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Abstract—The scarcity of labeled data has traditionally been
the primary hindrance in building scalable supervised deep learn-
ing models that can retain adequate performance in the presence
of various heterogeneities in sample distributions. Domain adap-
tation tries to address this issue by adapting features learned from
a smaller set of labeled samples to that of the incoming unlabeled
samples. The traditional domain adaptation approaches normally
consider only a single source of labeled samples, but in real world
use cases, labeled samples can originate from multiple-sources –
providing motivation for multi-source domain adaptation (MSDA).
Several MSDA approaches have been investigated for wearable
sensor-based human activity recognition (HAR) in recent times,
but their performance improvement compared to single source
counterpart remained marginal. To remedy this performance
gap that, we explore multiple avenues to align the conditional
distributions in addition to the usual alignment of marginal
ones. In our investigation, we extend an existing multi-source
domain adaptation approach under semi-supervised settings. We
assume the availability of partially labeled target domain data and
further explore the pseudo labeling usage with a goal to achieve
a performance similar to the former. In our experiments on three
publicly available datasets, we find that a limited labeled target
domain data and pseudo label data boost the performance over
the unsupervised approach by 10-35% and 2-6%, respectively,
in various domain adaptation scenarios.

Index Terms—Domain Adaptation, Multi-source, Multi-
domain, Activity Recognition, Wearables

I. INTRODUCTION

The advancement of deep learning methodologies has en-

abled significant progress in various wearable sensor-based

activity recognition applications in a number of areas such

as health care, assisted daily living, sports analytics, smart

buildings, and smart cities. Compared to traditional machine

learning models, deep learning approaches are especially good

at modeling progressively complex and non-linear relation-

ships from raw unstructured data, providing superior perfor-

mance. This comes at the prohibitive cost of time-consuming

collection, pre-processing, and annotation of a large swathe

of labeled data to train the supervised deep learning models.

Additionally, variation in on-body placement, user behavior,

and overall environmental changes introduce divergence in the

raw data distributions among the data sources. The traditional

machine learning algorithms assume close similarity between

the training and testing data distributions, and these models

fail to generalize when faced with such heterogeneities. To

handle such cases, specialized transfer learning algorithms (i.e.

domain adaptation) has been proposed which tries to minimize

the divergence between the said two distributions (often termed

source for the training set and target for the testing set) without

requiring any extra labeled samples.

Most of these domain adaptation approaches only consider

a single source (i.e. single data distribution), but in real

life, the samples often originate from multiple sources; hence

often after real-world deployment, these single source domain

adaptation (SSDA) approaches provide lackluster performance

benefit. When multiple source domains are present, state-of-

the-art SSDA approaches either choose only a single-source

from multiple ones or totally ignore the multi-source infor-

mation by aggregating samples from all sources prior to the

adaptation process. With a more generalized assumption that

different subsets of target domain samples are related to each

of the source domains in their unique way, a limited number

of multi-source domain adaptation (MSDA) approaches have

tried to address such perceived limitation of SSDA in wearable

sensor-based HAR literature. However, these approaches suffer

from a few technical and practical limitations such as (i)

only attempting to align the marginal distribution between

the source and target domains but completely ignoring the

conditional distribution, (ii) limited handling of heterogeneity

types (e.g., considering only cross-person heterogeneity while

ignoring other heterogeneous scenarios) and (iii) insignificant

classification performances.

To overcome the mentioned limitations in MSDA, we in-

vestigate and extend an unsupervised MSDA approach under

semi-supervised settings with an assumption that labels can

be approximated (from derived pseudo labels or manual an-

notations) for a small subset of samples residing in the target

domain. Such limited labeled target data would allow aligning

both the marginal and conditional data distributions. Apart

from the limited target data, we also explore one pseudo label

generation mechanism to investigate its impact on MSDA. In

our investigation, we aim to discover the following aspects in

MSDA:

1) evaluate the performance when both marginal and con-

ditional distribution are aligned in the domain adaptation

process

2) measure the amount of labeled target domain data in order

to achieve substantial classification performance

3) whether pseudo labeled target data can replace the limited

labeled target domain data

Key Contributions: In our study, we make the following

contributions -
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• Semi-supervised multi-source domain adaptation: We ex-

tend an adversarial learning-based MSDA framework for a

semi-supervised learning set-up (referred to as SS-MSADA

henceforth) in which we assume the availability of a small

percentage of labeled target data and exploit it in the

network training. In determining the amount of the labeled

data, we take motivation from the literature [1] and assume

the availability of 10% labeled target domain data where the

label space and the feature space are homogeneous across

all the domains.

