per sample basis to improve the activity label

classification performance. Instead of having a classical

global co-operative/adversarial multi-task learning setup and

choosing a loss balancing term with a long hyper-parameter

search (especially when the number of tasks becomes more

than two), our model learns the type and strength of this

relationship per sample basis. Since encodings of the meta-

data labels can be learned separately from the activity labels,

the decoupling allows the classifier to be trained without

any meta-data information on its training samples, in stark

contrast to traditional multi-task learning setups.

• Demonstration of CoDEm’s Efficacy and Robustness:
We demonstrate the efficacy of CoDEm in improving the

activity classification performance by utilizing meta-data

information from unlabeled samples on 3 distinct bench-

mark datasets (SHAR [9], PAMAP2 [10], and OPPOR-

TUNITY [11]). The 3 datasets capture a range of low-

level human activities/gestures (e.g. sitting, standing, lying),

more complex short-lived transient activities (e.g. jumping,

ascending, descending stairs), and typical ADLs (Activities

of Daily Living), and are characterized by sample hetero-

geneities across users with different body positions. We

experimentally establish that CoDEm outperforms normal

supervised classification baseline (which does not utilize

any meta-data information) by ≈ 11% in macro-F1 score.

We also show that, when meta-data information is available,

CoDEm also outperforms traditional multi-task co-operative

and adversarial learning setups by ≈ 9.5% in terms of

macro-F1 scores. We also visualize and measure the intra-

class cohesion and iter-class separation of the embedding

space learned by CoDEm – which shows that CoDEm
generates feature spaces with up to 17.51% higher silhouette

score across the datasets, justifying CoDEm’s improvement

over the baselines.

II. OVERVIEW

Figure 1 depicts a high-level overview of our proposed Co-
DEm architecture. Our vision for CoDEm is to support robust

HAR classification with a limited number of training samples

by utilizing the meta-data information from unlabeled samples.

Unlike the classical multi-task learning approach that provides

auxiliary supervision from such-meta data information but

requires the activity labels and meta-labels are associated

with the same set of data samples, CoDEm can work with a

completely disjoint set of samples that contain either the meta-

data information or the activity label information – thereby

making it possible to exploit a larger set of unlabeled of

samples to improve model’s performance.

In order to achieve this feat, CoDEm first trains a set

of feature extractors and projects the features into low di-

mensional embeddings. It trains these Domain Embeddings
separately with each set of domain labels (i.e. position, device,

and genders) with the unlabeled samples, after which all the

10

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Overview of CoDEm Framework

resulting embeddings are concatenated, resulting in the Com-
bined Domain Embeddings. Similarly, with the limited activity

labeled samples, CoDEm also independently extracts a set of

features – the projected Activity Embedding vectors, in this

case, are assumed to be sub-optimal for downstream classifica-

tion task due to (i) being trained with limited activity labeled

samples, and (ii) not containing any supervision on how to

handle the potential heterogeneity (e.g. difference in position,

gender or device) in the input samples. Hence, the main

challenge becomes finding the optimal way to integrate only

the salient features from the Combined Domain Embeddings
into the Activity Embedding. CoDEm introduces a Domain-
Activity Attention block to automatically learn the optimal

interaction between these two embeddings space through back-

propagation, resulting in a Domain Aware Activity Embed-
ding space where the activity labels are optimally distributed.

Final classification results are obtained by training a Classifier
on top of the Domain Aware Activity Embedding with the same

set of limited activity samples.

One key ingredient of CoDEm’s success is the utilization

of contrastive learning [12], [13] to generate the Activity and

Domain Embeddings and induce clustering characteristics in

the learned unit normalized embedding spaces. This design

choice has multiple benefits. First, this enables a geometric

interpretation of the embedding space. The Domain Aware
Activity Embedding is essentially a corrected re-projection

of the Activity Embedding space and the Domain-Activity
Attention block provides the necessary parameters for this

re-projection learned from the Domain Embedding. As each

of the embeddings resides in euclidean space, the Domain-
Activity Attention block can be modeled with a simple attention

mechanism (later detailed in Section IV-B3) greatly reducing

the extra number of parameters to be learned. The clustering

behavior in the embeddings also makes both the domain and

activity labels easily separable with a simple classifier.

We would like to note that CoDEm is not intended as a re-

placement for other frameworks that aim to leverage unlabeled

data [14]–[16] to improve the HAR classification performance.

