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Abstract. We study contextual stochastic optimization problems, where we leverage rich
auxiliary observations (e.g., product characteristics) to improve decision making with
uncertain variables (e.g., demand). We show how to train forest decision policies for this
problem by growing trees that choose splits to directly optimize the downstream decision
quality rather than split to improve prediction accuracy as in the standard random forest
algorithm. We realize this seemingly computationally intractable problem by developing
approximate splitting criteria that use optimization perturbation analysis to eschew bur-
densome reoptimization for every candidate split, so that our method scales to large-scale
problems. We prove that our splitting criteria consistently approximate the true risk and
that our method achieves asymptotic optimality. We extensively validate our method
empirically, demonstrating the value of optimization-aware construction of forests and the
success of our efficient approximations. We show that our approximate splitting criteria
can reduce running time hundredfold while achieving performance close to forest algo-
rithms that exactly reoptimize for every candidate split.
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1. Introduction 2006), and other application domains (Kleywegt and

In this paper we consider the contextual stochastic
optimization (CSO) problem:

Z'(x) € arg minE[c(z; Y)| X = x], (1)
ZEZ
_ 4. m(z)=0, k=1,...,s,
Z_{ZGR " (z) <0, k=s+1,...,m/[ 2)

wherein, having observed contextual features X = x €
X CRP, we seek a decision z € Z to minimize average
costs, which are impacted by a yet-unrealized uncer-
tain variable Y € ). Equation (1) is essentially a sto-
chastic optimization problem (Shapiro et al. 2014)
where the distribution of the uncertain variable is
given by the conditional distribution of Y|X = x. Cru-
cially, this corresponds to using the observations of
features X = x to best possibly control total average
costs over new realizations of pairs (X, Y); that is,
Ele@X);1)l = min E[c(z(X);Y)]

Stochastic optimization can model many managerial
decision-making problems in inventory management
(Simchi-Levi et al. 2005), revenue management (Talluri
and Van Ryzin 2006), finance (Cornuejols and Tiitiincti

Shapiro 2001, Shapiro et al. 2014). CSO in particular
captures the interplay of such decision models with
the availability of rich side observations of other varia-
bles (i.e., covariates X) often present in modern data
sets, which can help significantly reduce uncertainty
and improve performance compared with uncondi-
tional stochastic optimization (Bertsimas and Kallus
2020).

Because the exact joint distribution of (X, Y), which
specifies the CSO in Equation (1), is generally unavail-
able, we are in particular interested in learning a well-
performing policy Z(x) based on n independent and
identically distributed (i.i.d.) draws from the joint dis-
tribution of (X, Y):

Data: D= {(X1,Y1),..., Xu Y)}, (X, Y:) ~ (X, Y) i.id.

The covariates X may be any that can help predict the
value of the uncertain variable Y affecting costs so that we
can reduce uncertainty and improve performance. A com-
mon approach is to first make predictions using models
that are trained without consideration of the down-
stream decision-making problem and then solve optimi-
zation given their plugged-in predictions. However, this
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approach completely separates prediction and optimiza-
tion. Because all predictive models make errors, especially
when learning a complex object such as the conditional
distribution of Y given X, the error tradeoffs of this
approach may be undesirable for the end task of decision-
making. In this paper, we aim to learn effective forest-based
CSO policies that integrate prediction and optimization.To
make a decision at a new query point x, a forest policy
uses a forest 7 ={ty,..., 77} of trees T; to reweight the
sample to emphasize data points i with covariates X;
“close” to x. Each tree, 7, : R — {1,...,L;}, is a partition
of R” into L; regions, where the function 7; takes the form
of a binary tree with internal nodes splitting on the value
of a component of x (Figure 1, (a) and (b)). We then
reweight each data point i in the sample by the frequency
w;(x) with which X; ends up in the same region (tree leaf)
as x, over trees in the forest (Figure 1(c)). Using these
weights, we solve a weighted sample analogue of Equa-
tion (1). That is, a forest policy has the following form,
where the forest F constitutes the parameters of the policy
Z(x):

Z(x) € arg min > w;(x)c(z; Y5),
z€Z =1

1 ) =g
uh(X) = T]:Zl :ff:l]l[’[j(Xi;) — Tj(x)]'

©)

