
1

Parallelism versus Latency in Simplified
Successive-Cancellation Decoding of Polar Codes

Seyyed Ali Hashemi, Marco Mondelli, Arman Fazeli, Alexander Vardy,

John Cioffi, and Andrea Goldsmith

Abstract

This paper characterizes the latency of the simplified successive-cancellation (SSC) decoding scheme

for polar codes under hardware resource constraints. In particular, when the number of processing el-

ements P that can perform SSC decoding operations in parallel is limited, as is the case in practice,

the latency of SSC decoding is O
�
N

1�1/µ + N
P log2 log2

N
P

�
, where N is the block length of the code

and µ is the scaling exponent of the channel. Three direct consequences of this bound are presented.

First, in a fully-parallel implementation where P = N
2 , the latency of SSC decoding is O

�
N

1�1/µ
�
,

which is sublinear in the block length. This recovers a result from our earlier work. Second, in a

fully-serial implementation where P = 1, the latency of SSC decoding scales as O (N log2 log2 N). The

multiplicative constant is also calculated: we show that the latency of SSC decoding when P = 1 is given

by (2 + o(1))N log2 log2 N . Third, in a semi-parallel implementation, the smallest P that gives the same

latency as that of the fully-parallel implementation is P = N
1/µ. The tightness of our bound on SSC

decoding latency and the applicability of the foregoing results is validated through extensive simulations.

I. INTRODUCTION

Polar codes [1] have been adopted as the coding scheme for control and physical broadcast

channels of the enhanced mobile broadband (eMBB) mode and the ultra-reliable low latency

communications (URLLC) mode in the fifth generation (5G) wireless communications standard

S. A. Hashemi and J. Cioffi are with the Department of Electrical Engineering, Stanford University, Stanford, CA 94305,

USA (email: ahashemi@stanford.edu, cioffi@stanford.edu). M. Mondelli is with the Institute of Science and Technology

(IST) Austria, Klosterneuburg, Austria (email: marco.mondelli@ist.ac.at). A. Fazeli and A. Vardy are with the Department of

Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093, USA (email: afazelic@ucsd.edu, avardy@ucsd.edu).

A. Goldsmith is with the Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA (email:

goldsmith@princeton.edu).

2

[2], [3]. For a polar code of block length N , the encoding and successive-cancellation (SC)

decoding complexity for any binary memoryless symmetric (BMS) channel is O (N log2 N).

Polar codes can be constructed with complexity that is sublinear in N [4], and the error

probability under SC decoding scales with the block length roughly as 2�
p
N [5]. The gap

to capacity scales with the block length roughly as

I(W)�R ⇠ N
�1/µ , (1)

where W is the BMS transmission channel, I(W) is its capacity, R is the rate of the code, and

µ is called the scaling exponent (see [6], [7], [8], [9], [10], [11], [12]). In general, the scaling

exponent µ depends on the transmission channel W . It is known [6], [7] that for conventional

polar codes, 3.579 µ 4.714 for any BMS channel W . Furthermore, µ ⇡ 3.63 when W is

a binary erasure channel (BEC), as shown in [7], µ ⇡ 4 when W is a binary additive white

Gaussian noise channel (BAWGNC), as shown in [13], and it is conjectured that µ ⇡ 4.2 when

W is a binary symmetric channel (BSC). It is possible to approach the optimal scaling exponent

µ = 2 for any BMS channel by using large polarization kernels [11], [12], [14]. The moderate

deviations regime, in which both the error probability and the gap to capacity jointly vanish as

the block length grows, has also been a subject of recent investigation [7], [15], [16], [17].

For practical block lengths, polar codes’ error-correction performance under SC decoding is

not satisfactory. Therefore, an SC list (SCL) decoder with time complexity O (LN log2 N) and

space complexity O (LN) is used [18], where L is the size of the list. SCL decoding runs L

coupled SC decoders in parallel and maintains a list of the most likely codewords. The SCL

decoder’s empirical performance is close to that of the optimal MAP decoder with practical list-

size L. Furthermore, by adding some extra bits of cyclic redundancy check (CRC) precoding,

the performance is comparable to state-of-the-art low-density parity-check (LDPC) codes.

SC-based decoding algorithms, such as SC and SCL decoding, suffer from high latency. This

is due to the fact that SC decoding is inherently a serial algorithm: it proceeds sequentially bit

by bit. In order to mitigate this issue, a simplified SC (SSC) decoder was proposed in [19]. The

SSC decoder identifies two specific constituent codes in the polar code, namely, constituent codes

of rate 0 (Rate-0) and rate 1 (Rate-1). The bits within each constituent code can be decoded

in parallel; thus, these constituent codes are decoded in one shot. Consequently, the latency is

reduced without increasing the error probability. In [20], [21], [22], more constituent codes were

identified and low-complexity parallel decoders were designed, increasing the throughput and

3

reducing the latency even further. These results were extended to SCL decoders in [23], [24],

[25]. Recently, it was shown in [26] that the latency of the SSC decoder proposed in [19] is

O
�
N

1�1/µ
�
. Thus the latency of SSC decoding is sublinear in N , in contrast to the O (N)

latency of standard SC decoding [1]. However, these results are based on the assumption that

the hardware resources are unlimited, and thus a fully-parallel architecture can be implemented.

In a practical application, this assumption is no longer valid and a specific number of processing

elements (PEs) P are allocated to perform the operations in SC-based decoding algorithms [27].

In the extreme case where P = 1 (a fully-serial architecture), the latency of SC decoding grows

from O (N) to O (N log2 N).

This paper quantifies the latency of the SSC decoder proposed in [19] as a function of hardware

resource constraints. Our main result is that the latency of SSC decoding scales as

O

✓
N

1�1/µ +
N

P
log2 log2

N

P

◆
(2)

with the block length N . Several consequences of the bound in (2) are as follows. In a fully-

parallel implementation, where P = N
2 , this bound reduces to O

�
N

1�1/µ
�
, thereby recovering

the main result of [26]. In a fully-serial implementation, where P = 1, the bound in (2) reduces

to O (N log2 log2 N). This aligns with the results of [28], wherein a variant of polar codes

with log-logarithmic complexity per information bit has been introduced. However, this paper’s

analysis is for conventional polar codes rather than a variant thereof. Moreover, for the case

where P = 1, we determine the multiplicative constant in our bound and further refine it to

(2 + o(1))N log2 log2 N . Finally, it is shown that P = N
1
µ is the smallest number of processing

elements that, asymptotically, provides the same latency as that of the fully-parallel decoder. The

applicability of the foregoing results is validated through extensive simulations. Our numerical

results confirm the presented bounds’ tightness.

