ICC 2022 - IEEE International Conference on Communications | 978-1-5386-8347-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICC45855.2022.9838309

IC-SAFE:Intelligent Connected Sensing Approaches
for the Elderly

Alexa Summerst Sarah Choit

Manasa Leela Gummadavellyt

Baek-Young Choi*  Sejun Song*

University of Missouri-Kansas City, Kansas City, MO, USA *f
Email:* {choiby, songsej}@umkc.edu, t{alszcz, sc887, mgmv7 }@mail.umke.edu

Abstract—Senior citizens, young children, and people with age-
related diseases, often find it hard to express themselves. They
are not fully aware of their need for help, or how to ask for
assistance. This lack of awareness decreases the quality of life,
and even endangers those individuals.

IC-SAFE (Intelligent Connected Sensing Approaches for the
Elderly) tracks the safety of the elderly by using various
connected smart wearable sensors. IC-SAFE collects motion data,
including walking gaits, arm and leg tremors, and long lounging
positions, from many lightweight body sensors to identify the
safety status (both physical and emotional) of dementia patients.
Feasibility tests have been performed using IMU (Inertial Mea-
surement Unit) sensors in various positions and data from these
experiments has been gathered. We have proposed efficient real-
time algorithms using analytical learning methods and identified
several safety target scenarios by analyzing the corresponding
gait data.

1. INTRODUCTION

The norm of our societal life consists of various commu-
nication methods. However, senior citizens, young children,
and people with age-related diseases often find it hard to
express themselves. They are not fully aware of their need
for help, especially when they are lost and wandering. Hence,
loved ones cannot provide timely assistance. One of the most
significant concerns is age-related diseases, such as dementia.
Seven in ten people with dementia will wander. In such cases,
these patients would need to obtain a full-time caretaker, move
into an assisted living facility, or, worst case scenario, be
locked up. These changes lead to a decrease in quality of
life. Most of the existing recovery approaches assume that a
few designated caregivers have complete responsibility for the
patients 24/7, however, this is not always the case. In the event
that a patient is not being watched, this could potentially put
their life in danger should they end up in a life-threatening
situation.

The primary objective of the IC-SAFE (Intelligent Con-
nected Sensing Approaches for the Elderly) is to follow the
safety of aging people by using various connected, intelligent
wearable sensors. Dementia patients have been observed to
perform certain actions, alluding to their need for assistance.
IC-SAFE is able to identify these actions and alert a caretaker.
In theory, an individual can recognize a lack of movement
(a long idle status), the onset or aggression of tremors,
and aggravated dementia due to depressive rumination as an
issue. However, a patient suffering from dementia will not be
able to appropriately express their needs to a caretaker in a
timely fashion. As illustrated in Fig. 1, IC-SAFE consists of

motion sensing, motion classification, and motion evaluation
functions. IC-SAFE provides an automated and minimally
invasive solution for sensing initial symptoms of distress by
coordinating motion data, including walking gaits, arm and
leg tremors and long lounging positions to classify the safety
status of dementia patients, both physically and emotionally.
Lastly, it alerts family members and caretakers about the
situation before the symptoms foster into a further diagnosis.
This paper identifies several scenarios for dementia patients,
and proposes a few practical detection algorithms. It has been
observed that patients with dementia perform certain repetitive
motions, such as walking in a circle and sitting idle with their
head bowed, in addition to the onset of other symptoms, such
as aggravated tremors in the hands, knees, and ankles. We
have accepted these motions as an indication of emotional
or physical status change. We further characterized these
actions into abnormal walking patterns and repetitive motions—
specifically hand tremors and leg tremors. In order to eliminate
false positives triggered by reading books, normal walking,
and hand-writing, we have identified a threshold between
similar actions, all of which have a high confidence rate. To
collect this data, we harnessed IMU (Inertial Measurement
Unit) sensors to various body locations and used WiFi and
BLE communications for connecting sensors, in addition to
employing smartphone-based mobile apps. With this data, we
are proposing efficient, real-time algorithms for determining
the emotional status, with accuracy and usability in mind.
Although the current IC-SAFE is a rudimentary experimen-
tation prototype, eventually, IC-SAFE is motivated to target
and automate an Alive Inside [1] application as a future
product. As shown in Fig. 2, Alive Inside is a humanitarian
project to revitalize the memory of senior citizens by playing
cherished music of their youth (and memory). However, due to
being a manual process, music cannot start playing automati-
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Fig. 2. Alive Inside Project [1]

Fig. 1. Connected Smart Wearables
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cally when needed. IC-SAFE would be able to automatically
sense emotions and play the right music for the patient (the
music selection itself is another area of research) via bone-
conducting headphones or intelligent speakers such as Alexa,
Google Assistant, and Siri.

