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Abstract—Polymerase chain reaction (PCR) testing is the gold

standard for diagnosing COVID-19. Unfortunately, the outputs

of these tests are imprecise and therefore quantitative group

testing methods, which rely on precise measurements, are not

applicable. Motivated by the ever-increasing demand to identify

individuals infected with SARS-CoV-19, we propose a new model

that leverages tropical arithmetic to characterize the PCR testing

process. In many cases, some of which are highlighted in this

work, tropical group testing is provably more powerful than

traditional binary group testing in that it requires fewer tests than

classical approaches, while additionally providing a mechanism

to identify the viral load of each infected individual.

A full version of this paper is accessible at: https://arxiv.or
g/abs/2201.05440

I. INTRODUCTION

The COVID-19 pandemic has highlighted the critical role
that widely-accessible testing can play in controlling the
spread of infectious diseases. Efficient testing schemes have
the potential to simultaneously reduce the time to diagnosis
while improving both the reliability and accuracy of the testing
procedure. This subject has attracted significant attention in the
open literature [2]; however, existing works do not accurately
model the semiquantitative information available at the output
of the polymerase chain reaction (PCR) testing methods used
to detect the presence of SARS-CoV-19.

PCR tests output cycle threshold (Ct) values, which, as a
result of the testing mechanism itself, are typically represented
as semiquantitative measurements in the log domain. In this
instance, the term quantitative refers to the fact that the tests’
readings are non-binary and semi means that the readings are
noisy or inaccurate. Previous semiquantitative approaches are
ill-suited for modeling the output of a PCR test as previous
works mostly rely on the assumption that test measurements
are reported on a linear (rather than a log) scale [5]–[10].

As an illustration of the potential problem of modeling the
PCR test outputs on a linear scale, consider the Ct value of
a test as the dB value of a sound wave or the pH value of a
liquid. When adding a 50 dB white noise with a 30 dB one,
we get a 50.04 dB white noise that is indistinguishable from
50 dB. One might as well pretend that 50 dB plus 30 dB
equals 50 dB. Due to the wide range in viral load between
infected individuals, the same phenomenon for Ct values has
been observed and is often referred to as masking [4].

In order to address the masking issue and also to take
advantage of the semiquantitative outputs available from PCR,
we propose introducing delays during the DNA amplification

TABLE I
FOUR WAYS TO QUANTIFY AND COMBINE TEST OUTPUTS. BINARY TESTS

OUTPUT “NEGATIVE” OR “POSITIVE”; COMBINING SAMPLES MEANS
LOGICAL OR. QUANTITATIVE TESTS OUTPUT NUMBERS; COMBINING

SAMPLES MEANS ADDITION. THE OTHER TWO REGIMES LIE IN BETWEEN.

Regime Reading Remixing

Binary Negative, Positive Neg _ Pos = Pos

Tropical 2�1, 2�40, . . . , 2�12 min(30, 15) = 15

Semiquantitative [0, 3), [3, 6), [6, 9), . . . [0, 3) + [3, 6) = [3, 9)

Quantitative 0, 1, 2, 3, 4, 5, . . . 8 + 9 = 17

process. The basic idea will be to generate tests where each
of the samples within a test can be inserted at different times.
As a simple example of how this would work, suppose we
design a test that consists of a single sample from an infected
individual that has a Ct value of X . Then, if we delay inserting
the sample by � cycles, the output of the resulting test would
be �+X .

We use tropical multiplication x � y = x + y and tropical
addition x � y = min(x, y) to model the behavior of the Ct
values that are provided as output of each of the PCR tests.
See Table I for a comparison of this versus other models.
According to our model, one can match the pattern of the Ct
values against the pattern of the delays. See Figure 1 for an
illustration of this process.

This paper is organized as follows: Section II reviews PCR,
tropical arithmetic, and group testing; and it states this paper’s
goal. Section III and IV discuss the case of one and two
infected individuals, respectively. Section V discusses adaptive
strategies. Section VI displays simulation results.

II. BACKGROUND

A. PCR testing

A PCR test, abstractly speaking, consists of two compo-
nents: a DNA amplifier that duplicate the virus DNA every
minute and a sensor that lights up whenever the concentration
of DNA reaches 1 arbitrary unit. Suppose a specimen contains
1 ·10�6 unit of DNA and is undergoing a PCR test. After one
minute, it contains 2 · 10�6 unit of DNA. After ten minutes,
it contains 1.024 · 10�3 unit of DNA. After twenty minutes,
finally, the amount of DNA reaches 1.048 · 100 > 1 units and
the sensor lights up. We report that this specimen required 20
minutes to trigger the sensor; “20” is its Ct value.
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Fig. 1. Syringes: Specimens are extracted from three people. Tubes: Specimens will be remixed in two tubes at the same time the PCR machine is amplifying
DNA. We double the colored area to represent the fact that the virus DNA, if any, is replicated. If X is the only patient, A will have four times as much virus
as B. If Y is the only patient, A and B will have equal amount of virus. If Z is the only patient, A will have a quarter as much virus as B.