The rest of this paper is organized as follows: Section II explains polar codes and discusses

SC and SSC decoding algorithms with limited number of PEs; Section III states and proves

that in an implementation of the SSC decoder with P processing elements, the latency is upper

bounded by O
�
N

1�1/µ + N
P log2 log2

N
P

�
; numerical results are presented in Section IV to verify

the proposed bounds; and conclusions are drawn in Section V.

4

II. POLAR CODING PRELIMINARIES

A. Polar Codes

Consider a BMS channel W : X ! Y defined by transition probabilities {W (y | x) : x 2

X , y 2 Y}, where X = {0, 1} is the input alphabet and Y is an arbitrary output alphabet.

The reliability of the channel W can be measured by its Bhattacharyya parameter Z(W) =
P

y2Y
p

W (y | 0)W (y | 1). Channel polarization [1] is the process of mapping two copies of

the channel W into two synthetic channels W
0 : X ! Y2 and W

1 : X ! X ⇥ Y2 as

W
0(y1, y2 | x1) =

X

x22X

1

2
W (y1 | x1 � x2)W (y2 | x2),

W
1(y1, y2, x1 | x2) =

1

2
W (y1 | x1 � x2)W (y2 | x2),

(3)

where W
0 is a worse channel and W

1 is a better channel than W because [1], [29]

Z(W)
p

2� Z(W)2 Z(W 0) 2Z(W)� Z(W)2, (4)

Z(W 1) = Z(W)2. (5)

By recursively performing the operation in (3) n times, 2n copies of W are transformed into 2n

synthetic channels W
(i)
n = (((W b

(i)
1)b

(i)
2)···)b

(i)
n , where 1 i 2n and (b(i)1 , . . . , b

(i)
n) is the binary

representation of the integer i� 1 over n bits. Consider a random sequence of channels, defined

recursively as

Wn =

8
<

:
W

0
n�1, w.p. 1/2,

W
1
n�1, w.p. 1/2,

(6)

where W0 = W . Using (4) and (5), the random process that tracks the Bhattacharyya parameter

of Wn can be represented as

Zn

8
<

:
2
⇥
Zn�1

p
2� Z2

n�1, 2Zn�1 � Z
2
n�1

⇤
, w.p. 1/2,

= Z
2
n�1, w.p. 1/2,

(7)

where Zn = Z(Wn) and n � 1.

The construction of polar codes comprises the assigning of information bits to the set of

positions with the best Bhattacharyya parameters, as stated in the following definition.

Definition 1 (Polar code construction): For a given block length N = 2n, BMS channel W , and

probability of error pe 2 (0, 1), the polar code Cpolar(pe,W,N) is constructed by assigning the

information bits to the positions corresponding to all the synthetic channels whose Bhattacharyya

5

parameter is less than pe/N and by assigning a predefined (frozen) value to the remaining

positions.

With the construction rule of Definition 1, the error probability under SC decoding is guaran-

teed to be at most pe. Moreover, this construction rule ensures that the rate R of the code tends

to capacity at a speed that is captured by the scaling exponent of the channel.

Definition 2 (Upper bound on scaling exponent): We say that µ is an upper bound on the scaling

exponent if there exists a function h(x) : [0, 1] ! [0, 1] such that h(0) = h(1) = 0, h(x) > 0 for

any x 2 (0, 1), and

sup
x2(0,1)

y2[x
p
2�x2,2x�x2]

h(x2) + h(y)

2h(x)
< 2�1/µ

. (8)

By defining the scaling exponent as in Definition 2, the gap to capacity I(W)� R scales as

O(N�1/µ), see Theorem 1 of [7]. Note that µ ⇡ 4 for BAWGNC as shown in [13], and it is

conjectured that µ ⇡ 4.2 for BSC. For the BEC, the condition (8) can be relaxed to

sup
x2(0,1)

h(x2) + h(2x� x
2)

2h(x)
< 2�1/µ

, (9)

which gives a numerical value µ ⇡ 3.63.

B. Successive-Cancellation Decoding

SC decoding is a message passing algorithm on the factor graph of polar codes, as shown in

Fig. 1 for a polar code of length N = 8. At level n of the factor graph, the LLR values ↵0:N�1
n =

{↵0
n,↵

1
n, . . . ,↵

N�1
n }, that are calculated from the received channel-output vector, are fed to the

decoder. Fig. 1a shows how the vector of internal LLR values, ↵0:N�1
s = {↵0

s,↵
1
s, . . . ,↵

N�1
s },

which is composed of N
2s vectors of 2s LLR values ↵i2s:(i+1)2s�1

s = {↵i2s
s ,↵

i2s+1
s , . . . ,↵

(i+1)2s�1
s },

is generated. Specifically, at each level s, we have:

↵
i
s =

8
><

>:

f(↵i
s+1,↵

i+2s

s+1) if b i
2s cmod 2 = 0,

g(↵i
s+1,↵

i�2s

s+1 , �
i�2s
s) if b i

2s cmod 2 = 1,
(10)

where f(a, b) = 2 arctanh
�
tanh

�
a
2

�
tanh

�
b
2

��
, g(a, b, c) = a + (1 � 2c)b, and �

i
s is the i-

th bit estimate at level s of the factor graph. As shown in Fig. 1b, the bit estimates �s =

{�0
s , �

1
s , . . . , �

N�1
s } are calculated as

�
i
s =

8
><

>:

�
i
s�1 � �

i+2s

s�1 if b i
2s cmod 2 = 0,

�
i
s�1 if b i

2s cmod 2 = 1,
(11)

6

û0

û1

û2

û3

û4

û5

û6

û7

s = 0 s = 1 s = 2 s = 3
↵
0
0

↵
1
0

↵
2
0

↵
3
0

↵
4
0

↵
5
0

↵
6
0

↵
7
0

↵
0
1

↵
1
1

↵
2
1

↵
3
1

↵
4
1

↵
5
1

↵
6
1

↵
7
1

↵
0
2

↵
1
2

↵
2
2

↵
3
2

↵
4
2

↵
5
2

↵
6
2

↵
7
2

↵
0
3

↵
1
3

↵
2
3

↵
3
3

↵
4
3

↵
5
3

↵
6
3

↵
7
3

f

g

f

g

f

g

f

g

f

f

g

g

f

f

g

g

f

f

f

f

g

g

g

g

(a) Generation of LLR values.