However, these frameworks never intentionally take advantage

of the meta-data information available in the unlabeled data

samples, and CoDEm is specially designed to address that

gap. Hence, we anticipate CoDEm to be compatible with the

majority of off-the-shelf HAR classification frameworks.

III. BACKGROUND

Before delving deeper into the details of each component of

CoDEm, we provide a quick review of the primary mechanism

to learn a compact representation of the domains and activity

labels. In CoDEm, we primarily employ Contrastive Center
Loss that aims to learn representations with large inter-class

separability and minimal intra-class variability.

Wen et al. [17] first proposed an auxiliary loss function

to supervised Softmax loss called center-loss that introduces a

prototypical class center for each of the classes and adds a cri-

terion that penalizes the distance of each classes representation

from their respective class centers, which can be described by

the following equation.

Lc =
1

2

m∑

i=1

‖zi − cyi‖22 (1)

Here zi ∈ R
d denotes the learned deep representation for input

sample xi and cyi
∈ R

d denotes the yi-th activity class center.

d denotes the feature dimension and m denotes the number of

training samples in a batch.

While the center loss function described in Equation 1

penalizes large intra-class distances, it does not consider

inter-class separability. In the resulting embedding space, the

class centers might still end up close by to each other –

hence reducing the discriminative power of the classifier. To

address this issue, Qi et al. [13] proposed an extension to it

called contrastive center-loss which additionally penalizes the

closeness of the class centers.

11

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

Lct−c =
1

2

m∑

i=1

‖zi − cyi‖22
(
∑k

j=1,j �=yi
‖xi − cj‖22) + δ

(2)

Here Lct−c denotes the contrastive center loss, k denotes

the number of classes, and δ = 1 as default. The modifica-

tion in the denominator of Equation 2 allows simultaneous

minimization of intra-class variability and maximization of

inter-class separability. By optimizing the ratio of intra-class

separation and inter-class separation (contrastive part), the

network ensures a higher relative distance between different

class prototypes.

IV. METHODOLOGY

A. Preliminary Assumptions

As stated previously, instead of jointly learning a com-

mon feature embedding from the domain and activity labels,

CoDEm opts for a decoupled architecture where the do-

main and activity-specific features are learned separately from

unlabeled and labeled sets respectively. A labeled training

set, L = {(x(i)
l , y

(i)
l)}Ni=1 consist of N number of train-

ing samples x
(i)
l and their associated activity labels y

(i)
l .

A traditional supervised approach will model E(y
(i)
l) as

P (y
(i)
l |x(i)

l). Let us assume that an encoding of the associated

subject label ŝ
(i)
l , device label d̂

(i)
l and position label p̂

(i)
l

can be inferred. CoDEm postulates that modeling E(y
(i)
l)

as P (y
(i)
l |x(i)

l , ŝ
(i)
l , d̂

(i)
l , p̂

(i)
l) leads to increased performance,

especially when N is small. Since, the labeled set L does not

provide these encodings of the domain labels ŝ
(i)
l , d̂

(i)
l , p̂

(i)
l , we

take advantage of the meta-data labels from the an unlabeled

training set, U = {(x(i)
u , s

(i)
u , d

(i)
u , p

(i)
u)}Mi=1 to model E(s

(i)
u),

E(d
(i)
u), E(p

(i)
u) which can be used later to infer ŝ

(i)
l , d̂

(i)
l , p̂

(i)
l

given x
(i)
l . U consists of M training samples and is fully

disjoint from L. We also assume that N � M .

B. Functional Components

Next we provide an breakdown different components of

our proposed CoDEm framework including the Activity
Embedding (Eact), Domain Embedding (ED), the Domain
Activity Attention (AD−act) between them and the Activity
Classifier (C), and explain how these components are utilized

in both the learning and inference stages of CoDEm (as

illustrated in Fig. 1).

1) Activity Embedding, Eact: Given the labeled training set

L, Activity Embedding Eact is a learnable parameterized pro-

jection function [18] which maps each input sample x
(i)
l ∈ Xl

to a vector

z
(i)
act(l) = Eact(x

(i)
l) ∈ R

n (3)

We optimize the parameters of Eact with Lct−c(x
(i)
l , y

(i)
l)

where the objective is to minimize intra-class distance and

maximize inter-class distance (as shown in Figure 2).

