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Abstract—The bee-identification problem, formally defined by Tan-
don, Tan and Varshney (2019), requires the receiver to identify
“bees” using a set of unordered noisy measurements. In this
previous work, Tandon, Tan and Varshney studied error exponents
and showed that decoding the measurements jointly results in a
significantly smaller error exponent.

Here, we study efficient ways of performing joint decoding.
First, by reducing to the problem of finding perfect matching and
minimum-cost matchings, we obtain joint decoders that run in time
quadratic and cubic in the number of “bees” for the binary erasure
(BEC) and binary symmetric channels (BSC), respectively. Next, by
studying the matching algorithms in the context of channel coding,
we further reduce the running times by using classical tools like
peeling decoders and list-decoders. In particular, we show that our
identifier algorithms when used with Reed-Muller codes terminates
in almost linear and quadratic time for BEC and BSC, respectively.

I. INTRODUCTION

Imagine M bees, each tagged with a unique barcode, flying
in a beehive. We take a picture of the bees and obtain an
unordered set of noisy barcodes. The bee-identification problem
— proposed and formally defined by Tandon et al.— requires one
to uniquely identify each bee from the noisy measurements [1].
Besides problems involving multiple target tracking [2f], [3], the
bee-identification problem is also relevant to other applications
(see [[1]l, [4] for other examples). One recent possible application
is that of pooled testing for viral RNA like COVID-19. In a recent
experiment [5]], Schmid-Burgk et al. developed a procedure where
multiple DNA samples are pooled, sequenced and analyzed en
masse for the COVID-19 infection. In their procedure, barcodes
with high Levenshtein distance were inserted in the DNA samples
and by decoding the barcodes individually, they were able to
identify the viral DNA samples. Later, the procedures were
validated by other groups who performed similar experiments
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Indeed, to recover the original barcodes, a naive approach is to
look at each barcode separately and decode them independently.
However, certain bees/DNA samples may be assigned to the same
barcode and in this case, we fail to identify all the bees/DNA
samples. In contrast, one can look at all the barcodes jointly and
determine the best way to assign the barcodes so that likelihood of
correct identification is maximized. The latter is termed as joint
decoding and in [1f], Tandon et al. showed that joint decoding
results in significantly smaller probability of wrong or failed
identification. Specifically, they quantified the gap between the
error exponents of independent and joint decoding. Interestingly,
in a follow up work, Tandon ef al. showed that the error exponents
are the same for both independent and joint decoding when bees
are absent with certain probability [10]].

In [[1], Tandon et al. wrote that the lower error exponent
of joint decoding comes at a “cost of increased computational
complexity”. They then posited that joint decoding entails a
computationally prohibitive exhaustive search amongst the M!
possible permutations and explored ideas that combine both
independent and joint decoding.

Fortunately, an exhaustive search is not necessary and in this
work, we demonstrate that efficient joint decoding is achievable.
Specifically, for the binary erasure and binary symmetric chan-
nels, we reduce the bee-identification problem to the problem of
finding a perfect matching and minimum-cost matching, respec-
tively. Hence, applying the well-known Hopcraft-Karp algorithm
[11] and Hungarian method [[12f], respectively, we can identify
the bees in time polynomial in M.

We then study the (minimum-cost) matching problem in the
context of channel coding and show that the complexity of bee-
identification problem can be further reduced. In particular, for
the binary erasure channel, we showed that when we deploy the
celebrated Reed-Muller codes, the bee-identification problem can
be resolved in almost O(M) time on average. This is essentially
optimal as Q(M) time is required to read all M barcodes.
Therefore, not only is the “cost of increased computational
complexity” for joint decoding acceptable, but, in some cases,
the additional complexity cost is negligible.

We formally state the problem and our contributions in the
next section. For the ease of exposition, we study the bee-
identification problem for the binary erasure channel (BEC) and
binary symmetric channel (BSC). The algorithms described in the
paper can be extended for larger alphabets and to perform joint
maximum-likelihood decoding for other channels like the discrete
memoryless and deletion channels.

