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Abstract

We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not
only approach the Shannon limit but do so under the best possible scaling of their block length as a function
of the gap to capacity. This result exhibits the first known family of binary codes that attain both optimal
scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and
analysis of binary polar codes with large kernels. When communicating reliably at rates within € > 0 of
capacity, the code length n often scales as O(1/¢"), where the constant y is called the scaling exponent.
It is known that the optimal scaling exponent is # = 2, and it is achieved by random linear codes. The
scaling exponent of conventional polar codes (based on the 2 x 2 kernel) on the BEC is # = 3.63. This
falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof
of the following result: for the BEC, there exist £ X ¢ binary kernels, such that polar codes constructed from
these kernels achieve scaling exponent (¢) that tends to the optimal value of 2 as £ grows. We furthermore
characterize precisely how large ¢ needs to be as a function of the gap between y(¢) and 2. The resulting
binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction
complexity O(n) and encoding/decoding complexity O(nlogn).
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1. Introduction

Shannon’s coding theorem implies that for every binary-input memoryless symmetric (BMS) channel W, there
is a capacity I(W) such that the following holds: for all ¢ > 0 and P, > 0, there exists a binary code of rate at
least [(W) — € which enables communication over W with probability of error at most P.. Ever since the pub-
lication of Shannon’s famous paper [1], the holy grail of coding theory was to find explicit codes that achieve
Shannon capacity with polynomial-time complexity of construction and decoding. Today, several such families
of codes are known, and the principal remaining challenge is to characterize how fast we can approach capacity
as a function of the code block length n. Specifically, we now have explicit binary codes (which can be con-
structed and decoded in polynomial time) of length 7 and rate R, such that the gap to capacity ¢ = [(W) — R
required to achieve any fixed error probability P, > O vanishes as a function of 7. The fundamental theoretical
problem is to characterize how fast this happens. Equivalently, we can fix e = I(W) — R and ask how large
does the block length 7 need to be as a function of . That is, we are interested in the scaling between the block
length and the gap to capacity, under the constraint of polynomial-time construction and decoding.

Based on [2], it is known that the optimal scaling is of the form n = O(l / 8”), where the constant y is
referred to as the scaling exponent. It is furthermore known that the best possible scaling exponent is y = 2,
and it is achieved by random linear codes — although, of course, random codes do not admit efficient decod-
ing. In this paper, we present the first family of binary codes that attain both optimal scaling and quasi-linear
complexity on the binary erasure channel (BEC). Specifically, for any fixed 6 > 0, we exhibit codes that en-
sure reliable communication on the BEC at rates within € > 0 of the Shannon capacity, with block length
n = O(1/&>%%), construction complexity O(n), and encoding/decoding complexity O(nlogn).

To establish this result, we use polar coding, invented by Arikan [3] in 2009. However, while Arikan’s polar
codes are based upon a specific 2 x 2 kernel, we use ¢ x ¢ binary polarization kernels, where / is a sufficiently
large constant. The main technical challenge is to prove that this construction works. To this end, we choose
the polarization kernel uniformly at random from the set of all £ x ¢ nonsingular binary matrices, and show that
with probability at least 1 — O(1/£), the resulting scaling exponent is at most 2 4 . Since ¢ is a constant that
depends only on J, the choice of a polarization kernel can be, in principle, de-randomized using brute-force
search whose complexity is independent of the block length.

By way of a disclaimer, the theorems in this paper require the size of the kernel to be extremely large to the
point that they are not practical at all. Moreover, the decoding complexity of polar codes constructed with large
kernels, if done naively and over arbitrary channels, scales exponentially with the kernel size, which is another
challenge in using these codes. On the positive side, we prove that, for sufficiently large values of ¢, almost
all kernels yield fast scaling exponents. This establishes a new family of binary error-correcting codes that are
near optimal in every aspect at the asymptotic regime; this is of purely theoretical interest. The problem of
finding good polarization kernels with reasonable size and decoding complexity remains unsolved. We will
review some recent advancements in the field on this problem in the final section.

The rest of this paper is organized as follows. In this section, we provide the necessary background and give
an informal statement of our main result (Theorem[I). In Section[2, we present a brief outline of the proof. In
Section[3, we formally state our main theorem (Theorem[2)), and gradually reduce its proof to a certain state-
ment about ¢ X £ binary polarization kernels (Theorem[6). We defer the proof of Theoreml itself, which is
technically quite elaborate, to Section/4] We conclude with a brief discussion in Section[5.

1.1. Background and context

A sequence of papers, starting with [4,5] in 1960s and culminating with [2.6], shows that for any discrete
memoryless channel W and any code of length 7 and rate R that achieves error-probability P, on W, we have
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where the constant (which is given explicitly in [2]) depends on W and P, but not on 7. This immediately im-
plies that if n = O (1/¢€"), where ¢ = I(W) — R is the gap to capacity, then u > 2. We further note that
expressions similar to (1) were derived from the perspective of threshold phenomena in [7] and from the per-
spective of statistical physics in [8]. The fact that 4 > 2 also follows from a simple heuristic argument. For
simplicity, consider the special case of transmission over the BEC with erasure probability p. Asn — oo, the
number of erasures will tend to the normal distribution with mean np and standard deviation \/np(1 — p).
Thus, channel randomness yields a variation in the fraction of erasures of order 1/+/n. This indicates that, in
order to achieve a fixed error probability, the gap to capacity ¢ has to scale at least as 1/+/7.

It is well known [2./6] that the lower bound y = 2 is achieved by random linear codes. For the special case
of transmission over the BEC, the proof of this fact reduces to computing the rank of a certain random matrix.
Indeed, the generator matrix of a random linear code of length 7 and rate R is a matrix with R#n rows and n
columns whose entries are i.i.d. uniform in {0, 1}. The effect of transmission over the BEC with erasure prob-
ability p is equivalent to removing each column of this generator matrix independently with probability p. The
probability of error (under maximume-likelihood decoding) is thus equal to the probability that such residual
matrix is not full-rank. This probability is easy to compute, and the desired scaling result immediately follows.

Unfortunately, random linear codes cannot be decoded efficiently. On general BMS channels, this task is NP-
hard [9]. On the BEC, decoding a general binary linear code takes time O(n“), where w is the exponent of
matrix multiplication. This leads to the following natural question: what is the lowest possible scaling exponent
for binary codes that can be constructed, encoded, and decoded efficiently? For the BEC, we take efficiently to
mean linear or quasi-linear complexity. Here is a brief survey of the current state of knowledge on this question.

Forney’s concatenated codes [[10] are a classical example of a capacity-achieving family of codes. However,
their construction and decoding complexity are exponential in the inverse gap to capacity 1/¢ (see [11.12]] for
more details), so they are not competitive from an asymptotic perspective. In recent years, three new families of
capacity-achieving codes have been discovered; let us review what is known regarding their scaling exponents.

Polar codes: Achieve the capacity of any BMS channel under a successive-cancellation decoding algorithm [3]
that runs in time O(n log n). It was shown in [11,[12] that the block length, construction complexity, and
decoding complexity are all bounded by a polynomial in 1/¢, which implies that the scaling exponent
u is finite. Later, a sequence of papers [14-17] provided rigorous upper and lower bounds on y. The
specific value of y depends on the channel W. It is known that y = 3.63 on the BEC. The best-known
bounds valid for any BMS channel W are given by 3.579 < u < 4.714.

Spatially-coupled LDPC codes: Achieve the capacity of any BMS channel under a belief-propagation decod-
ing algorithm [18]] that runs in linear time. A simple heuristic argument yields that the scaling exponent
of these codes is roughly 3 (see [19, Section VI-D]). However, a rigorous proof of this statement remains
elusive and appears to be technically challenging.

Reed-Muller codes: Achieve capacity of the BEC under maximum-likelihood decoding [20,21] that runs in
time O(n®). While it has been observed empirically that the performance of Reed-Muller codes on the
BEC is close to that of random codes [22]], no bounds on the scaling exponent of these codes are known.

Let us point out that some papers also define a “scaling exponent” for codes that do not achieve capacity,
such as ensembles of LDPC codes, by substituting the specific threshold of the ensemble for channel capac-
ity. In this context, it is known [23]] that for a large class of ensembles of LDPC codes and channel models, the
scaling exponent is 1 = 2. However, the threshold of such LDPC ensembles does not converge to capacity.



1.2. Our main result: Binary linear codes with optimal scaling and quasi-linear complexity

Our main result provides the first family of binary codes for transmission over the BEC that achieves optimal
scaling between the gap to capacity ¢ and the block length 7, and that can be constructed, encoded, and decoded
in quasi-linear time. In other words, the block length, construction, encoding, and decoding complexity are
all bounded by a polynomial in 1/¢ and, moreover, the degree of this polynomial approaches the information-
theoretic lower bound p > 2. Somewhat informally (cf. Theorem[2), this result can be stated as follows.

