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Abstract—Senior citizens, young children, and people with age- 

related diseases, often find it hard to express themselves. They 
are not fully aware of their need for help, or how to ask for 
assistance. This lack of awareness decreases the quality of life, 
and even endangers those individuals. 

IC-SAFE (Intelligent Connected Sensing Approaches for the 
Elderly) tracks the safety of the elderly by using various 
connected smart wearable sensors. IC-SAFE collects motion data, 
including walking gaits, arm and leg tremors, and long lounging 
positions, from many lightweight body sensors to identify the 
safety status (both physical and emotional) of dementia patients. 
Feasibility tests have been performed using IMU (Inertial Mea- 
surement Unit) sensors in various positions and data from these 
experiments has been gathered. We have proposed efficient real- 
time algorithms using analytical learning methods and identified 
several safety target scenarios by analyzing the corresponding 
gait data. 

I. INTRODUCTION 

The norm of our societal life consists of various commu- 

nication methods. However, senior citizens, young children, 

and people with age-related diseases often find it hard to 

express themselves. They are not fully aware of their need 

for help, especially when they are lost and wandering. Hence, 

loved ones cannot provide timely assistance. One of the most 

significant concerns is age-related diseases, such as dementia. 

Seven in ten people with dementia will wander. In such cases, 

these patients would need to obtain a full-time caretaker, move 

into an assisted living facility, or, worst case scenario, be 

locked up. These changes lead to a decrease in quality of 

life. Most of the existing recovery approaches assume that a 

few designated caregivers have complete responsibility for the 

patients 24/7, however, this is not always the case. In the event 

that a patient is not being watched, this could potentially put 

their life in danger should they end up in a life-threatening 

situation. 

The primary objective of the IC-SAFE (Intelligent Con- 

nected Sensing Approaches for the Elderly) is to follow the 

safety of aging people by using various connected, intelligent 

wearable sensors. Dementia patients have been observed to 

perform certain actions, alluding to their need for assistance. 

IC-SAFE is able to identify these actions and alert a caretaker. 

In theory, an individual can recognize a lack of movement 

(a long idle status), the onset or aggression of tremors, 

and aggravated dementia due to depressive rumination as an 

issue. However, a patient suffering from dementia will not be 

able to appropriately express their needs to a caretaker in a 

timely fashion. As illustrated in Fig. 1, IC-SAFE consists of 

 

motion sensing, motion classification, and motion evaluation 

functions. IC-SAFE provides an automated and minimally 

invasive solution for sensing initial symptoms of distress by 

coordinating motion data, including walking gaits, arm and 

leg tremors and long lounging positions to classify the safety 

status of dementia patients, both physically and emotionally. 

Lastly, it alerts family members and caretakers about the 

situation before the symptoms foster into a further diagnosis. 

This paper identifies several scenarios for dementia patients, 

and proposes a few practical detection algorithms. It has been 

observed that patients with dementia perform certain repetitive 

motions, such as walking in a circle and sitting idle with their 

head bowed, in addition to the onset of other symptoms, such 

as aggravated tremors in the hands, knees, and ankles. We 

have accepted these motions as an indication of emotional 

or physical status change. We further characterized these 

actions into abnormal walking patterns and repetitive motions– 

specifically hand tremors and leg tremors. In order to eliminate 

false positives triggered by reading books, normal walking, 

and hand-writing, we have identified a threshold between 

similar actions, all of which have a high confidence rate. To 

collect this data, we harnessed IMU (Inertial Measurement 

Unit) sensors to various body locations and used WiFi and 

BLE communications for connecting sensors, in addition to 

employing smartphone-based mobile apps. With this data, we 

are proposing efficient, real-time algorithms for determining 

the emotional status, with accuracy and usability in mind. 

Although the current IC-SAFE is a rudimentary experimen- 

tation prototype, eventually, IC-SAFE is motivated to target 

and automate an Alive Inside [1] application as a future 

product. As shown in Fig. 2, Alive Inside is a humanitarian 

project to revitalize the memory of senior citizens by playing 

cherished music of their youth (and memory). However, due to 

being a manual process, music cannot start playing automati- 

 

 

Fig. 1. Connected Smart Wearables  Fig. 2. Alive Inside Project [1] 
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cally when needed. IC-SAFE would be able to automatically 

sense emotions and play the right music for the patient (the 

music selection itself is another area of research) via bone- 

conducting headphones or intelligent speakers such as Alexa, 

Google Assistant, and Siri. 