The remainder of the paper is organized as follows: Sec-
tion II discusses the related work. We describe the IC-
SAFE system architecture and motion-sensing algorithms in
Section III. The implementation and performance evaluation
results are presented in Section IV. Finally, we conclude our
work in Section V.

II. RELATED WORK

In this section, we review various existing sensing methods
and compare them with the proposed approach.

[6] studied data capture technologies for processing and
decision support using a wide range of wearable devices
and sensors, including accelerometers, gyroscopes, wireless
communication networks, and power supplies. One of the
authors’ previous work [14] investigated the relationship
between EEG signals and eye gazes to identify the electrodes
and frequency bands suitable for measuring the mental state
during learning. Many studies have been conducted to estimate
emotions from EEGs. Wei et al. [17] performed emotion
classification using DEAP dataset [12] and SEED dataset
[9]. Acharya et al. [5] created an algorithm for diagnosing
depression. The diagnosis accuracy was at a level that can
be used as a second opinion. Ramy et al. [10] enabled
predicting seizures in patients with epilepsy. [16] studied
abnormal walking patterns, including slower speed walking
with smaller steps and walking in a circle (walking around),
which can be a potential indication of hesitance on body
control and cognitive decision. [8] researched body sensors
to detect many variables such as speed, distance, steps taken,
floors climbed, and calories burned. [13] and [7] implemented
a real-time waist-mounted tri-axial accelerometer unit to detect
a range of essential daily activities, including walking and
posture. [15] and [18] researched on monitoring blood oxygen
saturation (SpO2), heart rates, and record hand posture while
manipulating objects, such as eating or dressing. [11] measures
body temperature through the use of an ear probe which
detects infrared radiation from the tympanic membrane.

IC-SAFE approach is different from the existing work
because it tracks the safety of the elderly by using various
connected smart wearable sensors. IC-SAFE coordinates con-
nected sensors to identify the safety status of dementia patients
by collecting motion data, including walking gaits, arm and leg
tremors, and long lounging positions, from many lightweight
body sensors.

III. IC-SAFE ARCHITECTURE AND ALGORITHM

This section presents the architecture of IC-SAFE and de-
scribes implemented system components. Movement detection
algorithms are also described in detail.
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Fig. 3. IC-SAFE Architecture

A. IC-SAFE Architecture

As presented in Fig. 3, the IC-SAFE system consists of
two functional entities, including wearable sensor prototypes
for collecting gait data in addition to a mobile app, and an IC-
SAFE server for analyzing the data and notifying alarms for
both patients and their caregivers. The wearable sensors collect
various patient gait data in real-time using an accelerometer
and gyroscope. These perform an initial analysis, and then
send the data to mobile apps for further complex processing.
The sensors and the edge devices process the raw data as much
as possible. When the target motions are detected, the sensor
device sends them to the mobile application on the mobile
device via WiFi or beacon (BLE) signal. Sensing algorithms
process the data to identify the target movements. The mobile
app then sends the safety notifications to an IC-SAFE server,
and provides alerts and related information to the registered
caregivers. When the sensors get a new signal, a mobile
caregiver application receives alerts from the IC-SAFE server.