• Implication of pseudo-label target data in domain adapta-
tion: We explore one particular approach for pseudo label

generation as an additional part of the semi-supervised learn-

ing mechanism. In our investigation, we find that generating

pseudo labels at the end of the adaptation process increases

the performance by 2-3%. In addition, we also discover

different implications on pseudo label generating timing and

its impact on the network training.

• Extensive experiments on three publicly available datasets:

We evaluate our proposed framework with three publicly

available datasets and report our experimental findings on

two domain adaptation settings (a scenario that generates

data distribution heterogeneity between two data sources) -

cross-person and cross-position heterogeneity.

The paper is organized as follows - we briefly discuss on the

MSDA and various semi-supervised mechanisms in wearable

activity recognition in section II. We describe our proposed

framework in section III. In section IV, we report our experi-

mental findings and analysis. Finally, section V concludes our

investigation.

II. RELATED WORKS

A. Wearable Multi-source Domain Adaptation

Several approaches have been proposed to tackle data

distribution heterogeneity between a single source and target

domain in wearable sensor-based activity recognition [1]–[4].

However, limited attempts have been made to incorporate

multiple source domains in the adaptation process. [2] con-

siders multiple source domains, and instead of simultaneous

processing, explicitly selects the most relevant domain from

the multiple source domains based on the cosine similarity

with the target domain and uses the selected domain for the

domain adaptation process. Whereas SenseHAR [5] proposes

a data-fusion-based approach to mitigate the heterogeneous

data distribution and assign labels to the unlabeled data.

Authors of [5] combine multiple sensor data so that each

sensor data can complement the other in achieving the in-

tended tasks. [6] proposes an adversarial-based approach to

tackle multi-source domain adaptation where multiple source

domains are processed concurrently and selects the relevant

source domain with the target domain using the noble perplex-

ity scoring mechanism. [7] proposes another adversarial-based

approach that employs a domain discriminator to guide the

domain-invariant feature learning process, and the proposed

approach tackles cross-person heterogeneity in ADL activities

whereas [6] considers cross-person and cross-position hetero-

geneity.

B. Pseudo Labeling in Unsupervised Feature Representation
Learning

The label assignment process of the unlabeled data samples

is known as the pseudo labeling, and the concept of pseudo
label is categorized as a semi-supervised learning mecha-

nism [8]. [8] broadly discusses various semi-supervised ap-

proaches for attaining the pseudo labels. Nonetheless, pseudo

labeling is also exploited in the unsupervised learning ap-

proach [9]. In unsupervised learning, target domain data do

not have the label information, and therefore, conditional

distribution alignment is ignored. Pseudo labeling attempts to

fill that gap by assigning label information to the target domain

data samples. In wearable activity recognition, there have been

a few approaches proposed that leverage pseudo labels during

the network training process. [9] applies K-means clustering

algorithm over the extracted feature to generate pseudo labels.

In this approach, the clustering convergence requires at least

400 epochs. [10] proposes a semi-supervised approach where

a small amount of labeled dataset is used to find the label

information for the unlabeled dataset. The label information

of the unlabeled dataset is predicted based on applying a high

confidence sample filtering technique. In literature, there has

been very limited exploration made of pseudo labels in domain

adaptation problem.

C. Semi-supervised Multi-source Domain Adaptation

[1] provides an analysis of the labeled target domain data

usage in the adaptation process. Whereas [11] proposes a non-

deep learning-based approach and explores a multi-classifier

agreement and threshold-based pseudo label generation mech-

anism, which helps in conditional distribution alignment. Both

these approaches consider a single source and target domain

in domain adaptation. [7], authors extended the proposed

adversarial approach using weak supervision in the form of the

prior class data distribution. This prior class data distribution is

exploited in minimizing the KL-Divergence with the network

estimated class distribution.

The key difference between our approach to the discussed

literature work is that we explore the impact of the small

percentage of the labeled target data in multi-source domain

adaptation, which has not been studied in the literature work

discussed in II-A. Besides, we investigate a pseudo label

generation approach and its impacts on the network training.

Such investigation allows us to understand whether a similar

performance of using partially labeled target data, can be

achieved by leveraging pseudo labeled target data and at the

same time such investigation also engenders the hidden aspects

of pseudo label usage in domain adaptation. In a nutshell, our

work studies an unsupervised multi-source domain adaptation

under the guidance of two semi-supervised settings - partially

labeled and pseudo labeled target data. In the next section, we

discuss the explored framework and the training mechanism.
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III. METHODOLOGY

In this section, we elaborate on the semi-supervised multi-

source domain adaptation framework, SS-MSADA, which is

an extension of an unsupervised domain adaptation approach,

MSADA [6]. The framework is depicted in Figure 1. We

describe the problem formulation, architecture details, and the

network training mechanism in the following.