û0

û1

û2

û3

û4

û5

û6

û7

s = 0 s = 1 s = 2 s = 3
�
0
0

�
1
0

�
2
0

�
3
0

�
4
0

�
5
0

�
6
0

�
7
0

�
0
1

�
1
1

�
2
1

�
3
1

�
4
1

�
5
1

�
6
1

�
7
1

�
0
2

�
1
2

�
2
2

�
3
2

�
4
2

�
5
2

�
6
2

�
7
2

�
0
3

�
1
3

�
2
3

�
3
3

�
4
3

�
5
3

�
6
3

�
7
3

(b) Generation of bit estimates.

Fig. 1: SC decoding on the factor graph representation of polar codes with N = 8. Each gray

area represents one node in the binary tree representation of SC decoding.

where � is the bit-wise XOR operation. All frozen bits are assumed to be zero. Hence at level

s = 0, the i-th bit ûi is estimated as

ûi = �
i
0 =

8
><

>:

0 if ui is a frozen bit or ↵i
0 > 0,

1 otherwise.
(12)

By combining all the operations in (10) that can be performed in parallel, SC decoding can be

represented as on Fig. 2’s binary tree. Fig. 2’s root node at decoding level n is fed with the LLR

values, and the results of operations in (10) and (11) are passed on the branches of the decoding

tree. SC decoding has a sequential structure in the sense that the decoding of each bit depends

on the decoding of its previous bits. More formally, on the one hand, when mod (i
2s , 2) = 0,

the calculation of ↵
i
s at level s is only dependent on the LLR values that are received from

a node at level s + 1. On the other hand, when mod (i
2s , 2) = 1, the calculation of ↵

i
s also

depends on a hard bit estimation �
i�2s
s that is a result of estimating the previous bits (see (10)).

Consequently, SC decoding proceeds by traversing the binary tree such that the nodes at level

s = 0 are visited from left to right.

All operations at a specific SC-decoding-tree node can be in principle performed in parallel.

However, when the SC-decoder hardware implementation is considered, the number of PEs that

perform the calculations in (10) is constrained to a specific value P , which can improve the

7

û0 û1 û2 û3 û4 û5 û6 û7

s = 3

s = 2

s = 1

s = 0

↵
0:3
2

�
0:3
2

↵
0:
1
1

�
0:
1
1

� 2:31↵ 2:31

Fig. 2: Binary tree representation of SC decoding for a polar code with N = 8 and R = 1/2.

The white nodes represent frozen bits and the black nodes represent information bits.

trade-off between chip area and latency [27]. As shown in [27], if the channel LLR values are

readily available, then the latency of SC decoding is

L = 2N +
N

P
log2

✓
N

4P

◆
. (13)

For different values of P , Fig. 3 shows the resulting LLR values at each time step in a length

N = 8 polar code. When P = N
2 , the decoder can perform all the parallelizable operations

in one time step, thus the implementation is fully-parallel (see Fig. 3a). When P = 1, only

one operation can be performed at each time step, thus the implementation is fully-serial (see

Fig. 3c). Any P in the interval (1, N2) results in a semi-parallel implementation (see Fig. 3b).

The latency of SC decoding can be represented on a binary tree by assigning decoding weights

to each edge based on the value of P , as illustrated in Fig. 4. At each edge of the decoding

tree that connects a node at level s + 1 to a node at level s, the decoding weight is calculated

as d2s

P e, where P is assumed to be a positive integer. In Fig. 4a’s fully-parallel implementation,

all the edges have a decoding weight of 1 since all the parallelizable operations are performed

in parallel. However, in a fully-serial implementation of Fig. 4c, the edges at the top of the

SC decoding tree consume more time steps, thus their decoding weights are larger. Using the

binary tree representation, the latency of SC decoding can be calculated by adding the decoding

weights on all the edges. Note that in a fully-parallel implementation, L = 2N � 2, and in a

fully-serial implementation, L = N log2 N . The latency in a fully-serial implementation is also

the decoding complexity.

8

time
PE1

PE2

PE3

PE4

output

↵
0
2

↵
1
2

↵
2
2

↵
3
2

↵
4
2

↵
5
2

↵
6
2

↵
7
2

↵
0
1

↵
1
1

↵
4
1

↵
5
1

↵
0
0 ↵

4
0↵

1
0 ↵

5
0↵

2
1

↵
3
1

↵
6
1

↵
7
1

↵
2
0 ↵

6
0↵

3
0 ↵

7
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

û0 û1 û2 û3 û4 û5 û6 û7

(a) Fully-parallel (P = 4).

time
PE1

PE2

output

↵
0
2

↵
1
2

↵
2
2

↵
3
2

↵
0
1

↵
1
1

↵
0
0 ↵

1
0 ↵

2
1

↵
3
1

↵
2
0 ↵

3
0 ↵

4
2

↵
5
2

↵
6
2

↵
7
2

↵
4
1

↵
5
1

↵
4
0 ↵

5
0 ↵

6
1

↵
7
1

↵
6
0 ↵

7
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

û0 û1 û2 û3 û4 û5 û6 û7

(b) Semi-parallel (P = 2).

time
PE1

output
↵
0
2 ↵

1
2 ↵

2
2 ↵

3
2 ↵

0
1 ↵

1
1 ↵

0
0 ↵

1
0 ↵

2
1 ↵

3
1 ↵

2
0 ↵

3
0 ↵

4
2 ↵

5
2 ↵

6
2 ↵

7
2 ↵

4
1 ↵

5
1 ↵

4
0 ↵

5
0 ↵

6
1 ↵

7
1 ↵

6
0 ↵

7
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

û0 û1 û2 û3 û4 û5 û6 û7

(c) Fully-serial (P = 1).

Fig. 3: SC decoding schedule for a polar code with N = 8.

û0 û1 û2 û3 û4 û5 û6 û7

1 1

1 1 1 1

1 1 1 1 1 1 1 1

(a) Fully-parallel (P = 4).

û0 û1 û2 û3 û4 û5 û6 û7

2 2

1 1 1 1

1 1 1 1 1 1 1 1

(b) Semi-parallel (P = 2).

û0 û1 û2 û3 û4 û5 û6 û7

4 4

2 2 2 2

1 1 1 1 1 1 1 1

(c) Fully-serial (P = 1).

Fig. 4: Decoding weights on a SC decoding tree for a polar code with N = 8 and R = 1/2.