Fig. 2: Activity Embedding, Eact

Fig. 3: Learning (a) User, Eusr, (b) Position Epos and (c) Edev

Embeddings Independently

2) Domain Embedding, ED: From the unlabeled training

set U, we fist learn the following embeddings independently

(i) User Embedding, Eusr, (ii) Position Embeddings Epos,

(iii) Device Embedding, Edev. Here Eusr, Epos and Edev are

three learnable parameterized projection functions [18] which

maps each input sample x
(i)
u ∈ Xu to three vectors

z
(i)
usr(u) = Eusr(x

(i)
u) ∈ R

p (4)

z
(i)
pos(u) = Epos(x

(i)
u) ∈ R

q (5)

z
(i)
dev(u) = Edev(x

(i)
u) ∈ R

r (6)

All of these embeddings are trained in the same fashion as

Activity Embedding (Section IV-B1), but with their respective

domain labels. We then concatenate the three vectors to derive

the final domain encoding vector z
(i)
D(u).

z
(i)
D(u) = z

(i)
usr(u) ⊕ z

(i)
pos(u) ⊕ z

(i)
dev(u) (7)

For simplicity of exposition, we interpret z
(i)
D(u) as outcome of

applying a Combined Domain Embedding function ED ∈ R
m

(where m = p+ q + r) so that the following holds,

ED(x
(i)
u) = z

(i)
D(u) (8)

= Eusr(x
(i)
u)⊕ Epos(x

(i)
u)⊕ Edev(x

(i)
u)

12

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Conditional label embedding

3) Domain Activity Attention, AD−act: With Eact trained

on a labeled training set L and ED trained on unlabeled training

set U, the challenge now lies in finding a way to incorporate

domain heterogeneity information from ED into Eact to create

a Domain Aware Activity Embedding Vector ẑ
(i)
act(l). To that

end, the labeled samples in L are passed through ED to get

the corresponding domain encoding vector z
(i)
D(l).

z
(i)
D(l) = Eusr(x

(i)
l)⊕ Epos(x

(i)
l)⊕ Edev(x

(i)
l) (9)

The Domain Activity Attention block AD−act takes both z
(i)
act(l)

and z
(i)
D(l) as input and produces our Domain Aware Activity

Embedding Vector ẑ(i)
act(l). Since our intention is to incorporate

small domain-specific corrections from z
(i)
D(l) into ẑ

(i)
act(l), we

can first learn a projection of z
(i)
D(l) into the same dimension as

z
(i)
act(l) ∈ R

n and then take the dot product between the two

vectors to derive the attention score [19].

s
(i)
act(l) = z

(i)
act(l) · z(i)D(l) × w (10)

This score can then be used to provide necessary correction

to z
(i)
act(l) to get the final ẑ

(i)
act(l). Instead of fully overwriting

z
(i)
act(l) with the updated values, we employ a residual connec-

tion as it allows the network to pick and choose which features

to update.

ẑ
(i)
act(l) = z

(i)
act(l) + z

(i)
act(l)s

(i)
act(l) (11)

Here w ∈ R
m×n is a learnable learnable parameters. Hence

AD−act can be rewritten as following,

AD−act(z
(i)
act(l), z

(i)
D(l)) = z

(i)
act(l)+z

(i)
act(l)(z

(i)
act(l) ·z(i)D(l)×w) (12)

4) Activity Classifier, C: Once we get the Domain Aware
Activity Embedding Vector, the next task is to apply a classi-

fication head with a Softmax activation.

ŷ
(i)
act(l) = C(ẑ

(i)
act(l)) (13)

The full training procedure is summarized in Algorithm 1

Algorithm 1: Learning Algorithm for CoDEm

Input: Labeled Dataset, L = {x(i)
l , y

(i)
l }Ni=1, N = |L|

Input: Unlabeled Dataset,

U = {x(i)
u , s

(i)
u , d

(i)
u , p

(i)
u }Mi=1,M = |U|

Assumption: N � M
Output: Activity Embedding, Eact

Output: Domain Embedding, ED

Output: Domain Activity Attention, AD−act

Output: Activity Classifier, C
for x

(i)
u ∈ Xu do

1 Train Eusr,Epos,Edev using Equation 2 so that

z
(i)
D(u) = ED(x

(i)
u) = Eusr(x

(i)
u)⊕Epos(x

(i)
u)⊕Edev(x

(i)
u)

for x
(i)
l ∈ Xl do

2 Train Eact using Equation 2 so that

z
(i)
act(l) = Eact(x

(i)
l) ∈ R

n

3 Infer z
(i)
D(l) = Eusr(x

(i)
l)⊕ Epos(x

(i)
l)⊕ Edev(x

(i)
l)