Theorem 1. Consider transmission over i.i.d. copies of a binary erasure channel W with capacity I(W).
Fix the block error probability P. € (0,1) and an arbitrary 6 € (0,1]. Then, there exists a fixed constant
lo(0) such that for all R < I(W), there exists a binary linear code of rate at least R that guarantees error
probability at most P. on the channel W, and whose block length n is at most

Lo (6
< % , )
(I(W) = R)
where B = (1 + 2Pe_1)3 is a universal constant. Furthermore, as R approaches (W) and n grows, this code
has construction complexity O(n) and encoding/decoding complexity O(nlogn).

A few remarks regarding Theorem|[I] are in order. First, in the definition of the constant B, the term L. is
raised to the power of —1. We point out that we could have similarly chosen any other negative constant as the
exponent of P.. However, picking a smaller exponent for P, requires us to select an upper bound on § which is
stricter than § < 1. This, in turn, increases £o(d). Second, the error probability in Theorem[I]is upper bounded
by a fixed constant P.. However, a somewhat stronger claim is possible. It can be shown that Theorem![I] still
holds if the error probability is required to decay polynomially fast with the block length n. Lastly, it should
be emphasized that () is a constant that only depends on 6. However, its dependence is of an exponential
nature, i.e. {o(6) = O(exp(1/6'9')). This limitation prevents the proposed scaling exponent to be exactly
equal to 2 while maintaining the quasi-linear complexity property.

To prove Theorem[1, we will show that there exist £ X £ binary kernels, such that polar codes constructed from
these kernels achieve capacity with a scaling exponent p(¢) that tends to the optimal value of 2 as £ grows.
The claim regarding the construction and encoding/decoding complexities immediately follows from known
results on polar codes [3l24,25]]. Indeed, polar codes constructed from ¢ x £ binary kernels maintain the
recursive structure of conventional polar codes, and thereby inherit construction complexity O(#n) and encod-
ing/decoding complexity O(nlogn). We will discuss the decoding complexity in more detail in Section[3]

1.3. A primer on polar codes

Like many fundamental discoveries, polar codes are rooted in a simple and beautiful basic idea. Polarization is
induced via a simple linear transformation consisting of many Kronecker products of a binary matrix K, called
the polarization kernel, with itself. Conventional polar codes, introduced by Arikan in [3]], correspond to
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However, it was shown in [26]] that we can construct polar codes from any kernel K that is an £ X £ nonsingular

binary matrix, which cannot be transformed into an upper triangular matrix under any column permutations.
Let W:{0,1} — ¢ be a BMS channel, characterized in terms of its transition probabilities W (y|x), for

all y€ % and x € {0,1}. Further, let U = (U, Uy, ..., U,) be a block of n = ¢™ bits chosen uniformly at
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Figure 1: Block diagram of a polar coded communication scheme.

random from {0,1}". We encode U as X = UK®*" and transmit X through 7 independent copies of W, as
shown in Figure

To understand what polarization means in this context, we consider a number of channels associated with this
transformation (see also Chapter 5 of [24] and Chapter 2.4 of [27]). Let W": {O, 1}” — %" be the channel that
corresponds to 7 independent uses of W, and let W*: {0, 1}" — % be the channel with transition probabilities
given by W*(y|u) = W"(y|uK®™). Finally, forall i € [n]£ {1,2,...,n},let W; : {0,1} — #"x{0,1} 1
be the channel that is “seen” by the bit U;, defined as

1 1
Wi(y,vlu;) £ T} Z W*(y‘(v,ui,u’)> = o1 Z W”(y‘(v,ui,u’)Km>, 4)
u'e{0,1}n—1 u'e{0,1}n—1

where (-, -) stands for concatenation. We say that W; is the i-th bit-channel. 1t is easy to see that W; (y, v|u;) is
indeed the probability of the event that (Y3,Y>,...,Y,) =y and (U, Uy, ..., U;_1) = v given that U; = u;.

The key observation of [3] is that, as n grows, the n bit-channels W; defined in () start polarizing: they
approach either a noiseless channel or a useless channel. Formally, given a BMS channel W, its capacity
(W), and Bhattacharyya parameter Z(W) are defined by

1 W (ylx)
(W) £ 3 W(y|x)log ,
2 y;;/x;o,l} 2 W (y[0) + 3W(y[1)

Z(W) £ ) JWII0OW(y[).

yey

(&)

Given ¢ € (0,1), let us say that a bit-channel W; is é-bad if Z(W;) > 1 — 6 and 6-good if Z(W;) < 4. Then
the polarization theorem of Arikan [3, Theorem 1] can be informally stated as follows.

Theorem (Polarization theorem). For every 6 € (0,1), almost all bit-channels become either §-good or 6-bad
as n — oo. In fact, as n — oo, the fraction of 6-good bit-channels approaches the capacity (W) of the un-
derlying channel W, while the fraction of §-bad bit-channels approaches 1 — [(W).

With § = 0(1/n), this theorem naturally leads to the construction of capacity-achieving polar codes. Specif-
ically, an (7, k) polar code is constructed by selecting a set A of k 6-good bit-channels to carry the information
bits, while the input to all the other bit-channels is frozen to zeros. In practice, the code parameters k and ¢ are
usually selected according to the target rate of the code and/or the desired probability of error.

Henceforth, let us focus on the binary erasure channel with erasure probability z, which we denote as BEC(z).
It is well known that for W = BEC(z), we have Z(W) = z and [(W) = 1 — z. It is furthermore known (see,
for example, [27, Section 3.4], [28], or [29, Section 2.2]) that if W = BEC(z), then for all i € [n], the i-th
bit-channel W; is also a binary erasure channel BEC(p;(z)), whose erasure probability p;(z) is a polynomial
of degree at most 7 in z.



A proof of the polarization theorem for the BEC follows by studying the evolution of these # erasure prob-
abilities p;(z) as n = £™ grows. For a fixed kernel K, this evolution is completely determined by the erasure
probabilities of the £ bit-channels obtained after a single step of polarization. These £ erasure probabilities are
a central object of study in this paper.

Definition (Polarization behavior). Let W = BEC(z) and let K be a fixed ¢ X ¢ binary polarization kernel.
For each i € [{], we let fk i(z) denote the erasure probability of the bit-channel W; given by @) with n = ¢
and W*(y|u) = W*(y|uK). We refer to the set of { polynomials { fx1(z), fx2(2), ..., fx(z)} as the polar-
ization behavior of the kernel K.

Indeed, we shall see later in this paper that fx ;(z) is a polynomial of degree at most £ in z, for all i. For ex-
ample, in the special case of the 2 x 2 kernel (3), the polarization behavior is given by fx1(z) = 2z — z? and
fx2(z) = z%. With this notation, it is advantageous to view the n = {™ erasure probabilities p;(z) as the val-
ues taken by a random variable Z,, induced by the uniform distribution on the £™ bit-channels. Given that K is
non-singular, one can show that K™ is also non-singular. Furthermore, by applying the chain rule of mutual
information, since the matrix K®" is nonsigular, it is easy to see that the polar transform in Figure [L preserves
capacity. We can then study the evolution of this random variable Z,, as m grows. More formally, the recursive
construction of K* makes it possible to introduce the martingale {Z,, } ;e defined as follows:

Zms1 = fxp,(Zm), for By ~ Uniform[¢], (0)

with the initial condition Zy = z. One can view (6) as a stochastic process on an infinite /-ary tree, where
in each step we take one of the ¢ available branches with uniform probability. The polarization theorem then
follows from the almost sure convergence given by the martingale convergence theorem, which in this case
implies that

P( lim Z,(1-Z,)=0) =1, (7

m—ro0

where the probability measure is defined with respect to the random selection of the bit-channel indices. This
shows that the erasure probabilities p;(z) of the £ bit-channels polarize to either 0 or 1 as m — co. Hence,
the fraction of bit-channels that polarize to 0 approaches I(W). The speed with which this polarization phe-
nomenon takes place is the determining factor in the decay rate of the gap to capacity as a function of the block
length n = (™. We elaborate on this in the next subsection.

1.4. On the rate of polarization in various regimes

The performance of polar codes has been analyzed in several regimes. In the error-exponent regime, the rate
R < I(W) is fixed, and we study how the error probability P scales as a function of the block length 7. This is
represented by the vertical/blue cut in Figure[2l In [30], it is shown that the error probability under successive-
cancellation decoding behaves roughly as 27V, A more refined scaling in this regime is proved in [31].

As common practice for comparison purposes, we consider using a communication channel over a family
of channels that can be characterized by a single channel parameter such as the erasure probability in BEC. In
the error-floor regime, the code is fixed (i.e., the rate R and the block length n are fixed), and we study how
the error probability P scales as a function of the channel parameter. This approach corresponds to taking into
account one of the four curves in Figure2l In [32], it is proved that the stopping distance of polar codes scales
as y/n, which implies good error-floor performance under belief-propagation decoding. The authors of [32]]
also provide simulation results that show no sign of an error floor for transmission over the BEC and over the
binary-input AWGN channel. This problem is completely settled in [17], where it is shown that polar codes do
not exhibit error floors under transmission over any BMS channel.
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Figure 2: Performance of a family of codes with rate R = 0.5 over binary erasure channels. Different curves
correspond to different codes of varying block length n. The x-axis is the erasure probability of underlying
transmission channel, denoted by z, and the y-axis is the error probability .. The error-exponent regime cap-
tures the behavior of the blue/vertical cut at a fixed channel parameter z (or, equivalently, at a fixed gap to
capacity I(W) — R). The error-floor regime captures the behavior of a single curve, of fixed block length 7.
The scaling-exponent regime captures the behavior of the red/horizontal cut at a fixed error probability F.. The
figure is courtesy of [17].