C. Simplified Successive-Cancellation Decoding

The SSC decoding algorithm [19] identifies two types of nodes in the SC decoding tree. The

bits within each node can be decoded efficiently in one shot without traversing its descendent

nodes. These two types of nodes are:

• Rate-0 node: A node at level s of the SC decoding tree all of whose leaf nodes at level 0

are frozen bits. For a Rate-0 node at level s, bit estimates can be directly calculated at the

9

level where the node is located as

�
i
s = 0. (14)

• Rate-1 node: A node at level s of the SC decoding tree whose leaf nodes at level 0 are all

information bits. For a Rate-1 node at level s, the bit estimations can be directly calculated

at the level where the node is located as

�
i
s =

8
><

>:

0 if ↵i
s > 0,

1 otherwise.
(15)

This paper considers a non-systematic polar code, whose information bits appear at level 0.

A non-systematic polar code requires hard decisions to calculate the information bits at level

0 from the estimated bits at an intermediate level where a Rate-0 or a Rate-1 node is located.

Calculating the bit estimates in (11) and calculating the information bits at level 0 of the decoding

tree from the estimated bits at an intermediate level where a Rate-0 or a Rate-1 node is located

are bit-wise operations that are conducted in the same time step in which the LLR values are

calculated [20], [21]. This is due to the fact that the time it takes to perform bit-wise calculations

is negligible with respect to performing LLR calculations. In fact, these bit-wise calculations can

be implemented efficiently using shift-registers [30], [31]. Moreover, if a systematic polar code

[32] (whose information bits appear at level n) is considered, there is no need to calculate the

bit values at the leaf nodes because the information is present in the root node of the decoding

tree. In fact, SSC decoding can decode Rate-0 and Rate-1 nodes in a single time step. In a

binary tree representation of SC decoding, this corresponds to pruning all the nodes that are the

descendants of a Rate-0 node or a Rate-1 node, as illustrated in Fig. 5.

For practical code lengths, SSC decoding has a significantly lower latency than SC decoding

[19]. This is due to the fact that the number of edges in the SSC decoding tree is significantly

smaller than the number of edges in the SC decoding tree. Further, the latency of SSC decoding

can be calculated by adding all the decoding weights in its (pruned) binary tree representation

(as done in the case of SC decoding).

III. LATENCY OF SSC DECODING WITH LIMITED PARALLELISM

Theorem 1 (Latency of SSC Decoder with Limited Parallelism): Let W be a given BMS channel

with symmetric capacity I(W). Fix pe and design a sequence of polar codes Cpolar(pe,W,N)

of increasing block lengths with rates approaching I(W), as per Definition 1. Then, for any

10

s = 3

s = 2

s = 1

s = 0

Fig. 5: Binary tree representation of SSC decoding for a polar code with N = 8 and R = 1/2.

The white nodes represent Rate-0 nodes, the black nodes represent Rate-1 nodes, and the gray

nodes are neither Rate-0 nodes nor Rate-1 nodes.

✏ > 0, there exists N̄(✏) such that, for any N � N̄(✏), the latency of the SSC decoder with P

processing elements is upper bounded by

cN
1�1/µ + (2 + ✏)

N

P
log2 log2

N

P
, (16)

where c > 0 is an absolute constant (independent of N,P, pe, ✏ and W).

Some remarks are in order. First, note that, in a fully-serial implementation with P = 1, the

upper bound (16) reduces to

(2 + o(1))N log2 log2 N. (17)

Furthermore, if P = N
1/µ, then (16) is

Õ(N1�1/µ), (18)

where the Õ notation hides (log-)logarithmic factors. Recall that the latency of a fully-parallel

implementation of the SSC decoder is O(N1�1/µ), see Theorem 1 of [26]. Thus, another imme-

diate consequence of Theorem 1 is that P ⇠ N
1/µ suffices to get roughly the same latency as

P = N
2 , and this is the smallest such P .

The key idea of the proof is to look at various levels of the decoding tree and approximate

the number of nodes whose corresponding bit-channels are already polarized beyond a certain

threshold. Such nodes will be pruned, thus reducing the total weight of the tree. A similar

approach appears in [26], which however considers only the fully-parallel setting where P = N
2 .

Here, in order to be able to handle values of P much smaller than N
2 , we need to develop a

different pruning strategy. The idea is to divide the decoding tree into two parts. The first part

11

contains nodes/edges at distance at most dlog2 N
P e from the root node, and we consider pruning

at depths roughly c1 log log
N
P and c2 log log

N
P , where c1 is close to 2 and c2 is a sufficiently

large constant (independent of N and P). The second part of the decoding tree contains the rest

of the nodes/edges, and we consider pruning at depths which are logarithmic in N
P (as opposed

to the doubly-logarithmic scaling of the depths for the first part of the tree).

In order to provide a rigorous bound on the performance of the aforementioned pruning

strategy, we need a refined estimate on the number of un-polarized channels, which is contained

in the intermediate lemma below. This result is a two-sided version of the bound on Zn, as

defined in (7), leading to Theorem 3 in [7]. Its proof appears in the Appendix.

Lemma 1 (Refined bound on number of un-polarized channels): Let W be a BMS channel and

let Zn = Z(Wn) be the random process that tracks the Bhattacharyya parameter of Wn. Let µ

be an upper bound on the scaling exponent according to Definition 2. Fix � 2
⇣

1
1+µ , 1

⌘
. Then,

for n � 1,

P
✓
Zn 2

2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
, 1� 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
�◆

 c 2�n(1��)/µ
, (19)

where c is a numerical constant that does not depend on n, W , or �, and h
(�1)
2 is the inverse of

the binary entropy function h2(x) = �x log2 x� (1� x) log2(1� x) for x 2 [0, 1/2].

We will also use the following intermediate result, which is stated as Lemma 2 in [26].

Lemma 2 (Sufficient condition for Rate-0 and Rate-1 nodes): Let W be a BMS channel, pe 2

(0, 1), N = 2n, and M = 2m with m < n. Consider the polar code Cpolar(pe/M,W,N/M)

constructed according to Definition 1. Then, there exists an integer n0, which depends on pe,

such that for all n � n0, the following holds:

1) If Z(W) 1/N3, then the polar code Cpolar(pe/M,W,N/M) has rate 1.

2) If Z(W) � 1� 1/N3, then the polar code Cpolar(pe/M,W,N/M) has rate 0.

At this point, the proof of Theorem 1 is presented.

Proof of Theorem 1. The decoding tree is divided into two segments. The first part is called

F1 and it consists of all nodes/edges at distance at most dlog2 N
P e from the root node. The

second part is called F2 and it consists of the rest, which are all the nodes/edges in the bottom

blog2 P c levels. To analyze the latency, three cases are considered: (Case A) N0.01 P N
0.99

12

(moderate values of P), (Case B) N
0.99 P (large values of P), and (Case C) P N

0.01

(small values of P).