II. PROBLEM DEFINITION

Consider a binary code C of length n with M codewords
X1,X2,...,X). Consider, in addition, a binary channel where
each output y given an input x is received with probability
P(y|x). We send all M codewords over the channel and obtain
an unordered set of M outputs {y1,y2, ...,y }. Note that y; is
not necessarily the channel output of x; and in fact, the task of
the bee-identification problem is to find a length-M permutation
7 so that y;) is indeed the channel output of the input x;
for all i € [M] £ {1,2,...,M}. Assuming the channels are
independent, the joint decoder finds a length-M permutation 7
that maximizes the probability J[;c(pq P (Y (i)lxi)-

In this paper, we study efficient ways of determining the
permutation 7. Since the input to our problem are M n-bit
codewords, a trivial lower bound on complexity is Q(Mn) and
our running time analysis in most parts will be with respect to the
parameter M. Also, as the code size M represents “the number of
bees”, we assume a reasonable growth rate of M with respect to
n, that is, polynomial in n, and hence, in most parts of the paper,
we suppress factors involving n in the big-O notation. We note
that this is different from the setting in [1] where M = 2ftn for
some rate R. Nevertheless, many error estimates derived in the
latter remain applicable. The focus of this work is to find efficient
identifier algorithms that achieve these error probabilities.



Our Contributions.

o For the BEC with erasure probability p, we provide a joint
decoder, Joint Erasure Decoding Identifier (JEDI), that runs
in O(M?) time. For the family of r-th order Reed-Muller
codes and any small ¢, we show that on average, JEDI
terminates in O(M'*€) time when r > 2 and in O(M?*€)
time when r = 1.

o For the BSC with crossover probability p, we provide a
joint decoder, Joint Minimum-Distance Decoding Identifier
(JMDI), that runs in O(M?) time. To improve the running
time, we approximate the exact solution using ideas from
list-decoding and propose the Joint List Decoding Identifier
(JLDI). For the family of r-th order Reed-Muller codes,
we show that for sufficiently small p, JLDI terminates in
O(M?*¢) time for any small ¢ and is almost as good as
JMDI (see Theorem [10| for the formal statement).

III. JOINT ERASURE DECODING IDENTIFIER

In this section, we consider the binary erasure channel (BEC).
Even though the case for BECs was not studied in [1]], we
investigate the joint decoder for the erasure channel as it illustrates
certain key graph theoretic concepts for the Joint Minimum-
Distance Decoding Identifier described in Section

Given an integer M, a balanced bipartite graph G of order
M is an undirected graph with 2M nodes: M left and M right
nodes, where every edge connects a left node to a right node. A
matching M of G is a subset of edges where no two edges are
incident on the same node. Clearly, any matching of a balanced
bipartite graph G of order M has at most M edges. If a matching
M contains exactly M edges, we say that M is perfect.

Let us label the left and right nodes of a balanced
bipartite graph G of order M with x1,x2,...,x) and
Y1,Y2,...,Yum, respectively. Suppose that we have a perfect
matching M of G. Then we can write the edges of M as
(1, Yr(1)), (T2, Yr(2))s - - - » (T2, Yr(ar)) and it follows from the
definition of a matching that 7 is a permutation of length M. In
other words, we can represent a perfect matching with a length-
M permutation. Conversely, given a length-M permutation 7, we
obtain a perfect matching of G if (x;,y(;)) is an edge of G for all
1 € [M]. Therefore, for the rest of this paper, we use permutations
and matchings interchangeably.

We are now ready to describe the main contribution of this sec-
tion: an efficient implementation of a joint decoder for erasures.

Joint Erasure Decoding Identifier (JEDI).
INPUT: A codebook € = {x1,%x2,...,xp} C {0,1}" of size M
and a set of M channel outputs {y1,y2,...,ym} C {0,1,7}".

OUTPUT: A permutation 7 such that y; matches x, ;) for all
i € [M] if there is a unique 7. Otherwise, the decoder declares
FAILURE.

(1) We draw a balanced bipartite graph G of order M. Here, the
M codewords are the left nodes while the M channel outputs
are the right nodes. For 4, j € [M], we draw an edge between
x; and y; if and only if y; matches x;. Here, y matches x if
both y coincides with x on positions that are not erased.