- Wearable Sensor Prototypes: We prototyped a sensor
device using a SparkFun Esp32 Thing by harnessing an In-
ertial Measurement Unit (IMU) Motion Shield. The Spark-
Fun ESP32 Thing is a development platform for Expresso
ESP32. The ESP32 supports both WiFi and Bluetooth Low-
Energy (BLE) communications. We use an IMU Motion
Shield with onboard LSM9DS1 IMU to sense various
movement patterns, measuring three fundamental movement
properties: angular velocity, acceleration, and heading in
a single IC. It produces nine pieces of data: acceleration
in x/y/z, angular rotation in x/y/z, and magnetic force in
x/y/z, which can measure a body’s specific energy, angular
rate, and the magnetic field surrounding the body, using
a combination of accelerometers, gyroscopes, and magne-
tometers. Recent development allows for the production of
IMU-enabled GPS devices. We implemented the movement
detection algorithms embedded in the sensor device using
the Arduino IDE. The programming languages used to
implement them are C/C++ and Python.

- Mobile Application and IC-SAFE Server: A mobile
application conveys alerts created by sensors to the IC-
SAFE server and the respective caregivers. The application
works as a bridge between the wearable sensors and the
server. The app also sends alerts to the registered caregivers
in multiple means, such as email or text messages, when
any target motion level is identified. The IC-SAFE Server
is implemented with a cloud-hosted Firebase database plat-
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form, offering various APIs for the application developers,
including Android Studio and iOS, and JavaScript SDKs.
It stores data in JSON format. Since we built a proof-of-
concept system, we reserve patients’ disease history infor-
mation (not genuine), including the date, time, and patient’s
movement history collected from the sensor devices. The
server also has caregivers’ registration information under the
identification of each patient. It periodically synchronizes
patient and caregiver applications by checking the caregiver
information in the database.

B. Abnormal Gait Detection Algorithms

The proposed IC-SAFE detection algorithms are designed
for three representative motions of dementia patients.

- Abnormal Walking Pattern Detection: We identify ab-
normal walking patterns and their changes. Gait disorders
are more prevalent in dementia patients than in healthy,
aging individuals, and are related to cognitive dissolution.
Dementia-related gait changes (DRGC) include smaller
steps, slower speed, festination or shuffling, retropulsion,
trouble turning, turning circles, etc. We classify smaller
steps, slower pace, and walking in a circle (walking around
repetitively) as gait-changes. We designed a detection al-
gorithm by walking in a circle with an IMU sensor on an
ankle. Fig. 4 shows both normal walking and smaller steps
walking patterns observed from the accelerometer. Taking
smaller steps shows more signals than normal walking in
the same period. A walking cadence (steps/min) has been
identified from the data. Although other research suggests
reasonable heuristic walking cadence thresholds (100 and
130 steps/min for adults between 21 and 40 years old),
[16], dementia declines walking cadence resulting in shorter
strides [4]. However, since walking tempo depends on
personal situations, those absolute values are not applicable.
We identify and review the change in walking cadence to
alert caregivers. Fig. 5 shows the principal axis data from
the gyroscope when walking in a circle. The most notable
difference is gyroscope rotation data and heading value. It
shows that the heading value changes from 0 to 360 degrees.
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Fig. 6. Handwriting vs. Tremors

If the heading angular value changes from 0 to 360 and the
accelerometer data pattern shows as Fig. 4 at the same time,
we can consider the patient as wandering or needing help,
indicating hesitance on body control and cognitive decision.

Tremors Detection: We recognize tremors of the hand and
leg, the most common tremor-related symptom of dementia
patients. The tremor detection algorithm calculates signal
values through time series, including counts, variations,
frequencies, and strength levels for both hand and leg
locations. For example, as shown in Figs. 6 and 7, regardless
of the sensor location, tremor motions create a high volume
of compact and consistent signal patterns. As different
movement values are created according to the direction of
the tremors and the sensor locations (either hand, knee, or
ankle), we cannot rely on a single movement value. Hence,
we use cumulative signal counts. Also, we distinguish the
hand tremor from regular hand movements such as eating
and writing motions and discern the leg tremors from normal
walking or idling patterns. As illustrated in Figs. 6, the
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Fig. 7. Leg Tremors with Ankle vs. Knee Locations
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Fig. 10. Reading vs. Idling

handwriting motions create similar cumulative signal counts,
and the signal pattern is consistent as well. The signal count
alone cannot differentiate the handwriting from tremors.
Hence, we use a filtered signal count by applying a strength
filter to the signals with an adjustable threshold (e.g., 0.1
signal strength for all the movements). The same detection
approach can differentiate the normal walking or idling
patterns from the leg tremors.