Case A: N
0.01 P N

0.99. Let us first look at F1, and consider pruning at depths k1 and

k1 + k2, with

k1 =

⇠
c1 log2 log2

N

P

⇡
,

k2 =

⇠
c2 log2 log2

N

P

⇡
,

(20)

where c1 and c2 are constants to be determined later. Further assume that

c1�1h
(�1)
2

✓
�1(µ+ 1)� 1

�1µ

◆
> 1, (21)

c2�2h
(�1)
2

✓
�2(µ+ 1)� 1

�2µ

◆
> 1, (22)

where the constants �1 and �2 will be also determined later. If (21) and (22) are true, then, as

P N
0.99, for sufficiently large values of N ,

2�2
k1�1h

(�1)
2

✓
�1(µ+1)�1

�1µ

◆

 1

N3
,

2�2
k2�2h

(�1)
2

✓
�2(µ+1)�1

�2µ

◆

 1

N3
.

(23)

Also,

lim
�1!1

�1h
(�1)
2

✓
�1(µ+ 1)� 1

�1µ

◆
=

1

2
. (24)

We choose c1 = 2 + ✏ for a positive ✏. In view of (24), there exists � > 0 such that (21) is

satisfied by taking �1 = 1 � �. Furthermore, we pick �2 = 0.9 and c2 = 100. Selecting µ � 2

ensures that (22) holds.

Now, the latency associated to F1 can be computed. To do so, F1 is partitioned into three

parts: (i) nodes that appear above depth k1, (ii) what remains between depth k1 and the next

k2 levels after pruning the tree at depth k1, and (iii) what remains of F1 after pruning at depth

k1 + k2.

For part (i), the total decoding weight sums up to
k1X

i=1

2i
⇠

N

2iP

⇡
 2k1+1 + k1

N

P
. (25)

13

At depth k1, there are a total of 2k1 nodes prior to the pruning. By using Lemma 1 and the

first inequality in (23), there are at most

a1 , c2k1(1�
1��1

µ) c2k1 (26)

nodes whose Bhattacharyya parameter is in the interval [1/N3
, 1 � 1/N3]. Thus, by applying

Lemma 2 with M = 2k1 and desired error probability set to pe
2k1
N , all but those a1 nodes can

be pruned. Hence, part (ii) of F1 consists of at most a1 sub-trees with depth k2. Consequently,

the total decoding weight for part (ii) can be upper bounded by

a1

k2X

i=1

2i
⇠

N

2i+k1P

⇡
 a1 2

k2+1 + a1 k2
N

P2k1
. (27)

At depth k2, each of the sub-trees has a total of 2k2 nodes before pruning. By using Lemma 1

and the second inequality in (23), at most c2k2(1�
1��2

µ) of these nodes have Bhattacharyya

parameter in the interval [1/N3
, 1�1/N3]. Let v denote one of these at most c2k2(1�

1��2
µ) nodes,

and consider the subtree rooted at v. If we descend k1 levels in this subtree, there are a total of

2k1 nodes in it prior to pruning. However, by Lemma 1 and the first inequality in (23), at most

c
k1(1� 1��1

µ) of these 2k1 nodes have Bhattacharyya parameter in the interval [1/N3
, 1 � 1/N3].

Thus, by applying Lemma 2 with M = 2k1+k2 and error probability set to pe
2k1+k2

N , the number

of remaining nodes after pruning at depth k1 + k2 can be upper bounded by

a2 , c
22k1(1�

1��1
µ)2k2(1�

1��2
µ)

. (28)

Consequently, the total decoding weight for part (iii) can be upper bounded by

a2

dlog2 N
P e�k1�k2X

i=1

2i
⇠

N

2i+k1+k2P

⇡
 a2 2

dlog2 N
P e�k1�k2+1

+ a2

✓⇠
log2

✓
N

P

◆⇡
� k1 � k2

◆
N

P2k1+k2
.

(29)

As a result, the latency associated to F1 is upper bounded by the sum of the terms in (25),

(27), and (29). By using the definitions of k1 and k2 in (20) and of a1 and a2 in (26) and (28),

14

after some algebraic manipulations,

2k1+1 4

✓
log2

N

P

◆c1

,

a1 2
k2+1 c2k12k2+1 8c

✓
log2

N

P

◆c1+c2

,

a1 k2
N

P2k1
=

c
N
P k2

2k1
1��1

µ

c

N
P

�
c2 log2 log2

N
P + 1

�

�
log2

N
P

�c1(1��1)/µ
,

a2 2
dlog2 N

P e�k1�k2+1 =
2c2 2dlog2

N
P e

2k1
1��1

µ 2k2
1��2

µ

4c2NP

�
log2

N
P

� c1(1��1)
µ +

c2(1��2)
µ

,

a2

✓⇠
log2

✓
N

P

◆⇡
� k1 � k2

◆
N

P2k1+k2
=

c
2N
P

�⌃
log2

�
N
P

�⌥
� k1 � k2

�

2k1
1��1

µ 2k2
1��2

µ

c
2N
P log2

N
P

�
log2

N
P

� c1(1��1)
µ +

c2(1��2)
µ

.

(30)

Note that c1(1��1)
µ > 0 and c2(1��2)

µ > 1, while N
P � N

0.01. Thus, for large N , all the right hand

sides of the expressions in (30) are o
�
N
P log2 log2

N
P

�
, and the term N

P k1 is the dominant one in

the computation of the latency associated to F1. As a result, for sufficiently large N , this latency

is upper bounded by

(2 + ✏)
N

P
log2 log2

N

P
, (31)

for any ✏ > 0.

Let us now look at F2, where pruning starts at depth k3 = dlog2 N
P e. By applying Lemma 1

of [26] at depth k3, for any ⌫ > 1,

P(Zk3 2 [2�⌫k3 , 1� 2�⌫k3]) c2�k3/µ, (32)

where the constant c depends solely on ⌫ (and not on k3 or W). Since P N
0.99, k3 �

0.01 log2 N . Thus, by taking ⌫ = 300 in (32), at level k3, the number of nodes whose Bhat-

tacharyya parameter is in the interval [1/N3
, 1� 1/N3] is at most

a3 , c3 2
k3(1� 1

µ), (33)

for some constant c3. Thus, by applying Lemma 2 with M = 2k3 and error probability pe
2n�k3

, the

number of remaining nodes after pruning at this level can be upper bounded by a3. Consequently,

F2 consists of at most a3 sub-trees of depth blog2 P c. Given that all nodes in F2 have decoding

weights of 1, the pruning strategy of [26] can be applied. Recall that P � N
0.01. Thus, by

15

following the same strategy as in the proof of Theorem 1 in [26] and by boosting the constants

⌫ by a factor of 100, after pruning, each such sub-tree has a decoding weight of at most

c4 P
1� 1

µ , (34)

for some constant c4. Therefore, the decoding latency over F2 can be upper bounded by

a3 c4 P
1� 1

µ = c5N
1� 1

µ , (35)

for some constant c5. Combining the upper bounds in (31) and (35) concludes the proof for

Case A.