Bertsimas and Kallus (2020) considered using a forest
policy where the forest F is given by running the ran-
dom forest (RandForest) algorithm (Breiman 2001).
The RandForest algorithm, however, builds trees that
target the prediction problem of learning E[Y | X = x],
rather than the CSO problem in Equation (1). Namely,
it builds each tree 7; by, starting with all of R?, recur-
sively subpartitioning each region Ry CR” into the

two subregions Ry =R;UR; that minimize the sum
of squared distance to the mean of data in each subre-
gion (i.e., 3oy ymin, o Six ep 12 = Y{|[3). For prediction,
random forests are notable for adeptly handling high-
dimensional feature data nonparametrically as they
only split on variables relevant to prediction, especially
compared with other methods for generating localized
weights w;(x) like k-nearest neighbors and Nadaraya-
Watson kernel regression. However, for CSO, they
might miss signals more relevant to the particular opti-
mization structure in Equation (1), deteriorating down-
stream policy performance in the actual decision-
making problem. Athey et al. (2019) proposed a gener-
alized random forest (GenRandForest) algorithm to esti-
mate roots of conditional estimating equations, which
can be repurposed for unconstrained CSO problems by
solving their first order optimality conditions. Their
splitting criteria are based on approximating the mean
squared errors of equation root estimates, which again
may fail to capture signals more important for the par-
ticular cost function in Equation (1) when optimization
is one’s aim.

In this paper, we design new algorithms to con-
struct decision trees and forests that directly target the
CSO problem in Equation (1). Specifically, we choose
tree splits to optimize the cost of resulting decisions
instead of standard impurity measures (e.g., sum of
squared errors), thereby incorporating the general
cost function ¢(z;Y) and constraints Z into the tree
construction. A similar idea was suggested in endnote
2 of Bertsimas and Kallus (2020) but is dismissed
because it would be too computationally cumbersome
to use this to evaluate many candidate splits in each
node of each tree in a forest. In this paper, we solve
this task in a computationally efficient manner by
leveraging a second-order perturbation analysis of

Figure 1. (Color online) A Forest of Trees, F = {11, ..., 77}, Parameterizes a Forest Policy Z(x) for CSO as in Equation (3)

8 T1(x) =2
T S4
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(©

Notes. (a) A depth-3 tree. When the condition in a branching node holds, we take the left branch. (b) Each tree gives a partition of RY, where each
region corresponds to a leaf of the tree. (c) Darker regions fall into the same region as x = (0,0) for more trees in a forest.
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stochastic optimization, resulting in efficient and effec-
tive large-scale forests tailored to the decision-making
problem of interest that lead to strong performance
gains in practice.

Our contributions are as follows. We formalize the
oracle splitting criterion for recursively partitioning
trees to target the CSO problem and then use second-
order perturbation analysis to show how to approxi-
mate the intractable oracle splitting criterion by
extrapolating from the given region, R, to the candi-
date subregions, R;, R,, provided that the CSO prob-
lem is sufficiently smooth. We do this in Section 2 for
the unconstrained setting and in Section 3 for the con-
strained setting. Specifically, we consider both an
approach that extrapolates the optimal value and an
approach that extrapolates the optimal solution. Cru-
cially, our perturbation approach means that we only
must solve a stochastic optimization problem at the
root region, Ry, and then we can efficiently extrapolate
to what will happen to average costs for any candi-
date subpartition of the root, allowing us to efficiently
consider many candidate splits. Using these new effi-
cient approximate splitting criteria, we develop the
stochastic optimization tree (StochOptTree) algorithm,
which we then use to develop the stochastic optimiza-
tion forest (StochOptForest) algorithm by running the
former many times. The StochOptForest algorithm fits
forests to directly target the downstream decision-
making problem of interest and then uses these forests
to construct effective forest policies for CSO. In Sec-
tion 4, we empirically demonstrate the success of our
StochOptForest algorithm and the value of forests
constructed to directly consider the downstream
decision-making problem. In Section 5, we provide
asymptotic optimality results for StochOptForest. In
Section 6, we offer a discussion of and comparison
with related literature, and in Section 7, we offer some
concluding remarks. We extend our results to stochas-
tically constrained CSO problems in Online Appendix
A, develop variable-importance measures in Online
Appendix B, and provide additional empirical results
in Online Appendix C. We defer all proofs to Online
Appendix H.

1.1. Running Examples of CSOs
We will have a few running examples of CSOs.

Example 1 (Multi-ltem Newsvendor). In the multi-item
newsvendor problem, we must choose the order
quantities for d products, z=(zy,...,z4), before we
observe the random demand for each of these,
Y=(Yy,...,Yy), to control holding and backorder
costs. Whenever the order quantity for product !
exceeds the demand for the product, we pay a holding
cost of a; per unit. Whenever the demand exceeds the
order quantity, we pay a backorder cost of ff; per unit.

The total cost is ]
c(zy) = > max{ay(z —y), B,(yi — )} 4)
=1

Negating and adding a constant, we can also consider
this equivalently as the sale revenue up to the smaller of z
and 1, minus ordering costs for z; units. The order quanti-
ties may be unrestricted (in which case the d problems
decouple). They may be restricted by a capacity constraint,

d

Z:{zeRd:Zzlsc, 2 >0, lzl,...,d},
1=1

where C is a constant that stands for the inventory

capacity limit.