(2) Determine if there is a unique perfect matching in G. If the
matching 7 is unique, return 7. If the matching is not unique,
return FAILURE.

We discuss the running time of JEDI. For general codebooks,
Step 1 can be implemented in O(M?) time.

Next, let the bipartite graph constructed in Step 1 be G. For
each codeword x € C, let Y(x) be its corresponding channel
output and we have that Y (x) matches x. Therefore, the set
of edges {(x,Y(x)) : x € C} is a perfect matching of G and
hence, the number of edges is at least M. For Step 2, we can
use the Hopcraft-Karp algorithm [11] to find a perfect matching
in O(Ev/M) time. Following the methods described in Fukada
[13] and Hoang et al. [14], we then determine if another perfect
matching exists in O(M +E) = O(E) time. Hence, Step 2 can be
implemented in O(E+/M) = O(M?®) time. Therefore, a simple
analysis shows that JEDI runs in O(M?*) time.

First, we improve the running time of Step 2. Crucially, we
exploit the fact that § contains a perfect matching. Now, if we
are able to determine early if there is more than one perfect
matching, we need not continue to find a perfect matching. To
do so, we modify the classic peeling decoders used in graph-
based codes [[15]. Intuitively, we search for degree-one nodes in
the graph §. For any such node u, the edge wv incident to u
necessarily belongs to a perfect matching and hence, we add it to
the matching. We then remove the nodes u and v, and all other
edges incident to v and repeat the search for degree-one nodes. We
have two scenarios. In the first scenario, we remove all nodes from
G and end up with a perfect matching. In the second scenario,
all remaining nodes have degree at least two and it can be shown
that G contains at least two perfect matchings (see Section [[II-B)
and thus, we can terminate our search. A formal description is
given below.

Peeling Matching Algorithm (PMA).
INPUT: A bipartite graph G (with M left and M right vertices)
that contains at least one perfect matching.

OUTPUT: A perfect matching M of G if it is unique. Otherwise,
FAILURE is declared.

(1) Initialize M to the empty set.

(2) Find a node u in G with degree one. Here, u may be a left
or right node. If there is no such node, go to Step 6.

(3) Let uv be the unique edge incident to u and add uv to M.

(4) Remove nodes u and v and all edges incident to v.

(5) Repeat Step 2.

(6) If M is a perfect matching, return M. Otherwise, |M| < M
and we declare FAILURE.

Example 1. Consider the linear code with M = 8 codewords

10 00 1 11
generated by the matrix |0 1 0 1 0 1 1].
0011101
(a) Suppose the channel outputs are:
0077777, 0017777, 7777770, 7070717,
1177770, 7777001, 0777777, 7777110.

Then the bipartite graph G constructed in Step 1 of JEDI
is given below. Highlighted in blue is the unique bipartite
matching M in G.

0000000 0072727227
1000111 e ®001???7
0101011 22727272720
0011101 ®°0?0?17
1101100 11722220
1011010 022772001

0110110
1110001 @




Here, we list the edges in the order they are added to M
according to PMA.
(1000111, 7070?17?),

(1110001, 7777001),
(0110110, ?777110),

(0011101, 00177?7),
(0000000, 0077777).

(1101100, 1177770),

(b) Suppose the channel outputs are:

0000000, 7?07?7171, 0110110,
1101100, 1110001, 0110110,

2077171,
1011010.

Then the bipartite graph G constructed is given below.
0000000@———@0000000

Highlighted in red is the edges remaining after all degree-one
nodes are removed. Hence, PMA declares FAILURE.

The following lemma on the correctness of PMA and its
running time can be proved using the notion of stopping sets in
peeling decoders [15]. For completeness, we provide a detailed
proof in Section [[TI-B]

Lemma 2. Let G be a balanced bipartite graph of order M
with E edges. Suppose that G contains at least one perfect
matching. If the perfect matching is unique, then the output M of
PMA is the perfect matching. Otherwise, PMA declares FAILURE.
Furthermore, PMA terminates in O(E) time.

Therefore, since £ < M?2, we have that JEDI terminates
in O(M?) time. Now, this running time analysis assumes the
worst case where G is a complete bipartite graph. By design,
the codebook € is chosen such that most erasure patterns are
correctable with high probability. In other words, each right node
or channel output is expected to match with exactly one left node
or codeword, and so, we expect the graph G to be sparse.