Case B: N0.99 P . There is no need to prune part F1 of the tree. In fact, without any pruning,

its latency is upper bounded by
N

P
log2

N

P
 0.01N0.01 log2 N. (36)

Part F2 starts at depth k = dlog2 N
P e d0.01 · log2 Ne. Recall that the decoding weights over F2

are all equal to 1. Hence, the latency associated to F2 can be upper bounded by the decoding

latency of the complete tree in a fully-parallel setup. This, in turn, is upper bounded by cN
1� 1

µ

for some universal constant c > 0, see Theorem 1 of [26]. To conclude, note that the right hand

side of (36) is smaller than N
1� 1

µ for all sufficiently large N . Thus, the result for Case B readily

follows.

Case C: P N
0.01. In this case, most of the latency is associated to F1. Recall that, when

deriving the upper bound of the latency associated to F1 in Case A, the fact that P N
0.99 is

used, which is also satisfied in this case. Hence, by following the same argument as in Case A,

for all sufficiently large N , the latency associated to F1 is upper bounded by

(2 + ✏)
N

P
log2 log2

N

P
, (37)

for any ✏ > 0. Let us now look at F2. The tree is pruned at depth k = dlog2 N
P e � 0.99 log2 N .

Thus, by applying (32) with ⌫ = 4, at depth k, the number of nodes whose Bhattacharyya

parameter is in the interval [1/N3
, 1 � 1/N3] is at most a , c(NP)

1�1/µ, for some constant c.

Hence, by applying Lemma 2 with M = 2k, the number of remaining nodes after pruning at

this level can be upper bounded by a. Consequently, F2 consists of at most a many sub-trees

of depth blog2 P c. Therefore, the latency associated to F2 is upper bounded by

2aP = o

✓
N

P

◆
, (38)

16

TABLE I: Slopes of the best linear fits for the normalized latency L/N of the fully-serial

implementation of SSC decoding as a function of log2 log2 N when 26 log2 N 30 for

different values of I(W) and pe. For comparison, note that the same line for SC decoding has

a slope of 19.371.

I(W) pe
slope

BEC BAWGNC BSC

0.1 10�3 3.322 2.353 3.706

0.1 10�10 3.403 2.594 3.952

0.5 10�3 3.287 3.751 3.195

0.5 10�10 2.835 3.831 3.414

0.9 10�3 1.944 2.792 2.168

0.9 10�10 2.017 2.877 1.277

where in the last step P N
0.01 and µ 2 [2, 5] are considered. This establishes the fact that (37)

is the dominant term in the computation of latency, which in turn completes the proof for

Case C.

IV. NUMERICAL RESULTS

This section numerically evaluates SSC-decoding latency for polar codes, constructed based

on Definition 1 with 4 log2 N 30, when a limited number of PEs are available. To

illustrate SSC-decoding latency in a fully-serial implementation (P = 1), Fig. 6 plots the latency

normalized with respect to the block length N , namely L/N (on the y-axis) versus log2 log2 N (on

the x-axis) when I(W) 2 {0.1, 0.5, 0.9} and pe 2 {10�3
, 10�10} for BEC (Fig. 6a), BAWGNC

(Fig. 6b), and BSC (Fig. 6c). These figures show that SSC decoder’s normalized decoding latency

grows linearly with log2 log2 N , confirming Theorem 1’s upper bound (see (17)). Moreover, the

curves’ slope approaches 2, as predicted by our theoretical result. The normalized latency of SC

decoding grows exponentially in the log2 log2 N domain because the SC decoder has a latency

of N log2 N when P = 1. Table I shows the slopes of the best linear fits for the last five points

in Fig. 6. It can be seen that for all values of I(W) and pe and for different channels, the slopes

of the best linear fits in the finite block length regime when 26 log2 N 30 are quite close

to 2. For comparison, let us point out that the same line for SC decoding has a slope of 19.371.

17

SSC, I(W) = 0.1, pe = 10�3 SSC, I(W) = 0.1, pe = 10�10

SSC, I(W) = 0.5, pe = 10�3 SSC, I(W) = 0.5, pe = 10�10

SSC, I(W) = 0.9, pe = 10�3 SSC, I(W) = 0.9, pe = 10�10

SC

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

(a) BEC.

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N
L
/
N

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

(b) BAWGNC.

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

2 2.5 3 3.5 4 4.5
0

10

20

30

slope = 2

log2 log2 N

L
/
N

(c) BSC.

Fig. 6: Normalized latency of SC and SSC decoding of polar codes in a fully-serial implemen-

tation (P = 1). As the code length N increases, the slope of the curves for SSC decoding tends

to 2, confirming that the latency of the simplified decoder scales as (2 + o(1))N log2 log2 N .

Fig. 7 shows the SSC-decoding latency with P 2 {1, N 1
8 , N

1
µ , N

1
2 ,

N
2 }. The polar codes are

constructed for a BEC with I(W) = 0.5 and pe = 10�3. It can be seen that, as N increases, the

slope of the curve with P = N
1
µ approaches 1� 1

µ , which is 0.72 for the BEC since µ ⇡ 3.63 in

18

5 10 15 20 25 30
0

10

20

30

slope = 0.72

log2 N

lo
g 2

L

P = N
2

P = N
1
2

P = N
1
µ

P = N
1
8

P = 1

Fig. 7: Latency of SSC decoding of a polar code constructed for a BEC with I(W) = 0.5

and pe = 10�3 considering different values of P . The slope of the curve when P = N
1
µ is

1� 1
µ = 0.72 and is similar to the case where P = N

2 .

TABLE II: Slopes of the best linear fits for the logarithm of the latency log2 L of the semi-

parallel implementation of SSC decoding as a function of log2 N when 26 log2 N 30 for

different values of P . Note that W is a BEC, I(W) = 0.5, and pe = 10�3.

P slope

N
2 0.748

N
1
2 0.743

N
1
µ 0.751

N
1
8 0.886

1 1.020

this case. This scaling is the same as the lowest achievable latency when P = N
2 . Table II shows

the slopes of the best linear fits for the last five points in Fig. 7. It can be seen that when P � N
1
µ ,

the slopes of the best linear fits in the finite block length regime when 26 log2 N 30 are

close to 0.72, as predicted by our theoretical results.