The focus of this paper is on the scaling-exponent regime, where the error probability P, is fixed, and we
study how the gap to capacity I(W) — R scales as a function of the block length 7. This approach is repre-
sented by the horizontal/red cut in Figure[2l As mentioned earlier, if 7 is O (1/(I(W) — R)*), we say that the
family of codes has scaling exponent . For polar codes, the value of u depends on the underlying channel W.
In [16], a heuristic method is presented for computing the scaling exponent in the case of transmission over the
BEC under successive-cancellation decoding; this method yields y ~ 3.627. In [11.[12]], it is shown that the
block length, construction, encoding and decoding complexity are all bounded by a polynomial in the inverse
of the gap to capacity, for transmission over any BMS channel. This implies that there exists a finite scaling
exponent . Rigorous bounds on y are provided in [14,15,[17]]. In [15], it is proved that 3.579 < u < 6, and
it is conjectured that the lower bound can be increased to 3.627 (i.e., up to the value heuristically computed
for the BEC). In [14], the upper bound is improved to u < 5.702. The currently best-known upper bounds on
the scaling exponent are established in [17]: for any BMS channel, u < 4.714; and for the special case of the
BEC, u < 3.639, which approaches the value obtained heuristically in [16]. As a side note, let us point out that
the heuristic method of [16] is based on a “scaling assumption” which requires the existence of a certain limit.
The results of [[14,15./17]], as well as the results presented in this paper, do not rely on such an assumption.

In a nutshell, the scaling exponent of classical polar codes constructed via Arikan’s 2 x 2 kernel is around 4.
Its exact value depends on the underlying transmission channel and can be bounded as 3.579 < u < 4.714.
In contrast, random binary linear codes achieve the optimal scaling exponent of 2. This means that, in order



to obtain the same gap to capacity, the block length of polar codes needs to be roughly the square of the block
length of random codes. Hence, a natural question is how to improve the scaling exponent of polar codes.

One possible approach is to improve the successive-cancellation decoding algorithm. In particular, the succes-
sive cancellation list decoder proposed in [33] empirically provides a significant improvement in performance.
However, [|34] establishes a negative result for list decoders: the introduction of any finite-size list cannot im-
prove the scaling exponent under MAP decoding for transmission over any BMS channel. Furthermore, for the
special case of the BEC, it is also proved in [34] that the scaling exponent under successive-cancellation decod-
ing does not change even under a finite number of interventions (that reverse incorrect decisions) from a genie.

Another approach is to consider polarization kernels of size larger than Arikan’s 2 X 2 matrix (3). Indeed,
it is already known that such kernels have the potential to improve the scaling behavior of polar codes. For the
error-exponent regime, Korada, Sasoglu, and Urbanke proved in [26] that for ¢ sufficiently large, there exist
£ x ¢ binary kernels such that the error probability of the resulting polar codes scales roughly as 27", rather
than 2~V". For the scaling-exponent regime, Fazeli and Vardy [28] observed that the value of y on the BEC
can be reduced from p = 3.627 for the matrix in (3) to u(Ks) = 3.577 and p(Ky) = 3.356, where Kg and
K4 are specific binary kernels constructed in [28]]. Pfister and Urbanke [35]] recently proved that, in the case of
transmission over the g-ary erasure channel, the optimal scaling-exponent value of y = 2 can be approached
as both the size of the kernel ¢ and the size of the alphabet g grow without bound. Furthermore, Hassani [27]]
gives evidence supporting the conjecture that, in order to approach y = 2 on the erasure channel, it suffices to
consider large kernels over the binary alphabet. Herein, we finally settle this conjecture.

2. Outline of the Proof

The proof of our main result consists of several major steps. The technical part of the proof is, on occasion,
quite intricate. To help the reader, we briefly discuss the main ideas behind each of the steps in this section.

Step 1: Characterization of the polarization process. In order to understand the finite-length scaling of polar
codes, we need to understand how fast the random process Z,, defined in (6) polarizes. In other words, given
a small { > 0, how fast does the quantity P{Z,, € [{,1 — {]} vanish with m? To answer this question, we
first relate the decay rate of Z,, with another quantity that can be directly computed from the kernel matrix K.

As the first step along these lines, we consider the behavior of another random process Yy, = gu(Zp),
where g,(z) = z%(1 — 2)%, and & > 0 is a parameter to be determined later. Note that Z,, € [, 1 — {] if and
only if Yy, is lower-bounded by {*(1 — {)*. Therefore, by Markov’s inequality, we have

P{Z, €[, 1-0]} < % (8)

In order to derive an upper bound on E[g,(Z,,)], we write:

8a(Zm) = (fK,Bm( 1) (1~ fip,(Z ))

_ o fKBm(Zm 1)( fKBm(Zm 1))
= m—l(l — mel) ( Zm 1( Z ) (9)
_ fK/Bm(mel)(]‘ _fK,Bm (mel)) *
— ga(mel) ( mel(]. — mel) .
Proceeding along these lines, we eventually conclude that
Elgu(Zm)] < (A1x)", (10)
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Figure 3: The figure on the left illustrates the fact that fg ;(z) has a sharp transition of order roughly O (€ - 2)
when the kernel K is chosen at random. The two figures on the right compare three different choices of the ker-
nel: the red curve corresponds to Arikan’s kernel; the black curve to the kernel Kq¢ from [28]], and the blue
curve is obtained by taking the average of the functions fx ;(z) for all nonsingular 16 x 16 kernels.

where
(fki(z)(l _'fkj(z)))“
(2(1-2z))"

The discussion above is presented formally in Lemmal3]

4
i=1

(11)

* A
A“,K = sup
z2€(0,1)

|

Step 2: Sharp transitions in the polarization behavior. We fix « = 1/ log ¢ and show that as ¢ grows, with
probability at least 1 — 0;(1) over the random choice of a non-singular ¢ x ¢ binary kernel K, we have

ik = Ot logl) . (12)

To do so, we prove that, as ¢ grows, the polarization-behavior polynomials fx ;(z) will “look like” step func-
tions for most nonsingular kernels. First note that fx ;(z) is an increasing polynomial with fx ;(0) = 0 and
fki(1) = 1, for any i and any K. As { increases, we show that fx ;(z) is likely to have a sharp transition thresh-
old around the point z = i/£. More precisely, we prove that

fri(z) < ¢~ (2tlost) forz < - — csl /2 log,

~

; (13)
fri(z) = 1—£72H80 - forz > % + o502 log ¢,

with probability at least 1 — O(1/¢) over the random choice of K, where cs is a universal constant. This
threshold behavior is illustrated (both schematically and for certain specific kernels of size £ = 16) in Figure[3.

Step 3: Finite-length scaling law. For any fixed § > 0, we can derive the finite-length scaling law for polar
codes using the results of the previous two steps. From (8), (10), and (12), we conclude that

P{Zy € [g1-)} = O(g (e E)™). (14)

Denote the desired block error probability by P., and set ¢ = P./n = P./~™ in (14)), as is common in the
polarization theory literature due the union upper bound on the block error rate. Then we have

P{Z, € [PL7",1—RL™} = O(¢~™/(249) (15)



The foregoing is an upper bound on the fraction of bit-channels that are not yet sufficiently polarized after m
polarization steps. Later, we will also provide a simple bound on the fraction P{Z,, > 1 — R.l~™} of bit-
channels that are polarized to the useless state. Note that if we transmit information only on those bit-channels
whose erasure probability is at most P, /7, then a straightforward union-bound argument shows that the overall
probability of error under successive-cancellation decoding is at most Pe. In essence, the bound in (L)) implies
that the fraction of such “good” bit-channels is at least [(W) — O(K*m/ (2”)). Since the block length n is £™,
this means that the gap to capacity scales roughly as n~1/ (2+9) which is the desired scaling law. Lemmal]
captures the above discussed argument.

3. Main Result

We begin by specializing Theorem[l]to polar codes and stating this result more precisely in Theorem[2l We then
gradually reduce the proof of Theorem[2 to more and more specialized statements about large binary kernels.
To do so, we start from the following definitions.

Definition 1 (Polar codes with large kernels). Consider transmission over a binary erasure channel W with
capacity I(W). Let GL({,TF,) denote the general linear group of all £ X £ non-singular matrices over IF;.
Let K be a specific polarization kernel chosen from GL(¢,IF;). We define Cx(n, R, Ps) to be a code of rate
R < I(W) obtained by polarizing K whose block length n = {™ is the smallest such that the error probability
under successive cancellation decoding is at most P..

