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Abstract—Ground Penetrating Radar (GPR) is one of the
most important non-destructive evaluation (NDE) devices
to detect subsurface objects (i.e., rebars, utility pipes) and
reconstruct the underground scene. There are two challenges
for GPR-based inspection, which are GPR data collection and
3D subsurface object imaging. To address these challenges,
we first propose a robotic solution that automates the GPR
data collection process with a free motion pattern. It facilitates
the 3D metric GPR imaging by tagging the pose with GPR
measurement in real-time. Moreover, to improve the 3D GPR
imaging, we introduce a learning-based GPR data analysis
method, which includes a noise removal module to clear the background noise in raw GPR data and a Convolutional
Recurrent Neural Network (CRNN) to estimate the dielectric value of subsurface medium in each GPR B-scan data.
We use both field and synthetic data to verify the proposed methods. Experimental results demonstrate that our proposed
methods can achieve higher performance and faster processing speed in 3D GPR imaging than baseline methods.

Index Terms— Back-projection (BP) algorithm, ground penetrating radar (GPR), deep neural network (DNN), non-
destructive evaluation (NDE), robotics.

I. INTRODUCTION

GROUND Penetrating Radar (GPR) is widely used
in non-destructive evaluation/testing (NDE/NDT), field

archaeology investigation, infrastructure inspection, and mea-
surements. GPR works by sending a pulse of polarized high-
frequency electromagnetic (EM) wave into the subsurface
medium. EM wave attenuates as it travels in medium and
reflects when it encounters a material change. GPR antenna
would thus record the strength and traveled time of each
reflected pulse. The received signal is called an A-scan. When
GPR antenna surveys over a subsurface object, it produces
a series of A-scans at different positions, and the ensemble
of A-scans forms a B-scan. The B-scan contains hyperbolic
features which would indicate the location of the target.
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However, there are two major challenges to reveal under-
ground objects using GPR. First, in encoder-triggered manual
GPR data collections, human inspectors need to pre-mark a
grid map on the ground, and push the GPR cart along the
straight lines [1], or counting on differential global positioning
system (GPS) [2]. It is time-consuming and tedious to manu-
ally scan a large area for detailed mapping since current com-
mercial GPR devices can only move forward to trigger survey
wheel encoder but cannot make turns. On the other hand,
GPS won’t work in indoor environments, limiting such GPR
applications only to be conducted outdoors. In addition, high-
precision GPS is expensive while the accuracy of positioning
is around the sub-meter level, which is not sufficient. GPS
accuracy is even worse in dense urban environments. Second,
the current GPR imaging techniques are easily affected by
several constraints, i.e., GPR background noise, permittivity
of the surrounding medium, etc. [3], which makes the images
low-quality and noisy. Thus, it is very important to automate
the GPR data collection procedure, tag accurate pose with each
GPR sample, and propose an efficient metric GPR imaging
method to allow non-professional people to understand the
result of reconstructed subsurface objects.

Many researches have devoted to the GPR imaging tech-
niques. According to [4], Kirchhoff migration method is firstly
introduced in the 1970s, which is able to focus on the target
position. However, its processing speed is slower than the
rest of the migration approaches. Phase-shift migration is
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Fig. 1. Robotic GPR data collection module.

a mathematical method proposed in 1978 [5] that utilizes
the exploding source model (ESM) concept to focus the
targets from GPR B-scan data. For comparable accuracy,
this approach is computationally more efficient than the
finite-difference [6] approach. Nevertheless, back-projection
(BP) is the most significant and commonly used algorithm
among the migration techniques in GPR industry [7]. Mast
and Johansson [8], [9] made a breakthrough in 3D GPR
imaging reconstruction in 1994. They demonstrate, com-
pare and discuss the advantages and disadvantages of the
time-domain algorithm and frequency-domain algorithm of
3D GPR imaging techniques. Based on these pioneering
works, Pereira et al. [10] employed Hessian-based enhance-
ment filtering to facilitate diffraction-based BP algorithm, thus
creating 3-D models of subsurface tubular structures toward
advanced underground infrastructure visualization.

Besides the migration methods, it is crucial to automate the
GPR data collection and fuse the GPR data with accurate posi-
tioning information, rather than counting on encoder-triggered
or GPS-based positioning. Pereira et al. [11] introduced a
new GPR system that used Augmented Reality (AR) based
positioning available on Google Tango smartphones. However,
Google Tango is obsolete and this project is out of the service
now. Mihailescu and Negut [12], [13] proposed a tracking
system to localize the real-time position of the GPR sensor.
This system depends on the AprilTag [14] to provide accurate
positioning information. The limitation of this method is that
the user has to print and stick the AprilTag markers before the
system starts to work. Li et al. [15] and Chou et al. [16], [17]
proposed a vision-facilitated underground pipeline mapping
model to conduct GPR-based 3D reconstruction. Their major
contribution is that they used the visual Simultaneous Local-
ization and Mapping (V-SLAM), J-linkage and maximum
likelihood method to estimate the radii and locations of all
pipelines. However, the authors don’t have the privileges
to access the GPR source code and synchronize the GPR
measurements with positioning, and still need to pre-mark the
grid map on the surface and manually push the GPR cart along
the grid lines to take GPR measurements.