Owing to some technicality [1, Figure 2], the sensor always
lights up after some whole minutes. A Ct value of 20 implies
that the tested sample has a DNA concentration anywhere
from 2�20.5 unit to 2�19.5 unit. This is the source of the
multiplicative fuzziness, which we will model with the tropical
semiring.

B. Tropical semiring

The tropical semiring [11] is a tuple (R[{1},�,�) where

x� y := min(x, y) (in particular x�1 = x),
x� y := x+ y (in particular x�1 = 1).

It captures the behavior of ordinary addition and ordinary
multiplication in the log domain. The tropical arithmetic
generalizes to matrix multiplication. For matrices A and B,
define A�B to be the matrix whose (i, k)th element is

M

j

(Aij �Bjk) = min
j

(Aij +Bjk).

Tropical matrix multiplication is a convenient language for
describing the Ct value of a pool of specimens. Suppose we
have N specimens with Ct values x1, x2, . . . , xN and that we
place each of them into the same PCR test, each delayed by
�1, �2, . . . , �N minutes, respectively. Then the final Ct value
will be roughly

� log2

⇣X

j

2��j�xj

⌘
⇡ min

j
(�j + xj).

We formalize this as an assumption in the following.
Assumption 1 (Tropical model): Suppose we design a PCR

test which contains N specimens with Ct values x1, x2,
. . . , xN , each delayed by �1, �2, . . . , �N minutes, respectively.
The final Ct value is assumed to be exactly

� � x = min
j

(�j + xj).

Here, � is the row vector of the delays and x is the column
vector of the Ct values. When there are T tests in parallel, we
denote the test results by

S � x =

2

4
minj(S1j + xj)

..
.

minj(STj + xj)

3

5

where S is a T ⇥ N matrix and each row of S corresponds
to a test. We refer to the matrix S as a schedule.

C. Group testing (GT)

Invented by Dorfman in 1943, GT has led to a handful of
generalizations and applications [3]. Let x and A denote a
boolean vector and a boolean matrix, respectively. Under the
classical GT setup, the goal is to solve for x given the logical
matrix–vector product A ^ x whose ith row is

W
j(Aij ^ xj).

Quantitative GT is a generalization of the classical (binary)
GT setup. Under the quantitative GT setup, x is a real
vector and Ax is the ordinary matrix multiplication. A further
generalization, known as semiquantitative GT [12], considers
the setup where each entry of x is one of the intervals [0, ✓1) ,
[✓1, ✓2) , [✓2, ✓3) , . . . for some predefined set of thresholds
{✓j}j , and the arithmetic in Ax is interpreted as interval
arithmetic.

In our tropical setting, we choose the powers of 2 to be
{✓j}j . Tropical GT sits between binary GT and semiquanti-
tative GT, as shown in Table I, in that it has more than two
outcomes and its addition is idempotent.

D. Problem statement

We are interested in both non-adaptive and adaptive testing
schemes. For shorthand, the support size of a vector x 2
{0, 1, 2, . . . ,1}N⇥1 is the number of entries of x that are
finite.

Definition 2 (Nonadaptive testing): A (T,N,D)-tropical

code is a matrix S 2 {0, 1, 2, . . . ,1}T⇥N such that S �x 6=
S � y for every distinct x,y 2 {0, 1, 2, . . . ,1}N⇥1 with
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Fig. 2. The configuration space of test results of schedule (1).

support size at most D. A tropical code is said to be within

maximum delay
1 ` if S 2 {0, 1, . . . , `,1}T⇥N .

Definition 3 (Adaptive testing): An R-(T,N,D)-tropical

protocol is a series of R functions, S(1),S(2), . . . ,S(R), that
take past results as inputs and output schedules2

S(1) = S(1)(),

S(2) = S(2)(S(1) � x),

..
.

S(R) = S(R)

0

B@

2

64
S(1)

..
.

S(R�1)

3

75� x

1

CA

such that (i) the numbers of rows may depend on past results
but the total is at most T , (ii) the numbers of columns are N ,
and (iii) the final result

2

64
S(1)

..
.