We observe that the code Cx(n, R, ) defined above always exists by the results of [26] and [24, Theo-
rem 5.4], as long as the matrix K is not equivalent under column permutations to an upper triangular matrix.

Definition 2 (Upper bound on the scaling exponent). Consider transmission over a binary erasure channel W
with capacity I(W). For a fixed polarization kernel K € GL({,F;), we define 7i(K) to be an upper bound
on the scaling exponent of K, if for any probability of error P. € (0,1) and any rate R < I(W), there exists
a Cx(n, R, P.) polar code whose block length n is upper bounded by

B
(I(W) — Ry

where B is a constant that depends only on K and P,.

(16)

~X

Note that these definitions are consistent with the way the scaling exponent is defined in the literature, see
e.g., [14, Theorem 1], [17, Theorem 1]. We are now ready to present our main results.

Theorem 2 (Binary polar codes with near-optimal scaling). Consider transmission over a binary erasure
channel W with capacity [(W). Let K € GL({,TF,) be a kernel selected uniformly at random. Fix § € (0,1].
Then, there exists Lo(0) such that for any £ > £y(6), with high probability over the choice of K, the scaling
exponent of K is upper-bounded by

#(K) <2+0. (17)

Furthermore, the constant B in (I6) is given by £(1+2P,1)3,

In fact, what we prove is slightly stronger. Let {Cx(n = ¢™,R)}_; be the family of rate-R large-kernel
polar codes obtained by polarizing K for m many steps, where R < I(W). We will show that as ¢ grows, with
high probability over the choice of K, the scaling exponent can be upper-bounded by

$=2+0 <71°g1§g°§€)>. a8)



In order to treat (I8) as u < 2+ 4, it suffices to pick a fixed £ that is at least in the order of exp (6~ 101). We
denote this minimum value of ¢ by £y(J). Once again, we emphasize that £y(0) scales exponentially with 1/5.
Note that a fixed value of ¢, although being extremely large, does not change the asymptotic code-length, 7, nor
the decoding complexity, O(n log n), which is the main focus of this work. However, given how large ¢ should
be and the fact that the decoding complexity of polar codes with arbitrary £ x £ kernels is also multiplied by
26, it becomes clear that the large-kernel polar codes, whose kernels are chosen at random, are not suitable for
the practical purposes. We address the recent advancements on the decoding problem of large kernels at the
end of the paper.

We also point out that, as the rate R approaches the channel capacity (W), which consequently makes
the block length n grow, these codes have construction complexity O(n) and encoding/decoding complexity
O(nlogn). The claim on the construction complexity follows from the fact that the erasure probabilities of
the bit-channels can be computed exactly according to the recursion (6). The claim on the encoding/decoding
complexity follows from [26, Section VII].

The foregoing theorem follows from the following result that characterizes the behavior of the polarization
process defined in (6)).

Theorem 3 (Near-optimal scaling of the polarization process). Let K € GL(¢,TF,) be a kernel selected uni-
formly at random from all ¢ x { nonsingular binary matrices. Let Z,, be the random process defined in (6))
with initial condition Zy = z. Fix P. € (0,1) and a small constant 5 > 0. Then, there exists {y(J) such that
forall £ > £y(8) and for all m > 1, and almost all K, we have

m

P{Zy <PLT™} > 1—2z— (1+2P71)¢ 75, (19)

For the sake of clarity, note that (i) in the kernel K is fixed and the probability space is defined with
respect to the random process Z,,, and (ii) the result (I9) holds with high probability over the choice of the
kernel K. We are now ready to present the proof of Theorem[2

Proof of Theorem[2] Fix any rate R with R < I(W). Assuming Theorem[3 holds, consider transmission over
BEC(z) of a polar code with block length 7 = ¢™ and rate R obtained by polarizing the ¢ x ¢ kernel K, where
¢ > o(6). By Theorem[3] with high probability over the choice of K, atleasta 1 —z — (1 2P, 1)¢~—"m/2+¢
fraction of the bit-channels have erasure probability at most P.¢/~™. Given that R < 1 — z, one can always find
a positive integer m such that

R<1—z—(14+2P7 1) 2. (20)

A simple union bound yields that the error probability under successive cancellation decoding is at most Ps.
Given that I(W) = 1 — z, we can re-arrange (20) to obtain that

m

(14+2PR Yo 25 <I(W) —R, 21)
which is equivalent to

-1 —1\2+6
1v2r o (2R (22)

(IW)—R) ~ (I(wW) —R)*" ~

W.l.o.g., we can assume that & < 1 and, hence, we can take 8 as prescribed in Theorem[2l Considering that n
is a power of £, for (20) to hold, it suffices to have

[logz (W)} <log,n, (23)
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where ¢ can be an arbitrary integer such that ¢ > ¢y. Therefore, the smallest value of n for which the desired
code exists is the first integer power of £ that is not smaller than B/(1(W) — R)2+4. Thus, there exists a code with

24
"S TIw) - R 29
such that (23) holds. O

The rest of the section is devoted to the proof of Theorem[3l The basic idea is to bound the number of unpo-
larized bit-channels. To this end, let us introduce the polarization measure function g, (z), defined as follows:

Su(z) £ 2°(1—2)%, (25)

where & € (0,1) is a constant parameter to be determined later. The first step is to show that an upper bound
on E[g,(Z,,)] yields a lower bound on P{Z,, < P.¢~™}. This is accomplished in the following lemma.

Lemmad. Let K<€ GL({,F;) be an { x £ nonsingular binary kernel such that none of its column permutations
is upper triangular. Let Z,, be the random process defined in (6) with initial condition Zy = z. Fix a constant
« € (0,1) and define ,(z) as in R3). Further fixp > 0, P, € (0,1) and assume that

]E[g“(Zm)] LM, (26)
forall m > 1. Then, for any m = 1, we have
P{Zy <RLT"} > 1—z— 2B+ R)C 00, 27)

Proof. First of all, we upper bound P{Z,, € [R.¢~",1 — R.¢~™]} as follows:

P{Zy € [t 1— Pl QL PLey(Zy) > gu(Rl™™)}

®) Elgy(Zm)]
g —learimmil
Su(Pel—m)
©) g—mp
< —
Su(Pelm)

d
(g) 2P¢ g—m(P—f’C)’

(28)

where equality (a) uses the concavity of g, (+) together with its symmetry around 1/2; inequality (b) follows
from Markov’s inequality; inequality (c) uses the hypothesis E[g,(Z,,)] < ¢~™F; and inequality (d) uses the
factthat 1 — P.£~™ > 1/2 for all m > 1. Now, let us fix m from this point forward and define

lI>

A2 P{Zy,e (0,RL™]},
BE&£P{Z,e[Rt"1-PL "]}, (29)
C&2P{Z,e(1-PRt™1)},

lI>

and let A’, B/, and C’ be the fraction of bit-channels in A, B, and C, respectively, that will have a vanishing
erasure probability as 1 — co. More formally, we define

A2 fim P {zm € (0,PL™™) , Zuysy < f*’”/},

m’'—o00

B' 2 lim P {zm € [Pl 1= Pl™), Zypor < g*'”’}, (30)
m’—o00

C'2 lim P {zm € (1=RL™1), Zysw < e—m’} :
m’—o00

11



We now show that the limits in (30) exists, and consequently the quantities A’, B’ and C’ are well defined. To
do so, it suffices to prove that, for any z € (0, 1), the following limit exists

lim P {sz <O | Zp = z}, 31)

m’'—o0

which is equivalent to proving the existence of

lim P {zm, <o | Zg = z} . (32)
m'— o0
Note that, for any g > 0,
lim inf P {zm/ <M Zg = z} > liminf P {zm/ <27 | 7o = z} . (33)
m'— o0 m’'— oo

From the proof of [26, Theorem 2], we have that the random variable Z,,, converges almost surely to a {0,1}
random variable Z. Furthermore, an application of [24, Lemma 5.9] gives that, for § < E(K),

lim inf P {Zm/ <27z = z} =P {Ze =0}, (34)
m’'—o0

where E(K) > 0 for all £ x ¢ nonsingular binary matrices none of whose column permutations is upper trian-
gular. Suppose now that

lim sup P {zm, <M Zg = z} > P {Ze = 0}. (35)
m’'—o00

Then, Z,,» cannot converge in probability to Z«, [41, Page 70, Eq. (5)]. However, this cannot be possible since
almost sure convergence implies convergence in probability [41, Theorem 4.1.2]. Thus,

lim sup IP {Zm/ <M |z = z} — liminf P {Zm/ LM | 7z = z}, (36)

m!—so00 m’'—o0
and the limits in and (32) exist. Note that
A'+B +C = lim P {zmm, < E—m’} —1-z 37)
m'—o0
In addition, from (28) we have that
B' < B <2p ¢, (38)
In order to upper bound C’, we proceed as follows:
C'= lim P {Zm+m/ <" | Zpe (1- Peﬁ—’”,l}} P{Z,e (1-PRt"1]}

m’ — oo

/ 39)
< lim P {zmm, <O | Zwe (1-DRt 1] } :
m'—co
By using again the fact that the kernel K is polarizing, we obtain that the last term equals the capacity of a BEC
with erasure probability at least 1 — P.£~™. Consequently,
C' <Rt (40)
As a result, we conclude that P{Z,, € [0, .¢~™)} = A is bounded as follows

r@ o,

(b) ©
A=A —B —C' > 1—z-2P%¢ "0 ™ > 1—z— (2B "+ R) ("0,

where equality (a) uses (37)); inequality (b) uses (38) and (40); and inequality (c) uses the fact that since &, p €
(0,1) then p — a < 1. This chain of inequalities implies the desired result. O

12



The second step is to derive an upper bound on E[g, (Z)] of the form (A} ()™, where A}  depends on the
particular kernel K. This is accomplished in Lemmal3] whose statement and proof follow.