Covariates X in this problem may be any that can
help predict future demand. For example, for predict-
ing demand for home video products, Bertsimas and
Kallus (2020) use data from Google search trends,
data from online ratings, and past sales data.

Example 2 (Variance-Based Portfolio Optimization).
Consider d assets with random future returns Y =
(Yq,...,Y,), and decision variables z = (z1,...,z4) that
represent the fraction of investment in each asset in a
portfolio of investments, constrained to be in the sim-
plex A = {z€ RY: 27:121 =1,22>0,1=1,...,d}. Then
the return of the portfolio is Y"z. We want the portfo-
lio z(x) to minimize the variance of the return given X
= x. This can be formulated as a CSO by introducing
an additional unconstrained auxiliary optimization
variable z;,1 € R and letting

c(zy) = (v 21a = 2as1) - 6)

We can either let Z=A% xR or relax nonnegativity
constraints to allow short selling.

More generally we may consider optimizing a lin-
ear combination of the conditional mean and variance
of the return, which corresponds to a CSO with the
following cost function:

2

c(zy) =y za = zan) = py 214, p>0.  (6)
Covariates X in this problem may be any that can help
predict future returns. Examples include past returns,
stock fundamentals, economic fundamentals, news
stories, and so on.

Example 3 (CVaR-Based Portfolio Optimization). When
the asset return distributions are not elliptically sym-
metric, conditional value-at-risk (CVaR) may be a more
suitable risk measure than variance (Rockafellar and
Uryasev 2000). We may therefore prefer to consider
minimizing the CVaR at level a given X = x, defined as

CVaR,(Y"z|X=x)=minE 1rnax{w— Y'z,0} —w'X =x|.
weR o

This again can be formulated as a CSO by introducing
an additional unconstrained auxiliary optimization
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variable z;,1 € R and letting

1
c(zy) = EmaX{zdﬂ —y 214, 0} — 2411 ?)

We can analogously incorporate the simplex con-
straint or relax the nonnegativity constraint as in
Example 2. We can also optimize a weighted combina-
tion of the different criteria (mean, variance, CVaR at
any level); we need only introduce a separate auxili-
ary variable for variance and for CVaR at each level
considered.

Example 4 (Prediction of Conditional Expectation).
Although the previous examples provide actual
decision-making problems, the problem of prediction
also fits into the CSO framework as a special case.
Namely, if YeR? c(z;y)=illz-yll, and Z=R? is
unconstrained, then we can see that z*(x) = E[Y|X = x].
This can be understood as the best-possible (in squared
error) prediction of Y in a draw of (X, Y) where only X is
revealed. Fitting forest models to predict E[Y|X = x] is
precisely the target task of random forests, which use
squared error as a splitting criterion. We further compare
with other literature on estimation using random forests in
Section 6.1. A key aspect of handling general CSOs, as we
do, is dealing with general cost functions and constraints
and targeting the expected cost of our decision rather than
the error in estimating z*(x).

2. Unconstrained Case

We begin by studying the unconstrained case as it is
simpler and therefore more instructive. Throughout
this section, we let Z = RY. We extend to the more gen-
eral constrained case in Section 3. To develop our
StochOptForest algorithm, we start by considering the
StochOptTree algorithm, which we will then run
many times to create our forest. To motivate our
StochOptTree algorithm, we will first consider an
idealized splitting rule for an idealized policy, then
consider approximating it using perturbation analysis,
and then consider estimating the approximation using
data. Each of these steps constitutes one of the next
sections.

2.1. Oracle Splitting Rule

Given a partition, 7: R — {1,...,L}, of R? into L re-
gions, consider the policy z.(x)€arg min,ezE[c
(zYV)I[7(X) =7(x)]] that, for each x, optimizes costs
only for (X, Y) where X falls in the same region as x.
This policy is hypothetical and not implementable in
practice given just the data as it involves the true joint
distribution of (X, Y). We wish to learn a partition 7
described by a binary decision tree with nodes of the

form “x; < 0?” such that it leads to a well-performing
policy z(x), that is, has small risk E[c(z.(X);Y)]. Find-
ing the best 7 over all trees of a given depth is gener-
ally a very hard problem, even if we knew the distri-
butions involved. To simplify it, suppose we fix a
partition 7 and we wish only to refine it slightly by
taking one of its regions, say Ry = 7!(L), and choosing
some je€{1,...,p}, 0 €R to construct a new partition
v with 7/(x) =1(x) for x¢Rp, T/(x)=L for xe Ry =
RoN{xeR’:x; <0}, and 7'(x)=L+1 for x€Ry=
Ro N {x €eR?:x; > 0}. That is, we further subpartition
the region Ry into the subregions R;, R,. We would
then be interested in finding the choice of (f,0), lead-
ing to minimal risk, E[c(z¢(X);Y)] =E[c(z+(X);Y)
I[X ¢ Ro][+E[c(zo (X); V)I[X € Ry ]] + E[c(z (X); Y)I[X €
R;]]. Notice that the first term is constant in the choice
of the subpartition and only the second and third
terms matter in choosing the subpartition. We should
therefore seek the subpartition that leads to the mini-
mal value of