In this paper, we propose a novel 3D GPR imaging method
that consists of three modules. A robotic data collection
module to provide a free motion pattern for GPR scanning and
tag metric positioning with GPR measurements on-the-fly; a
background noise removal module to clean the noisy data in

the GPR B-scan images; and a CRNN module to estimate the
dielectric property of subsurface medium.

More specifically, in robotic data collection module,
an omni-directional robot carries a GPR antenna at the bottom
of the chassis to detect and map underground objects and an
RGB-D camera to obtain the accurate 6 degree of freedom
(DOF) pose in real time. By tagging the GPR measure-
ments with accurate pose on-the-fly in a synchronized way,
it enables the robot to scan the ground surface in free-motion
pattern and facilitates high-resolution 3D GPR imaging. The
learning-based GPR data processing includes two modules,
GPR noise removal module and dielectric prediction module.
For each input B-scan image, the noise removal module
directly decodes the input image into hyperbolic features. The
dielectric prediction module takes the segmentation masks
from the noise removal module and pools the dielectric prop-
erty from a Convolutional Recurrent Neural Network (CRNN).

II. 3D METRIC GPR DATA COLLECTION

In this section, we first formulate the GPR imaging tech-
nique, then introduce a robotic system that automates the GPR
data collection with a free motion pattern to facilitate the 3D
metric GPR imaging.

A. GPR 3D Metric Imaging
To create a 3D GPR imaging, the BP algorithm is imple-

mented in this section. The essence of the A-scan represents
the amplitude of EM energy, while the BP is a process of
aggregation that converts different amplitude of energy into a
semi-sphere format at different time. As illustrated in Figure 2,
the brighter semi-sphere indicates the higher amplitude part
in A-scan. Furthermore, the radius of each semi-sphere in BP
image indicates the depth between the ground and the object,
which is depicted by Equ.1 [15]:

∀Ak
q ∈ Bk, (x − x0)

2 + (y − y0)
2 − (al ∗ t)2 , y < 0 (1)

where x0, y0 represents the specific position of each A-scan
measurement in a concrete slab. Ak

q = {at |t = 1, . . . , nq}
represents the q-th A-scan measurement in k-th B-scan data,
while t and at indicate the traveling time and amplitude of
A-scan signal respectively, nq means the total number of
samples in a A-scan measurement. Meanwhile, we also have
Bk = {Ak

q |q = 1, . . . , nk} that represents the k-th B-scan
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Fig. 2. BP algorithm converts the A-scan raw data into a set of semi-
spheres.

Fig. 3. The Omni-directional robot towards automated GPR data
collection, where a GPR antenna is installed at the bottom of the robot
chassis.

consisting of nk A-scans. By implementing the BP algorithm
on a B-scan data, the intersection of multiple back-projected
A-scan signals with the highest energy is the possible target
location.

B. Free Motion Based Data Collection
The current practice for GPR data collection requires a

human inspector to mark the grid map, push the GPR device
to precisely follow the straight lines in X and Y directions, use
the wheel encoder to trigger GPR sampling, and take notes to
record these linear motion trajectories for 3D GPR imaging.

To solve this issue, we propose an automatic GPR data
collection method that combines a robot and vision-based
positioning with GPR signal processing to locate and map
subsurface targets. Instead of relying on a wheel encoder
to record linear motion, or utilizing the marker to facilitate
the localization and mapping [12], [18], [19], we use an
Intel RGB-D tracking camera, D435i, to estimate the pose
in real time, and record the continuous non-linear trajectory
automatically. Note that D435i camera could support indoor
and outdoor working environment, which boosts the robustness
for our vision positioning system. Meanwhile, a time-domain
GPR antenna (PaveScan RDM 1.0) from Geophysical Survey
System Inc. (GSSI) with a maximum center frequency of
2GHz, is fixed at the bottom of the robot chassis to conduct
GPR data collection.

More specifically, as illustrated in Figure 3, the Omni-
wheels allow the robot to move in any directions without
spinning and thus provide the GPR with the free motion
capacity to scan the area of interest in a fast and swift way.
The robot motion satisfies the following relation:
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Fig. 4. The B-scan profile tagged with metric positioning information
when the robot scan the concrete surface in Zig-Zag pattern.

where v1, v2, v3 represents the linear velocity of each omni-
wheel, d indicates the distance between the center of a wheel
and the center of the robot body. vx , vy , and ω denote the linear
velocity and angular velocity of the robot body respectively.