Fig. 8 shows how P scales as N increases when SSC-decoder latency is only 1% higher than

fully-parallel SSC decoding (i.e., the latency for P = N
2). The polar codes at different block

lengths are constructed for a BEC with I(W) = 0.5 and pe = 10�3. Theorem 1 predicts that,

if P scales as N
1
µ , then the latency is close to that of the fully-parallel implementation, which

19

5 10 15 20 25

2

4

6

8

slo
pe =

0.2
8

log2 N

lo
g 2

P

Fig. 8: Required value of P to achieve a latency for SSC decoding that is 1% more than the

fully-parallel implementation (P = N
2). Polar codes are constructed for a BEC with I(W) = 0.5

and pe = 10�3. The slope of the curve is 1
µ = 0.28.

Fig. 8 confirms because the curve’s slope is 1
µ = 0.28.

V. SUMMARY

This paper characterizes the latency of simplified successive-cancellation (SSC) decoding when

there is a limited number of processing elements available to implement the decoder. We show

that for a polar code of block length N , when the number of processing elements P is limited,

the latency of SSC decoding is O(N1�1/µ+N
P log2 log2

N
P), where µ is the scaling exponent of the

channel. The bound resulted in three important implications. First, a fully-parallel implementation

with P = N
2 results in a sublinear latency for SSC decoding, which recovers the result in [26].

Second, a fully-serial implementation with P = 1 results in a latency for SSC decoding that scales

as (2 + o(1))N log2 log2 N . Third, it is shown that P = N
1/µ in a semi-parallel implementation

is the smallest P that results in the same latency as that of the fully-parallel implementation of

SSC decoding.

ACKNOWLEDGMENTS

S. A. Hashemi is supported by a Postdoctoral Fellowship from the Natural Sciences and

Engineering Research Council of Canada (NSERC) and by Huawei. M. Mondelli is partially

20

supported by the 2019 Lopez-Loreta Prize. A. Fazeli and A. Vardy were supported in part by

the National Science Foundation under Grant CCF-1764104.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input

memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] “Final report of 3GPP TSG RAN WG1 #87 v1.0.0,” Reno, USA, Nov. 2016.

[3] J. W. Won and J. M. Ahn, “3GPP URLLC patent analysis,” ICT Express, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S2405959520302046

[4] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar codes with sublinear complexity,” IEEE Trans. Inf.

Theory, vol. 65, no. 5, pp. 2782–2791, May 2019.

[5] E. Arıkan and I. E. Telatar, “On the rate of channel polarization,” in Proc. of the IEEE Int. Symposium on Inf. Theory

(ISIT), Seoul, South Korea, July 2009, pp. 1493–1495.

[6] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-length scaling for polar codes,” IEEE Trans. Inf. Theory, vol. 60,

no. 10, pp. 5875–5898, Oct. 2014.

[7] M. Mondelli, S. H. Hassani, and R. Urbanke, “Unified scaling of polar codes: Error exponent, scaling exponent, moderate

deviations, and error floors,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 6698–6712, Dec. 2016.

[8] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and polynomial gap to capacity,” IEEE Trans. Inf. Theory,

vol. 61, no. 1, pp. 3–16, Jan. 2015.

[9] D. Goldin and D. Burshtein, “Improved bounds on the finite length scaling of polar codes,” IEEE Trans. Inf. Theory,

vol. 60, no. 11, pp. 6966–6978, Nov. 2014.

[10] M. Mondelli, S. H. Hassani, and R. Urbanke, “Scaling exponent of list decoders with applications to polar codes,” IEEE

Trans. Inf. Theory, vol. 61, no. 9, pp. 4838–4851, Sep. 2015.

[11] A. Fazeli, H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes with optimal scaling: Polar codes with large

kernels,” IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 5693–5710, Sep. 2021.

[12] V. Guruswami, A. Riazanov, and M. Ye, “Arıkan meets Shannon: Polar codes with near-optimal convergence to channel

capacity,” ser. STOC 2020. New York, NY, USA: Association for Computing Machinery, 2020.

[13] S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical scaling law for polar codes,” in Proc. IEEE Int.

Symp. on Inf. Theory (ISIT), Austin, TX, USA, Jun. 2010, pp. 884–888.

[14] H.-P. Wang and I. M. Duursma, “Polar codes’ simplicity, random codes’ durability,” IEEE Trans. Inf. Theory, vol. 67,

no. 3, pp. 1478–1508, Mar. 2021.

[15] S. Fong and V. Tan, “Scaling exponent and moderate deviations asymptotics of polar codes for the AWGN channel,”

Entropy, vol. 19, no. 7, p. 364, 2017.

[16] H.-P. Wang and I. Duursma, “Polar code moderate deviation: Recovering the scaling exponent,” arXiv:1806.02405”,

June 2018.

[17] J. Błasiok, V. Guruswami, and M. Sudan, “Polar codes with exponentially small error at finite block length,” in

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), no. 34,

2018, pp. 34:1–34:18.

[18] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[19] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation decoder for polar codes,” IEEE Commun.

Lett., vol. 15, no. 12, pp. 1378–1380, Dec. 2011.

21

[20] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. Gross, “Fast polar decoders: Algorithm and implementation,” IEEE J.

Sel. Areas Commun., vol. 32, no. 5, pp. 946–957, May 2014.

[21] M. Hanif and M. Ardakani, “Fast successive-cancellation decoding of polar codes: Identification and decoding of new

nodes,” IEEE Commun. Lett., vol. 21, no. 11, pp. 2360–2363, Nov. 2017.

[22] C. Condo, V. Bioglio, and I. Land, “Generalized fast decoding of polar codes,” in IEEE Global Commun. Conf.

(GLOBECOM), Dec. 2018, pp. 1–6.

[23] S. A. Hashemi, C. Condo, and W. J. Gross, “A fast polar code list decoder architecture based on sphere decoding,” IEEE

Trans. Circuits Syst. I, vol. 63, no. 12, pp. 2368–2380, Dec. 2016.

[24] S. A. Hashemi, C. Condo, and W. J. Gross, “Fast and flexible successive-cancellation list decoders for polar codes,” IEEE

Trans. Signal Process., vol. 65, no. 21, pp. 5756–5769, Nov. 2017.

[25] M. Hanif, M. H. Ardakani, and M. Ardakani, “Fast list decoding of polar codes: Decoders for additional nodes,” in IEEE

Wireless Commun. and Networking Conf. Workshops (WCNCW), 2018, pp. 37–42.