It turns out that the expected number of edges in G is given
by the distance enumerator (see for example [[16]). Specifically,
given a code C of length n, we define B; to be the number of pairs
of (not necessarily distinct) codewords of distance d. So, we have
that By = M and >, B; = M?. We then define the distance
enumerator of code € to be polynomial B(z) ="', B;z".

Lemma 3. Consider a BEC with erasure probability p. If the
distance enumerator of code C is B(z), then expected number of
edges in G constructed in JEDI is given by B(p).

Proof. Consider two codewords x and z and let x be the channel
output of x. We first compute the probability that there is an edge
between the nodes z and x in JEDI. Suppose the distance between
x and z is d. Then there is an edge between z and x if the d bits
where x and z differ are erased. In other words, there is an edge
between z and X with probability p?. Since expectation is linear,
the expected number of edges is Y, ..o 247 %) = B(z). Here,
dp(x, z) denotes the Hamming distance of x and z. O

Consider a code C with minimum distance d. Then we have
that By = By = --- = By_1 = 0. Since p* < p? for i > d, we
have that B(p) = Bo+ Y., Bip® < M + (%) p?. Therefore, the

expected number of edges of G is at most M + (1\24 )pd.

So, it remains to improve the running time of Step 1, i.e. the
time to set up the graph G. To do so, we set C to be a linear code
of length n. Then for any channel output y, we can find all x such
that y matches x in O(n?) time by matrix inversion. Therefore,
we can construct § in O(Mn?) time. Hence, we summarize our
discussion with the following theorem.

Theorem 4. Consider a BEC with erasure probability p. Let C
be a linear code of size M with minimum distance d. Then the

expected number of edges of G is at most M + (1\24 ) p®. Hence,
the expected running time of JEDI is O (M + (];[)pd + M ng).

Suppose that C,, is a family of linear codes such that C,, is a
linear code of size M,, with minimum distance d,,. If (Ag") pt =

o(1), then the expected running time of JEDI tends to O(Mn?).

A. Reed-Muller Codes

In this subsection, we apply Theorem [4] to the ubiquitous class
of Reed-Muller codes [17] and derive the expected running time
of JEDI on this class of linear codes.

Theorem 5. Fix r > 1 and consider the family of r-th order
Reed-Muller codes. Then for any ¢ > 0, the expected running
time of JEDI is

when r > 2,
when r = 1.

O(M1+e)
O(M2+e)

Proof. Consider 1 < r < m. Recall that the Reed-Muller code
RM(r,m) has the following parameters: n = 2™, logM =
1 (7) and d =2

First, we demonstrate the expected running time tends to

O(Mn?). Following Theorem 4| it remains to show that (]gf )p?
tends to zero as m — oo, or equivalently,

log <A2/[> + dlogp — —o0. (1)

Now, for RM(r, m), we have that log M < (r + 1)m”. Since

d = 2™77, the left hand side of is upper bounded by 2(r +

1)m" + (27" logp)2™. When p < 1, this upper bound tends to

—oo and hence, we have that (];I ) pd tends to zero, as required.

Next, we consider a small constant positive e.

o When r > 2, we claim that n® = O(M¢). Indeed, M¢ =
2¢(31-0 (7)) > 27" for some constant y. On the other
hand, n® = 2™, Since 3m = o (ym"), we have that 23™ =
O (2™") = O(M°).

e When 7 = 1, it is no longer true that n® = O(M?¢). Instead
of using matrix inversion to construct G, we use the Fast
Hadamard Transform (FHT) [[18]], [19] to compute the edges.
Specifically, for each channel output y, we can use FHT to
find all x that matches y in O(M log M) time. Therefore, G
can be constructed in O(M?log M) = O(M?*¢) time and
we have the expected running time of JEDI as desired. [

To end this subsection, we comment that the derived running
time is essentially optimal. As mentioned earlier, since we have to
read all M codewords of length n, a lower bound for the running
time of any joint decoder is trivially Q(Mmn). For Reed-Muller
codes of order r > 2, we have n = o(M) and the expected
running time of O(M'7¢) is almost optimal. When r = 1, we
note that n = ©(M) and thus, Q(Mn) = Q(M?). Again, the
expected running time of O(M?2%¢) is almost optimal.