By taking advantage of this non-linear free-motion pattern,
the GPR data is automatically and continuously collected and
tagged with pose [X, Y, θ ] at each measurement. Specifically,
D435i is embedded with an IMU sensor to collect RGB
and depth images of the surrounding environment, together
with the corresponding IMU data (e.g., quaternion, angular
velocity, and linear velocity). Then, we use ORB-SLAM3 [20]
algorithm to fuse the RGB images and depth images with IMU
measurements to perform real-time visual-inertial positioning
and localization. Then, with a time synchronizer function in
Robot Operation System (ROS), we synchronize the GPR
sampling with positioning data so that the GPR data collection
would not be constrained to the straight line.

The frame rate of the RGB-D camera is 30Hz, and the IMU
update rate is 200MHz. Through the interpolation, we achieved
200Hz for position updates. Since the PaveScan GPR sampling
rate is 100Hz, we synchronized the vision-based positioning
and GPR updating at 100Hz in the experiments. That is to say,
our robotic data collection system could collect 100 scan data
tagged with pose data per second, and the spacing between
the consecutive measurements would be 5 mm when robot
moves with a 0.5 m/s linear velocity. It demonstrates that our
vision-based positioning solution has met the “low latency”
and “high accuracy” requirements by the GPR industry.

As shown in Equ.3, we update the positioning [X, Y]
according to the orientation θ , while [X′, Y′] and [δX, δY]
represent the previous position state and incremental visual
odometry readings respectively. Figure 4 illustrates an exam-
ple when a robot scans over a surface with a zig-zag pattern,
and the B-scan data is tagged with its corresponding position-
ing information.

[
X
Y

]
=

[
cos θ − sin θ
sin θ cos θ

]
×

[
δX
δY

]
+

[
X ′

Y ′

]
(3)

Compared with GPS-based positioning system which could
only achieve sub-meter level accuracy, our visual-based posi-
tioning system could reach a centimeter-level positioning
accuracy. We validate the accuracy using VICON system [21].
VICON system is well-known for the millimeter-level high
accuracy of motion capture and thus can provide the ground
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Fig. 5. The motion trajectory detected by VICON motion capture system
as ground truth, and the estimated path estimated by the camera on the
robot. Note that this motion is in a zig-zag pattern.

Fig. 6. The root square error distribution between the ground truth motion
and camera’s motion which is around 1cm, with RMSE equals to 0.91cm.

truth of our robot motion. As shown in Figure 5, we com-
mand the robot to move along a zig-zag trajectory. The
green line indicates the ground truth of the motion trajectory
provided by the VICON system, and the red line presents
the motion trajectory recorded by our vision-based positioning
with RGB-D camera. Then, Equ. 4 denotes the Root Square
Error (RSE) between the ground truth and vision-based posi-
tioning. Figure 6 illustrates that the Root Mean Square Error
(RMSE) is only 0.91 centimeter, which indicates that our
vision-based positioning system achieves a high accuracy.

RM SE =

√∑N
i=1 ‖y(i)− ŷ(i)‖2

N
(4)

Note that N indicates the number of position samples while
i means the i -th position sample. y(i) and ŷ(i) represent the
ground truth position and predicted position respectively.

III. IMPROVING GPR IMAGING WITH LEARNING-BASED
DATA ANALYTICS

GPR background noise and the uncertainty of the material
dielectric affect the accuracy of GPR imaging. Therefore,
we propose two models, which are the GPR object segmen-
tation model and the dielectric prediction model, to facilitate

accurate subsurface object reconstruction and mapping. The
learning-based data analytics is illustrated in Figure 7 and
Figure 8, where we use a U-Net [22] to perform subsurface
object segmentation and a DielectricNet to predict the dielec-
tric value of the subsurface surrounding medium.

A. GPR Background Noise Removal
GPR works by sending an EM wave into the ground.

EM wave attenuates as it travels in the medium and reflects
when it encounters a change in material dielectric. GPR
antenna would thus record the strength of each reflection as
well as the travel-time it takes back to the receiver. Therefore,
when GPR surveys over an underground object, some of the
GPR energy pulses reflect when they hit the subsurface object,
some energy continues to penetrate through the object until
they become too weak to get back. However, those weak and
scattered reflections in the B-scan image could affect the GPR
imaging result of the targets. We classify those scatter signals
as GPR Background Noise (see in Figure 7). Hence, it is
important for us not only to focus on enhancing and sharpening
B-scan features but also removing those background noise.