Coracle(Rlle) = Z E[C(ZT/ (X), Y)H[X S R]']]
j=1,2

= > minE[c(z; Y)I[X € Rj]], ®)
1,2 z€Z

where the last equality holds because the tree policy
zp makes the best decision within each region of the
new partition. We call this the oracle splitting criterion.
Searching over choices of (j,0) in some given set of
possible options, the best refinement of 7 is given by
the choice minimizing this criterion. If we start with
the trivial partition, 7(x) =1 Vx, then we can recur-
sively refine it using this procedure to grow a tree of
any desired depth. When c(z;y) = 1[Iz — yll% and the cri-
terion is estimated by replacing expectations with
empirical averages, this is precisely the regression tree
algorithm of Breiman et al. (1984), in which case the
estimated criterion is easy to compute as it is simply
given by rescaled within-region variances of Y;. For
general c(z;y), however, computing the criterion
involves solving a general stochastic optimization
problem that may have no easy analytical solution
(even if we approximate expectations with empirical
averages), and it is therefore hard to do quickly for
many, many possible candidates for (j,0), and corre-
spondingly it would be hard to grow large forests of
many of these trees.

2.2. Perturbation Analysis of the Oracle

Splitting Criterion
Consider a region Ry € R” and its candidate subparti-
tion Rg = R;UR, Ry N Ry, = 0. Let
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(t) = min fo(2) + Hfi(z) ~fo(2),
() € arg min fo(2) + H () ~ fo(2)),

zEZ

where fj(z) = E[c(z; Y)|X €R;|, j=0,1,2, t€[0,1].
)

The optimization objective function in Equation (9) is
obtained from perturbing the objective function fy(z)
in the region R, toward the objective function f;(z) in a
subregion R; for j = 1, 2. The perturbation magnitude is
quantified by the parameter ¢ € [0,1]. Note that the opti-
mal values of fully perturbed problems (ie., t = 1) in
two subregions determine the oracle splitting criterion:

Corade(erRZ) = plvl (1) + psz(l)/
where p;=P(X€R)), (10

and ideally, we would use these values to evaluate
the quality of the subpartition. However, we would
rather not have to solve the stochastic optimization
problem involved in Equation (9) at t = 1 repeatedly for
every candidate subpartition. Instead, we would
rather solve the single problem v;(0) = v,(0), that is,
the problem corresponding to the region R, and try
to extrapolate from there what happens as we take
t — 1, that is, the limiting problem corresponding to
each subregion R; for each candidate split. To solve
this, we consider the perturbation of the problem v;(t)
at t = 0 as we increase it infinitesimally and use this to
approximate v;(1). As long as the distribution of Y| X €
Ry is not too different from that of Y| X € R;, this would
be a reasonable approximation.

First, we note that a first-order perturbation analysis
would be insufficient. We can show that under appro-
priate continuity conditions and if arg min,ezfy(z) =
{z0} is a singleton, we would have v;(t)=(1-t)
fo(zo) + tfi(z0) + o(t)." We could use this to approximate
vj(1) = f(z0) by plugging in t=1 and ignoring the
higher-order terms, which makes intuitive sense: if we
only perturb the objective slightly, the optimal solution
is approximately unchanged and we only need to eval-
uate its new objective value. This would lead to the
approximate splitting criterion p1v1(1) + p2v2(1) = p1fi
(z0) + p2fa(z0). However, because pifi(zo) + pafa(z0) =
Pofo(z0), this is ultimately unhelpful as it does not at all
depend on the choice of subpartition.

Instead, we must conduct a finer, second-order per-
turbation analysis to understand the effect of the
choice of subpartition on risk. The next result does
this for the unconstrained case.

Theorem 1 (Second-Order Perturbation Analysis: Un-
constrained). Fix j = 1, 2. Suppose the following conditions
hold:

1. The functions fo(z) and f;(z) are twice continuously
differentiable;

2. The inf-compactness condition: there exist constants o
and to € (0,1] such that the sublevel sets {z € RY: fo(z) +
t(fi(z) — fo(z)) < a} are nonempty and uniformly bounded
fort €0, ty);

3. The function fy(z) has a unique minimizer z, over R?,
and V3fy(zo) is positive definite;

Then
Z)j(t) = (1 — t)fo(Z()) + tfj(Zo)

_ %t2ij(zo)T(V2f0(zo))_1ij(20) +o(®), (1)

2(t) = 20 — {(Vfo(20)) " Vfi(z0) + o(b). (12)