- Slouching Status Detection: The lack of movement (long

idling status) is one of the most common dementia symp-
toms. Many people with dementia suffer from physical
problems and difficulties with movement (slow and stiff
movements). They spend most of the time sitting in a
chair. Although some people read the newspaper or take
a nap, many are slouching in their chairs, which gradually
deteriorates the cognitive ability of dementia patients. The
general slouching motion is bowing the head to shoulder and
maintaining the same pose for a long while. It is critical to
intervene and encourage them to engage with others, while
adjusting their posture.

We detected the lack of movement by designing a motion
detection algorithm with the motion data from a sensor
attached to a patient’s eyeglass. The algorithm detects a
change of the positional roll according to head movement.
As shown in Fig. 10 on the right, if the head roll data
remains the same (e.g., varying less than 3 degrees for
mins.), the algorithm identifies the motion as an idling
status. Specifically, we identify slouching posture in a chair
and lowering heads still for an extended time. The algorithm
catches up and down head motions, along with the idling
status. As presented in Fig. 9, if the head roll data increases
or decreases continuously in a direction for more than a
certain threshold degree and time (e.g., changing more than
15 degrees for two sec.) after the idling status, it triggers
the slouching status monitor. If the head roll data remains
idle for a long time after the head-down movement, the
algorithm identifies this as a slouching status. Also, the
algorithm differentiates it from other similar actions, such as
reading a newspaper. The head swings left and right slowly
and slightly while reading. The angular velocity of a rotating
object is the rate at which the angular coordinate changes
for time. As shown in Fig. 10 on the left, the azimuth angle
data makes a more significant angular coordinate change (by
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calculating an Average Angular Velocity (AAV)) than other
idling actions or head movements.

Fig. 8 describes a combined process of the proposed IC-
SAFE algorithm. The main objective of the algorithm is to
detect the slouching status, tremors, and abnormal walking
patterns in a timely fashion for protecting the elderly. It
uses the raw sensor data (IMU data) from various wearable
connected sensors as illustrated in Fig. 11. A signal count
algorithm [3] is used for detecting cumulative Signal Counts
(SC). It takes three configuration parameters, including the
lag of the moving window for smoothing and adaption, the
influence of signals on the detection threshold (mean and
standard deviation), and the threshold of the signal classifica-
tion based on standard deviation. We apply a signal strength
filter to the generated signals for calculating the filtered SC.
The strength filter normalizes the difference among people,
sensor locations, and various motions (e.g., handwriting vs.
tremors) with the adjustable threshold. The motion evaluation
process is triggered using the sliding windows algorithm in
time series. If there is little motion according to the filtered
SC, the period is assigned an idling status, and then reports a
slouching status. The motion classification initially starts with
the sensor locations, including head, hand, and leg motions.
The head motion class triggers the azimuth angle measurement
by calculating an AAV to detect a reading motion that has
a higher AAV than other idling or head movements. It also
monitors the roll value to detect head movements up and
down. This stage then records the status to identify a slouch.
Eventually, it catches a slouching status using the sequence
of status reports (e.g., idling + head down + idling or many
consecutive idling status reports). The hand motion class
triggers the filtered SC measurement to detect tremors and
handwriting motion. If the filtered SC is high, it concurs a
tremors status. Otherwise, it is considered as a handwriting
status. The leg motion class triggers the SC measurement
to detect tremors and walking motion. If the SC is high,
it concurs a tremors status. Otherwise, it is considered as a
regular walking status. It further analyzes the SC and heading
values to detect abnormal walking situations, including short
steps and circle walking.

IV. EVALUATIONS

In this section, we present the experimental results of the
feasibility tests of the proposed IC-SAFE detection algorithms.