A. Problem Formulation

In semi-supervised multi source domain adaptation problem,

we assume that there are N source domains with labels and

one target domain with limited labeling information. The

source domains samples are drawn from N -different data dis-

tributions Psj (x, y)
N

j=1
. These data distributions generate the

labeled source domain samples, (Xsj , Ysj )
N

j=1
where Xsj =

{xsji
}|Xsj

|
i=1 belongs to the source, sj and Ysj = {ysji}

|Xsj
|

i=1

is the ground truth for the corresponding samples from the

source sj . We consider Pt(x, y) as the probability distribution

that generates the target domain samples, Xt = {xti}|Xt|
i=1 with

the label space Yt. We assume Xt is composed of labeled,

Xlt and unlabeled, Xut target domain samples such that

Xt = Xlt +Xut. We consider that both the source and target

domains have homogeneous label spaces and motivated by [1],

Xlt consists of 10% of the target domain samples which is

stratified by the activity labels.

B. Architecture

The adapted MSADA [6] architecture consists of four

components - feature extractor, domain discriminator, label

classifier and label decider.

Feature Extractor: Feature extractor module consists of

three two-dimensional convolution layers, each is followed

by a max-pooling layer. The convolutional layers capture

the generalizable features, and max-pooling layers help to

down-sample the input features into lower dimensions to

provide scale-invariant feature representations across multiple

datasets. In the proposed framework, the same feature extractor

is shared between the Domain Discriminators and Label
Classifiers as shown in Figure 1 with an aim to capture

the domain invariant features. Through learning the domain

invariant feature across multiple domains, the marginal data

distribution is minimized, and leveraging the partially labeled

target data, conditional distribution is aligned.

Domain Discriminator: Domain discriminator module

consists of the N -source domain-specific discriminators,

{Dsj}Nj=1 each tries to predict the origin of the incoming

activation from the respective source or target feature dis-

tributions. In the framework, each dedicated source-specific

domain discriminator Dsj serves as a regular adversarial unit

of an adversarial learning mechanism.

In the adversarial learning mechanism, the generator aims

to generate domain-invariant features of the source and target

domain samples so that the discriminator can not reach its

goal of predicting the origin of the incoming features. The

overall mechanism resembles a min-max game, and over the

process, both generator and discriminator become better at

achieving the corresponding goal. In addition to extracting the

domain invariant features in the proposed approach, the feature

extractor serves the role of a feature generator for the domain

discriminators during the adversarial learning phase.

Each of the source-specific discriminators consists of two

layers of a fully connected layer with SELU in the first layer

and a sigmoid activation in the final layer. Each dedicated

source-specific domain discriminator process the incoming

features from the target domain, F (xt) and a specific source

domain, F (xsj ) samples. Besides, providing feedback through

an adversarial loss to the feature extractor of its domain-

invariant feature generation, each of the domain discriminators

serves an additional role of providing a perplexity score for

the target domain data to the classifiers. The perplexity score
acts as a measure of the closeness of the target domain

with a specific source domain. Perplexity score serves as a

classification weight of the corresponding dedicated source

domain classifier. The perplexity score is calculated using the

following formula:

Psj (xt;F,Dsj ) = −log(1−Dsj (F (xt))) (1)

Label Classifier: Label classifier consists of N source

domain-specific multi-class classifiers {Csj}Nj=1. Classifier

design is similar to the domain discriminator except for the

softmax activation in the final layer, which is configured

according to the label space of the corresponding source

domain j. Each classifier Csj , along with the shared feature

extractor, is pre-trained with labeled data from corresponding

j source domains. Further, using the labeled target data, each

classifier Csj is fine-tuned during the adaptation process.

Label Decider: The label decider determines the label for

the unlabeled target data. It receives the perplexity scores

provided by the source-domain specific discriminators and

the classification results, Csj (F (xt)) provided by the source-

domain specific label classifiers. Then, the label decider re-

weights the classification scores using the perplexity scores

and performs a weighted classification to assign a label to the

target data.

C. Model Learning

SS-MSADA learns the model leveraging the labeled and

unlabeled datasets from both source and target domains,

respectively. Feature extractor and the source-domain specific

classifiers are pre-trained using the labeled source-domain

data. We adapt the pre-trained feature extractor by employing

the adversarial objective from the domain discriminators to the

feature extractor to align the domain invariant features.