Lemma 5. Let K€ GL(¢,TF,) be a fixed { x { binary kernel. Let Z,, be the random process defined in (6) with
initial condition Zy = z. Fix a € (0,1) and define g,(z) as in 23). For z € (0,1), define Ay x(z) as

2 750218 (fri(2)

A x(z) = , 41
*E e
and let A;/K be its supremum, i.e.,
Ay £ sup Ay k(z). (42)
z€(0,1)
Then, for any m = 0, we have that
Elga(Zm)] < (/\Z,K)’”ga(Z)- (43)

Proof. We prove the claim by induction. The base step m = 0 follows immediately from the fact that Zy = z.
To prove the inductive step, we write

E[ga(zmﬂ)] - ]E[IE[ga(fK,Bm (Zm)) ’ ZMH/ (44)

where the first (outer) expectation on the RHS is with respect to Z,, and the second (inner) expectation is with
respect to By,. Then, we have that

LY 8 (fx,i(Zm))
8a(Zm)
1 v/ ‘
< Elga(Zw)] sup 1Em18eUki2). 5)
ze{0,1} gzx(z)

]E[]E[ga(fK,Bm(Zm)) | Zm” = E|gu(Zn)

Auk
O

The third and final step is to prove that /\Z’K concentrates around 1/+/¢, when K is selected uniformly at
random among all £ X ¢ nonsingular binary matrices. This is done in Theorem|6] which is stated below.

Theorem 6 (Concentration of /\Z,K)° Let K € GL(¥,Fy) be a kernel selected uniformly at random among all
¢ x € non-singular binary matrices. Set x = 1/1og ¢ and define A’ . as in (@2). Then, there exists a universal
constant ¢ such that as { grows, we have

]P{ fe <l 1og£} >1-0(1) , (46)
where the probability space is defined over the choice of the kernel K.

At this point, we are ready to put everything together and present a proof of Theorem[3] assuming that The-
orem[6 holds. The proof of Theorem[6 is deferred to the next section.

13



Proof of Theorem|[3. A simple counting over the binary subspaces of dimension ¢ shows that

number of non-singular but non-polarizing ¢ x £ binary kernels 2" < 1 forall £
= — fora
number of non-singular £ X ¢ binary matrices Hf 1(25 21) 2!

(47)

Therefore, as £ grows, with probability at least 1 —2~¢ =1 — 0(1) over the choice of the kernel K, K is such
that none of its column permutations is upper triangular. By Theorem [6, as ¢ grows, with probability at least
1 —0(1) over the choice of the kernel K, we also have that Ay < c/~1/210g ¢. Given that the intersection of
these two sets also has probability at least 1 — 0(1), most choices of K satisfy both conditions for sufficiently
large ¢. Fix any such kernel. Consequently, as g,(z) < 1forall z € (0,1), by Lemmal5/we have that

E[gu(Zm)] < (ct"?1log )", (48)

where the expectation is over the uniform selection of the polar bit-channel index, or in other words, the ran-
dom process Z,,. Taking into the account that & = 1/ log ¢, we can apply Lemmal4 to deduce that

P{Z, <PLT™} > 1—z—c(2c72log )™, (49)

where ¢c; = 2P, * 4 P, and the probability space is defined with respect to the random selection of the index.
Note that, as ¢ < 1 and P, < 1, we have that c; < 1+ 2Pe_1. The theorem immediately follows by picking
£p(9) to be large enough such that

1

2c6(8) V2 1og £y () < Lo(8) 7, (50)
which is of the order O(exp(6~101)). O

4. Proof of Theorem[6: Concentration of A}

Recall that our goal is to show that for most non-singular binary kernels K € GL(¢,TF,),

Max(z) <cl 2logl Vze (0,1), (51)

where &« = 1/ log ¢ is fixed and ¢ is some universal constant. Our strategy is to split the interval (0, 1) into the
three sub-intervals (0,1/¢2), [1/%,1—1//¢?], and (1 —1/¢?,1). Then, we will show that holds for each
of these sub-intervals. In fact, as we shall see, polarization is much faster at the tail intervals. Proposition|[1]
captures this approach.

Proposition 1. Let K € GL(¢,TF;) be a kernel selected uniformly at random from all £ X { nonsingular binary
matrices. Set « = 1/1og ¢ and define Ay x(z) as in (@1). Then, as ¢ grows, the following results hold.

1. Near optimal polarization in the middle:

P{AM(Z) <cltlogl, Vze [2—21 . %] } >1-0(1), (52)

2. Faster polarization at the tails:

1 1
IP{A x(z) < ctlog , v,ze( £2>U(1—E,1>}>1—0(1), (53)
where the probability spaces are defined over the choice of the kernel K and c is a universal constant.
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Proof of Theorem|6. Let A and B be the sets of kernels such that the events in (52) and (33) respectively hold.
Then, by Proposition[I} we have that

P(A) > 1—o(1),

54
P(B) > 1—o(1). &9
Furthermore, we have that
P(ANB)=P(A)+P(B)—P(AUB) >P(A)+P(B) — 1. (55)
By combining (54) and (53), we conclude that
1[){)\“,1((2) <clz logl, Vz e (0,1)} > 1—o0(1). (56)
O

In what follows, we first analyze the probability of error under successive-cancellation decoding for the spe-
cial case of transmission over the BEC. We formulate the erasure probability of the i-th polar bit-channel (at
the kernel level) as a polynomial in the erasure probability of the underlying channel. Then, we utilize this
formulation to introduce and compute the average polarization behavior and provide several auxiliary lem-
mas/propositions to establish the sharp transitions of fx ;(z) on average that was depicted earlier in Figure [3.
Eventually, we put these propositions together and prove a concentration theorem, which, in turn, completes
the proof for Proposition[1

4.1. Successive cancellation decoding on binary erasure channels

Let K € GL(/,F;) be a nonsingular binary kernel, and let s denote the number of erasures that occurred dur-
ing the transmission over BEC(z). There are a total of (f) distinct and equally-likely erasure patterns, and each
(i)

of them occurs with probability z°(1 — z)¢=5. Let ;" denote the number of erasure patterns with s erasures,
which make u; undecodable. Thus the erasure probability of the i-th bit-channel is given by

14 .
fri(z) = Y 2°(1 — 2) . (57)
s=0

Fix an erasure pattern with s erasures. To simplify notation in what follows, let us assume that the s erasures
are in the last s positions. As in @), let us write u = (v, u;, u") for the vector encoded by the polar transfor-
mation in (1), and let y = (yl,yg, .. .,yg_s) denote the vector observed at the channel output in which the
erasure locations are removed. Then y = uK|,_; where K|;_4 denotes the submatrix of K consisting of its first
¢ — s columns. Notice, however, that in addition to y, the successive-cancellation decoder knows the vector v
consisting of the first i — 1 bits of u. Thus let us write

y = uK|H = (v,u;, u’)IqH = (v, 0,0)1<|H + (0,u;, u’)K\H (58)

and define x = y — (v,0,0)K]|,_;. Since this vector x can be computed by the decoder, it follows that the
decoding task is to determine u; given

(59)
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where K'|,_ denotes the submatrix of K|,_ consisting of its last £ — (i — 1) columns. It is easy to see that u;
can be determined uniquely from x if and only if the vector (1,0,0, ...,0)" is in the column space of the matrix
K'|y_s. Thus we arrive at the following decodability condition:

u; is decodable <= (1,0,0,...,0)" € column space of Kl‘ﬂ (60)
N—— —s
{—i

As we shall see, it is advantageous to rephrase this condition in terms of the column space of the £ X (£ —s) ma-
trix K ] /—s, since we know that all the columns of this matrix are linearly independent. Clearly, (1,0,0, ..., O)t
is in the column space of K’|,_; if and only if

1, ¢o,..., i € Fy: (Y1, P2+ ,¥i-1,1,0,0,- - ,0)! € column space of K‘E—s' (61)
{—i

Now let e; denote the j-th element of the canonical basis for ng and define the linear subspace E; of ng as