Theorem 1 gives the second-order expansion of the
optimal value v;(t) and the first-order expansion of
any choice of z(t) that attains v;(t) around t = 0. These
expansions quantify the impact on the optimal value
and optimal solution when infinitesimally perturbing
the objective function in region R, toward that in a sub-
region R;. One crucial condition of Theorem 1 is that the
objective functions are sufficiently smooth (condition 1).
This condition holds for any subpartition if we assume
that E[c(z;Y)|X] is almost surely twice continuously
differentiable, which is trivially satisfied if the cost func-
tion c(z; Y) is almost surely twice continuously differen-
tiable function of z. However, even if ¢(z;Y) is non-
smooth (e.g., Examples 1 and 2), E[c(z; Y)| X] may still
be sufficiently smooth if the distribution of Y|X is con-
tinuous (see examples in Section 2.3). In particular, one
reason we defined the oracle splitting criterion using
the population expectation rather than empirical aver-
ages is that for many relevant examples such as news-
vendor and CVaR only the population objective may be
smooth while the sample objective may be nonsmooth
and therefore not amenable to perturbation analysis.
Condition 2 ensures that if we only slightly perturb
the objective function f;, optimal solutions of the result-
ing perturbed problem are always bounded and never
escape to infinity. This means that without loss of gen-
erali?z we can restrict our attention to a compact subset
of R”. This compactness condition and the smoothness
condition (condition 1) together ensure the existence of
optimal solutions for any optimization problem corre-
sponding to t € [0, tp). In addition, this condition is cru-
cial for ensuring z(f) — zp as t — 0 (Bonnans and Sha-
piro 2000, proposition 4.4). One sufficient condition for
this is that any optimal solution z*(X) in Equation (1) is
almost surely bounded, for example, when conditional
quantiles of all item demands in Example 1 are almost
surely bounded. Finally, the regularity condition (con-
dition 3) is obviously satisfied if fy(z) is strictly convex,
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which is implied if either E[c(z;Y)|X] or c(z;Y) is
almost surely strictly convex. Condition 3 may be satis-
fied even if the cost function c(z;Y) is not strictly con-
vex: for example, it holds for the newsvendor problem
(Example 1) when the density of Y;| X € Ry is positive at
zoforalll=1,...,d.

2.3. Approximate Splitting Criteria
Theorem 1 suggests two possible approximations of
the oracle splitting criterion.

2.3.1. Approximate Risk Criterion. If we use Equation
(11) to extrapolate to t = 1, ignoring the higher-order
terms, we arrive at

(1) ~ fileo) 5 Vf(ao)" (Vfo(zn)) " Vf(eo)

Taking a weighted average of this over j = 1, 2, we arrive
at an approximation of the oracle splitting criterion
in Equation (8). Because pifi(zo) + p2 f2(z0) = po fo(zo) is
constant in the subpartition, we may ignore these terms,
leading to the following criterion:

CPCIS(R Ry) = —% D p]-ij(Zo)T(VZfo(Zo))_lvfj(ZO)~
=12

(13)

By strengthening the conditions in Theorem 1, we can
in fact show that this approximation becomes arbitra-
rily accurate as the partition becomes finer.

Theorem 2. Suppose the following conditions hold for both
j=1,2:

1. Condition 1 of Theorem 1.

2. Condition 2 of Theorem 1 holds for all t € [0, 1].

3. The function fo(z) + t(fi(z) — fo(z)) has a unique mini-
mizer zo and V( fo(z) + t( fi(z) = fo(z))) is positive definite
at this unique minimizer for all t € [0, 1].

4. The function Elc(z;Y)|X =x] is twice Lipschitz-
continuously differentiable in x.

Then

Icoracle(Rlle) —Pofo(Zo) _ Capx—risk(R1,R2)| — O(D%),
where Dy = sup, , <Ry |lx — x’||, is the diameter of R,.

Again, note that pofy(zo) is constant in the choice of
subpartition.

2.3.2. Approximate Solution Criterion. Because v;(1) =
fi(z(1)), we can also approximate v;(1) by approximat-
ing z(1) and plugging it in. Using Equation (12) to
extrapolate z;(t) to t = 1 and ignoring the higher-order
terms, we arrive at the following approximate criterion:
CPMN(Ry, Ro) = 3 pifi(z0 = (Vo(20)) ™ Vfi(20)).
j=1,2
(14)

This almost looks like applying a Newton update to
zp in the min,fj(z) problem, namely, the solution that
optimizes the second-order expansion of fi(z) at z.
However, a naive Newton update will require to
invert the Hessian for f;, which varies across different
candidate splits. In contrast, the criterion CP*™°In
requires the Hessian for f), meaning we only have to
invert a Hessian once for all candidate subpartitions.