[26] M. Mondelli, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Sublinear latency for simplified successive cancellation

decoding of polar codes,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 18–27, Jan. 2021.

[27] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation decoder for polar codes,”

IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.

[28] H. P. Wang and I. M. Duursma, “Log-logarithmic time pruned polar coding,” IEEE Trans. Inf. Theory, pp. 1–1, 2020.

[29] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press, 2008.

[30] T. Che and G. Choi, “An efficient partial sums generator for constituent code based successive cancellation decoding of

polar codes,” arXiv preprint arXiv:1611.09452, 2016.

[31] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums computation in polar codes decoding,” in IEEE Int. Symp.

Circuits Syst. (ISCAS), 2015, pp. 826–829.

[32] E. Arıkan, “Systematic polar coding,” IEEE Commun. Lett., vol. 15, no. 8, pp. 860–862, 2011.

APPENDIX

Proof of Lemma 1. By applying Lemma 1 in [26], for n0 � 1,

P(Zn0 2 [2�2n0 , 1� 2�2n0]) c1 2
�n0/µ, (39)

where c1 is a universal constant which does not depend on n0, W . Let {Bn}n�1 be a sequence

of i.i.d. random variables with distribution Bernoulli(1/2). Then, by using (7), it is clear that,

for n � 1,

Zn0+n

8
<

:
Z

2
n0+n�1, if Bn = 1,

2Zn0+n�1, if Bn = 0.

Therefore, by applying Lemma 22 of [6], we obtain that, for n1 � 1,

P
✓
Zn0+n1 2�2

Pn1
i=1 Bi | Zn0 = x

◆
� 1� c2x(1� log2 x), (40)

22

with c2 = 2/(
p
2� 1)2. Thus,

P
✓
Zn0+n1 2�2

Pn1
i=1 Bi | Zn0 2�n0

◆
� 1� c22

�n0(1 + n0)

� 1� c2

p
2

ln 2
2�n0/µ,

(41)

where the first inequality uses the fact that 1 � c2x(1 � log2 x) is decreasing in x for any

x 2�n0 1/2, and the second inequality uses that 1�c22�n0(1+n0) � 1�c2

p
2 ·2�n0/2/ ln 2

for any n0 2 N and that µ > 2. Furthermore, by using the same passages of (54) in [7], we

obtain that, for any ✏ 2 (0, 1/2),

P
✓
2�2

Pn1
i=1 Bi

> 2�2n1✏
◆

 2�n1(1�h2(✏)), (42)

where h2(x) = �x log2 x�(1�x) log2(1�x) denotes the binary entropy function. By combining

(41) and (42),

P
⇣
Zn0+n1 2�2n1✏ | Zn0 2�n0

⌘
� 1� c2

p
2

ln 2
2�n0/µ � 2�n1(1�h2(✏)). (43)

Define Yn = 1� Zn. Note that, if Zn+1 = Z
2
n, then

Yn+1 = 1� (1� Yn)
2 = 2Yn � Y

2
n 2Yn. (44)

Furthermore, if Zn+1 � Zn

p
2� Z2

n, then

Yn+1 1� (1� Yn)
p

2� (1� Yn)2 2Y 2
n , (45)

where in the last inequality the fact that 1 � t
p
2� t2 2(1 � t)2 for any t 2 [0, 1] is used.

Thus, by using (7), for n � 1,

Yn0+n

8
<

:
2Y 2

n0+n�1, if Bn = 1,

2Yn0+n�1, if Bn = 0.

Define Ỹn0 = 2Yn0 and

Ỹn0+n =

8
<

:
Ỹ

2
n0+n�1, if Bn = 1,

2Ỹn0+n�1, if Bn = 0.

Then for any n � 0,

Yn0+n 1

2
Ỹn0+n Ỹn0+n. (46)

By applying again Lemma 22 of [6] to the process Ỹn, for n1 � 1,

P
✓
Ỹn0+n1 2�2

Pn1
i=1 Bi | Ỹn0 2�n0

◆
� 1� c2

p
2

ln 2
2�n0/µ, (47)

23

which, combined with (42), gives that, for any ✏ 2 (0, 1/2),

P
⇣
Ỹn0+n1 2�2n1✏ | Ỹn0 2�n0

⌘
� 1� c2

p
2

ln 2
2�n0/µ � 2�n1(1�h2(✏)). (48)

By using (46) and the fact that Ỹn0 = 2Yn0 , (48) implies that

P
⇣
Yn0+n1 2�2n1✏ | Yn0 2�n0�1

⌘
� 1� c2

p
2

ln 2
2�n0/µ � 2�n1(1�h2(✏)). (49)

Let n � 1. Set n1 = d�ne, n0 = n � d�ne, and ✏ = h
(�1)
2 ((�(µ+ 1)� 1)/(�µ)), where

h
(�1)
2 (·) is the inverse of h2(x) for any x 2 [0, 1/2]. Note that if � 2 (1/(1 + µ), 1), then

✏ 2 (0, 1/2). Consequently, (43) implies that

P
✓
Zn 2�2

n� h
(�1)
2 (�(µ+1)�1

�µ)
| Zn0 2�n0

◆
� 1� c32

�n 1��
µ , (50)

where c3 is a numerical constant. Similarly, by using that Zn = 1� Yn, from (49),

P
✓
Zn � 1� 2�2

n� h
(�1)
2 (�(µ+1)�1

�µ)
| Zn0 � 1� 2�n0�1

◆
� 1� c32

�n 1��
µ . (51)

The proof is concluded by the following chain of inequalities:

P
✓
Zn 2

2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
, 1� 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
�◆

= 1� P
✓
Zn 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
◆
� P

✓
Zn � 1� 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
◆

 1� P
✓
Zn 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
, Zn0 2�n0

◆

� P
✓
Zn � 1� 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
, Zn0 � 1� 2�n0�1

◆

= 1� P
✓
Zn 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
| Zn0 2�n0

◆
P
�
Zn0 2�n0

�

� P
✓
Zn � 1� 2�2

n�h
(�1)
2 (�(µ+1)�1

�µ)
| Zn0 � 1� 2�n0�1

◆
P
�
Zn0 � 1� 2�n0�1

�

(a)
 1�

⇣
1� c32

�n 1��
µ

⌘ �
1� P(Zn0 2 [2�n0 , 1� 2�n0�1])

�

(b)
 1�

⇣
1� c32

�n 1��
µ

⌘⇣
1� c1 2

�n 1��
µ

⌘

 (c3 + c1)2
�n 1��

µ ,

where (50) and (51) are used in (a), and (39) is used in (b).