B. Correctness and Running Time of PMA

For completeness, we provide a detailed proof of Lemma 2]

Following Fukada [13] and Hoang et al. [[14], we define the
notion of alternating cycle. Formally, consider a bipartite graph
G with a perfect matching M. A cycle O in G is alternating with
respect to M if the edges in O alternate between in M and not
in M. We have the following lemma.

Lemma 6. Let M be a perfect matching in a balanced bipartite
S. Then M is the unique perfect matching in G if and only if there
is no alternating cycle with respect to M.

Correctness of PMA. Applying Lemma [6] it suffices to show the
following claim.

Let G be a balanced bipartite graph with a perfect
matching M. If all the degrees of G are at least two,
then there is an alternating cycle with respect to M.

Indeed, we construct an alternating cycle as follow. Pick any
left node u; in G. Since M is a perfect matching, we can find a
right node v; such that u;v; belongs to M. Now, as the degree
of vy is at least two, we can find us such that usv; is an edge
not belonging to M. We then repeat the process to find v, and
ugz such that ugvy € M and ugvy ¢ M. Since the degrees of all
nodes are at least two, we are always able to find a left node u;
and eventually, we have two left nodes that coincide and obtain
an alternating cycle with respect to M.

Running Time of PMA. We briefly describe a data structure that
implements PMA in time linear in the number of edges. Recall
that G has E edges and 2M nodes with £ > V.

We maintain an adjacency list for the nodes. In other words,
for each node v, we maintain a list N(v) of nodes adjacent to v.
Also, we maintain a queue ) of degree-one nodes.

Whenever @ is nonempty, we remove the first node v and its
neighbor v and update the adjacency lists of the neighbors of v.
If any node becomes degree-one, we add it to the (). We continue
this process until the queue is empty. Since the number of updates
to the adjacency lists is at most the number of edges, the running
time of PMA is O(M + E) = O(E).

IV. JOINT MINIMUM-DISTANCE DECODING IDENTIFIER

We propose an efficient joint decoder for the binary symmetric
channel (BSC). While our exposition assumes a BSC channel,
we remark that the decoder can be modified to serve as a joint
maximum likelihood decoder for other channels (see Section [V).

As with Section we reduce the problem of permutation
recovery to that of finding a minimum-cost matching. Specifically,
consider a balanced bipartite graph G of order M. In addition,
we associate each edge e in G with a cost ¢(e) and the cost of a
matching M is the sum of the costs of all edges in M. Suppose
that G contains at least one perfect matching. A perfect matching
in G is minimum-cost if its cost is at most the cost of any other
perfect matching in §. When § is a complete bipartite graph, the
problem of finding a minimum-cost matching in G is also known
as the assignment problem and the Hungarian method finds a
minimum-cost assignment in O(M?) time [12].

As with before, we use the codewords and channel outputs as
the left and right nodes of a balanced bipartite graph G. Then for
any codeword-output pair (x, ), we connect them with an edge of
cost dg(x,y). Then the problem of finding a permutation 7 that
maximizes the the probability [];c ;) P(Yr(i)|¥:) is equivalent

to minimizing the cost of a perfect matching in §. A formal

description of the decoder is given below.

Joint Minimum-Distance Decoding Identifier (JMDI).

INPUT: A codebook C = {x1,x2,...,x5,} of size M and a set

of M channel outputs {y1,y2,...,ynm} C {0,1}".

OUTPUT: A permutation 7 such that the

Zie[M] dr (%, Yr(;)) is minimized.

(1) We draw a balanced bipartite graph G of order M. Here, the
M codewords are the left nodes while the M channel outputs
are the right nodes. For 4, j € [M], we draw an edge between
x; and y; and set its cost to be dg(x;,y;).

(2) Find a minimum-cost matching in §.

We discuss the running time of JMDI. In Step 1, we can
compute the distance between all pair of words in O(M?n) time.
In Step 2, we can apply the Hungarian method [12] and hence,
we have the following theorem.