The remainder of the paper is organized as follows: Sec- 

tion II discusses the related work. We describe the IC- 

SAFE system architecture and motion-sensing algorithms in 

Section III. The implementation and performance evaluation 

results are presented in Section IV. Finally, we conclude our 

work in Section V. 

 
II. RELATED WORK 

In this section, we review various existing sensing methods 

and compare them with the proposed approach. 

[6] studied data capture technologies for processing and 

decision support using a wide range of wearable devices 

and sensors, including accelerometers, gyroscopes, wireless 

communication networks, and power supplies. One of the 

authors’ previous work [14] investigated the relationship 

between EEG signals and eye gazes to identify the electrodes 

and frequency bands suitable for measuring the mental state 

during learning. Many studies have been conducted to estimate 

emotions from EEGs. Wei et al. [17] performed emotion 

classification using DEAP dataset [12] and SEED dataset 

[9]. Acharya et al. [5] created an algorithm for diagnosing 

depression. The diagnosis accuracy was at a level that can 

be used as a second opinion. Ramy et al. [10] enabled 

predicting seizures in patients with epilepsy. [16] studied 

abnormal walking patterns, including slower speed walking 

with smaller steps and walking in a circle (walking around), 

which can be a potential indication of hesitance on body 

control and cognitive decision. [8] researched body sensors 

to detect many variables such as speed, distance, steps taken, 

floors climbed, and calories burned. [13] and [7] implemented 

a real-time waist-mounted tri-axial accelerometer unit to detect 

a range of essential daily activities, including walking and 

posture. [15] and [18] researched on monitoring blood oxygen 

saturation (SpO2), heart rates, and record hand posture while 

manipulating objects, such as eating or dressing. [11] measures 

body temperature through the use of an ear probe which 

detects infrared radiation from the tympanic membrane. 

IC-SAFE approach is different from the existing work 

because it tracks the safety of the elderly by using various 

connected smart wearable sensors. IC-SAFE coordinates con- 

nected sensors to identify the safety status of dementia patients 

by collecting motion data, including walking gaits, arm and leg 

tremors, and long lounging positions, from many lightweight 

body sensors. 

 
III. IC-SAFE ARCHITECTURE AND ALGORITHM 

This section presents the architecture of IC-SAFE and de- 

scribes implemented system components. Movement detection 

algorithms are also described in detail. 

 

 
 

Fig. 3. IC-SAFE Architecture 

 

 
A. IC-SAFE Architecture 

As presented in Fig. 3, the IC-SAFE system consists of 

two functional entities, including wearable sensor prototypes 

for collecting gait data in addition to a mobile app, and an IC- 

SAFE server for analyzing the data and notifying alarms for 

both patients and their caregivers. The wearable sensors collect 

various patient gait data in real-time using an accelerometer 

and gyroscope. These perform an initial analysis, and then 

send the data to mobile apps for further complex processing. 

The sensors and the edge devices process the raw data as much 

as possible. When the target motions are detected, the sensor 

device sends them to the mobile application on the mobile 

device via WiFi or beacon (BLE) signal. Sensing algorithms 

process the data to identify the target movements. The mobile 

app then sends the safety notifications to an IC-SAFE server, 

and provides alerts and related information to the registered 

caregivers. When the sensors get a new signal, a mobile 

caregiver application receives alerts from the IC-SAFE server. 

• Wearable Sensor Prototypes: We prototyped a sensor 

device using a SparkFun Esp32 Thing by harnessing an In- 

ertial Measurement Unit (IMU) Motion Shield. The Spark- 

Fun ESP32 Thing is a development platform for Expresso 

ESP32. The ESP32 supports both WiFi and Bluetooth Low- 

Energy (BLE) communications. We use an IMU Motion 

Shield with onboard LSM9DS1 IMU to sense various 

movement patterns, measuring three fundamental movement 

properties: angular velocity, acceleration, and heading in 

a single IC. It produces nine pieces of data: acceleration 

in x/y/z, angular rotation in x/y/z, and magnetic force in 

x/y/z, which can measure a body’s specific energy, angular 

rate, and the magnetic field surrounding the body, using 

a combination of accelerometers, gyroscopes, and magne- 

tometers. Recent development allows for the production of 

IMU-enabled GPS devices. We implemented the movement 

detection algorithms embedded in the sensor device using 

the Arduino IDE. The programming languages used to 

implement them are C/C++ and Python. 