4 Train AD−act using Equation 12 so that

ẑ
(i)
act(l) = AD−act(z

(i)
act(l), z

(i)
D(l))

5 Train C so that ŷ
(i)
act(l) = C(ẑ

(i)
act(l))

V. EXPERIMENT

In the following section, we discuss the details of a number

of representative Activities-of-Daily-Living (ADL) datasets,

which we use to demonstrate the efficacy of our proposed

CoDEm approach. We also summarize alternative approaches

that help provide competitive baselines.

A. Baselines

To demonstrate the effectiveness of CoDEm, we compare its

performance with 3 different baselines: (i) Single Task Learn-

ing/Classification (STL), (ii) Co-operative Multi-task Learning

(CoOp-MTL), (iii) Adversarial Multi-task Learning [8] (Adv-

MTL). By STL, we refer to training the model with the activity

labels only. During the CoOp-MTL setup, a single feature ex-

tractor is shared with two classification heads – one for activity

label classification and the other for meta-label classification.

This setup is then modified with a gradient reversal layer [8]

to create the Adv-MTL baseline. These baselines serve to

demonstrate different ways the auxiliary labeling information

can be integrated into the activity classification pipeline.

Table I shows the primary difference between the baselines

and CoDEm. As we can see, CoDEm is the only framework

that can work with a fully disjoint set of labeled (activity) and

unlabeled (with meta-label) training sets. In addition, CoDEm
is the only framework that does not require an additional

hyper-parameter to balance the primary (activity classification)

and auxiliary (domain classification) losses which makes it

13

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

possible to gain optimal classification results without a time-

consuming hyper-parameter search.

As previously stated, we are mainly interested in exploring

the effect of auxiliary supervision on activity classification in

this work, hence our benchmark selection purposefully does

not include models that use purely unlabeled samples [14]–

[16], [20]. CoDEm’s novel contributions (contrastive domain
and activity embedding and residual attention between them)

are generalizable enough to be compatible with the above-

mentioned frameworks but the study of that behavior is beyond

the scope of this paper.

TABLE I: Feature Matrix Comparison of the Baselines

Model
Single-Task

Learning
Multi-Task
Learning

Adversarial
Multi-Task
Learning

CoDEm

Works with fully disjoint
labeled and unlabeled dataset

N/A No No Yes

Does not need loss-balancing
hyper-parameter tuning

N/A No No Yes

B. Datasets

We showcase the effectiveness of our proposed framework

on three publicly available datasets: (i) PAMAP2 Physical

Activity Monitoring Dataset [10], (ii) OPPORTUNITY Ac-

tivity Recognition Dataset [11], and (iii) UniMiB SHAR [9].

A summary of the datasets is provided in Table II and the

label distributions (full dataset) are shown in Figure 5. Pre-

processing details for the datasets are provided in Section V-C.

(a) SHAR (b) OPPORTUNITY

(c) PAMAP2

Fig. 5: Label distribution of the three benchmark datasets

C. Implementation Details

1) Runtime Environment: We conducted our experiments

on a Linux Server (Ubuntu 18.04) running on Intel Core i7-

6850K CPU and 64GB DDR4 RAM, with an Nvidia 1080Ti

Graphics card (11GB VRAM). Python was used for all

coding tasks except. For the signal processing, filtering, we

used scikit− learn, scipy and numpy libraries. For deep

learning tasks, we used PyTorch.

2) Pre-processing: For each dataset, we first take the data

stream of each trial through a multi-variate iterative data

imputer [21] to deal with missing values. We isolated the

gravity component from the accelerometer signals with a

Butterworth low-pass filter (with a cutoff frequency of 0.3Hz)

and then negated this component from the original signal.

We then re-sampled the data from all the sensors to 30Hz

to have a common sampling rate among all datasets. We

divided the accelerometer data into individual windows of 90
samples, with a sliding window offset of 45; this results in

50% overlap between consecutive windows and a 3 seconds

per window. The choice of a 3-second window allows for a

full cycle of many of the activities (e.g. 2 steps) to be captured

– since the cadence of an average person walking is 90− 130
steps/min [22].