E £ <e1, e, -, e]->, where (-) denotes the linear span over IFp. With this, in view of (60) and (61)), the de-

codability condition can be rephrased as follows:

uj is decodable <= (E;\ E;j_1) N (column space of K!K_S) # . (62)
In what follows, we use (62)) to derive an explicit formula for the probability that u; is decodable — that is, for
IP{(E; \ Ei—1) N (column space of K|;_;) # @} when K is selected uniformly at random from GL(¢, F>).
4.2. Average polarization behavior

In this subsection, we study the erasure probability of the i-th bit-channel W; given that (i) the kernel is selected
uniformly at random from GL(/, IF,), and (i) the transmission channel is BEC(z). Explicitly, for alli € [{], we
define the average erasure probability F;(z) as follows:

Y fi(2) Y fi(2)

KeGL({,F KeGL(L,F
Filz) £ Ex[fui(2)] = ‘EGL((E; o R (63)
2 (2E_2])
I

In what follows, we analyze the asymptotic behavior of F;(z) and show that, as ¢ grows, F;(z) becomes close
to a step function with a jump at z ~ i/¢. Later on, we prove concentration results that show that, with high
probability over the choice of the kernel, fk ;(z) is also close to a sharp step function centered around z ~ i/¢.
This is captured in Propositions 2/and 3]

Proposition 2 (Lower bound on the average erasure probability). Ler F;(z) be the average erasure probability
of the i-th bit-channel as defined in (63). Fix B,0c € RT = {x: x € R, x > 0} and assume that

. 1/2
P [clog /] n <,Bln€> / 64)

229 7 20

where log and In denote the logarithm in base 2 and e, respectively. Then, we have that

Fi(z) > 1= F)(1-¢79). (65)
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Proposition 3 (Upper bound on the average erasure probability). Let F;(z) be the average erasure probability
of the i-th bit-channel as defined in (63)). Fix B,o € R and assume that

i (o) BIne\'?
S A ( 20 > ’ (66)
where log and In denote the logarithms in base 2 and e, respectively, and
_ |ologl+log6|
h(o) = { Tog3 —1 J = O(clog?). (67)
Then, we have that
Fi(z) < 7P 4077, (68)

Recall that F;(z) is the probability of observing an erasure at the i-th bit-channel, when there are two sources
of randomness: (i) the selection of the kernel, and (if) the number and location of the erased bits. Let the
random variable S denote the number of erased bits at the receiver. As z is the erasure probability of the
underlying transmission channel, we have that

P{S =5} = <f> 25(1—2)"". (69)

Since we also average over all ¢ x ¢ nonsingular kernels, the location of these s erasures does not affect the
average erasure probability. Hence, without loss of generality, we can assume that the erasures are in the last
s positions. Let Ry_¢ C ng denote the linear span of the first £ — s columns of the kernel. Since the kernel is
selected uniformly at random from GL(/,IF;), it is easy to see that Ry_; is also chosen uniformly at random
from all subspaces of dimension ¢ — s in ng. Recalling the decodability condition (62)), we have that

P{u; = erasure | S = s} = IP{Rg,S N(E;\Ei_1) = @}, (70)

where R/ _¢ is a subspace of dimension ¢ — s in ]Fg that is chosen uniformly at random. Note that the event
on the Left Hand Side (LHS) is reliant on a specific number of erasures, s, and is computed over all possible
locations of erasures and selections of K. However, the event on the RHS is independent of the location and
number of erasures, and thus is computed over all selections of random subspace R,_;. Therefore, the prob-
ability that the i-th bit is erased given s erasures is a claim solely on the structure of the kernel. Now, we can
rewrite F;(z) as

{ { /
Fi(z) = Y _ P{S =s}P{u; =ecrasure|S =5} = )_ <S>zs(1 — z)g_spi‘s , (71)
s=0 s=0
where we define the average conditional erasure probability p;s as follows:
pie 2 Plu; = erasure | = s} = P{R, O\ (Ei\ E; 1) = 0}, 1)
where the right-most equality is derived from (Z0).

Lemma 7 (Closed-form for the average conditional erasure probability). Let p;s be the average conditional
erasure probability defined in (12). Then, for any i and s, we have

/ -1  min{{—s,i—1} i— 1] ¢s=t=1 ot _ oitj
Pis = {—s

Lo | == 73)

t=max{i—s,0} j=0

al . ; . ; . . .
where [b] is the binary Gaussian binomial coefficient that denotes the total number of subspaces with

dimension b in IF3.
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Proof. Let Ay_; denote the number of subspaces of dimension £ — s in ng. That is,

(74)

{—s—1 14 i
2l _pj
AL B [ ¢ } _

_ {— i
l—s i 2 =2
Define T'(t; £, s,1) as the number of subspaces A of dimension ¢ — s in IF§ such that AN (E; \ E;_1) = @ and
dim(A NE; 1) = t. Recall that E; and E; 1 are linear subspaces of IFg with respective dimensions of i and
i—1,and E;_1 C E;. Therefore, I'(t;¢,s,i) is equal to the number of subspaces A of dimension ¢ — s in ]Fg
such that dim(A N E;_;) = dim(A NE;) = t. Consequently, the integer f in the definition of I'(t;¢,s,1)
satisfies

max{i —s,0} < t < min{l —s,i—1}. (75)

A simple basis counting argument (see, for example, [36, Section II.C]) yields that

(76)

i1 l—s—t—1 2(_2i+j
T(t4,s,i) = [Z ]

l—s __ ot+j
t 0 2t=s — 2]
where the first term in (Z6)) counts the number of subspace of dimension t in E;_; whereas the second term
counts the (normalized) number of basis extensions from dimension ¢ to dimension £ — s. Enumerating over all
possible values of t given by (Z3)), the desired conditional erasure probability can be written as

min{{—s,i—1}
- Z F(t, g/ S/l) g -1 min{g,S,i,]} . 1 (—s—t—1 2( 2i+j
pys = t=max{i—s,0} _ |: :| Z |:l — ] = — ‘ (77)
a t :
Aps t—s t=max{i—s,0} t j=0 207 =21
U

Next, we use this closed-form expression to provide upper and lower bounds on the average conditional
erasure probability p;s and on the average erasure probability Fi(z).

Lemma 8 (Lower bound on the average conditional erasure probability). Let p;s be the average conditional
erasure probability defined in (12). Then, for any i and s, we have

pis = 1—27670), (78)

Proof. 1fi > s, then the lemma holds vacuously. Henceforth, let us assume that i < s. We drop all but the first
term from (77) to write

min{¢—s,i—1} bos=1ol _ oitj
t;) [(t4,s,i) r(0:4,5,i) g Sl—s _9j (=51l _oit
Pils = A > A i gy T g T (79)
The proof now reduces to the following calculation:
g;_fgl 2;__2;] > gﬁl 2! _2621+] — E;_ligl <1 _ 2*(£fi)+j) gl _ Eglz(fz‘)ﬂ(g)l — 2= (80)
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where (a) is because of
n n
[Ja=x)>1=) x forall 0<x <1, (81)
i=1 i=1
which can be shown by induction, and (b) is due to the fact that for all n € N, we have 27" = y2° 27",
O

Proof of Proposition 2] We begin by dropping the firsti + [o log(¢)] + 1 terms in and applying Lemmal§|
to obtain

- ¢ it - ¢ S —s —(s—i
A@ = L ()Fa-0 e >y (Fa-ata-2e)
s=0 s=i+[olog (141 (82)

Y d 0\ /—s
>(1-r0) Y H1(S)z<l—z>” .

s=i+o[log/

Now, we point out that the sum on the RHS of (82) is the tail probability of a binomial distribution with ¢ trials
and a success rate of z. More formally, X ~ B(/,z) is a binomial random variable with ¢ trials and success
probability z. Then, from (82)) we immediately obtain that

Fi(z) > 1= P{X > i+ [clogl]}. (83)

Now, we invoke Hoeffding’s inequality [37]] for a sequence of of i.i.d. Bernoulli random variables with success
probability 1 — z and / trials, which states that for any v > 0,

P(X > (1—-z+v)l) <exp(—2v20). (84)
By replacing the value of v with the expressions from (2), we have
P{X >i+[ologl]l} =1-P{X <i+ [clogl]}
@ (_2(26— (i+ [Ulogﬂ)f)

>1—exp 7 (85)
()
2 ]- - K*,B’

where in (a) we have used Hoeffding’s inequality and in (b) we have used (64)). The lemma now readily follows
by combining (82) and (85). O

Next, we use the closed-form expression in Lemmal7Zlin order to derive a lower bound on the average condi-
tional erasure probability and on the average erasure probability.