Algorithm 1 GPR Background Noise Removal
Require: The B-scan set, S = {Bk | k = 0, . . . , n}
Ensure: The noise filtered B-scan set, S f ={

B f
k | k = 0, . . . , n

}

Convert S to image set S I =
{

B I
k | k = 0, . . . , n

}

for k ← 1, n do
1. In contraction path, extracting 2D feature map Fi from

Bk
2. In symmetric expanding path, up-convolution the

extracted 2D feature map Fi and represent as Fv
i ;

3. Then fuse the up-convolution feature Fv
i with the

correspondingly cropped feature map from the contracting
path, reshape the up-sampled feature to satisfy the pre-
diction requirements and get the mask image set M =
{Mk | k = 0, . . . , n}

4. At last, filter the B-scan set S through the mask image
set M , and get the filtered B-scan set S f as the output.
end for
return filtered B-scan set S f

Algorithm 1 describes this procedure. At the beginning,
we convert the B-scan data into B-scan image set S I so that
a segmentation model could be implemented, i.e., U-Net [22].
Then, for each B-scan image in S I , we apply regular con-
volutions and max pooling layers in contraction path. In the
expansion path, we apply transposed convolutions along with
regular convolutions. Intuitively, we get the hyperbolic masks
M = {Mk | k = 0, . . . , n} from the B-scan image set S I .
Furthermore, we deploy the masks M as the filter to remove
the noise in the raw B-scan data set S , so that the filtered
B-scan set S f would just keep the strongest target reflection
signal, which is shown in Figure 7. As proposed in [23],
a classification model is implemented as the noise removal
model. However, their results still contain much more noise
compared to the current method. The reason is that for the
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Fig. 7. GPR background noise removal module.

Fig. 8. Target dielectric estimation module.

same region of interest, a classification bounding box occupies
more noise data than a segmentation mask. We provide the
qualitative and quantitative studies, which can be found in
Section IV-B and Section IV-D, to support this claim.

Loss Design and Training: U-Net uses a weighted
cross-entropy as the loss function, and the per-pixel weights
are given by a formula as shown in Equ 5. This design balances
the weights between classes and has an extra term to penalize
joining two bits of the segmentation [22].

w(x) = wc(x) + w0 · exp

(

− (d1(x) + d2(x))2

2σ 2

)

(5)

where x represents the pixel position x ∈ M . d1 and d2
denote the distance to the border of the nearest and the second
cell respectively. wc is the weight map to balance the class
frequencies while w0 and σ are constant numbers which are
usually set to 10 and 5 respectively [22].

The cross entropy loss function is described as following.

L =
∑

x∈M
w(x)log(p(x)) (6)

where p(x) is the probabilistic prediction. Note that the details
of our annotated GPR data is introduced in Section IV-A.

We train our model on a server with Intel Core i9-9900K
3.2GHz CPU, GeForce RTX 2080 Ti GPU, and 32GB RAM.
Our noise removal model is trained for 100 epochs with sto-
chastic gradient descent (SGD) optimizer whose momentum
is equal to 0.9. The initial learning rate is set to 5e−5 while
the batch size is 16. The weight decay is 1e−8 for every
10000 iterations.

B. Targets Dielectric Estimation
The dielectric constant is crucial for the GPR migration

process since it determines the depth of each target shown in
a B-scan image. As shown in Equ.7, the EM wave which is
emitted from the GPR antenna is supposed to be the speed of
light c in a vacuum. However, the dielectric Dgt value of the
subsurface surrounding medium would make a difference to
the traveling speed, which further impacts the depth prediction
of the target.

v = C
√
Dgt

, D = Ttr ∗ v

2
(7)

where v and Ttr are the velocity and two-way travel time of
GPR EM signal, D denotes the depth of subsurface targets.

Thus, for any underground object, if it is buried at the
same depth underground, when the dielectric value of its
surrounding medium is high, the hyperbolic feature in B-scan
data would be shown in a deeper position. On account of this
property and inspired by [24], we introduce a CRNN model
(i.e., DielectricNet) to estimate the dielectric property value D
for each B-scan. Algorithm 2 describes this procedure.