S(R)

3

75� x

is unique among all x 2 {0, 1, 2, . . . ,1}N with support size
at most D. A tropical protocol is said to be within maximum

delay ` if all schedules assume alphabet {0, 1, . . . , `,1}.

III. ONE INFECTED INDIVIDUAL

Let there be three individuals with Ct values x, y and z.
Suppose at most one of them is infected. Figure 1 applies the
schedule: 

a
b

�
:=


0 1 2
2 1 0

�
�

2

4
x
y
z

3

5 (1)

If all three individuals are healthy, the test results a and b will
be infinity. Otherwise, a and b will be finite. If x is infected
(finite), a � b = �2. Similarly, if y is infected, a � b = 0.
Finally, if z is infected, a�b = 2. To summarize, the difference

1Note that allowing negative delay adds nothing new to tropical GT. This
is because S and S + 1T⇥N have the same functionality.

2The first function, S(1), takes empty input as there is no “past result”.

in the Ct values encodes the identity of the infected person,
as also shown in Figure 2.

Using short and long delays we can assemble a schedule
that can screen more people. Suppose ` is the maximum
possible delay, then this is a (2, 2`+3, 1)-tropical code within
maximum delay `:


0 0 · · · 0 0 1 · · · ` 1
1 ` · · · 1 0 0 · · · 0 0

�
(2)

More generally, we have the following theorem.
Theorem 4 ([1, Section III]): If S 2 {0, 1, . . . , `,1}2⇥N

does not contain [11] and satisfies
��{S1j � S2j | j = 1, . . . , N}

�� = N,

then S is a (2, N, 1)-tropical code within maximum delay `.
Such code exists iff N  2`+ 3.

If more tests can be afforded, we have the following.
Theorem 5 ([1, Appendix A]): If S 2 {0, 1, . . . , `,1}T⇥N

does not contain infinite column
⇥
1 · · ·1

⇤> and satisfies
������

8
<

:

2

4
S1j �mint Stj

..
.

STj �mint Stj

3

5

������
j = 1, . . . , N

9
=

;

������
= N,

then S is a (T,N, 1)-tropical code within maximum delay `.
Such a code exists iff N  (`+ 2)T � (`+ 1)T .

IV. TWO INFECTED INDIVIDUALS

The case of two infected individuals is considerably more
interesting. We will consider nonadaptive schemes for the
following scenarios: (i) the number of tubes each person
participates in is minimized, (ii) the total number of tests is
minimized, and (iii) the maximum delay is minimized.

A. Every person participates in (only) two tubes

Since pipetting is laborious and prone to mistakes, one
might prefer GT schemes wherein every person appear in
two tubes, the minimal possible number of tubes before GT
degenerates to individual testing3. Under this constraint, a
tropical code can be expressed by a weighted digraph in the
manner specified below.

Let G be a weighted digraph. Let G have T vertices, each
corresponding to a test, and N weighted arrows, each corre-
sponding to a person. Suppose that, for each j = 1, . . . , N ,
the jth person corresponds to an arrow uj ! vj with weight
�j 2 Z. Assign the schedule

Stj :=

8
><

>:

max(0,��j) if t = uj ,
max(0, �j) if t = vj ,
1 otherwise.

We have a necessary condition.4

3Note that if a sick person attends only one tube while a sicker person also
attends that tube, the former will be masked. So every person that attends
only one tube cannot share that tube with others.

4For every column of a schedule S, only the difference of the non-zero
entries matters. It suffices to consider schedules induced by weighted digraphs.



Lemma 6 ([1, Section IV]): In order for S to be a (T,N, 2)-
tropical code, the undirected version of G cannot have repeated
edges or 3-cycles.

We also have a sufficient condition.
Lemma 7 ([1, Section IV]): Regard an arrow u ! v with

weight � the same as the opposite arrow v ! u with the
opposite weight ��. Then G gives rise to a (T,N, 2)-tropical
code if its girth is at least 4 and for all directed 4-cycles with
weights �w, �x, �y , and �z , the sum �w + �x + �y + �z is
nonzero.

Knowing necessary and sufficient conditions, we can design
a tropical code in two steps. Step one, to maximize the
number of individuals being tested, we need a graph with as
many edges as possible but contains no 3-cycles. A complete
bipartite graph satisfies this condition (Turán’s theorem). Step
two: we need to ensure that �w + �x + �y + �z 6= 0 along any
4-cycle. The multiplication table

Stj :=

8
><

>:

max(0,�ujvj mod p) if t = uj ,
max(0, ujvj mod p) if t = vj ,
1 otherwise.

satisfies this condition, Here, all arrows goes from the left part
to the right part of the graph; the jth person corresponds to
the arrow from uj to vj ; the number p > T/2 is a prime; and
mod p is the modulo operator that returns integers between
±(p� 1)/2. We conclude the theorem.