A. Experimental setting

As shown in Fig. 11 (F), existing gait analyses have been
conducted typically in a lab by attaching multiple sophisticated
sensors on different parts of the body. Although this measures
detailed and accurate body motions, it is not usable in practice.
Our objective is to build a practical and cost-effective wearable
sensor system by connecting a few sensors to detect various
movements. We evaluated the proposed algorithms, including
abnormal walking patterns, hand tremors, leg tremors, and the
lack of movement using various motion data. We collected the
motion data from 20 different people, including 12 males, 12

Fig. 11. Testing Scenarios of Wearable Sensors

females, 3 transgender people, and 3 non-binary individuals.
Their age range was from 13 to 90 (10 people between 13-30,
10 people between 31-60, and 10 people between 61-90). All
age ranges are evenly distributed between each group of tests.
We controlled the sensor locations and orientations but did not
control how the actions were performed— each individual was
told to perform the action as they normally would. We have
conducted each set of experiments repetitively (10 times) for
10 to 15 seconds.

We have attached a sensor device on the ankle (Fig. 11 (B))
for testing abnormal walking patterns and leg tremors. We have
emulated several walking practices, including slow, average,
and fast speeds, smaller steps, and wandering. We have also
emulated diverse leg movement patterns by raising a leg up,
down, left, and right, with both ground-fixed and unfixed leg
positions. In addition, we examined the same leg movement
test sets by attaching the sensor device on the knee (Fig. 11
(D)). To test hand tremors, we attached a sensor device on the
wrist (Fig. 11 (A)) . We emulated diverse hand movement
patterns by shaking hands up, down, right, and left, with
both bent and straight arm positions. We also examined the
handwriting movement (Fig. 11 (C)) to distinguish this action
from tremors. We harnessed a sensor device on eyeglasses
(Fig. 11 (E)) for testing the slouching status and lack of
movement. We emulated diverse scenarios by changing head
positions, reading newspapers, and lounging in a chair for an
extended period of time.

B. Experimental Results of Detection Accuracy

To evaluate the tremor detection algorithm, as illustrated in
Fig. 13, we assess the average number of filtered SC picked
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up by the sensors on different locations, including hands,
knees, and ankles, as well as the motions of handwriting.
The filtered SC (with 0.1 signal filter) can distinguish tremor-
related motions from handwriting-related motions. However,
to normalize the difference between people, we use the K-
Nearest Neighbors (KNN) classification algorithm instead of
a threshold-based approach. We also conducted a classification
accuracy test. We used the R language to perform the KNN
classification algorithm. First, we built a data frame of 40
observations with two variables (a filtered SC and a factor
of tremor or writing). We randomly separate the data into 20
training observations and 20 testing observations. Then, we
performed a KNN prediction with K=3 by bootstrapping 1000
samples. We loaded a Caret package [2] for computing the
confusion matrix. The confusion matrix in Fig. 12 shows that
the prediction accuracy is 0.95.

C. Experimental Results of Slouching Status

To evaluate the slouching status detection algorithm, as
illustrated in Fig. 14, we conducted movement scenarios in a
particular sequence (idle, head down, idle, reading, idle, head
up, read, and idle) using a sensor device on eyeglasses (Fig. 11
(E)). The algorithm pointed out each status correctly. For
example, a head-down motion was detected at 20 seconds, and
a head-up motion was detected at 53 seconds by monitoring
the roll value in the green circle in Fig. 14. We also exploited
the book reading motion detection to check if the algorithm
could differentiate the motion of reading from other idle and
head up/down motions. By tracking the azimuth angle value
in the red circle in Fig. 14, it can catch a swing pattern, which
periodically moves the head from left to right. The calculated
AAV of a reading motion is much higher than other motions.
Eventually, the algorithm detected a slouching status. Lastly,
the algorithm was able to identify a sequence of motions, such
as idle, head down, and idle after identifying a slouching status
at 29 seconds in Fig. 14.

V. CONCLUSIONS

We introduced the IC-SAFE (Intelligent Connected Sensing
Approaches for the Elderly) approach to tracking the safety
of senior citizens by using various connected smart wearable
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Fig. 14. Idle, Head down/up, and Reading Scenarios

sensors. To identify the physical and mental safety status
of dementia patients, we proposed motion data coordination
algorithms to detect the walking gaits, arm and leg tremors,
and lounging positions for extended periods of time. We
developed wearable IMU (Inertial Measurement Unit) sensor
prototypes for various body positions and performed feasibility
tests using the gathered data from field experiments. The
results show that IC-SAFE can detect telling actions of distress
and emotional transition scenarios in real-time and distinguish
these actions from ordinary gaits with 95% accuracy.
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