For unconstrained CSO problems in this section, we
may also apply the GenRandForest algorithm in
Athey et al. (2019) to solve their first-order optimality
condition. The GenRandForest algorithm uses a simi-
lar way to approximate optimal solutions in split sub-
regions. It chooses splits to maximize the difference
between approximate solutions in two subregions
induced by each candidate split, as their proposition 1
shows that this approximately minimizes the total
mean squared errors of the resulting estimated opti-
mal solutions. In contrast, by using capxsoln e
choose splits to minimize the expected cost of the
approximate optimal solutions, thereby directly tar-
geting the ultimate objective in CSO problems. More
importantly, we tackle the constrained case (Section
3), whereas the GenRandForest algorithm cannot. In
Section 4 and Online Appendix C.1, we show the
impact of both of these differences can be significant
in practice when optimization is the aim.

In the following theorem, we show that the approxi-
mate solution criterion also becomes arbitrarily accu-
rate as the partition becomes finer.

Theorem 3. Suppose the assumptions of Theorem 2 hold.
Then

|Coracle(R1/ Rz) _ Capx—soln(R1, R2)| = O(D(Z))

2.3.3. Revisiting the Running Examples. The previous
approximate criteria crucially depend on the gradients
Vfi(zo), Vfa(zo) and Hessian szo (z0). We next study
these quantities for some examples.

Example 5 (Derivatives with Smooth Cost). If c(z; ) is
itself twice continuously differentiable for every y,
then under regularity conditions that enable the ex-
change of derivative and expectation (e.g., |(Vc(z;Y)),|
< W for all z in a neighborhood of z, with E[W | X; €
Rj] <), we have Vfi(zo) = E[Vc(zo;Y) | X; €Rj| and
Vfo(z0) = E[V2e(z0; Y) | X € Ro)-

Example 1, Continued (Derivatives in Multi-ltem News-
vendor). In many cases, c(z;y) is not smooth, as in the
example of the multi-item newsvendor cost in Equa-
tion (4). In this case, it suffices that the distribution
of Y| X € R; is continuous for gradients and Hessians
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to exist. Then, we can show that (Vfi(z)); = (; + ;)
P(Y; < 2o | X €Ry)— B, and (V2fo(z0))y = (s + Bty (o)
for I=1,...,d,j=1,2, and (V*fo(z0))y =0 for 1 £1,
where (1, is the density function of Y||X € Ro. There-

fore, V2fy(zo) is invertible as long as Lo, (z0) > 0 for
I=1,...,d.

Example 2, Continued (Derivatives in Variance-Based
Portfolio Optimization). The cost function in Equation
(5) is an instance of Example 5 (smooth costs). Using
block notation to separate the first d decision variables
from the final single auxiliary variable, we verify in
Proposition EC.8 that

E[YYT|X € RJz014 — E[Y| X € RiJz0,+
Vij(z0) = 2[ 27 AE[Y|X € Ro]~E[Y|X R} ]
15)
v =2 Sy e ETERIL e

Notice V*fy(zo) is invertible if and only if the cova-
riance matrix Var(Y | X € Ry) is invertible.

Example 3, Continued (Derivatives in CVaR-Based
Portfolio Optimization). Like the newsvendor cost in
Equation (4), the CVaR cost in Equation (7) is not
smooth either. Again, we assume that the distribution
of Y| X € R; is continuous. Then, when z # 0 (Propo-
sition EC.9 in Online Appendix G),

Vfi(zo) = P—E[Yﬂ[?o <q8(Yo)|IX € R}]
(qo(YO) Yo > 0|X€R)—a<
?0 =YT Z0,1:d, (17)
szO(ZO):m
E[YYTYo=q5(Yo), X €Ro] ~E[YIYo=(5(Yo), X&Ro]
~E[YT[Yo=43(Yo),X€Ro] ) ,

(18)

where 1 is the density function of Yy given X € Ry,
and g§(Y)) is the a-level quantile of Yy given X € Ry.
The Hessian matrix V*fy(zg) may not necessarily be
invertible. This arises because of the homogeneity of
returns in scaling the portfolio, so that second deriva-
tives in this direction may vanish. This issue is cor-
rected when we consider the constrained case where
we fix the scale of the portfolio (see Section 3).”

2.3.4. Reoptimizing Auxiliary Variables. In Examples 2
and 3, z contains both auxiliary variables and decision
variables, and we construct the approximate criteria
based on gradients and Hessian matrix with respect
to both sets of variables. A natural alternative is to

reoptimize the auxiliary variables first so that the
objective only depends on decision variables and then
evaluate the corresponding gradients and Hessian
matrix. That is, if we partition z = (z4¢¢,z2%), then we
can redefine fj(z9) = mmzauxE[c((zdeC ) Y)|X € Ry
and zJ* = arg min.a.fy(z%). The perturbation analy-
sis remains largely the same by simply using the gra-
dients and Hessian matrix for the redefined ﬁ(zdec) at

zdec, This leads to an alternative approximate splitting
crlterlon However, evaluating the gradients Vf;(zf*
for j = 1, 2 would now involve repeatedly finding the
optimal solution arg min,.E[c((z§¢,z7*™);Y)| X € R;]
for all candidate splits. See Online Appendix E
for details.