Given a filtered GPR scan set S f (as shown in Figure 7)
in medium with an unknown dielectric, an informative and
discriminative feature representation plays a significant role
in dielectric estimation. The feature representation should
preserve the dielectric property of the underground medium.
Moreover, it should consider the spatial distribution of all
hyperbolic features to enable better dielectric prediction.
We take advantage of Recurrent Neural Network (RNN),
which is able to take a sequence of signals, either spatially
continuous or temporally continuous, to estimate the dielectric.
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Algorithm 2 Targets Dielectric Estimation

Require: The noise filtered B-scan set, S f ={
B f

k | k = 0, . . . , n
}

Ensure: The predicted dielectric property D and its corre-
sponding estimated depth D′
The predicted dielectric property D and its corresponding
estimated depth D′
for k ← 1, n do

1. Extracting a latent feature map Wk via encoder &
2. Embedding each feature map Wk through a Bi-LSTM

decoder ' and outputs the predicted feature distribution Wd
3. Converting the per-frame predictions made by

Bi-LSTM into a label D, which represents the dielectric
estimation

4. Calculate the corresponding target depth with Equ 7
end for
return estimated dielectric property D and target depth D′

1) Model Architecture: We introduce the technical details
of our CRNN model as follows. A CRNN model contains
three components [24]: convolutional layers as a encoder,
recurrent layer as a decoder and a transaction layer to output
the predicted label.

In particular, we illustrate the module structure in Table I,
the input is a sequence of the filtered B-scan images. The width
of each image is flexible since it is determined by the number
of A-scans. The height of each B-scan image is equal to 1024,
which represents the total sample number of an A-scan.

In the convolutional layers, we employ Res Net34 [25] as
the encoder &, which contains five residual convolutional
blocks, and it automatically extracts a feature sequence from
each input B-scan B f

k to obtain the feature map Wk [26].
Meanwhile, we deploy a bidirectional long short-term memory
(Bi-LSTM) [27] as the decoder '. It is built for making
dielectric prediction distributions Wd for each frame of the
feature map Wk , outputted by the encoder &. Specifically, the
recurrent layer contains two Bi-LSTM blocks, in which their
hidden units are 512 and 256 respectively. Equ. 8 illustrates
the definition of a LSTM model, ck is the memory states at
time step k and f represents the forget gate’s activation vector.
In addition, O is the output gate’s activation vector, i is the
input/update gate’s activation vector and g stands for the cell
input activation vector. The LSTM model is able to operate
on the input with arbitrary width, traversing from starts to
ends. This property benefits us since the input B-scan B f

k
contains arbitrary A-scans. Besides, in image-based sequences,
contexts from both directions are useful and complementary to
each other, thus a Bi-LSTM model is implemented according
to [28]. At last, in the transaction layer ( , the prediction
distributions are converted into a label, which is represented
as the dielectric property D.

LSTM : (Wk , hk−1, ck−1)→ (hk, ck)

ck = f * ck−1 + i * g

hk = O * tanh (ck) = Wd (8)

TABLE I
DIELECTRIC PREDICTION MODULE STRUCTURE. |*| STANDS FOR

RESIDUAL CONVOLUTIONAL BLOCKS

As shown in Equ. 9, & extracts the feature representations
Wk of the input B-scan B f

k . ' aims to predict the dielectric
distributions hk of each B-scan. In the end, ( interprets this
learned dielectric property as a single value D.

& : R2 → R2, B f
k +→ &(B f

k ) = Wk

' : R2 → R2, Wk +→ '(Wk) = Wd

( : R2 → R1, Wd +→ ((Wd) = D (9)

2) Loss Design and Training: Once the dielectric property is
predicted, we optimize the model by using a Connectionist
Temporal Categorical (CTC) loss [29].

∑

i

P(Dgt | W ) =
∑

i

P(Dgt | πi )P(πi | W ) (10)

where Dgt is the ground truth of the dielectric property, W is
the input sequence of the RNN model, and πi denotes each
possible value of the dielectric. The depth of the subsurface
target can be further calculated according to Equ.7.

We train our model on a same server mentioned in the
last section. This model is trained for 200 epochs with an
0.01 initial learning rate. We use Root Mean Squared Propa-
gation (RMSprop) optimizer without the momentum to update
the learning rate and the weight decay is set to 1e − 08 for
every 10000 iterations.

IV. EXPERIMENTAL STUDY

To demonstrate the effectiveness of the proposed 3D metric
GPR imaging method, we conducted both simulation and
experimental study. The synthetic data were generated by
gprMax [30] while the field data were collected on a concrete
slab at CCNY Robotics Lab Testing Pit. We also compare the
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Fig. 9. The ground truth of the testing slabs. (a) synthetic concrete slab. (b) field concrete slab. Note that in (b), the black bounding box demonstrates
the field data collection area.

effectiveness between our method and other approaches, and
discuss the effectiveness of the DielectricNet model.

A. Data Preparation
To verify the proposed Deep Neural Network (DNN) models

in this paper, we prepare a GPR B-scan dataset for training
and testing purposes. The dataset we provide contains both
synthetic and field B-scan data.