The adversarial objective can be constructed as -

min
F

max
D

V (F,D; C̄) = Ladv(F,D) + Lcls(F, C̄) (2)

Ladv(F,D) =
1

N

N∑

j

Ex∼Xsj
[logDsj (F (x))]

+Ext∼Xt [log(1−Dsj (F (xt)))]

(3)
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Source Domain - 1 (Labeled Samples)

Target Domain 
(Labeled and Unlabeled Samples)

Source - 2 
Domain 
Discriminator

Pre-trained
Source-2 
Classi��er

Label
 Decider

Source Domain - 2 (Labeled Samples)

Feature Extractor

Source - 1 
Domain 
Discriminator

Pre-trained
Source-1 
Classi��er

Perplexity 
Score

Perplexity 
Score

Target Pseudo-label 

Partially Labeled Target Data

Fig. 1: Overview of our proposed SS-MSADA framework that employs pre-trained feature extractor and classifiers. The framework employs
a dedicated classifier and domain discriminator for each source domain, where the domain discriminators align the marginal probability
distributions using the unlabeled data, and the classifiers leverage the labeled data to help in the conditional distribution alignment. Instead
of using labeled target domain data, the SS-MSADA can also be extended to generate pseudo labels on the target domain data to help the
conditional distribution alignment.

where the first term of the equation (2) defines the ad-

versarial mechanism [12] and the second term denotes the

multi-class classification loss. Due to the adverse impact of

multiple data distributions on the feature extractor learning

process as reported in [12], the optimization works well for D
but not F . Therefore, to enable stable learning for the feature

extractor, we replace the adversarial loss in equation (2) with

the confusion loss as follows -

Ladv(F,D) =
1

N

N∑

j

Ex∼Xsj
Lcf (x;F,Dsj )

+Ext∼Xt Lcf (xt;F,Dsj )

(4)

Here the first and second term determines the domain

confusion loss for the source samples and target samples,

respectively. Domain confusion loss for both source and target

domain samples is calculated using the equation (5).

Lcf (sample;F,Dsj ) =
1

2
logDsj (F (sample))

+
1

2
log(1−Dsj(F (sample)))

(5)

In a summary, we train the domain discriminator, D using

equation (3) whereas the feature extractor is trained using

equation (2) with the adversarial loss is replaced with a

confusion loss calculated through equation (4) for a stable

learning process. Each classifier is fine-tuned using the par-

tially labeled target data following the adaptation process in

each training epochs. Algorithm ?? summarizes the overall SS-
MSADA’s approach. In the following, we discuss our experi-

mental results, and we include the dataset, experimental set-up,

implementation details in appendix A, B, C subsections.

Algorithm 1: Learning Algorithm for SS-MSADA

Input: N source labeled datasets {Xsj , Ysj}Nj=1;

unlabeled target dataset Xut; partially labeled

target dataset Xlt; pre-trained feature extractor

F and label classifier C; domain discriminator

D; adversarial iteration threshold β
Output: well-trained feature extractor F ∗, domain

discriminator D∗, label classifier C∗.

1 Pre-train C and F
2 while not converged do

3 for 1:β do
4 Sample mini-batch from {Xsj}Nj=1 and Xt;

5 Update D by Eq. (4);

6 Update F by Eq. (2);

7 Update C by categorical cross-entropy loss

using labeled Xlt;

8 end for

9 end while

10 return F ∗ = F ;D∗ = D;C∗ = C.

IV. RESULTS

In this section, we compare the performance of SS-MSADA
with the baseline approaches on three publicly available

datasets under two heterogeneous data distribution settings

discussed earlier.

A. Performance Evaluation

Cross-person Heterogeneity: In cross-person domain adap-

tation on three public datasets, we consider each body position

individually within each dataset. Under each position, different
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users’ data operates as the domain, and we perform domain

adaptation within different permutations of three persons from

all the available persons in a dataset. In the considered persons,

two person’s body positional data is used as the source

domains and the third person’s data as the target domain. We

ignore such permutations where the two source domains are

interchanged in the permutations. For example, consider two

user arrangements (a, b, c) and (b, a, c) where User-a and

User-b are considered as the source domains and User-c as the

target domain. We ignore the settings (b, a, c) in this scenario.

We report the average of all the experiments for a particular

body position and repeat the procedure for all other positions.

Table I, Table II and Table III reports the cross-person

heterogeneity for the OPPORTUNITY, PAMAP2 and DSADS

dataset respectively. In the case of the OPPORTUNITY

dataset, RevGrad [13] outperforms the SS-MSADA and MADA

by a large margin, whereas SS-MSADA performs superior to

the other two in the case of PAMAP2 and DSADS dataset. One

key observation is that both RevGrad [13] and MADA [14]

utilize a single classifier, whereas SS-MSADA uses a dedicated

classifier for each source domain which provides a big advan-

tage in terms of achieving high performance, and the classifiers

are consist of only two fully connected layers which do not

poses a resource burden. For all three datasets, MADA [14]

performs lower than the other approaches.