3) Evaluation: During our experiments, we split the sam-

ples into two equal user groups: A and B, each containing half

of the total number of users in a dataset while maintaining an

equal ratio of gender and position between the two groups.

To train the Activity Embedding part of CoDEm, we treat

group A as having the activity labeled training set and group

B as the test set. To learn the Domain Embeddings in CoDEm,

we treat group B as the training set containing the meta-

data information and test on group A. This ensures that the

activity and domain embeddings are trained on disjoints set

of samples, reflecting a more realistic scenario (as mentioned

in Section II). However, the multi-task learning baselines do

not support training with a disjoint set of samples for activity

and meta-data labels. Hence, for those baselines, we use both

activity and meta-data labels from group A.

Within each training subset, we employ an 80/20

train/validation split. To emphasize the statistical significance

of our results, we repeat run our experiment 10 times with

different user/trial combinations in groups A and B and report

the average metrics (Section V-D). We run a paired Wilcoxon

signed-rank test between the 10 runs of each baseline, calcu-

late the p value CoDEm and only report the result if p < 0.01
in Section VI, emphasizing that all the reported findings are

statistically significant.

4) Model Architecture & Hyper-parameters: Each of the E∗
function is represented by a convolutional Encoder followed

by multi-layer perceptron Projector. To make sure CoDEm
can be potentially run efficiently in small wearables, we

developed a lightweight convolutional architecture inspired

by MobileNet [23]. Our Encoder consists of three layers

of Depth-wise Separable Convolution operations, each having

their associated Batch Normalization and 2:1 Max Pooling

14

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Summary of Three Public Datasets Used in Our Experiments

Dataset Subjects Positions Labels
Sampling
Frequency

SHAR
30

(24 Female, 6 Male)
2

(Left & Right Trouser Pocket)
9 (standing up from laying, lying down to standing, standing up from sitting,
running, sitting down, going downstairs, going upstairs, walking, and jumping)

100Hz

PAMAP2
9

(8 Males, 1 Female)
3

(Wrist, Chest, Ankle)
11 (lying down, sitting, standing, walking, running, cycling, ascending stairs,
descending stairs, vacuum cleaning, ironing, rope jumping)

30Hz

OPPORTUNITY 4
5 (BACK, Right Upper Arm (RUA),

Right Left Arm (RLA), Left Upper Arm (LUA),
Left Lower Arm (LLA))

4 (sitting, standing, walking, lying) 50Hz

operation. The final convolution is followed by Global Av-

erage Pooling [24] operation and directly fed to the MLP

Projector. The output of the Projector is L2 normalized

so that the resulting embedding vector resides in a unit

normalized hyper-sphere. Finally, this vector is fed to the

classifier C, a single fully-connected layer with a Softmax

activation. The resultant network contains only 53K trainable

parameters, making it very suitable for small low-powered

wearable devices.

We applied Dropout regularization between each layer and

used Adam optimizer with weight decay, which provided

another form of regularization. We also opted for a learning

rate scheduler that reduced the learning rate by a factor of

10 with a patience factor of 10. The batch sizes were set

to 256 during all the experiments as we noticed that the

large batch size leads to faster convergence for the contrastive

center loss. We optimized our model hyper-parameters with

Randomized Search on the validation sets, the final parameters

used throughout the experiments are listed in Table III. Our

implementation of CoDEm is available at GitHub1.

TABLE III: List of Hyper-parameters

Hyper-Parameters Values

Encoder
Convolution

Layers 3
Filters 128, 128, 128
Kernels 9, 9, 9

MLP
Layers 2
Neurons 64, 64

Classifier Neurons 64
Batch Size 256
Dropout Rate 0.1
Epochs 100
Learning Rate 0.001

D. Evaluation Metrics

1) Silhouette Score: To evaluate the quality of the learned

Activity and Domain Embeddings, we use Mean Silhouette
Coefficient [25] for all the samples in the validation sets. This

score measures, in the embedding space, how each sample

is similar is to its own class (cohesion) compared to other

classes (separation). If the mean distance between embedding

vector z(i) and all other vectors in the same class is a(i), and

the mean distance between z(i) and all other vectors in the

1https://github.com/azmfaridee/codem-smartcomp-2022

next nearest class in the embedding space is b(i), the Mean
Silhouette Coefficient is defined as,

SC =
1

N

N∑

i=1

b(i) − a(i)

max(a(i), b(i))
(14)

The coefficient score ranges between -1 and +1. A high

positive value indicates the embedding vectors lie in close

proximity to other vectors of their own classes and far away

from vectors of other classes. A negative value indicates

that embeddings vectors from different classes occupy close

neighborhoods which is indicative of bad embedding. Values

close to 0 indicate overlapping clusters.