• Mobile Application and IC-SAFE Server: A mobile 

application conveys alerts created by sensors to the IC- 

SAFE server and the respective caregivers. The application 

works as a bridge between the wearable sensors and the 

server. The app also sends alerts to the registered caregivers 

in multiple means, such as email or text messages, when 

any target motion level is identified. The IC-SAFE Server 

is implemented with a cloud-hosted Firebase database plat- 
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form, offering various APIs for the application developers, 

including Android Studio and iOS, and JavaScript SDKs. 

It stores data in JSON format. Since we built a proof-of- 

concept system, we reserve patients’ disease history infor- 

mation (not genuine), including the date, time, and patient’s 

movement history collected from the sensor devices. The 

server also has caregivers’ registration information under the 

identification of each patient. It periodically synchronizes 

patient and caregiver applications by checking the caregiver 

information in the database. 

B. Abnormal Gait Detection Algorithms 

The proposed IC-SAFE detection algorithms are designed 

for three representative motions of dementia patients. 

• Abnormal Walking Pattern Detection: We identify ab- 

normal walking patterns and their changes. Gait disorders 

are more prevalent in dementia patients than in healthy, 

aging individuals, and are related to cognitive dissolution. 

Dementia-related gait changes (DRGC) include smaller 

steps, slower speed, festination or shuffling, retropulsion, 

trouble turning, turning circles, etc. We classify smaller 

steps, slower pace, and walking in a circle (walking around 

repetitively) as gait-changes. We designed a detection al- 

gorithm by walking in a circle with an IMU sensor on an 

ankle. Fig. 4 shows both normal walking and smaller steps 

walking patterns observed from the accelerometer. Taking 

smaller steps shows more signals than normal walking in 

the same period. A walking cadence (steps/min) has been 

identified from the data. Although other research suggests 

reasonable heuristic walking cadence thresholds (100 and 

130 steps/min for adults between 21 and 40 years old), 

[16], dementia declines walking cadence resulting in shorter 

strides [4]. However, since walking tempo depends on 

personal situations, those absolute values are not applicable. 

We identify and review the change in walking cadence to 

alert caregivers. Fig. 5 shows the principal axis data from 

the gyroscope when walking in a circle. The most notable 

difference is gyroscope rotation data and heading value. It 

shows that the heading value changes from 0 to 360 degrees. 

 

 

 
Fig. 4. Normal VS. Short Walking Patterns 

 

 
 

 
Fig. 5. Walking in Circle 

 

 
Fig. 6. Handwriting vs. Tremors 

 

 
If the heading angular value changes from 0 to 360 and the 

accelerometer data pattern shows as Fig. 4 at the same time, 

we can consider the patient as wandering or needing help, 

indicating hesitance on body control and cognitive decision. 

• Tremors Detection: We recognize tremors of the hand and 

leg, the most common tremor-related symptom of dementia 

patients. The tremor detection algorithm calculates signal 

values through time series, including counts, variations, 

frequencies, and strength levels for both hand and leg 

locations. For example, as shown in Figs. 6 and 7, regardless 

of the sensor location, tremor motions create a high volume 

of compact and consistent signal patterns. As different 

movement values are created according to the direction of 

the tremors and the sensor locations (either hand, knee, or 

ankle), we cannot rely on a single movement value. Hence, 

we use cumulative signal counts. Also, we distinguish the 

hand tremor from regular hand movements such as eating 

and writing motions and discern the leg tremors from normal 

walking or idling patterns. As illustrated in Figs. 6, the 

 

 

Fig. 7. Leg Tremors with Ankle vs. Knee Locations 
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Fig. 8. IC-SAFE Algorithm 

 
 
 

 
 

Fig. 9. Head Down vs. Head Up 

 

 

 
Fig. 10. Reading vs. Idling 

 

 
handwriting motions create similar cumulative signal counts, 

and the signal pattern is consistent as well. The signal count 

alone cannot differentiate the handwriting from tremors. 

Hence, we use a filtered signal count by applying a strength 

filter to the signals with an adjustable threshold (e.g., 0.1 

signal strength for all the movements). The same detection 

approach can differentiate the normal walking or idling 

patterns from the leg tremors. 