TABLE I: Comparison of Cross Person Domain Adaptation in
OPPORTUNITY Dataset represented by F1 score

Target
Position

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

BACK 82.07 75.73 78.01 79.22

RUA 91.41 82.71 85.77 85.92

RLA 88.73 75.98 78.16 78.47

LUA 90.81 81.77 89.16 87.49

LLA 88.07 76.6 82.85 77.39

Average 88.21 78.55 82.79 81.69

TABLE II: Comparison of Cross Person Domain Adaptation in
PAMAP2 Dataset represented by F1 score

Target
Position

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

DA 53.3 49.88 52.75 77.36

Torso 62.14 57.01 53.95 83.53

DL 56.95 48.49 62.04 80.16

Average 57.46 51.79 56.24 80.35

TABLE III: Comparison of Cross Person Domain Adaptation in
DSADS Dataset represented by F1 score

Target
Position

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

TORSO 80.46 52.47 59.09 87.22

RA 80.33 63.11 65.93 92.99

LA 81.45 66.22 71.18 92.58

RL 87 58.68 75.33 91.15

LL 85.82 53.99 70.6 91.05

Average 83.01 58.89 68.43 91.1

Cross-position Heterogeneity: Similar to IV-A, we report

cross-position heterogeneity for three datasets. Under cross-

position domain adaptation, we consider each person indi-

vidually within each dataset. Different body positional data

of each person operates as the domain, and we perform

domain adaptation within different permutations of three-body

positions from all the available positions in a dataset. Among

the considered positions, two body positional data is used as

the source domains and the third positional data as the target

domain. We ignore such permutations where the two source

domains are interchanged in the permutations. For example,

consider two different position arrangements (A, B, C) and

(B, A, C) where Position-A and Position-B are considered as

the source domains and Position-C as the target domain. We

ignore the settings (B, A, C) in this scenario. We report the

average of all the experiments for each person and repeat the

procedure for all other persons.

Table IV, Table V and Table VI presents the cross-

position domain adaptation performance for OPPORTUNITY,

PAMAP2 and DSADS dataset respectively. Under this setting,

SS-MSADA performs better than the two baseline approaches.

One observation is that similar to cross-person heterogeneity,

the performance of SS-MSADA on DSADS dataset is close to

90%, but below 75% for both OPPORTUNITY and PAMAP

datasets. One significant difference with the DSADS dataset

against the other two datasets is that DSADS contains daily

activities and sports activities, whereas OPPORTUNITY and

PAMAP2 datasets contain only daily livings activities. We

assume that the variation in the activities played a significant

role in this performance boost.

Insight: Apart from the activity types, we note the scalabil-

ity aspect of general domain adaptation approaches that deploy

a single classifier when the cross-position heterogeneity is

considered. When dealing with multiple source domains, either

multiple source domain data needs to merge as we did in this

paper or select the most relevant one with the target domain

before the domain adaptation. In the former case, domain

adaptation approaches that deploy a single classifier such as

MADA [14], RevGrad [13] performs competitively in cross-

person heterogeneity as presented in Table I and Table III.

But the performance severely deteriorates when multiple body

positional data is combined under the cross-position domain

adaptation (refer Table V and Table VI). Such observation

highlights the advantage of using dedicated classifiers.

TABLE IV: Comparison of Cross Body Position Domain Adaptation
in OPPORTUNITY Dataset represented by F1 score

Target
User

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

User-1 64.97 54.17 60.76 77.59

User-2 81.39 67.83 64.79 77.95

User-3 67.33 56.34 60.27 73.23

User-4 74.52 61.14 63.68 70.25

Average 72.1 59.87 62.37 74.75

B. Pseudo Label Investigation

Compared to the [6], a small percentage of labeled target

data during the adaptation significantly boosts the perfor-
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TABLE V: Comparison of Cross Body Position Domain Adaptation
in PAMAP2 Dataset represented by F1 score

Target
User

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

User-1 32.99 21.35 19.8 74.48

User-2 38.37 19.88 11.23 73.7

User-5 29.89 18.59 14.47 69.07

User-8 22.14 19.79 10.94 73.61

Average 30.84 19.90 14.14 72.72

TABLE VI: Comparison of Cross Body Position Domain Adaptation
in DSADS Dataset represented by F1 score

Target
User

RevGrad [13] MADA [14] MSADA [6] SS-MSADA

User-1 71.67 36.67 49.74 84.48

User-2 65.63 34.61 54.23 86.12

User-3 59.69 35.5 51.69 83.15

User-4 64.09 37.14 49.74 92.58

User-5 59.9 39.56 52.53 96.35

User-6 65.91 30.26 43.62 88.98

User-7 74.4 36.28 52.53 85.75

User-8 72.16 42.76 52.11 91.22

Average 66.68 36.6 50.77 88.32

mance, and to some extent, such performance serves as a

baseline. Observing such performance boost due to the small

percentage of labeled data, we attempt to generate labels

(pseudo label) for the target data using SS-MSADA framework

and use the pseudo labeled data for the network fine-tuning.