2) F1 Score: Driven by observation of imbalanced class

distribution in the three datasets (Figure 5) and accuracy being

a misleadingly optimistic metric [26] in such a scenario, we

choose to use macro-F1 score as the primary performance

metric. This prevents easily classifiable high support activity

labels from dominating the performance metric.

VI. RESULTS

1) Primary Analysis: In this section, we compare the clas-

sification performance of CoDEm against the baselines with

the three benchmark datasets. In Table IV we show the mean

macro-F1 and Silhouette Score from 10 independent runs.

For the Single Task (activity classification) baseline, we

show the performance with and without the contrastive cen-

ter loss. We note that minimizing intra-class variability and

maximizing inter-class separability through the contrastive

center loss provides 3.24%, 9.98%, 10% improvement in

silhouette score in SHAR, PAMAP2, and OPPORTUNITY

dataset, corresponding to 4.3%, 3.6%, 4.8% improvement in

macro-F1 scores, respectively. This validates our intuition to

use contrastive learning to improve classification performance.

In Multi-task baselines, we evaluate the performance of

both CoOp-MTL and Adv-MTL with two types of auxiliary

supervision: (i) gender and (ii) position information and their

combination (OPPORTUNITY dataset only has position in-

formation). We notice that in all cases, both the silhouette

and macro-F1 scores take a considerable hit compared to STL

results. There is also inconsistency on the level of performance

dip – in CoOp-MTL setup, using the gender and position meta-

data together results in the biggest performance dip, while in

Adv-MTL the degradation is the least. This further hints that

the simplistic assumptions of global co-operative or adversarial

MTL models are not well suited to integrate the auxiliary

15

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

supervision from the meta-data labels and a learnable, local,

per sample relationship should help improve the HAR model’s

performance.

Finally, we analyze the performance of CoDEm on similar

types of auxiliary supervision. As we can clearly see, using the

gender and position information together results in the highest

amount of performance improvement by CoDEm. CoDEm
outperforms all baselines both in terms of silhouette and

macro-F1 score. More specifically, CoDEm achieves 9.63%,

12.07%, 11.94% higher macro-F1 score and 11.22%, 16.66%,

24.65% higher silhouette scores in SHAR, PAMAP2, and

OPPORTUNITY, respectively compared to the STL baseline.

That is an average of 11.21% macro-F1 and 17.51% silhouette

score improvement.

Similarly CoDEm achieves 13.77%, 13.36%, 8.41% macro-

F1 and 21.62%, 13.47%, 13.23% silhouette score improvement

compared to CoOp-MTL and 11.57%, 8.98%, 7.85% macro-

F1 and 16.95%, 10.46%, 23.65% silhouette score improve-

ment compared to Adv-MTL baselines in SHAR, PAMAP2

and OPPORTUNITY dataset. On average CoDEm achieves

9.07%, 9.46% macro-F1 score and 16.10%, 17.02% sil-

houette score improvement over CoOp-MTL and Adv-MTL

baselines. We would like to note that, both the MTL baselines

are trained samples that contain both activity and meta-data

labels whereas CoDEm is trained with samples that contain

either the activity or meta-data label (not both). Hence a

macro-F1 score improvement of ≈9.5% by CoDEm in such a

challenging scenario is very encouraging.

2) Visual Analysis: To understand how samples in the

Domain Aware Activity Embedding vector ẑ
(i)
act(l) are better

distributed than the single task embedding vector z
(i)
act(l) for

higher classification performance, we employ 2D TSNE vi-

sualization on one of the runs on SHAR dataset, the result

of which is shown in Figure 6. As shown in Figure 6a,

there is a high amount of overlap between samples of Ly-
ingDownFS, StandingUpFS, SittingDown and StandingUpFL
activities. This results in poor F1 scores in those classes

(Figure 8a) as they are confused with each other majority of

the time (Figure 7a). CoDEm, on the other hand, can learn a

higher quality embedding space (11% better silhouette score),

which is reflected in Figure 6b, and results in a much higher

(35% more) F1 score for those classes (Figure 8b).