1) Field GPR Data Collection: We firstly collected the field
GPR data with our Omni-directional robot on the CCNY
concrete slab whose layout is defined in Figure 9(b). This
concrete slab have a dimension of 2.40(m)×0.90(m)×0.25(m)
(length × width × thickness). The dielectric value of this
slab is approximately 7. There are 10 pipes buried in the slab
with different size, depth and material. Specifically, it contains
7 horizontally buried pipes, 2 diagonally buried pipes, and
1 short copper pipe. As mentioned in Section II, the GPR
sensor we used is a GSSI PaveScan RDM 1.0, with 2 GHz
frequency and 20cm max depth detection range. We conducted
24 automated GPR tests which contribute 120 raw B-scan data
to our dataset.

2) Synthetic GPR Data Generation: However, the collected
field data is still not enough for the DNN model training
purpose. Thus, by taking advantage of gprMax [30], we build
a synthetic testing environment that simulates the real NDT
condition.

Specifically, to match with the real commercial GPR
(i.e., GSSI PaveScan RDM 1.0), we setup the simulated GPR
pulse to a Gaussian norm wave, which has a central frequency
f c = 2G H z. In addition, the distance between transmitter
and receiver of the antenna is set to 5cm, with a sensing time
window as 5ns. Then, we generate a synthetic slab dataset
using gprMax. The surrounding medium of the synthetic slab
is set to multiple dielectric values to emulate different envi-
ronments. In particular, the relative permittivity varies from
4 to 10 with a 0.5 increment as the interval. The conductivity
is set to 0.01. We also assume the surrounding medium has
a non-magnetic property, thus the relative permeability is set
to 1. We then randomly put 1 to 5 cylindrical objects into
each slab, where all the objects are designed as the Perfect

Electric Conductor (PEC). When conducting synthetic GPR
data generation, we also make the spacing of consecutive GPR
measurements to 5 mm to match with the same property in
our field data collection.

In the end, we generate 160 synthetic models and col-
lect 9 B-scan data over each synthetic model. Combined with
120 field B-scan data, we eventually obtain the 1560 B-scan
data in total, and use 1100 for training, 300 for testing, and
160 for evaluation.

3) Radargram Data Annotation: To train the learning-based
modules and conduct the corresponding experiments, we hence
introduce the data annotation for ground truth data generation.

We use LabelMe [31] software to annotate the hyperbolic
features for B-scan image set S I . The annotated radargram
images are further used as the ground truth in noise cancella-
tion module. As for the dielectric estimation module, on the
one hand we can easily determine the ground truth dielectric
value for synthetic GPR data, because we designed it on
purpose. On the other hand, since we know the material of
the field slab is concrete, we can check the dielectric table
for the nominal value and make a calibration to determine its
real value. Hence, once a dielectric value of the surrounding
medium is predicted, we can calculate the traveling velocity
of the signal and thus estimate the target depth according to
Equ 7. Note that the estimation precision of the dielectric
prediction is discussed in Section IV-C.

B. Comparison Study
As illustrated in Figure 9 to Figure 12, both synthetic and

field GPR data have been used to validate the effectiveness
of our method. Specifically, Figure 9(a) shows a synthetic
concrete slab which is 1.3 meters long, 0.25 meters deep
and 0.25 meters wide. In addition, Figure 9(b) shows the
ground truth of the field concrete slab, where the dielectric
value of the concrete is close to 7, and the dielectric value
of the PVC pipes is equal to 3. Note that the black bounding
box showing in Figure 9(b) demonstrates the field GPR data
collection area, which is 1.55 meters long, 0.25 meters deep
and 0.25 meters wide. Specifically, Figure 10 shows the raw
B-scan data and filtered B-scan data respectively. Figure 11
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Fig. 10. Qualitative results on B-scan images. The raw B-scan data and denoised B-scan data.

Fig. 11. GPR 2D imaging qualitative comparison results in front view. (a), (b) show the GPR imaging result with our method; (c), (d) show the
conventional GPR 2D imaging method introduced in [1]; (e), (f) show another learning-based method introduced in [23].

and Figure 12 show the 2D and 3D metric GPR imaging
results.

To further validate the proposed method, we compare our
approach with the conventional BP method [1] and our previ-
ous learning-based GPR imaging method proposed in [23],
where different DNN models were implemented for noise
removal module and dielectric estimation module.

Figure 11 demonstrate 2D GPR imaging results gener-
ated by the above three methods respectively. In particular,
Figure 11(c) and Figure 11(d) show that a lot of back-
ground noise exist in 2D imaging results using BP method.
In Figure 11(e) and Figure 11( f ), the noise is partially
removed and the result is sharper using the learning-based
GPR imaging method in [23]. The Figure 11(a) and
Figure 11(b) show the 2D GPR imaging generated by our
method. It can be concluded that the results of our method
are sharper and have less noise than other methods. Figure 12
illustrates 3D visualization top view of the reconstruction
results before and after using our noise removal module.

