
Parallelism versus Latency in Simplified
Successive-Cancellation Decoding of Polar Codes

Seyyed Ali Hashemi⇤, Marco Mondelli†, Arman Fazeli‡, Alexander Vardy‡, John Cioffi⇤, Andrea Goldsmith§
⇤Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA, {ahashemi,cioffi}@stanford.edu

†Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria, marco.mondelli@ist.ac.at
‡Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093, USA, {afazelic,avardy}@ucsd.edu

§Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA, goldsmith@princeton.edu

Abstract—This paper characterizes the latency of the simplified
successive-cancellation (SSC) decoding scheme for polar codes
under hardware resource constraints. In particular, when the
number of processing elements P that can perform SSC decoding
operations in parallel is limited, as is the case in practice,
the latency of SSC decoding is O

⇣
N

1�1/µ + N
P log2 log2

N
P

⌘
,

where N is the block length of the code and µ is the scaling
exponent of polar codes for the channel. Three direct conse-
quences of this bound are presented. First, in a fully-parallel
implementation where P = N

2 , the latency of SSC decoding
is O

⇣
N

1�1/µ
⌘

, which is sublinear in the block length. This
recovers a result from an earlier work. Second, in a fully-serial
implementation where P = 1, the latency of SSC decoding
scales as O (N log2 log2 N). The multiplicative constant is also
calculated: we show that the latency of SSC decoding when P = 1
is given by (2 + o(1))N log2 log2 N . Third, in a semi-parallel
implementation, the smallest P that gives the same latency as that
of the fully-parallel implementation is P = N

1/µ. The tightness
of our bound on SSC decoding latency and the applicability of
the foregoing results is validated through extensive simulations.

A full version of this paper is accessible at: https://arxiv.
org/pdf/2012.13378.pdf

I. INTRODUCTION

Polar codes achieve capacity for any binary memoryless sym-
metric (BMS) channel [1], and they have been adopted as the
coding scheme for control and physical broadcast channels
of the enhanced mobile broadband (eMBB) mode and the
ultra-reliable low latency communications (URLLC) mode in
the fifth generation (5G) wireless communications standard
[2], [3]. For a polar code of block length N , the encoding
and successive-cancellation (SC) decoding complexity for any
BMS channel is O (N log2 N). Polar codes can be constructed
with complexity that is sublinear in N [4], and the error
probability under SC decoding scales with the block length
roughly as 2�

p
N [5]. The gap to capacity scales with the

block length roughly as I(W) � R ⇠ N
�1/µ, where W

is the BMS transmission channel, I(W) is its capacity, R is
the rate of the code, and µ is called the scaling exponent (see
[6]–[12]). In general, the scaling exponent µ depends on the
transmission channel W . It is known that 3.579  µ  4.714
for any BMS channel W [6], [7]. It is possible to approach
the optimal scaling exponent µ = 2 by using large polarization
kernels [11]–[13].

For practical block lengths, polar codes’ error-correction
performance under SC decoding is not satisfactory. There-
fore, an SC list (SCL) decoder with time complexity
O (LN log2 N) and space complexity O (LN) is used [14],
where L is the size of the list. SC-based decoding algorithms
suffer from high latency. This is due to the fact that SC
decoding proceeds sequentially bit by bit. In order to mitigate
this issue, a simplified SC (SSC) decoder was proposed in [15].
The SSC decoder identifies two specific constituent codes in
the polar code whose bits can be decoded in parallel; thus,
these constituent codes are decoded in one shot. Consequently,
the latency is reduced without increasing the error probability.
These results were extended to SCL decoders in [16], [17].
It was shown in [18] that the latency of the SSC decoder is
O
�
N

1�1/µ
�
. Thus the latency of SSC decoding is sublinear in

N , in contrast to the O (N) latency of standard SC decoding
[1]. However, these results are based on the assumption that
the hardware resources are unlimited, and thus a fully-parallel
architecture can be implemented. In a practical application,
this assumption is no longer valid and a specific number of
processing elements (PEs) P is allocated to perform the oper-
ations in SC-based decoding algorithms [19]. In the extreme
case where P = 1 (a fully-serial architecture), the latency of
SC decoding grows from O (N) to O (N log2 N).