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented CoDEm, a novel framework to

exploit meta-data information (user attributes such as gender,

device position, etc.) to improve HAR classification accuracy

in three benchmark datasets. In contrast to Co-operative or

Adversarial MTL learning methods that learn a shared repre-

sentation from samples containing both meta-data and activity

labels, CoDEm offer hyper-parameter free learning of separate

embeddings from a disjoint set of samples containing meta-

data and activity labels. Combining contrastive learning with

a novel residual attention mechanism to learn highly compact

representation with an average 17.5% improved silhouette

(a) Single Task, SC = 0.54

(b) CoDEm , SC = 0.65

Fig. 6: TSNE visualization of Embedding Vector

score, CoDEm offer an average 9.5−11% improved macro-F1

score over the baselines in the three benchmark datasets.

Although we envisioned CoDEm as being able to handle

device or other types of heterogeneity in addition to per-

son/gender and positions, in this work we did not explore

device heterogeneity due to the lack of device labels in the

three benchmark datasets. In the future, we would like to

conduct extensive experiments to include a diverse set of

heterogeneities. Despite being designed to handle multiple-

positional heterogeneity, the input to CoDEm actually consists

of a single positional data at a time which makes CoDEm,

at its current form unsuitable input streams consisting of

multiple positional data [27], [28]. Our future work would

investigate means to mitigate this limitation. We would also

like to investigate whether the integration of recent contrastive-

learning architectures (e.g. SupContrast [12], SimCLR [29])

16

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: F1 and Mean Silhouette Coefficient (in parentheses) in SHAR, PAMAP2, and OPPORTUNITY dataset. ‘CC’

denotes Contrastive Center loss.

Model Single Task Multi-Task CoDEm
Relationship N/A Co-operative Adversarial Learnable
Loss Softmax Softmax+CC Softmax Softmax Softmax Softmax Softmax Softmax Softmax+CC Softmax+CC Softmax+CC
Extra Supervision N/A N/A Gender Position Gender+Position Gender Position Gender+Position Gender Position Gender+Position

SHAR
0.7493

(0.5404)
0.7925

(0.5729)
0.7301

(0.4921)
0.7284

(0.4683)
0.7079

(0.4364)
0.7271

(0.4701)
0.7289

(0.4747)
0.7299

(0.4831)
0.8312

(0.6122)
0.8305

(0.6026)
0.8456

(0.6526)

PAMAP2
0.6567

(0.3108)
0.6928

(0.4106)
0.6407

(0.3521)
0.6322

(0.3330)
0.6438

(0.3427)
0.6629

(0.3731)
0.6412

(0.3395)
0.6876

(0.3728)
0.7282

(0.4191)
0.7315

(0.4318)
0.7774

(0.4774)

OPPORTUNITY
0.7339

(0.4327)
0.7821

(0.5327)
N/A

0.7692
(0.4869)

N/A N/A
0.7748

(0.4427)
N/A N/A

0.8533
(0.6792) N/A

(a) Single Task

(b) CoDEm

Fig. 7: Confusion Matrix

would provide further improvements CoDEm’s performance.

As the Domain Embedding module can be trained to learn

the embedding of sensitive personal information (e.g., personal

identity, gender), a valid question on the practical use case of

CoDEm is whether CoDEm poses any serious privacy risk.

As we can see, CoDEm uses the Domain Embedding infor-

mation during its intermediate steps (Equation 12) and does

not expose such information in its final output of activity

(a) Single Task

(b) CoDEm

Fig. 8: F1 values per activity class

labels. Nevertheless, we would like to perform an in-depth

investigation along this avenue in our future work.

ACKNOWLEDGMENT

This research is supported by NSF CAREER grant

1750936, U.S. Army grant W911NF2120076 and the National

Research Foundation, Singapore under its NRF Investigator-

ship grant (NRF− NRFI05− 2019− 0007).

17

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Ware, C. Yue, R. Morillo, J. Lu, C. Shang, J. Bi, J. Kamath,
A. Russell, A. Bamis, and B. Wang, “Predicting depressive symptoms
using smartphone data,” Smart Health, vol. 15, p. 100093, 2020.