Theorem 7. JMDI finds a permutation in O(M?3 + M?n) time.

quantity

To improve the running time for the BSC channel, instead
of finding the exact solution, we approximate it by finding a
minimum-cost matching in a sparse subgraph I of G.

Specifically, for this sparse subgraph J{, we consider only
edges whose cost is at most R for some R < n. Then the degree
of each right node/channel output y is given by the number of
codewords whose distance is at most R from y. When C is a code
with minimum distance d and R < (d—1)/2, this number is one.
When R > (d — 1)/2, this quantity is studied in the context of
list decoding.

Formally, a C is (R, L)-list-decodable if for all y € {0,1}",
we have that [{x € C: dy(x,y) < R}| is at most L. Then we
modify Step 1 of JMDI by only including edges with weight at
most R. Let 3{ be the resulting bipartite graph and from the list-
decoding property of C, we have that H has at most M L edges.
We then proceed as in Step 2 to find a minimum-cost matching
and we call this method joint list decoding identifier (JLDI). For
sparse bipartite graphs with V nodes and E edges, a minimum-
cost matching can be found in O(V?log V +V E) time [20], [21]
and hence, JLDI terminates in O(M?(log M + L + n)) time.

Example 8. Consider the linear code C with M = 4 codewords

. 1100
generated by the matrix 00 1 1 J .
Suppose the channel outputs are:
y1 = 10000, yo = 11101, ys = 00011, y4 = 10001.

Below we present the bipartite graph G constructed by JMDI. To
reduce clutter, we use a 4 x 4-table whose (4, j) entry is given
by the cost of the edge (x;,y;), i.e. du(x;,y;). We refer to this
table as the cost matrix of G.

‘ Yi Y2 Y3 Ya

x1 = 00000 | 1 4 2 2

Cost Matrix of §:  xo = 11100 | 2 1 5 3
x3=00111 | 4 3 1 3

x4 = 11011 | 3 2 2 2

Highlighted in blue are the edges in a minimum-cost matching
of G. Here, the minimum-cost matching M is given by {(x;,y;) :
i€ [M]}.

Now, we can verify that C is a (2, 3)-list-decodable code.
Hence, if we apply JLDI with radius R = 2, we obtain the
bipartite graph 3 whose cost-matrix is as follows.



\ Yi_ Y2 Y3 Ya

x1 = 00000 | 1 - 2 2

Cost Matrix of H: x9 =11100 | 2 - -
x3 =00111 | — - 1 -

xyg =11011 | — 2 2 2

Indeed, we observe that the degree of y;, i € [4], is at most
three, corroborating the list-decoding property of C. In this case,
we have that the minimum-cost matching of I is also M.

However, a minimum-cost matching in J{ may not be a
minimum-cost matching in §. In other words, JLDI may not
return the same output as JMDI. Nevertheless, such cases are
rare and we estimate the probabilities.

Theorem 9. Consider a BSC channel with crossover probability
p. Let C be an (R, L)-list-decodable code of length n, size M
and R > pn. Set v = R/(pn) — 1. Then JLDI terminates in
O(M?(log M + L + n)) time. Furthermore, define the event

JMDI correctly finds 1 = JLDI correctly finds . (2)

Then we have that tl}\iz[ probability event occurs is at least
(1 —exp(—y*pn/3))".

Proof. The running time analysis of JLDI is described in the
preceeding paragraphs.

To derive the probability estimates of event (2), we consider
the random variable Z; that denotes the number of errors for
the codeword x;, i € [M]. In other words, Z; = dp (X, Yr(i))-
Let G and 3{ be the bipartite graphs constructed in JMDI and
JLDI, respectively. To simplify our arguments, we assume that
the minimum-cost matchings in both graphs are unique and let
them be Mg and Myq.

First, we argue that if Z; < R for all ¢ € [M] and JMDI is
correct, then JLDI is necessarily correct. Since JMDI is correct,
we have that the matching Mg corresponds to 7. Also, for all
i, since Z; < R, we have the edge (x;,Yr(;)) has cost at most
R. Therefore, the matching Mg is still present in the graph 3
and so, the minimum-cost matching My is identical to Mg and
corresponds to . Hence, JLDI is correct.