This paper quantifies the latency of the SSC decoder pro-
posed in [15] as a function of hardware resource constraints.
Our main result is that the latency of SSC decoding scales
as O

�
N

1�1/µ + N
P log2 log2

N
P

�
with the block length N .

Several consequences of the bound are as follows. In a fully-
parallel implementation, where P = N

2 , this bound reduces
to O

�
N

1�1/µ
�
, thereby recovering the main result of [18].

In a fully-serial implementation, where P = 1, this bound
reduces to (2 + o(1))N log2 log2 N . Finally, it is shown that
P = N

1
µ is the smallest number of processing elements that,

asymptotically, provides the same latency as that of the fully-
parallel decoder. The applicability of the foregoing results is
validated through extensive simulations.

II. POLAR CODING PRELIMINARIES

A. Polar Codes
Consider a BMS channel W : X ! Y defined by transition

probabilities {W (y | x) : x 2 X , y 2 Y}, where X = {0, 1} is

the input alphabet and Y is an arbitrary output alphabet. The
reliability of the channel W can be measured by its Bhat-
tacharyya parameter Z(W) =

P
y2Y

p
W (y | 0)W (y | 1).

Channel polarization [1] is the process of mapping two copies
of the channel W into two synthetic channels W

0 : X ! Y2

and W
1 : X ! X ⇥ Y2 as

W
0(y1, y2 | x1) =

X

x22X

1

2
W (y1 | x1 � x2)W (y2 | x2),

W
1(y1, y2, x1 | x2) =

1

2
W (y1 | x1 � x2)W (y2 | x2),

(1)

where W
0 is a worse channel and W

1 is a better channel than
W because [1], [20]

Z(W)
p
2� Z(W)2  Z(W 0)  2Z(W)� Z(W)2, (2)

Z(W 1) = Z(W)2. (3)

By recursively performing the operation in (1) n times, 2n

copies of W are transformed into 2n synthetic channels
W

(i)
n = (((W b(i)1)b

(i)
2)···)b

(i)
n , where 1  i  2n and

(b(i)1 , . . . , b
(i)
n) is the binary representation of the integer

i � 1 over n bits. Consider a random sequence of channels,

defined recursively as Wn =

⇢
W

0
n�1, w.p. 1/2,

W
1
n�1, w.p. 1/2, where

W0 = W . Using (2) and (3), the random process that tracks
the Bhattacharyya parameter of Wn can be represented as

Zn

(
2
h
Zn�1

q
2� Z2

n�1, 2Zn�1 � Z
2
n�1

i
, w.p. 1/2,

= Z
2
n�1, w.p. 1/2,

(4)
where Zn = Z(Wn) and n � 1.

The construction of polar codes comprises the assigning
of information bits to the set of positions with the best
Bhattacharyya parameters, as stated in the following definition.

Definition 1 (Polar code construction): For a given block
length N = 2n, BMS channel W , and probability of error
pe 2 (0, 1), the polar code Cpolar(pe,W,N) is constructed by
assigning the information bits to the positions corresponding
to all the synthetic channels whose Bhattacharyya parameter
is less than pe/N and by assigning a predefined (frozen) value
to the remaining positions.

With the construction rule of Definition 1, the error proba-
bility under SC decoding is guaranteed to be at most pe.

Definition 2 (Upper bound on scaling exponent): We say that
µ is an upper bound on the scaling exponent if there exists
a function h(x) : [0, 1] ! [0, 1] such that h(0) = h(1) = 0,
h(x) > 0 for any x 2 (0, 1), and

sup
x2(0,1)

y2[x
p
2�x2,2x�x2]

h(x2) + h(y)

2h(x)
< 2�1/µ

. (5)

By defining the scaling exponent as in Definition 2, the gap
to capacity I(W) � R scales as O(N�1/µ) as N grows [7].
Note that µ ⇡ 3.63 for BEC, µ ⇡ 4 for BAWGNC [21], and
it is conjectured that µ ⇡ 4.2 for BSC.

û0 û1 û2 û3 û4 û5 û6 û7

s = 3

s = 2

s = 1

s = 0

↵
0:3
2

�
0:3
2

↵
0:
1
1

�
0:
1
1

� 2:31↵ 2:31

Fig. 1: Binary tree representation of SC decoding for a polar
code with N = 8 and R = 1/2. The white nodes represent
frozen bits and the black nodes represent information bits.