[2] S. Bobovych, F. Sayeed, N. Banerjee, R. Robucci, and R. P. Allen,
“Resteaze: low-power accurate sleep monitoring using a wearable multi-
sensor ankle band,” Smart Health, vol. 16, p. 100113, 2020.

[3] S. Milanko and S. Jain, “Liftright: quantifying strength training per-
formance using a wearable sensor,” Smart Health, vol. 16, p. 100115,
2020.

[4] E. Rastegari and H. Ali, “A bag-of-words feature engineering approach
for assessing health conditions using accelerometer data,” Smart Health,
vol. 16, p. 100116, 2020.

[5] M. Boukhechba, A. R. Daros, K. Fua, P. I. Chow, B. A. Teachman, and
L. E. Barnes, “Demonicsalmon: Monitoring mental health and social
interactions of college students using smartphones,” Smart Health, vol. 9,
pp. 192–203, 2018.

[6] S. Liu, Y. Liang, and A. Gitter, “Loss-balanced task weighting to reduce
negative transfer in multi-task learning,” in AAAI, vol. 33, no. 01, 2019,
pp. 9977–9978.

[7] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in CVPR,
2018, pp. 7482–7491.

[8] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” arXiv:1409.7495, 2014.

[9] D. Micucci, M. Mobilio, and P. Napoletano, “Unimib shar: A dataset for
human activity recognition using acceleration data from smartphones,”
Applied Sciences, vol. 7, no. 10, p. 1101, 2017.

[10] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in ISWC. IEEE, 2012, pp. 108–109.

[11] D. Roggen and A. Calatroni, “Collecting complex activity datasets in
highly rich networked sensor environments,” in INSS. IEEE, 2010, pp.
233–240.

[12] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” NeurIPS, 2020.

[13] C. Qi and F. Su, “Contrastive-center loss for deep neural networks,” in
ICIP. IEEE, 2017, pp. 2851–2855.

[14] A. Faridee, M. Khan, N. Pathak, and N. Roy, “Augtoact: scaling complex
human activity recognition with few labels,” 2019, pp. 162–171.

[15] A. Z. M. Faridee, A. Chakma, A. Misra, and N. Roy, “Strangan:
Adversarially-learnt spatial transformer for scalable human activity
recognition,” Smart Health, vol. 23, p. 100226, 2022.

[16] A. Abedin, M. Ehsanpour, Q. Shi, H. Rezatofighi, and D. C. Ranasinghe,
“Attend and discriminate: Beyond the state-of-the-art for human activity
recognition using wearable sensors,” ACM IMWUT, vol. 5, no. 1, pp.
1–22, 2021.

[17] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning
approach for deep face recognition,” in ECCV. Springer, 2016, pp.
499–515.

[18] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in CVPR, vol. 2. IEEE, 2006, pp.
1735–1742.

[19] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” arXiv:1508.04025, 2015.

[20] C. I. Tang, I. Perez-Pozuelo, D. Spathis, S. Brage, N. Wareham, and
C. Mascolo, “Selfhar: Improving human activity recognition through
self-training with unlabeled data,” arXiv:2102.06073, 2021.

[21] S. Van Buuren and C. G. Oudshoorn, “Multivariate imputation by
chained equations,” 2000.

[22] C. BenAbdelkader, R. Cutler, and L. Davis, “Stride and cadence as a
biometric in automatic person identification and verification,” in IEEE
Face & Gesture Recognition. IEEE, 2002, pp. 372–377.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” arXiv:1704.04861, 2017.

[24] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv:1312.4400,
2013.

[25] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[26] Y. Chen, J. Wang, M. Huang, and H. Yu, “Cross-position activity
recognition with stratified transfer learning,” PMC, vol. 57, pp. 1–13,
2019.

[27] A. Z. M. Faridee, S. R. Ramamurthy, H. Hossain, and N. Roy, “Hap-
pyfeet: Recognizing and assessing dance on the floor,” in HotMobile,
vol. 2018-Febru. ACM, 2018, pp. 49–54.

[28] A. Z. Md Faridee, S. R. Ramamurthy, and N. Roy, “Happyfeet: Chal-
lenges in building an automated dance recognition and assessment tool,”
GetMobile, vol. 22, no. 3, pp. 10–16, 2019.

[29] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML. PMLR,
2020, pp. 1597–1607.

18

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:05:03 UTC from IEEE Xplore. Restrictions apply.