Because the point of our approximate criteria is to
avoid reoptimization for every candidate split, this
alternative is practically relevant only when reopti-
mizing the auxiliary variables is very computationally
easy. For example, in Example 2, z9° corresponds to
the first d variables and reoptimizing the auxiliary
(d+1) th variable amounts to computing the mean of
YTz3 in each subregion, which can be done quite
efficiently as we vary the candidate splits.

2.4. Estimating the Approximate Splitting Criteria
The benefit of our approximate splitting criteria,
CAPXSOIN(R, Ry), CPPXTK(R R,) in Equations (13) and
(14), is that they only involve the solution of z,. Thus,
if we want to evaluate many different subpartltlons
of RO, we need only solve for z, once, compute (V2f,
(z0))" once, and then only recompute Vf;(z) for each
new subpartition. However, this involves quantities
we do not actually know because all of these depend
on the joint distribution of (X, Y). We therefore next
consider the estimation of these approximate splitting
criteria from data.

Given estimators Ho, hi1, iy of V*fy(20), Vfi(z0), V fa(20),
respectively (see following examples), we can construct
the estimated approximate splitting criteria as

A . Vl A—1~
COPTRR, Ry = - ) —hTHolh , (19)
j=1,2 1

n
%Z 11X, € Re(20 — g iy i),
j=1,2"=1

CPRy, Ry) =

(20)

where n; = 3 I[X; € Ry

Under appropriate convergence of Ho, hl, hz, these
estimated criteria, respectively, converge to the popu-
lation approximate criteria C*P*™N(R;,R,;) and
CapX'SOI“(Rl Ry) in Section 2.3, as summarized by the
following self-evident proposition.

Proposition 1. If || F1o'~ (V3fo(zo)) ' lls = 0,(1), Il = Vf
(zo)ll, = Op(n™V2) forj =1, 2, then
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CP(Ry, Ro) = CP™(Ry, Ry) + Op(n71/2).
If also |13, I[X; € Rjle(zo - Fo i Y0 - pifizo — (Vo
(20)) "' Vfi(z0))| = Op(nV/?) for j = 1,2, then

(’japx-soln(Rl’Rz) — Cupx-soln(Rlle) + Op(l’l_l/z)‘

If we can find estimators that satisfy the conditions
of Proposition 1, then together with Theorems 2 and
3, we will have shown that the estimated approxi-
mate splitting criteria can well approximate the
oracle splitting criterion when samples are large,
and the partition is fine. It remains to find appropri-
ate estimators.

2.4.1. General Estimation Strategy. Because the gra-
dients and Hessian to be estimated are evaluated at a
point z, that is itself unknown, a general strategy is to
first estimate z; and then estimate the gradients and
Hessian at this estimate. This is the strategy we follow
in the examples here.

Specifically, we can first estimate z, by its sample
analogue:

Zo € arg minpgfo(z),
z€Z

where ;;;\fo(z) = %Zn] I[X; € Role(z; Y7). (21)
i=1

Under standard regularity conditions, the previ-
ously estimated optimal solution Z; is consistent
(see Lemma EC.1 in Online Appendix G). Then,
given generic estimators Ho(z) of V*fy(z) at any one
z and similarly estimators ﬁj(z) of Vfi(z) forj =1, 2,
we let Hy = H(%y) and ﬁj = ﬁj(io). Examples of this
follow.

2.4.2. Revisiting the Running Examples. We next dis-
cuss examples of possible estimates Hy, h j that can be
proved to satisfy the conditions in Proposition 1 (see
Propositions EC.10 to EC.13 in Online Appendix G for
details). All our examples use the previous general
estimation strategy.

Example 5, Continued (Estimation with Smooth Cost). If
c(z;y) is itself twice continuously differentiable in z for
every y, we can simply use Hoy(%)= %Z?:J[Xi €
Ro]VZC(ﬁo; Y,) and ﬁ](io) = nl/zl”:l]l[Xl € Rj]VC(ﬁo,‘ Y,) In
Proposition EC.13 in Online Appendix G, we show
that these satisfy the conditions of Theorem 1 because
of the smoothness of c(z;y). Example 2 is one example
of this case, which we discuss later. Example 4 is
another example.

In particular, for the squared error cost function in
Example 4 (c(z;y) =1]lz - yll3), we show in Proposition

EC.7 in Online Appendix G that, using the previous
Ho,h], we have

—211 [X; € RoJe(Zo; Y;) + CPPXMK(Ry, Ry)
i=1

= 0Py Ry = 3 7
=1, 2

ZVar({YZl Xi €R}),

which is exactly the splitting criterion used for regres-
sion by random forests, namely the sum of squared
errors to the mean within each subregion. Notice the
very first term is constant in Ry, Rj.