Theorem 8 ([1, Section IV]): Let T � 2. Let p � T/2
be an odd prime. There exists a (T, bT/2cdT/2e, 2)-tropical
code within maximum delay (p � 1)/2, wherein everyone
participates in two tubes.

B. Minimizing the number of tests

When people are to appear in more than two tests, each
person is not analogous to an edge but to a hyperedge (in the
hypergraph terminology) or to a block (in the block design
terminology). We stick to the latter.

Let [T ] be {1, 2, . . . , T}. A block design F ✓ 2[T ] is a
family of subsets of [T ]. A block B 2 F is regarded as a
person as well as the subset of tests she is in. There are certain
configurations of blocks that make decoding pathological or
even impossible. For instance, if two blocks B,Z 2 F are
such that Z ✓ B, then B being heavily infected will mask Z.
That is, we will not be able to tell if Z is healthy or slightly
infected because B “pollutes” all tubes Z is in. Similarly, if
three blocks B, Y, Z 2 F are such that Z \B = Y \B. Then
the only chance we can tell Y and Z apart is when |Z\B| � 2
because learning who is infected and how infected she is costs
two degrees of freedom.

The preceding discussion leads to this sufficient condition.
Theorem 9 ([1, Section V]): Suppose a block design F ✓

2[T ] is such that |Z \B| � 2 for any distinct blocks B,Z 2 F .
Then there exists a (T, |F|, 2)-tropical code.

A nearly-identical statement holds for more infected people.
Theorem 10 ([1, Section VI]): Suppose a block design F ✓

2[T ] is such that |Z \ (B1 [ · · ·[BD�1)| � 2 for any distinct
blocks Z,B1, . . . , BD�1 2 F . Then there exists a (T, |F|, D)-
tropical code.

How to design a F with optimal number of blocks, unlike
complete bipartite graphs having optimal number of edges
in the previous subsection, remains unclear and is an active
subject to date.

C. Minimizing, but not completely forbidding, the delays

In the previous subsection, the condition |Z \ B| = 2
was sufficient provided we could make the difference of
delays Suj � Svj distinct for {u, v} = Z \ B. Unlike in
the first subsection wherein the multiplication table (and the
associated bipartite graph) allowed us to design nearly optimal
schedule matrices, in this case neither the structure of F nor
the assignment of delays is straightforward. To begin, we
consider a block design F that has less-than-optimal number
of blocks. We will subsequently improve this initial attempt
before presenting our main result.

In the following discussion, we assume that the two infected
individuals have different Ct values. See the full version [1]
for how to deal with the equal case.

Define the Li index
5 of a (T,N,D)-tropical code to be

D log2(N)/T . Suppose S is a (t, n, 2)-tropical code whose
Li index 2 log2(n)/t is fairly large (e.g., � 1). Consider the
Kronecker products 

S ⌦ 11⇥n

11⇥n ⌦ S

�

where 11⇥n is the all-one row vector of length n. The first
t tests group collections of n consecutive individuals into a
single pool and apply S to each of the n pools. The last t
tests pool together 1 out of every n individuals so that last set
of t tests are “orthogonal” to the first set of t tests.

Suppose 0  Y, Z  n � 1 are the indices of the infected
individuals where Y = y10n + y1 and Z = z10n + z1. As a
result of the test design, the first t tests can tell us the tens
digits y10 and z10. The last t tests can tell us the ones digits
y1 and z1. At this point, we know that one of the following
holds:

{Y, Z} = {y10n+ y1, z10n+ z1}

or
{Y, Z} = {y10n+ z1, z10n+ y1}.

We now invoke the assumption that Y and Z have different Ct
values. Under this assumption, y1 and y10 will be associated
with one Ct value while z1 and z10 will be associated with
another Ct value. Hence the decoder can simply match the Ct
values to recover Y and Z.

It is not hard to observe that
2

4
S ⌦ 11⇥n ⌦ 11⇥n

11⇥n ⌦ S ⌦ 11⇥n

11⇥n ⌦ 11⇥n ⌦ S

3

5

and its generalizations work the same way. The final theorem
along this line is given below. We need 2k� 3 extra tests that
function like the checksums of a Reed–Solomon code to deal
with the case where Y and Z have the same Ct value.

5Note that this definition aligns with the classical result that T =
⇥(D log2 N) when binary search is employed.



Theorem 11 ([1, Appendix B]): Let S be a (t, n, 2)-tropical
code within maximum delay n, then there is an (nk, kt+2k�
3, 2)-tropical code within q � 1 cycles, where q � max(3k �
3, n) is a prime power.