B. Successive-Cancellation Decoding
SC decoding is a message passing algorithm on the binary-

tree representation of polar codes, as shown in Fig. 1 for a
polar code of length N = 8. At stage n of the decoding
tree, the LLR values ↵0:N�1

n = {↵0
n,↵

1
n, . . . ,↵

N�1
n }, that are

calculated from the received channel-output vector, are fed to
the decoder. The vector of internal LLR values, ↵0:N�1

s =
{↵0

s,↵
1
s, . . . ,↵

N�1
s }, which is composed of N

2s vectors of 2s

LLR values ↵i2s:(i+1)2s�1
s = {↵i2s

s ,↵
i2s+1
s , . . . ,↵

(i+1)2s�1
s },

is generated at each level s as

↵
i
s =

(
f(↵i

s+1,↵
i+2s

s+1) if b i
2s cmod2 = 0,

g(↵i
s+1,↵

i�2s

s+1 ,�
i�2s
s) if b i

2s cmod2 = 1,
(6)

where f(a, b) = 2 arctanh
�
tanh

�
a
2

�
tanh

�
b
2

��
, g(a, b, c) =

a+ (1� 2c)b, and �
i
s is the i-th bit estimate at level s of the

decoding tree. The bit estimates �s = {�0
s ,�

1
s , . . . ,�

N�1
s } are

calculated as

�
i
s =

(
�
i
s�1 � �

i+2s

s�1 if b i
2s cmod2 = 0,

�
i
s�1 if b i

2s cmod2 = 1,
(7)

where � is the bit-wise XOR operation. All frozen bits are
assumed to be zero. Hence at level s = 0, the i-th bit ûi is
estimated as

ûi = �
i
0 =

(
0 if ui is a frozen bit or ↵i

0 > 0,
1 otherwise.

(8)

SC decoding has a sequential structure in the sense that the
decoding of each bit depends on the decoding of its previous
bits. Consequently, SC decoding proceeds by traversing the
binary tree such that the nodes at level s = 0 are visited from
left to right.

All operations at a specific SC-decoding-tree node can be
in principle performed in parallel. However, when the SC-
decoder hardware implementation is considered, the number
of PEs that perform the calculations in (6) is constrained to a
specific value P , which can improve the trade-off between chip
area and latency [19]. As shown in [19], if the channel LLR
values are readily available, then the latency of SC decoding
is

L = 2N +
N

P
log2

✓
N

4P

◆
. (9)

û0 û1 û2 û3 û4 û5 û6 û7

1 1

1 1 1 1

1 1 1 1 1 1 1 1

(a) Fully-parallel (P = 4).

û0 û1 û2 û3 û4 û5 û6 û7

2 2

1 1 1 1

1 1 1 1 1 1 1 1

(b) Semi-parallel (P = 2).

û0 û1 û2 û3 û4 û5 û6 û7

4 4

2 2 2 2

1 1 1 1 1 1 1 1

(c) Fully-serial (P = 1).

Fig. 2: Decoding weights on a SC decoding tree for a polar code with N = 8 and R = 1/2.

When P = N
2 , the decoder can perform all the parallelizable

operations in one time step, thus the implementation is fully-
parallel. When P = 1, only one operation can be performed
at each time step, thus the implementation is fully-serial. Any
P in the interval (1, N

2) results in a semi-parallel implemen-
tation.

The latency of SC decoding can be represented on a binary
tree by assigning decoding weights to each edge based on
the value of P , as illustrated in Fig. 2. At each edge of the
decoding tree that connects a node at level s + 1 to a node
at level s, the decoding weight is calculated as d 2s

P e, where
P is assumed to be a positive integer. Using the binary tree
representation, the latency of SC decoding can be calculated
by adding the decoding weights on all the edges. Note that
in a fully-parallel implementation, L = 2N � 2, and in a
fully-serial implementation, L = N log2 N . The latency in a
fully-serial implementation is also the decoding complexity.