We acknowledge that there exist multiple approaches for gen-

erating pseudo labels. In this paper, we investigate the network

prediction for the labels of the unlabeled target domain as our

pseudo label generation process. We discover several aspects

of pseudo label generation and its usage in our investigation.

1) Pseudo label generation during domain adaptation pro-
cess

We notice that the general pseudo label generation ap-

proaches will provide incorrect pseudo labels because of mul-

tiple heterogeneous data distributions. Therefore, one intuitive

solution would be to generate at a certain stage of the domain

adaptation process. Following our intuition, we attempt to

generate the pseudo label at different training epochs and fine-

tune the classifiers using the pseudo labeled target data. We

consider two different percentages (10% and 100%) of the

calculated loss during the backpropagation, but we observe

a similar performance in both cases. Figure 2 and Figure 3

presents the performance graph of pseudo label data usage at

different training epochs on OPPORTUNITY on cross-person

and cross-position heterogeneity respectively. Similar analysis

is presented for PAMAP2 dataset in Figure 4 and Figure 5.

2) Pseudo label generation after the unsupervised domain
adaptation

The stagnant performance in our previous experiment could

have several potential reasons. One potential reason could be

that the network is not robust even to a small percentage of

the incorrect pseudo label data, which hinders the performance

Fig. 2: Performance of cross-person transfer for OPPORTUNITY
dataset with leveraging pseudo labeled target data at different training
epochs and comparing with SS-MSADA.

Fig. 3: Performance of cross-position transfer for OPPORTUNITY
dataset with leveraging pseudo labeled target data at different training
epochs and comparing with SS-MSADA.

Fig. 4: Performance of cross-person transfer for PAMAP2 dataset
with leveraging pseudo labeled target data at different training epochs
and comparing with SS-MSADA.

Fig. 5: Performance of cross-position transfer for PAMAP2 dataset
with leveraging pseudo labeled target data at different training epochs
and comparing with SS-MSADA.

improvement. Following such intuition, we attempt to generate

the pseudo label once the unsupervised domain adaptation

is completed and further train the network for 30 epochs.

We generate pseudo labels for the target domain validation

split and train the network using 10% of the calculated loss

using the pseudo labeled data. In our experiments on the

OPPORTUNITY and DSADS dataset, we observe up to 10%

and 7% increase respectively compared to the unsupervised

network (MSADA) performance in all the cross-person hetero-
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geneity domain adaptation experiments. Figure 6 and Figure 7

represents the pseudo label generation and its usage under

cross-person heterogeneity for OPPORTUNITY and DSADS

dataset respectively. The y-axis represents the performance

difference between the MSADA and pseudo-label usage. In

some cases, the performance does not change and sometimes

drops by 4-6%, but overall the performance improves by 2-3%.

Fig. 6: Performance difference in cross-person transfer in OP-
PORTUNITY dataset between MSADA [6] and after using the
MSADA [6]-provided pseudo labels. 1 and 0 in the legend indicate
performance improvement and degradation after using pseudo labels
respectively.

Fig. 7: Performance difference in cross-person transfer in DSADS
dataset between MSADA [6] and after using the MSADA [6]-
provided pseudo labels. 1 and 0 in the legend indicate performance
improvement and degradation after using pseudo labels respectively.

C. Combined Impact of Partially Labeled Data and Pseudo
Labeling

In our previous investigation, we find that pseudo label

data increases the performance over the unsupervised MSADA

approach. Here, we investigate the combined impact of using

partially labeled target domain data and pseudo label data. Fig-

ure 8–13 presents the cross-person and cross-position het-

erogeneity performance comparison among the unsupervised

MSADA, semi-supervised SS-MSADA and semi-supervised

SS-MSADA with pseudo label data for OPPORTUNITY,

PAMAP2 and DSADS dataset. When the pseudo label data

is leveraged along with the partially labeled target data, we

observe a 1-4% increase in cross-person heterogeneity, and

for cross-position heterogeneity, the performance improves by

4-6%.

We discuss several additional aspects on pseudo label

quantity-quantity trade off, our preliminary experience on

different attempts to generate pseudo label data and future

guideline on pseudo label data in D subsection under appendix.

Fig. 8: Performance comparison of cross-person transfer for OPPOR-
TUNITY dataset among MSADA [6], SS-MSADA and SS-MSADA
with the pseudo label usage.