• Slouching Status Detection: The lack of movement (long 

idling status) is one of the most common dementia symp- 

toms. Many people with dementia suffer from physical 

problems and difficulties with movement (slow and stiff 

movements). They spend most of the time sitting in a 

chair. Although some people read the newspaper or take 

a nap, many are slouching in their chairs, which gradually 

deteriorates the cognitive ability of dementia patients. The 

general slouching motion is bowing the head to shoulder and 

maintaining the same pose for a long while. It is critical to 

intervene and encourage them to engage with others, while 

adjusting their posture. 

We detected the lack of movement by designing a motion 

detection algorithm with the motion data from a sensor 

attached to a patient’s eyeglass. The algorithm detects a 

change of the positional roll according to head movement. 

As shown in Fig. 10 on the right, if the head roll data 

remains the same (e.g., varying less than 3 degrees for 

mins.), the algorithm identifies the motion as an idling 

status. Specifically, we identify slouching posture in a chair 

and lowering heads still for an extended time. The algorithm 

catches up and down head motions, along with the idling 

status. As presented in Fig. 9, if the head roll data increases 

or decreases continuously in a direction for more than a 

certain threshold degree and time (e.g., changing more than 

15 degrees for two sec.) after the idling status, it triggers 

the slouching status monitor. If the head roll data remains 

idle for a long time after the head-down movement, the 

algorithm identifies this as a slouching status. Also, the 

algorithm differentiates it from other similar actions, such as 

reading a newspaper. The head swings left and right slowly 

and slightly while reading. The angular velocity of a rotating 

object is the rate at which the angular coordinate changes 

for time. As shown in Fig. 10 on the left, the azimuth angle 

data makes a more significant angular coordinate change (by 
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calculating an Average Angular Velocity (AAV)) than other 

idling actions or head movements. 

Fig. 8 describes a combined process of the proposed IC- 

SAFE algorithm. The main objective of the algorithm is to 

detect the slouching status, tremors, and abnormal walking 

patterns in a timely fashion for protecting the elderly. It 

uses the raw sensor data (IMU data) from various wearable 

connected sensors as illustrated in Fig. 11. A signal count 

algorithm [3] is used for detecting cumulative Signal Counts 

(SC). It takes three configuration parameters, including the 

lag of the moving window for smoothing and adaption, the 

influence of signals on the detection threshold (mean and 

standard deviation), and the threshold of the signal classifica- 

tion based on standard deviation. We apply a signal strength 

filter to the generated signals for calculating the filtered SC. 

The strength filter normalizes the difference among people, 

sensor locations, and various motions (e.g., handwriting vs. 

tremors) with the adjustable threshold. The motion evaluation 

process is triggered using the sliding windows algorithm in 

time series. If there is little motion according to the filtered 

SC, the period is assigned an idling status, and then reports a 

slouching status. The motion classification initially starts with 

the sensor locations, including head, hand, and leg motions. 

The head motion class triggers the azimuth angle measurement 

by calculating an AAV to detect a reading motion that has 

a higher AAV than other idling or head movements. It also 

monitors the roll value to detect head movements up and 

down. This stage then records the status to identify a slouch. 

Eventually, it catches a slouching status using the sequence 

of status reports (e.g., idling + head down + idling or many 

consecutive idling status reports). The hand motion class 

triggers the filtered SC measurement to detect tremors and 

handwriting motion. If the filtered SC is high, it concurs a 

tremors status. Otherwise, it is considered as a handwriting 

status. The leg motion class triggers the SC measurement 

to detect tremors and walking motion. If the SC is high, 

it concurs a tremors status. Otherwise, it is considered as a 

regular walking status. It further analyzes the SC and heading 

values to detect abnormal walking situations, including short 

steps and circle walking. 

IV. EVALUATIONS 

In this section, we present the experimental results of the 

feasibility tests of the proposed IC-SAFE detection algorithms. 

A. Experimental setting 

As shown in Fig. 11 (F), existing gait analyses have been 

conducted typically in a lab by attaching multiple sophisticated 

sensors on different parts of the body. Although this measures 

detailed and accurate body motions, it is not usable in practice. 

Our objective is to build a practical and cost-effective wearable 

sensor system by connecting a few sensors to detect various 

movements. We evaluated the proposed algorithms, including 

abnormal walking patterns, hand tremors, leg tremors, and the 

lack of movement using various motion data. We collected the 

motion data from 20 different people, including 12 males, 12 

 

 
 

Fig. 11. Testing Scenarios of Wearable Sensors 

 

 

females, 3 transgender people, and 3 non-binary individuals. 