C. Simplified Successive-Cancellation Decoding
The SSC decoding algorithm [15] identifies two types of

nodes in the SC decoding tree. The bits within each node
can be decoded efficiently in one shot without traversing its
descendent nodes. These two types of nodes are:

• Rate-0 node: A node at level s of the SC decoding tree
all of whose leaf nodes at level 0 are frozen bits. For
a Rate-0 node at level s, bit estimates can be directly
calculated at the level where the node is located as

�
i
s = 0. (10)

• Rate-1 node: A node at level s of the SC decoding tree
whose leaf nodes at level 0 are all information bits. For a
Rate-1 node at level s, the bit estimations can be directly
calculated at the level where the node is located as

�
i
s =

(
0 if ↵i

s > 0,
1 otherwise.

(11)

SSC decoding can decode Rate-0 and Rate-1 nodes in
a single time step. In a binary tree representation of SC
decoding, this corresponds to pruning all the nodes that are the
descendants of a Rate-0 node or a Rate-1 node. For practical
code lengths, SSC decoding has a significantly lower latency
than SC decoding [15]. This is due to the fact that the number
of edges in the SSC decoding tree is significantly smaller than
the number of edges in the SC decoding tree. Further, the
latency of SSC decoding can be calculated by adding all the

decoding weights in its (pruned) binary tree representation (as
done in the case of SC decoding).

III. LATENCY OF SSC DECODING WITH LIMITED
PARALLELISM

Theorem 1 (Latency of SSC decoder with limited paral-
lelism): Let W be a given BMS channel with symmetric
capacity I(W). Fix pe and design a sequence of polar codes
Cpolar(pe,W,N) of increasing block lengths with rates ap-
proaching I(W), as per Definition 1. Then, for any ✏ > 0,
there exists N̄(✏) such that, for any N � N̄(✏), the latency of
the SSC decoder with P processing elements is upper bounded
by

cN
1�1/µ + (2 + ✏)

N

P
log2 log2

N

P
, (12)

where c > 0 is an absolute constant (independent of N,P, pe, ✏

and W).

Some remarks are in order. First, note that, in a fully-serial
implementation with P = 1, the upper bound (12) reduces to

(2 + o(1))N log2 log2 N. (13)

Furthermore, if P = N
1/µ, then (12) is

Õ(N1�1/µ), (14)

where the Õ notation hides (log-)logarithmic factors. Recall
that the latency of a fully-parallel implementation of the SSC
decoder is O(N1�1/µ), see Theorem 1 of [18]. Thus, another
immediate consequence of Theorem 1 is that P ⇠ N

1/µ

suffices to get roughly the same latency as P = N/2, and
this is the smallest such P .

The key idea of the proof is to look at various levels of the
decoding tree and approximate the number of nodes whose
corresponding bit-channels are already polarized beyond a
certain threshold. Such nodes will be pruned, thus reducing the
total weight of the tree. A similar idea (though with a different
pruning strategy) appears in [18]. However, the earlier work in
[18] considers only the fully-parallel setting where P = N/2.

Before proceeding with the proof, two intermediate lemmas
are required. The first one is a two-sided version of the bound
on Zn, as defined in (4), leading to Theorem 3 in [7]. Its proof
appears in the extended version of this paper [22].

Lemma 1 (Refined bound on number of un-polarized chan-
nels): Let W be a BMS channel and let Zn = Z(Wn) be

the random process that tracks the Bhattacharyya parameter
of Wn. Let µ be an upper bound on the scaling exponent
according to Definition 2. Fix � 2

⇣
1

1+µ , 1
⌘

. Then, for n � 1,

P
✓
Zn2


2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
, 1�2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
�◆

 c 2�n(1��)/µ
,

(15)

where c is a numerical constant that does not depend on n, W ,
or �, and h

(�1)
2 is the inverse of the binary entropy function

h2(x) = �x log2 x� (1� x) log2(1� x) for x 2 [0, 1/2].

The second intermediate result is stated as Lemma 2 in [18].

Lemma 2 (Sufficient condition for Rate-0 and Rate-1 nodes):
Let W be a BMS channel, pe 2 (0, 1), N = 2n, and M = 2m

with m < n. Consider the polar code Cpolar(pe/M,W,N/M)
constructed according to Definition 1. Then, there exists an
integer n0, which depends on pe, such that for all n � n0, the
following holds: (1) If Z(W)  1/N3, then the polar code
Cpolar(pe/M,W,N/M) has rate 1; (2) If Z(W) � 1� 1/N3,
then the polar code Cpolar(pe/M,W,N/M) has rate 0.