TABLE II
QUANTITATIVE RESULTS ON GPR IMAGING EFFECTIVENESS

COMPARISON. EFFECTIVENESS COMPARISON BETWEEN THE

PROPOSED DNN-FACILITATED GPR IMAGING METHOD

AND OTHERS WITH MULTIPLE METRICS

Table II provides a quantitative evaluation of three base-
line methods regarding the image noise and similarity level
compared to the ground truth image. The ground truth image
indicates the cross section of the pipes in a concrete slab,
similar to Figure 9(a). Given the 2D reconstruction image X
and 2D ground truth image Y , we evaluate them with the
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Fig. 12. GPR 3D imaging qualitative comparison results in top view. (a) shows the 3D GPR imaging results, which is corresponding to the synthetic
data in Figure 9(a). (b) shows the 3D GPR imaging results, which is corresponding to the field data collected in the region of interest (black box) in
Figure 9(b).

following different metrics: Mean Square Error, Signal-to-
Noise-Ratio and Structural Similarity Index on both synthetic
dataset and field dataset as illustrated in Equ.11-Equ.13. For
Mean Square Error, the lower the value, the better performance
is. For Signal-to-Noise-Ratio and Structural Similarity Index,
the larger the value, the better effectiveness it represents.

MSE = 1
n

n∑

i=1, j=1

(
Xi, j − Yi, j

)2 (11)

SNR = 10 ∗ (log10(X/Y )) (12)

SSIM(X, Y ) = (2µXµY + C1) (2σXY + C2)(
µ2

X + µ2
Y + C1

) (
σ 2

X + σ 2
Y + C2

) (13)

where in Equ.11, i, j denotes pixel index in image X and
image Y ; in Equ.12, we take X as noise signal and compare
it w.r.t ground truth image Y . At last, in Equ.13, µX , µY ,
σX , σY , and σXY are the local means, standard deviations,
and cross-covariance for images X, Y , C1 and C2 are constant
values.

We can find that our new learning-based method outper-
forms baseline methods. This is because our noise removal
module uses a segmentation model, and it returns a mask
region that covers the hyperbolic feature. In contrast, the noise
removal module in [23] uses a detection network, and it would
only return a bounding box region on the B-scan image.
Besides covering the hyperbolic feature in the B-scan data,
the bounding box region usually contains more noise from
B-scan data than the mask region.

C. Why CRNN Module Is Used for Dielectric Prediction?
The CRNN module has widely been used for the scene

text recognition tasks in computer vision community [24].
The input to the CRNN module is the image that contains
text, while the output is the text sequence extracted from the
image. This end-to-end method is proven to be effective and
inspired us to consider that the hyperbolic features contained
in GPR B-scan images could also be analyzed in a similar way
by the CRNN module. The hyperbolic features are normally

determined by several factors including the dielectric property
of surrounding medium, the dimension, material, and depth of
the buried utility pipelines. As long as the dataset contains
enough objects with different combinations of the above
properties, the CRNN module shall be able to predict the
dielectric value of the surrounding medium with the variant of
other factors. Since the dielectric value and depth of hyperbolic
features are correlated, we can use a CRNN module to encode
this property as an abstract sequence, and further decode and
estimate this abstract sequence as a particular dielectric value.
Specifically, the CNN encoder we implement is ResNet34
and the RNN decoder is Bi-LSTM. In addition, to better
illustrate the effectiveness of our CRNN module, we compare
it with other architectures of learning models, such as the
combinations of VGG16 encoder and Bi-LSTM decoder; a
plain CNN encoder with a Bi-LSTM decoder; a single VGG16
model and ResNet34 model respectively. All baseline model
architectures are illustrated in Table III, the module input is
a filtered B-scan while the module output is an estimated
dielectric value.

In this quantitative experiment, we compare the ground
truth of dielectric value with the estimated value predicted
by our CRNN module and other baseline models. If the
estimated dielectric value equals to the ground truth value,
we consider this prediction as a true positive prediction;
otherwise, this prediction is a false positive prediction. To keep
the consistence, we use the same hyperparameters such as
learning rate, batch size and the number of epochs in each
baseline training process. The precision score and running
time is shown in Table IV. We can conclude that our CRNN
model achieves the highest dielectric prediction precision and
the second to the fastest in inference running time compared
with other baselines. Equ. 14 illustrates the metric for precision
calculation. TP and FP indicate the number of true positive
predictions and the number of false positive predictions in
dielectric value estimation respectively.