Next, we lower bound the probability that all values of Z; is at
most R. Fix ¢. Using Chernoff’s bound (see for example, [22])),
we have that P(Z; > R) = P(Z; > (1+7)pn) < exp(—?pn/3)
and so, P(Z; < R) > 1 — exp(—v2pn/3). Since the values of
Z; are independent of each other, the lower bound follows. [

A. Reed-Muller Codes

Similar to before, we verify that the class of Reed-Muller codes
satisfy the conditions of Theorem 9]

Theorem 10. Fix r > 1 and consider the family of r-th
order Reed-Muller codes. Consider further a BSC with crossover
probability p < 1/2".

For any € > 0, JLDI runs in O(M?**€) time and event
occurs with probability approaching one.

To demonstrate the result, we apply the following result on the
list-decoding capabilities of Reed-Muller codes.

Theorem 11 (Bhomick and Lovett [23]]). Fix r and « and set
R = (1/2" — a)n. Then there is a constant L, . (dependent
only on v and «) such that the Reed-Muller code RN (r,m) is
(R, L, )-list-decodable for all m.

Proof of Theorem Choose some small « so that p < 1/2" —
« and set R = (1/2" — a)n. Then Theorem [11] states that the
list size is upper bounded by a constant independent of n and
M. Hence, applying Theorem [9] we have the running time is
O(M?(log M + L +n)) = O(M?(log M + n)).

When r > 2, we have that n = O(M€) as in the proof of
Theorem [5| and hence, the running time is O(M?27<). When r =
1, as before, we use FHT to compute the costs of the edges.
Specifically, for each channel output y, we use FHT to compute
dp(x,y) for all codewords x in O(M log M) time. Therefore, G
can be constructed in O(M?log M) = O(M?*¢) time.

Next, Theorem E] also states that event (2)) occurs with proba-
bility at least 6,, £ (1 — exp(—v*pn/3))" for some constant .
Recall that M is the code size 2= () < 2r+1Dm” — g(9n)
for all any constant A. So, we can choose A small enough so that
2* < exp(y?p/3). Therefore, M exp(—~2pn/3) approaches zero
and we have

lim 6,
n—00

= lim (1 — exp(—v%pn/3))M

n—oo

1 exp(y?pn/3)\ FoCIpnm
= lim 1 ———
oo exp(y°pn/3)

= lim e~ Mexp(=7"pn/3) _ 1, as desired O

n—oo
V. DISCUSSION AND FUTURE WORK

We discuss certain extensions and possible future work.

o General channels. As mentioned earlier, JMDI can be mod-
ified and be used as joint (maximum likelihood) decoder
for other channels. Specifically, suppose that a channel is
described by a probability distribution P where each output
y given an input x is received with probability P(y|x). We
modify Step 1 in JMDI by assigning the edge (x,y) with
the cost —log P(y|x). Then finding a minimum-cost perfect
matching in the resulting bipartite graph yields a permutation
that maximizes the likelihood of correct identification.

o Handling absentee bees. In [10], the authors studied the
bee-identification problem for the scenario where bees were
absent with certain probability. In other words, instead of M
channel outputs, we have M — a outputs where a > 0. Both
JEDI and JMDI can be modified to handle these scenarios. In
both cases, we proceed as before and simply add a absentee
right nodes to the bipartite graph G. For the BEC case, we
connect each absentee right node to all left nodes, while for
the BSC case, we connect each absentee right node to all left
nodes and assign the cost to be zero. Then we find a perfect
matching or a minimum-cost perfect matching as before.

o Probability of Erroneous Identification. In Theorems [5| and
[10] we demonstrated that JMDI and JLDI for Reed-Muller
codes terminates in almost linear and quadratic time, respec-
tively. It remains to investigate the probability that the JMDI
or JLDI recovers an incorrect permutation, or specifically,
how fast the probability of erroneous identification decays
to zero. Even though Tandon et al. [1]] studied the joint-
decoding error exponents for the case where codes have
positive rates, their techniques appear relevant to general
codes and it is interesting to how their results extend to
zero-rate codes or other explicit families of codes.
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