In the rest of this section, we give a sketch of the proof of
Theorem 1. We will assume that N

0.01  P  N
0.99. The

cases N
0.99  P and P  N

0.01 are simpler, and they are
handled in the extended version [22], which contains the full
proof.

Sketch of the proof of Theorem 1. The decoding tree is di-
vided into two segments. The first part is called F1 and it
consists of all nodes/edges at distance at most dlog2(N/P)e
from the root node. The second part is called F2 and it
consists of the rest, which are all the nodes/edges in the bottom
blog2 P c layers.

Let us first look at F1, and only consider pruning at
depths k1 and k1 + k2. For i 2 {1, 2}, we set ki =
dci log2 log2(N/P)e, where c1 and c2 are constants to be
determined later. Further assume that, for i 2 {1, 2},

ci�ih
(�1)
2

✓
�i(µ+ 1)� 1

�iµ

◆
> 1, (16)

where the constants �1 and �2 will be also determined later.
If (16) holds, then, as P  N

0.99, for sufficiently large values
of N ,

2�2
ki�ih

(�1)
2

✓
�i(µ+1)�1

�iµ

◆

 1

N3
, (17)

for i 2 {1, 2}. We choose c1 = 2 + ✏ for a positive ✏ and we
note that �1h

(�1)
2

⇣
�1(µ+1)�1

�1µ

⌘
! 1

2 as �1 ! 1. Thus, there
exists � > 0 such that (16) is satisfied for i = 1 by taking
�1 = 1 � �. Furthermore, we pick �2 = 0.9 and c2 = 100.
Selecting µ � 2 ensures that (16) holds for i = 2.

Now, the latency associated to F1 can be computed. To do
so, F1 is partitioned into three parts: (i) nodes that appear
above depth k1, (ii) what remains between depth k1 and the
next k2 layers after pruning the tree at layer k1, and (iii) what
remains of F1 after pruning at depth k1 + k2.

For part (i), the total decoding weight sums up to
k1X

i=1

2i
⇠

N

2iP

⇡
 2k1+1 + k1

N

P
. (18)

At layer k1, there are a total of 2k1 nodes prior to the
pruning. By using Lemma 1 and (17), there are at most
a1 , c2k1(1� 1��1

µ) nodes whose Bhattacharyya parameter is
in the interval [1/N3

, 1�1/N3]. Thus, by applying Lemma 2
with M = 2k1 and desired error probability set to pe

2k1

N ,
all but those a1 nodes can be pruned. Hence, part (ii) of F1

consists of at most a1 sub-trees with depth k2. Consequently,
the total decoding weight for part (ii) can be upper bounded
by

a1

k2X

i=1

2i
⇠

N

2i+k1P

⇡
 a1 2

k2+1 + a1 k2
N

P2k1
. (19)

At layer k2, each of the sub-trees has a total of 2k2

nodes before pruning. By using Lemma 1 and the second
inequality in (17), at most c2k2(1� 1��2

µ) of these nodes have
Bhattacharyya parameter in the interval [1/N3

, 1 � 1/N3].
Let v denote one of these at most c2k2(1� 1��2

µ) nodes, and
consider the subtree rooted at v. If we descend k1 layers
in this subtree, there are a total of 2k1 nodes in it prior to
pruning. However, by Lemma 1 and (17), at most ck1(1� 1��1

µ)

of these 2k1 nodes have Bhattacharyya parameter in the
interval [1/N3

, 1� 1/N3]. Thus, by applying Lemma 2 with
M = 2k1+k2 and error probability set to pe

2k1+k2

N , the number
of remaining nodes after pruning at depth k1+k2 can be upper
bounded by a2 , c

22k1(1� 1��1
µ)2k2(1� 1��2

µ). Consequently,
the total decoding weight for part (iii) can be upper bounded
by

a2

dlog2(N/P)e�k1�k2X

i=1

2i
⇠

N

2i+k1+k2P

⇡
a2 2

dlog2(N/P)e�k1�k2+1

+a2

✓⇠
log2

✓
N

P

◆⇡
� k1 � k2

◆
N

P2k1+k2
.