Precision = T P
T P + F P

(14)
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TABLE III
STRUCTURE OF BASELINE MODELS FOR DIELECTRIC ESTIMATION. [*], |*| AND <*> STAND FOR PLAIN CONVOLUTIONAL BLOCKS, RESIDUAL

CONVOLUTIONAL BLOCKS AND FULLY-CONNECTED BLOCKS RESPECTIVELY

D. Ablation Study
To better analyze the contributions of different DNN mod-

ules (e.g., noise removal module and dielectric estimation
module) of our GPR imaging system, we further perform abla-
tion studies. This experiment is designed by replacing or drop-
ping off each DNN module. We first replace our noise removal
module with a classification-based model, Faster RC N N ,
the same as in our previous work [23]; then, we replace our
dielectric estimation module with the other three baselines,
such as V GG16 + Bi -LST M , V GG16, and Res Net34; in
the end, we only keep the proposed noise removal module and
dielectric estimation module respectively and drop the other
module, to make a fair and comprehensive comparison.

We list different model architectures of the dielectric esti-
mation module, such as Bi -LST M , V GG16, and Res Net34,
in Table III. The input to these models is the same, which
is the filtered GPR B-scan data B f

k . As for the U Net and
Faster RC N N , we use the original network structure and
utilize them to process the input B-scan data Bk . Note that
we need to adjust the input image size according to the
model implemented in noise removal module. Specifically,

when we use Faster RC N N to remove the noise in B-scan
data [23], we need to convert the B-scan data Bk to an
image, and then resize it to 224 ∗ 224. Once we obtain the
output image with a bounding box, we up scale the image
back to its original size and further filter the B-scan based
on the bounding box coordinates. Similarly, when we use a
segmentation-based model, U Net , as a filter, the input GPR
image size is 1/4 down-scaled of its original size, which
equals to w ∗ 256, where w indicates the width of a GPR
image. Because in our experiments, the width of GPR image
varies while the depth of GPR images equals to 1024, which
represents the number of samples in a A-scan. Then, when
we obtain the mask image, we up scale the mask image to
its original size and filter the input B-scan data based on the
mask pixels’ coordinate.

In this evaluation, we first quantitatively evaluate those
baselines with the following metrics: MSE, SNR and SSIM.
The results are shown in Table V and Table VI. Then,
we provide the qualitative comparison between the base-
lines as shown in Figure 13. It can be concluded that
our segmentation-based noise removal module contributes
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Fig. 13. Qualitative comparison between the baseline methods. Different baselines in noise removal module and dielectric estimation module are
replaced and evaluated.

TABLE IV
QUANTITATIVE RESULTS BETWEEN PROPOSED DIELECTRIC

ESTIMATION METHOD AND OTHERS ON PRECISION AND TIME COST

TABLE V
ABLATION STUDY ON THE PROPOSED DNN-FACILITATED GPR

IMAGING METHOD ON SYNTHETIC DATA

around 3% metric improvements compared with the previous
classification-based method [23]. It indicates that a B-scan
data filtered by a segmentation model gains less noise than
a classification model. When replacing different backbones in
dielectric estimation modules, the performance is not signifi-
cantly reduced, but it increases the inference time as indicated
in Table IV. At last, when removing any of the two DNN

TABLE VI
ABLATION STUDY ON THE PROPOSED DNN-FACILITATED GPR

IMAGING METHOD ON FIELD DATA

modules, the performance is degraded but still outperforms the
conventional method [1]. That is to say, the DNN-facilitated
modules are essential in terms of improving the effectiveness
of the GPR imaging.

V. CONCLUSION

This paper introduces a robotic GPR data collection plat-
form and a learning-based 3D metric GPR imaging method,
which can improve the GPR imaging performance by taking
the following steps. 1) Introducing a robotic GPR data collec-
tion platform that provides free motion pattern to collect the
GPR scans and tag the position with the GPR measurement.
2) Using a learning-based segmentation model to remove the
background noise from the raw GPR B-scan images. 3) Using
a dielectric estimation module to estimate the dielectric value
of the underground environment. Experimental results show
that our proposed method outperforms the baseline methods in
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terms of noise removal and dielectric estimation. Our method
makes the GPR data collection significantly easier by enabling
the automatic scan of the flat surface in a free-motion pattern
with minimal human intervention. It eliminates the time and
cost to laying out grid lines on flat terrain and reducing the
hassle to closely follow the grid lines and the note-taken time
to record the linear motion trajectory in X-Y directions of
current GPR data collection practice.

Our proposed method assumes the dielectric property is
stable which is valid only in certain conditions. In some natural
situations, the dielectric value may not be a constant and varies
with depth, subsurface surrounding medium, water content and
other variables. For future work, we would like to address
this issue and collect more GPR data for learning-based GPR
imaging processing.
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