Their age range was from 13 to 90 (10 people between 13-30, 

10 people between 31-60, and 10 people between 61-90). All 

age ranges are evenly distributed between each group of tests. 

We controlled the sensor locations and orientations but did not 

control how the actions were performed– each individual was 

told to perform the action as they normally would. We have 

conducted each set of experiments repetitively (10 times) for 

10 to 15 seconds. 

We have attached a sensor device on the ankle (Fig. 11 (B)) 

for testing abnormal walking patterns and leg tremors. We have 

emulated several walking practices, including slow, average, 

and fast speeds, smaller steps, and wandering. We have also 

emulated diverse leg movement patterns by raising a leg up, 

down, left, and right, with both ground-fixed and unfixed leg 

positions. In addition, we examined the same leg movement 

test sets by attaching the sensor device on the knee (Fig. 11 

(D)). To test hand tremors, we attached a sensor device on the 

wrist (Fig. 11 (A)) . We emulated diverse hand movement 

patterns by shaking hands up, down, right, and left, with 

both bent and straight arm positions. We also examined the 

handwriting movement (Fig. 11 (C)) to distinguish this action 

from tremors. We harnessed a sensor device on eyeglasses 

(Fig. 11 (E)) for testing the slouching status and lack of 

movement. We emulated diverse scenarios by changing head 

positions, reading newspapers, and lounging in a chair for an 

extended period of time. 

B. Experimental Results of Detection Accuracy 

To evaluate the tremor detection algorithm, as illustrated in 

Fig. 13, we assess the average number of filtered SC picked 

 

 

Fig. 12. Tremors vs. Writing 
Classification Accuracy 

Fig. 13. Avg. Filtered SC 
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up by the sensors on different locations, including hands, 

knees, and ankles, as well as the motions of handwriting. 

The filtered SC (with 0.1 signal filter) can distinguish tremor- 

related motions from handwriting-related motions. However, 

to normalize the difference between people, we use the K- 

Nearest Neighbors (KNN) classification algorithm instead of 

a threshold-based approach. We also conducted a classification 

accuracy test. We used the R language to perform the KNN 

classification algorithm. First, we built a data frame of 40 

observations with two variables (a filtered SC and a factor 

of tremor or writing). We randomly separate the data into 20 

training observations and 20 testing observations. Then, we 

performed a KNN prediction with K=3 by bootstrapping 1000 

samples. We loaded a Caret package [2] for computing the 

confusion matrix. The confusion matrix in Fig. 12 shows that 

the prediction accuracy is 0.95. 

C. Experimental Results of Slouching Status 

To evaluate the slouching status detection algorithm, as 

illustrated in Fig. 14, we conducted movement scenarios in a 

particular sequence (idle, head down, idle, reading, idle, head 

up, read, and idle) using a sensor device on eyeglasses (Fig. 11 

(E)). The algorithm pointed out each status correctly. For 

example, a head-down motion was detected at 20 seconds, and 

a head-up motion was detected at 53 seconds by monitoring 

the roll value in the green circle in Fig. 14. We also exploited 

the book reading motion detection to check if the algorithm 

could differentiate the motion of reading from other idle and 

head up/down motions. By tracking the azimuth angle value 

in the red circle in Fig. 14, it can catch a swing pattern, which 

periodically moves the head from left to right. The calculated 

AAV of a reading motion is much higher than other motions. 

Eventually, the algorithm detected a slouching status. Lastly, 

the algorithm was able to identify a sequence of motions, such 

as idle, head down, and idle after identifying a slouching status 

at 29 seconds in Fig. 14. 

V. CONCLUSIONS 

We introduced the IC-SAFE (Intelligent Connected Sensing 

Approaches for the Elderly) approach to tracking the safety 

of senior citizens by using various connected smart wearable 

 
 

 
Fig. 14. Idle, Head down/up, and Reading Scenarios 

sensors. To identify the physical and mental safety status 

of dementia patients, we proposed motion data coordination 

algorithms to detect the walking gaits, arm and leg tremors, 

and lounging positions for extended periods of time. We 

developed wearable IMU (Inertial Measurement Unit) sensor 

prototypes for various body positions and performed feasibility 

tests using the gathered data from field experiments. The 

results show that IC-SAFE can detect telling actions of distress 

and emotional transition scenarios in real-time and distinguish 

these actions from ordinary gaits with 95% accuracy. 
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