(20)

As a result, the latency associated to F1 is upper bounded
by the sum of the terms in (18), (19), and (20). By using
the definitions of k1, k2, a1 and a2, after some algebraic
manipulations (see the extended version [22] for the details),
we conclude that, for sufficiently large N , this latency is upper
bounded by

(2 + ✏)
N

P
log2 log2

N

P
, (21)

for any ✏ > 0.
Let us now look at F2, where pruning starts at layer k3 =

dlog2 N
P e. By applying Lemma 1 of [18] at level k3, we deduce

that for any ⌫ > 1,

P(Zk3 2 [2�⌫k3 , 1� 2�⌫k3])  c2�k3/µ, (22)

where the constant c depends solely on ⌫ (and not on k3 or
W). Since P  N

0.99, k3 � 0.01 log2 N . Thus, by taking

I(W)=0.1, pe=10�3
I(W)=0.1, pe=10�10

I(W)=0.5, pe=10�3
I(W)=0.5, pe=10�10

I(W)=0.9, pe=10�3
I(W)=0.9, pe=10�10

SC

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

Fig. 3: Normalized latency of SC and SSC decoding of polar
codes in a fully-serial implementation (P = 1). As the code
length N increases, the slope of the curves for SSC decoding
tends to 2, confirming that the latency of the simplified decoder
scales as (2 + o(1))N log2 log2 N .

⌫ = 300 in (22), at level k3, the number of nodes whose
Bhattacharyya parameter is in the interval [1/N3

, 1 � 1/N3]
is at most a3 , c3 2

k3(1� 1
µ), for some constant c3. Thus, by

applying Lemma 2 with M = 2k3 and error probability pe

2n�k3
,

the number of remaining nodes after pruning at this layer can
be upper bounded by a3. Consequently, F2 consists of at most
a3 sub-trees of depth blog2 P c. Given that all nodes in F2

have decoding weights of 1, the pruning strategy of [18] can
be applied. Recall that P � N

0.01. Thus, by following the
same strategy as in the proof of Theorem 1 in [18] and by
boosting the constants ⌫ by a factor of 100, after pruning,
each such sub-tree has a decoding weight of at most c4P 1� 1

µ ,
for some constant c4. Therefore, the decoding latency over F2

can be upper bounded by a3 c4 P
1� 1

µ = c5N
1� 1

µ , for some
constant c5. Combining this upper bound with the one in (21)
concludes the proof.

IV. NUMERICAL RESULTS

This section numerically evaluates SSC-decoding latency
for polar codes, constructed based on Definition 1 with 4 
log2 N  27, when a limited number of PEs are available. To
illustrate the SSC-decoding latency in a fully-serial implemen-
tation (P = 1), Fig. 3 plots the latency normalized with respect
to the block length N , namely L/N (on the y-axis) versus
log2 log2 N (on the x-axis) when I(W) 2 {0.1, 0.5, 0.9} and
pe 2 {10�3

, 10�10} for BEC. Fig. 3 shows that the SSC
decoder’s normalized decoding latency grows linearly with
log2 log2 N , confirming Theorem 1’s upper bound (see (13)).
Moreover, the curves’ slope approaches 2, as predicted by

5 10 15 20 25
0

10

20

30

slope = 0.72

log2 N

lo
g 2

L

P = N
2

P = N
1
2

P = N
1
µ

P = N
1
8

P = 1

Fig. 4: Latency of SSC decoding of a polar code constructed
for a BEC with I(W) = 0.5 and pe = 10�3 considering
different values of P . The slope of the curve when P = N

1
µ

is 1� 1
µ = 0.72 and is similar to the case where P = N

2 .

our theoretical result. The normalized latency of SC decoding
grows exponentially in the log2 log2 N domain because the
SC decoder has a latency of N log2 N when P = 1.

Fig. 4 shows the SSC-decoding latency with P 2
{1, N 1

8 , N
1
µ , N

1
2 ,

N
2 }. The polar codes are constructed for a

BEC with I(W) = 0.5 and pe = 10�3. As N increases, the
slope of the curve with P = N

1
µ approaches 1� 1

µ , which is
0.72 for the BEC since µ ⇡ 3.63 in this case. This scaling is
the same as the lowest achievable latency when P = N

2 .