Lemma 9 (Upper bound on the average conditional erasure probability). Let p;s be the average conditional
erasure probability defined in (I2). Then, for any i and s,

) i—s—1
< - .
Pis < 2 <3> (86)
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Proof. If s > i — 1, the bound holds vacuously. Henceforth, let us assume that s < i — 1. We start by proving
that the term with t = i — s is the dominant one in the expression (77) for pis- Forall £ > i — s, we have that

i—1

F(t; gl s, l) _ |: t :| y f—s—t—1 28 _ 2i+j {—s—t 2( _ 2i+j -

T(t—1;0,51) [i = 1} g E—Ty g 205 gty 1) ®7)
t—1

which using a straightforward manipulation can be simplified as

i—1 _ at=1y(9l—s _ nt—1 i—1, nl—s i—s—t+1
2(?—1(2:_21)()2(52_ 2;32—5—2) S 21‘1—1 ) ;t—l ,;6—1 =2 pt—1 <277 % (88)
Therefore, for any ¢t > i — s, we have that
T(t4,s,i) < 270G —50,s,1), (89)
which implies that
Piis < T —sibsi) _A?il 5 i) (1+277+2724-1) < 200 —sibys,i) ;;"f’ i), (90)

In a similar fashion, we fix £ and i, and study the exponential decay of the dominant term in Pis» denoted by

& = T(i—s;¢,s,i)/As_s, as s decreases. We again use straightforward manipulation to obtain

i—1
Gs D5 L’ - S} frt b oit) (=icl ol oitj
Tot1 D 8 [ i—1 } X H 2l—s _ Di—s+j H 2l—s—1 _ pi—s—1+j

j=0 j=0
i—s—1
(21'71 . 21'7571)(2675 . 1) 25 1 1— zf(éfs) oD
(2i—s —1)(2¢ — 2¢=s-1) - <zs+1 — 1> 1 —2—(i-s)
1 1 1 1 2
<X ——F+— < =X = —.
2 1—2-(=) 27 1-1/4 3
As a result, we conclude that, for any s < i —1,
©0 or(i—s;¢,s,i) © 2\ ! 2\
Pis S 2l —silys i) < 201 3 <2 5 p 92)
JAY N 3 3

where the last inequality follows from the fact that I'(i — s;¢,s,7) is the number of subspaces of dimension
{—sin IFg with some additional properties, while A,_; denotes the total nummber of such subspaces, and
thus, ¢; < 1 for all s that ¢ is well defined. O

Proof of Proposition[3] Let us recall the formulation of F;(z) from (7Z1) and split the summation into two
parts, where a trivial upper bound is applied to each part: we drop (f)zS (1 — )~ for all terms in the summa-
tion with s < i — h(c) — 1, and we drop p;|; from the remaining terms that correspond to s > i — h(c). More
formally, we have

i—h(o)—1 / , V4 / ,
Fe= L (JFa-a7m + 1 (J)2a-2"m,
(o)

s=0 s=i—h

i—h(0)—1 ©3)

! é S —S
< Pils + ) <S>z (1—2z).
(o)

s=0 s=i—h
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We apply the upper bound in (86) to the first summation, and obtain that
i—h(o)—1 i—h(o)—1 2 i—s—1 0 2\ ¢ 2 h(o)
5ows 32(G) < 22()=eG) o e
= = s=h(o)

Utilizing the assumption in (66)), the second summation is again upper bounded by applying Hoeffding’s in-
equality on the tail probability of the binomial distribution X ~ B(¥,z) with £ trials and a success rate of z as
follows:

1/2
)y (f)zS(l—z)H=1P{X>i—h(a)}<1P{x>z£+<[%;“E> }ge—ﬁ. (95)
(0)

s=i—h

O

4.3. Proof of Proposition|[1]

At this point, we have gathered all the required tools to prove Proposition[l. Our proof consists of two steps.
First, we show that the polarization behavior of a random non-singular ¢ x ¢ kernel is given, with high prob-
ability, by the function F;(z) analyzed in the previous subsection. Then, we explain how to relate this fact to
an upper bound on A, x(z). Note that throughout this section, all probabilities are defined with respect to the
random selection of non-singular kernels and there is no randomness in i. In fact, the polarization behavior
of a desired kernel should be similar to F;(z) for all i. As the theorem suggests, we split the proof into two
parts: the first part takes care of the middle interval and proves (52)), while the second part takes care of the tail
intervals and proves (53)).

Proof of (52). First, we combine the results of Proposition[2] and Proposition[3] to show that F;(z) roughly
behaves as a step function. In the previous subsection, we have shown that

1/2
Filz) > (1— ~F)(1— ¢79), if z > 44 [7lo8f | <‘3§,}”
) {Ulogf-*—logﬁJ 1/2 (96)
Filz) <4407, e - ()

Our strategy is to show that, with high probability over the choice of the kernel, fx ;(z) is sharp for each fixed
value of i. Then, we will use a union-bound-like argument to show that fx ;(z) is sharp for all i € [¢]. To this
end, we first set f = 0 = 4.5+ log ¢ in (96). Given that the nature of our results is asymptotic, we assume
that £ > 32. Now, it is easy to derive the following from (96).

Fi(z) > 1 —20-457logl 5 1 _ (g4Hlogl)—1 ifz > L+ c30712log/
, O7)
Fi(z) < 207457logt < (2408 f) =1, ifz < §—cyl™2logl
where
[(4.5+log () log ] (4.5+log()Int)\1/2
c3 = max 0 + (=)
(>32 (=1/2]og ¢ ’
4.5+log () log {41 (98)
[Gtiopl s HBe ] s log ) In£)y 1/2
¢4 = max v + ()
(=32 0=1/2]og?
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Note that both c3 and ¢4 are finite numbers since the numerators in the RHSs of (98) decay faster than their
respective denominators as £ grows. It is also possible to remove the ceilings and show that both expressions
are decreasing functions of £ if / > 32, which means that they attain their maximum at £ = 32. Thus, ¢3 <
2.51 and ¢4 < 3.86.

Our goal is to prove the simultaneous concentration of fx ;(z)’s around their means, F;(z), with regards to
where and how fast they transition from fg ;(z) ~ 0to fx;(z) ~ 1. To do so, we first show that for any fixed
value of i, fx ;(z) behaves similar to the average behavior, with high probability over the choice of K. Next,
we provide a union-bound-like argument to prove that, with high probability over the choice of K, fx ;(z) is
close to the average for all values of i. For the first step, we recall the erasure probability of the i-th bit-channel
from (37) and expand it as

fri(z) = ) 1[e makes i-th bit-channel undecodable]z?!(®) (1 — z)¢=t(e), (99)

all erasure patterns eeng

Considering that each z®*(¢) (1-2z2)* ~@He) term in the function above is a continuous and increasing function
of z, we deduce that fg ;(z) is also a continuous and increasing function of z. Therefore, to show the sharp
transition of fx ;(z) around z = i/, it suffices to consider only two points in (0, 1), one slightly larger than
z = i/¢ and one slightly smaller. Let us do so by defining c5 £ max{c3, ¢4} and

a; 2 % + 5072 1og . (100)
From (97) and (63)), we have that
IEK [1 - fK,i(ai)] =1- ./—"Z'(Eli) < (2€4+10g€)_1. (101)
From Markov’s inequality, we deduce that
1 1 Ex[1— fxi(a;)] 1
P{fii(a) < 1= gmgr} = P{U— fuila) > Joigr} S —/mmgr — <38 - (102)
Define
: . 1
A2 {Ke lpgxf‘[( is nonsingular and fi ;(a;) > 1 — W} ) (103)
Therefore, (102) can be re-written as
1
Similarly, set
b & % — 5072 1og ¥, (105)
and define
. . 1
B; & {K c lpgxf‘[( is nonsingular and fK,i(bi)gm}. (106)
A very similar use of Markov’s inequality shows that
1
P{KeB;}>1-— o (107)
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Then, define
1 l
D = (N2 Aj) N (Njzy By)- (108)
By union bound, we obtain that

262:1—1 : (109)

{ 4
IP{KeD}>1—21P{I<¢Ai}—211>{1<¢6i}>1—ﬁ 7

i=1 i=1

We assume that K € D throughout the remainder of proof. This implies that, for i € [¢],

fK,i(Z)>1 - ﬁ, forz = % —|—C5E71/210gﬁ (110)
i (2) < i forz =1 —cs012log/
As fx i(z) is an increasing function of z, (LL0) is equivalent to
fri(z)>1— ng}ng/ forz > %+C5€_1/zlog€ ain
fi,i(2) < g forz <4 —cs02logl
Given these concentration results, we can proceed to the second step of the proof. Let us define
To(z,€) £ z¢ — cs0'/*log (,
0tz ’ & (112)

Ti(z,£) 2 20 + 502 log (.
Note that
% — 50 1/2 logl <z < % + 50712 logl <= z{ — 5012 logl <i<zl+ csl1/? log . (113)
Therefore, for any z € (0, 1), the number of indices i such that fx ;(z) does not satisfy is upper bounded
by
Ti(z,4) — To(z,¢) = ZC5E1/zlog L. (114)

We can re-write A, g (z) which was defined earlier in as

1 Z S (fK,i(Z)) % Z 8a (fK,i(Z))

i€(To(z,6),Ti(z,0)) + i¢(To(z6),Ti(z,0)) . (115)
8u(z) 8u(2)

By using (L11), we have that, for any i ¢ (To(z,¢), T1(z,¢)).