Fig. 9: Performance comparison of cross-position transfer for OP-
PORTUNITY dataset among MSADA [6], SS-MSADA and SS-
MSADA with the pseudo label usage.

Fig. 10: Performance comparison of cross-person transfer for
PAMAP2 dataset among MSADA [6], SS-MSADA and SS-MSADA
with the pseudo label usage.

Fig. 11: Performance comparison of cross-position transfer for
PAMAP2 dataset among MSADA [6], SS-MSADA and SS-MSADA
with the pseudo label usage.

V. CONCLUSION

In this paper, we investigate the multi-source domain adap-

tation under semi-supervised settings. Our investigation ex-

plores two approaches - using 10% labeled target data and

pseudo labeled data. We find that using only 10% labeled

target domain data provides a substantial performance for

cross-person and cross-position heterogeneity. On the other

hand, generating and leveraging pseudo labeled data provides
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Fig. 12: Performance comparison of cross-person transfer for DSADS
dataset among MSADA [6], SS-MSADA and SS-MSADA with the
pseudo label usage.

Fig. 13: Performance comparison of cross-position transfer for
DSADS dataset with among MSADA [6], SS-MSADA and SS-MSADA
with the pseudo label usage.

a marginal performance gain compared to the unsupervised

domain adaptation counterpart. We further report some key

insight aspects of pseudo labeled data usage in multi-source

domain adaptation scenarios, which requires much more in-

vestigation in the future.
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APPENDIX

We discuss various experimental aspects such as the dataset

information, implementation details, and experimental settings

in this section. In addition, we also briefly discuss several

aspects and guideline for pseudo label usage in domain adap-

tation process.

A. Datasets

We validate SS-MSADA performance with OPPORTUNITY

Activity Recognition Dataset [15], Daily and Sports Activities

Data Set (DSADS) [16] and PAMAP2 Physical Activity Mon-

itoring Datase [17]. OPPORTUNITY and PAMAP2 datasets

contain daily living activities, whereas the DSADS contains

a combination of sports activities and daily living activities.

DSADS induced a substantial inter-user variation as the partic-

ipant naturally performed the activities. We consider 4, 10, and

11 activities from the OPPORTUNITY, DSADS, and PAMAP2

datasets, respectively. The detailed dataset description is pro-

vided in Table VII and the considered activities are listed in

Table VIII.
TABLE VII: Datasets Overview

Factor Opportunity PAMAP2 DSADS

Sensors Acc, Gyr, Mag Acc, Gyr, Mag Acc, Gyr, Mag

Positions

BACK, RUA,
RLA, LUA,
LLA,
2 sensors on
shoes

DA,
Chest,
DL

TORSO,
LA, RA,
LL, RL

Sampling
Frequency
(Hz)

32 100 25

Dataset
Size

2551 3850505 9120

User 4 9 8

TABLE VIII: Activity List

Dataset Activities

OPP Standing, Walking, Sitting, Lying

PAMAP2 Lying, Sitting, Standing, Walking, Running, Cycling, As-
cending, Descending, Vacuum, Ironing, Rope jumping

DSADS Standing, Lying-back, Ascending, Walking-parking-lot,
Treadmill-running, Stepper-exercise, Cross-trainer-exercise,
Rowing, Jumping, Playing-basketball

B. Implementation Details

a) Runtime Environment

We conduct the experiments on a Linux Server (Ubuntu

18.04) running on Intel Core i7-6850K CPU and 64GB DDR4

RAM, with 4 Nvidia 1080Ti Graphics cards with 44GB

VRAM. We implement all the deep learning-related algorithms

using an open-source deep-learning library PyTorch [18],

and for the dataset preprocessing, we use Python and Python-

based library Sci-kit Learn [19].

b) Dataset Preprocessing

In the initial preprocessing of each dataset, we extract the

body position-wise accelerometer data from each participant,

followed by standardization. We remove the NaN (Not a

Number) entries in the extraction process and further split the

position-wise extracted dataset into training, validation, and

testing set in the ratio of 70-20-10% in such a way that each

activity contributes to the mentioned ratio. Further, we con-

sider a window of 128 samples from the 3-axis accelerometer

data with a 90% overlap with the consecutive windows for the

deep network training.

c) Performance Metrics

In the experiments, we compute the accuracy, micro F1-

score, precision and recall using scikit-learn’s metrics

library [19]. We observe the same results for all these metrics

for any particular experiment and, therefore, for the sake of

simplicity, report the activity F1 score, which is also widely

used in existing domain adaptation literature [1], [3], [11].

d) Baselines

As SS-MSADA framework is based on adversarial learning

mechanism, we compare the framework with two adversarial

approaches - RevGrad [13] and MADA [14]. RevGrad [13]

introduces a gradient reversal layer that negates the gradients

of the domain discriminator, thus conducting a min-max

process against the feature extractor. Whereas MADA [14]

extends RevGrad [13] by introducing the same number of

domain discriminators equivalent to the number of classes.