V. SUMMARY

This paper characterizes the latency of simplified
successive-cancellation (SSC) decoding when there is a
limited number of processing elements available to implement
the decoder. We show that for a polar code of block length
N , when the number of processing elements P is limited,
the latency of SSC decoding is O(N1�1/µ + N

P log2 log2
N
P),

where µ is the scaling exponent of the channel. The bound
resulted in three important implications. First, a fully-parallel
implementation with P = N

2 results in a sublinear latency for
SSC decoding, which recovers the result in [18]. Second, a
fully-serial implementation with P = 1 results in a latency for
SSC decoding that scales as (2 + o(1))N log2 log2 N . Third,
it is shown that P = N

1/µ in a semi-parallel implementation
is the smallest P that results in the same latency as that of
the fully-parallel implementation of SSC decoding. Future
work includes the analysis of SSC decoding for large kernels.

ACKNOWLEDGMENTS

S. A. Hashemi is supported by a Postdoctoral Fellowship
from the Natural Sciences and Engineering Research Council
of Canada (NSERC) and by Huawei. M. Mondelli is partially
supported by the 2019 Lopez-Loreta Prize. A. Fazeli and
A. Vardy were supported in part by the National Science
Foundation under Grant CCF-1764104.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[2] “Final report of 3GPP TSG RAN WG1 #87 v1.0.0,” Reno, USA, Nov.
2016.

[3] J. W. Won and J. M. Ahn, “3GPP URLLC patent analysis,” ICT Express,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2405959520302046

[4] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar
codes with sublinear complexity,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 2782–2791, May 2019.

[5] E. Arıkan and I. E. Telatar, “On the rate of channel polarization,” in
Proc. of the IEEE Int. Symposium on Inf. Theory (ISIT), Seoul, South
Korea, Jul. 2009, pp. 1493–1495.

[6] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-length scaling for
polar codes,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5875–5898,
Oct. 2014.

[7] M. Mondelli, S. H. Hassani, and R. Urbanke, “Unified scaling of polar
codes: Error exponent, scaling exponent, moderate deviations, and error
floors,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6698–6712, Dec.
2016.

[8] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and
polynomial gap to capacity,” IEEE Trans. Inf. Theory, vol. 61, no. 1,
pp. 3–16, Jan. 2015.

[9] D. Goldin and D. Burshtein, “Improved bounds on the finite length
scaling of polar codes,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp.
6966–6978, Nov. 2014.

[10] M. Mondelli, S. H. Hassani, and R. Urbanke, “Scaling exponent of list
decoders with applications to polar codes,” IEEE Trans. Inf. Theory,
vol. 61, no. 9, pp. 4838–4851, Sep. 2015.

[11] A. Fazeli, H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes
with optimal scaling: Polar codes with large kernels,” IEEE Trans. Inf.
Theory, pp. 1–1, 2020.

[12] V. Guruswami, A. Riazanov, and M. Ye, “Arıkan meets Shannon: Polar
codes with near-optimal convergence to channel capacity,” ser. STOC
2020. New York, NY, USA: Association for Computing Machinery,
2020.

[13] H.-P. Wang and I. M. Duursma, “Polar codes’ simplicity, random codes’
durability,” IEEE Trans. Inf. Theory, vol. 67, no. 3, pp. 1478–1508, Mar.
2021.

[14] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[15] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-
cancellation decoder for polar codes,” IEEE Commun. Lett., vol. 15,
no. 12, pp. 1378–1380, Dec. 2011.

[16] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list
decoder architecture based on sphere decoding,” IEEE Trans. Circuits
Syst. I, vol. 63, no. 12, pp. 2368–2380, Dec. 2016.

[17] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-
cancellation list decoders for polar codes,” IEEE Trans. Signal Process.,
vol. 65, no. 21, pp. 5756–5769, Nov. 2017.

[18] M. Mondelli, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Sublinear
latency for simplified successive cancellation decoding of polar codes,”
IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 18–27, Jan. 2021.

[19] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Trans. Signal
Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[20] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge
University Press, 2008.

[21] S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical
scaling law for polar codes,” in Proc. IEEE Int. Symp. on Inf. Theory
(ISIT), Austin, TX, USA, Jun. 2010, pp. 884–888.

[22] S. A. Hashemi, M. Mondelli, A. Fazeli, A. Vardy, J. Cioffi, and
A. Goldsmith, “Parallelism versus latency in simplified successive-
cancellation decoding of polar codes,” Dec. 2020. [Online]. Available:
https://arxiv.org/abs/2012.13378