/\zx,K(z) =

1 @
ulfil2) < s (s ) < (35" 116)

By combining (116) with the trivial upper bound of g, (fk i(z)) < 1 for the left summation, and upper bound-
ing the number of indices not in (Ty, T;) by ¢ for the other summation, we obtain that

32c50"/2 log ¢ N (¢-2logt)"
8(2) 8(2)

Ak (z) < (117)
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Furthermore, note that, for any z € (1/¢2,1 —1/¢?),
Su(z) = (021 —7%)". (118)

By combining (I17)) and (118), we have that

Aek(z) < 2e50™ /22 og 0 + é—‘“"g(). (119)

1
(1—¢-2)
Given that « = 1/ log ¢, we can simplify (117) according to the following.

2% = (1*)2 = 4, and £~*108¢ = ¢~ 1, (120)

Also, (1 — E*Z)*“ is a decreasing function with ¢ for £ > 2 and an increasing function with « for & < 1,
which attains its maximum at (&, £) = (1,2). That is

(1-02)""<4/3<2, (121)

By applying the inequalities in (120) and (121) to (119), we finally obtain that
Ak (z) < 4os /2420 log ¢ + 207108l < 1650~ 1/2 log ¢ + = O(ﬁ’l/2 log?), (122)

which establishes the existence of the universal constant ¢ in and concludes the proof.
O

Proof of (53). The proof of the tail intervals also follows from analyzing the average erasure probabilities. We
present the proof mainly for the lower tail, where z € (0,1/¢?). Similar arguments yield the proof for the
upper tail.

Let K € GL(¢,TF;) denote an ¢ x ¢ random non-singular kernel. Define an indicator random variable X;
as

Xis = Xis(K) =1(Ry—s N (E; \ Ei_1) = D), (123)

where R/_; is the linear span of the first £ — s columns in Kand 1 < i < £, and 0 < s < /. Given that K
is non-singular, R/_, represents a random subspace of dimension ¢ — s in ]Fg_s. By recalling the inequality
in (86), we have

2

E[X;s] = pijs <3 <§> - (124)

To establish a concentration result for X; s, we use Markov’s inequality to get

9

. > 2 i—s < .
P (X;s > (1/3)¢*(log £)(2/3)"°) < 2ogD) (125)
Next, we apply the union bound over all values of i and s to get
P(X;s < (1/3)%(log £)(2/3)°, Vi,s) =1—TP(U;s Xis = (1/3)€*(log £)(2/3)"*)
9 (126)
>1-— =1 -—0(1).
>1-4(L+1) P(log 1) 1—0(1)
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Let us define the random variable fx ;(z) as

frilz i <€> 2°(1—-2)"" (127)

We can invoke the inequality in (126) to deduce that with probability at least 1 — 0(1) over the choice of K,
we have

: 2 2 i ¢ s l—s
fxi(z Z (1/3)¢*(log ¢) <3> <S>z(1—z)

, (128)
2 1 / i / 3z ° 1 (—s
=(1 = — —z)
</meu%><3)§;@)(2)< 2
Note that
¢ g 3z s (—s Z ¢ ¢
§<S><7> (1-2) _(1+§) —(1-2)
‘ ’ (129)
<(1+z)'—(1-2)
< 20z(1+ z)g_l,
where the last inequality in (I29) comes from the mean-value theorem for the function f(x) = (1 + x)¥,

which states that f(x) — f(—x) = (x — (—x))f'(xo) for some xg € [—x, x]. Thus, for any x € (0,1), there
exists xg in (—x, x) such that f(x) = 20x(1 + x0)* ™1 < 2¢x(1 + x)*~1, since (1 + x)*~! is increasing with
x for x > 0.

Next, we point out that, for any z < ¢ 2 and any £ > 32, we have

2

-1 oL
(1+42)1 <1+€12> <1+€12>[ <exp(1/(£—1)) <9/8. (130)

Now, we replace (129) and (130) in (128) to deduce that with probability at least 1 — 0(1) over the choice of
K, we have

fri(z) < (3/4)(%(log ¢) <§>lz. (131)

For such kernels, we can use (I31) to derive the following upper bound on A, k(z) for any z € (0,1/¢?):

<fK,i(Z) (1 _fK,i(Z))>“

)\“,K(Z) — %Zf:1 g“(fK,i(Z)) — %i

8a(2) (z(1-2))" (132)
1 ¢ & 3/4 4 2 in
<31 (Ri@) ra-am < oo (2 (L (2)).
i=1 —z/ \&\3
Given that & > 0 and z < 1/¢% < 1/4, we have
( 3/4 ) -1 .
1-2z
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Furthermore,

L) B () s

i=1 i=1

(b) 1 1

< _ ,
x=(3/2)" 11‘1(3/2)“ Déln(3/2)

1
X:(Z/C’))a X — 1

(134)

where (a) comes from the power series expansion, and (b) is because of In(x) < x — 1 forall x > 0. Moreover,
given that « = 1/ log ¢, we obtain that

3* = 8 and (log£)* = (log )/ 108¢ < 2. (135)

By combining (132), (I33), (I34), and (I35), we conclude that, for any z € (0,1/¢?),

16

-1 — (-1
)\a,K(Z)<1n(3/2)€ logl¢ =0O({ " log¥), (136)

which yields the desired bound on the lower tail. By following steps similar to (125)-(136)), we can also show
that, for any z € (1 —1//2,1),

Ax(z) <cllogt, (137)

for some universal constant ¢ with probability at least 1 — 0(1) over the choice of the kernel. By combining
(136) and (137) and using one last union bound, we conclude that as £ grows, we have
P4 A logt, vz e (0, 2 1- L1 1-o(1
wk(z) <c ogt, ze(,g—2>u( _g_Z’) >1—o0(1). (138)

0

5. Discussion and Open Problems

This paper concerns the case of transmission over the binary erasure channel (BEC). One natural question
is whether our results can be extended to the transmission over any binary memoryless symmetric channel
(BMSC). After a preliminary version of this manuscript has appeared in [42,43]], the question above has been
resolved in [13]]. In the rest of this section, we go over some unsolved challenges in the context of large-
kernel polar codes. Most of these problems are initiated by the requirements on the size of the kernel. It was
already mentioned that ¢ scales exponentially with the inverse of gap to the optimal scaling exponent, y = 2.
This forces ¢ to be extremely large even for moderately good scaling exponents. In the following we address
multiple issues with large /s:

o Computation of the scaling exponent. The computation of the scaling exponent even for the binary erasure
channel is NP-hard [28]. While there are methods to improve the efficiency of these calculations for small
values of ¢, we are not aware of any algorithm that can do it for arbitrary 64 x 64 kernels.

e Explicit construction of fast polarizing kernels. In this paper, we showed that, given sufficiently large 7,
almost all binary non-singular ¢ x ¢ matrices are suitable polarization kernel candidates. However, the problem
of finding one, or a family, of such kernels remains unsolved. Note that exhaustive search only works up to
{ ~ 8, while there are a few heuristic construction algorithms for ¢ = 16,32, and 64.

e Construction of polar codes. In the polar coding terminology, the construction problem refers to the prob-
lem of finding the best bit-channels for which we transmit information over. There are multiple known al-
gorithms for classical polar codes including the Tal-Vardy method in [25] and the Gaussian Approximation
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in [38]]. Unfortunately, there is yet another computation complexity blow-up if one replaces the 2 x 2 ker-
nels with arbitrarily large ¢ x ¢ matrices, which leaves us with the Monte-Carlo method for finding less noisy
bit-channels. However, this method is known to perform poorly in the precision/complexity trade-off.

e Decoding complexity. The recursive implementation of successive-cancellation decoding for polar codes is
based on the butterfly-like graph, where each node represents a polarization kernel. These kernel-nodes per-
form successive-cancellation decoding of the kernel itself, and then communicate with each other on a specific
schedule to reveal the uncoded information bits sequentially and efficiently. It is well known that the overall de-
coding complexity for conventional polar codes is O(nlogn). However, the internal successive-cancellation
computations within the kernels become more complicated when the 2 x 2 conventional kernel is replaced with
an £ x [ kernel. This effectively changes the asymptotic decoding complexity to O(Zén log n). This is prob-
ably the most controversial problem with using polar codes constructed from large kernels if the underlying
channel is not a BEC. Moreover, in the case of BEC, decoding can be accomplished by using Gaussian Elimi-
nation. This raises the main question about practicality of polar codes with large kernels. Recently, there have
been multiple attempts at finding/constructing fast-polarizing kernels with enough structure that would allow
us to design a decoding algorithm with reasonable decoding complexity. See for example [39,40]. However, a
general approach to reducing the decoding complexity of large kernels is still lacking from the literature.

Despite all these problems, we view the fact that polar codes constructed from random large kernels perform
nearly as good as the random codes to be of theoretical interest. That is, we have shown that polarization
kernels with optimal scaling for the BEC exist. The problem of finding practical such kernels is a topic of
further research.
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