For the sake of equality, we evaluate the baseline approaches

assuming the availability of the 10% labeled target data.

e) Baselines Implementations

As the baseline approaches originally consider a single

source domain, we slightly adjust the input data processing.

We combine the training splits of the corresponding source

domains during the network training and test on the target

domain. We also adjust the convolutional layers filter size and

input-output channels for the sake of IMU data compatibility.

Finally, For the sake of comparison, we train the baselines for

similar epochs as we train SS-MSADA . We refer to Table IX

for detailed hyper-parameters of the framework.

C. Experimental Settings

We consider two scenarios that engender the data distribu-

tion heterogeneity - (i) cross-person heterogeneity, (ii) body-

position heterogeneity.

a) Cross-person Heterogeneity

Under cross-person heterogeneous settings, participants’

data from a particular body position is considered as the

domain. For example, consider the collected ADL activity

data from three participant’s similar body position (chest).

Here, each participant’s data is considered as a domain.
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b) Cross-position Heterogeneity

Under cross-position heterogeneous settings, different body-

positional data collected from a participant is considered the

domain. For example, consider the collected ADL activity data

from a participant’s multiple body positions such as chest,

hand, and ankle. Here, each body positional data is considered

as a domain.
TABLE IX: Hyper-parameters of SS-MSADA Framework

Hyper-parameters Values

No. of conv. layers 3

No. of filters in conv. layers 32, 64, 128

Conv. filter dimension 1x9, 1x9, 1x9

No. of fully connected layers in
Domain Discriminator 2

No. of units in fully connected layers
Domain Discriminator 128, 1

Batch size 32

ADAM [20] optimizer parameter - Beta1 0.9

ADAM [20] optimizer parameter - Beta2 0.99

Learning rate 0.0001

Pre-training epoch 100

SS-MSADA Training epoch (β) 100

D. Discussion

We explore the multi-source domain adaptation under semi-

supervised settings, which allows aligning both marginal dis-

tributions as well as conditional distribution. Along with our

exploration, we attempt to leverage pseudo-labels to achieve a

similar performance using partially labeled target domain data.

Here, we discuss a few aspects and insights on pseudo label

data.

a) Impact of pseudo-label quantity and quality

We use the network-inferred label as the pseudo label. We

design two experiments to see the impacts of pseudo labeling

- 1) during the domain adaptation process, 2) after domain

adaptation completion. In both use-cases, we use the pseudo

labeled data similar way as we use the limited available target

data. In both of our test cases, we observe that even though

the pseudo-labeling accuracy is high, the network does not

provide a high boost in the performance because of the 20-30%

incorrect labeling. In our proposed semi-supervised approach,

using only 10% labeled target data, the network provides a

substantial boost in the performance, but when pseudo labeled

data are even 70% correct, the network does not provide a

similar performance boost.

b) Clustering-based pseudo label generation

We acknowledge that few proposed approaches deploy a

clustering mechanism to generate pseudo label data, but the

clustering mechanism has not been investigated for IMU-

based ADL domain adaptation. Such clustering mechanisms

provide additional advantages in maintaining the intrinsic

class semantic separability. In our unreported investigation,

we attempt to leverage such a clustering mechanism for

pseudo label generation and combine it with the adversarial

domain adaptation approach. We have a few observations - 1)

clustering objective and adversarial objective act adverse to

each other, 2) attaining pseudo labels from clusters requires

the clustering training to be saturated, which cause additional

network training complexities (when to train the clusters, how

much loss to back-propagate, additional training time). In our

experiments, we observe at best 30-40% clustering accuracy

when combined with adversarial mechanism. Combining the

clustering and adversarial mechanism is still challenging.

c) Potential guidelines

In summary, pseudo labeled data may play a trade-off

with the partially labeled data depending on some conditions.

First, the correctness (quality) of the pseudo labeled data. We

observe that even 20% incorrect pseudo label can negate the

positive impact of the pseudo labeled data. In case of pseudo-

labeled data is used at the end of the adaptation process,

then the margin of improvement might not be very significant.

Which brings the next condition is the timing of pseudo label

generation. Therefore, the pseudo label data can play a vital

role if the labels are correctly detected early in the adaptation

process. We assume that accurately detecting pseudo labels

from very early in the adaptation would be challenging as the

different data distributions of different domains become even

extreme considering multiple source domains.

44

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 28,2022 at 00:06:57 UTC from IEEE Xplore.  Restrictions apply. 