Asymptotically, the Li index 2 log2(n
k)/(kt + 2k � 3)

converges to 2 log2(n)/(t+ 2).

V. ADAPTIVE STRATEGIES

Adaptive testing significantly reduces the number of tests
necessary to identify infected individuals. The intuition behind
this is that if some individual has a relatively small Ct value,
then it must be rather easy to locate her and isolate her spec-
imen from future tests. For finding two infected individuals,
in particular, we can reduce the number of tests to only four.

Theorem 12: For any N . There is a 2-(4, N, 2)-tropical
protocol. (See [1, Section VII] for a proof.)

For general D, each infected individual requires roughly
only three tests.

Theorem 13 ([1, Section VIII]): For any N , there exists a
(3N + 1)-(3N + 1, N,N)-tropical protocol that is, simulta-
neously, a (3N + 1)-(3D + 1, N,D)-tropical protocol for all
D  N .

Next, we present an overview of the adaptive strategy. Given
any population, apply the schedule (2) to identify a potentially
infected person. Then apply a confirmation test

⇥
1 · · · 1 0 1 · · · 1

⇤

to verify if the person is actually infected. If the person is
infected, remove her from the population and start over. If
not, there are other techniques that can reuse the information
provided by (2).

For the 2-(4, N, 2)-tropical protocol, there is another tech-
nique whereby we can superimpose two schedules so that one
test can replace two of the existing tests. This reduces the
number of tests required from 3 ·2+1 to 4. An open problem
is whether it is possible for general D > 1 to design schemes
that require two tests per individual, provided that our work
confirms that three tests per individual is sufficient.

As for sub-linear delay, we have the following. The main
idea is to apply the previous theorem with `-ary search.

Theorem 14 ([1, Appendix C]): Fix an N and an `. Let L
be dlog` Ne. There is a (4NL+1)-(4NL+1, N,N)-tropical
protocol within maximum delay ` that is, simultaneously, a
(4NL+1)-(4DL+1, N,D)-tropical protocol for all D  N .

VI. SIMULATIONS

To generate pseudo random data to benchmark our decoder,
we no longer impose Assumption 1. For this setup, we assume
the number of virus particles is additive when two specimens
are combined; however, our decoder still operates under As-
sumption 1. Our goal is to illustrate that even under realistic
testing conditions, the tropical model is still functional.

Let xj , for j 2 [N ], be the Ct value of the jth person.
With 90% probability she is healthy and xj := 99. With 10%
probability she is infected and xj is drawn uniformly from the
interval [16, 32]. Let x be the N ⇥1 column vector of the x’s,
and let 2�x be the entry-wise exponentiation.
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Fig. 3. The ROC tradeoff for different delay limit `.

Let S be a schedule derived in the following way. Suppose
F is a block design. Let Stj be 99 if t is not in the jth block
of F . Otherwise, let Stj be ` · Bernoulli(1/2) 2 {0, `}, a
random delay drawn unbiasedly and independently. Let 2�S

be the entry-wise exponentiation. Suppose v is the result of the
matrix multiplication v = 2�S2�x, representing the numbers
of virus particles in the tubes. Let c be min(40, b� log2(v)c),
where all operations are applied entry-wisely.

The decoder is given S and c. It basically processes the test
results in two phases. First, it looks for matches of differences
cu � cv = Suj � Svj . If it spots such a j, the jth person is
declared infected. Next, it goes over unexplained tubes and
find the most probable “cause” using a variant of the classical
SCOMP algorithm [13].

This decoder is highly specific for that the “certificate” cu�
cv = Suj �Svj is difficult to fabricate. With the second phase
that aims to explain unexplained tubes, the specificity drops
a little but the sensitivity is boosted. Together, F being a 15-
by-35 Kirkman triple system is capable of achieving 97.5%
sensitivity and 95% specificity when the prevalence rate is
10% and no delay is applied (` = 0). With delay (` = 3),
the sensitivity reaches 98%. With greater delay (` = 7), the
sensitivity reaches 99%. See Figure 3 for an ROC tradeoff.
See the full version [1, Appendix D] for more plots.

VII. CONCLUSIONS

When one applies quantitative GT to data that is fuzzy and
spanning a large range (including but not limited to Ct values),
the fuzziness of a relatively large number erodes relatively
small numbers. We propose that one might as well redefine
the addition so that it is forgetful to begin with. That way,
one is forced to seek for other methods to help decode, e.g.,
introducing delays and matching the difference thereof. The
ideas we develop along this path are instances of tropical group
testing.
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