Example 1, Continued (Estimation in Multi-ltem News-
vendor). In the previous section, we saw that the gradient
and Hessian depend on the cumulative distribution
and density functions, respectively. We can therefore esti-
mate the gradients by ;.(29) = "Ps 1[X; € R,
Y; < Zp;]-p;, and the Hessian using, for example, kernel
density  estimation:  Hoy(20) = % 52 1[X; € Ro]K
((Yi1—20,)/b), where K is a kernei such as K(u) =
I[ [u] <1] and b is the bandwidth, and Fo (£0) =0 for
I #I'. We show the validity of these estimates in Proposi-
tion EC.10 in Online Appendix G.

Example 2, Continued (Estimation in Variance-Based
Portfolio  Optimization). With 2o ={Zo1,...,204,20,4+1}
given by solving the problem in Equation (21), the
gradient and Hessian in Equations (15) and (16) can
be estimated by their sample analogues:

—Z]IX ERY;Y]Z Old_—ZH [X; € Ri]Y 0441
]’AL]‘(ZA())ZZ i3 /11 ,
201d Z]IX € RolY; ——ZHX ER]Y;
]z 1
n—ZH [X; € Ro]Y:Y] ——Z]I[X € RolY;
Ho(%9) =2 011

L Shx e ryYT 1
”0, 1

These estimators are in fact specific examples of the
general smooth case in Example 5, so they too can be
analyzed by Proposition EC.13 in Online Appendix G.

Example 3, Continued (Estimation in CVaR-Based Portfolio
Optimization). It is straightforward to estimate the gra-
dient in Equation (17):

R 1 ——ZHY 201 < 4o (Y 20,1a), Xi € Rj]Y;
hj(Zo) = 2l 1 ] = ’
nZH[Y 201d<q0(y ZOld)XER] o
] i=1
(22)
where §3(Y"Z01.4) is the empirical a-level quantile of
YTZy1.4 based on data in Ry. The Hessian matrix in
Equation (18) is more challenging to estimate because



Downloaded from informs.org by [132.174.252.179] on 14 April 2023, at 08:27 . For personal use only, all rights reserved.

Kallus and Mao: Stochastic Optimization Forests
Management Science, Articles in Advance, pp. 1-20, © 2022 INFORMS

it involves many conditional expectations given the
event Y7z 1.4 = q5(Y " 2914). In principle, we could esti-
mate these nonparametrically by, for example, kernel
smoothing estimators (Fan and Yao 1998, Yin et al.
2010, Chen and Leng 2015, Loubes et al. 2020). For
simplicity and because this is only used as an approxi-
mate splitting criterion anyway, in our empirics we
can consider a parametric approach instead, which we
will use in our empirics in Section 4.1: if Y| X € Ry has
a Gaussian distribution NV (1, Xy), then

E[Y Y zg1.4 = g5 (Y 20,1.4), X € Ro|

-1
=mpy+ E02'0,1:d(Zg,t.;zzozo,l:al) (qg(YTZO,lzd) - MJ 20,1:4),
(23)

Var(Y[Y " zo 1.4 = 44 (Y "20,1.4), X € Ro)

-1
=Xo— 2020,1:11(23, 1,d2020,1;d) 20 1:420, (24)

and E[YYT|YTzg14 =g3(Y 20,1.4), X € Ro| can be dir-
ectly derived from these two quantities. We can then
estimate these quantities by plugging in 2y for zo, the
empirical mean estimator of Y for my, the empirical
variance estimator of Y for Xy, and the empirical
a-level quantile of Y7214 for g§(Y " zp1.4), all based
only on the data in Ry. Finally, we can estimate (4§
(YTzp1.4)) by a kernel density estimator ﬁZ?ﬂH
[X,‘ S R()]K:((Y;rioll:d - qg(nyo,l:d))/b). Although the
Gaussian distribution may be misspecified, the result-
ing estimator is more stable than and easier to im-
plement than nonparametric estimators (especially
considering that it will be used repeatedly in tree con-
struction), and it can still approximate the relative
scale of entries in the Hessian matrix reasonably well.
In Section 4.1, we empirically show that our method
based on these approximate estimates works well
even if the Gaussian model is misspecified. If it happens
to be correctly specified, we can also theoretically vali-
date that the estimator satisfies the conditions of Theo-
rem 1 (see Proposition EC.12 in Online Appendix G).

2.5. Stochastic Optimization Tree and
Forest Algorithms

With the estimated approximate splitting criteria in
hand, we can now describe our StochOptIree and
StochOptForest algorithms. Specifically, we will first
describe how we use our estimate approximate splitting
criteria to build trees, which we will then combine to
make a forest that leads to a CSO decision policy Z(x) as
in Equation (3).

Algorithm 1 (Recursive Procedure to Grow a StochOptTree
(Unconstrained Case))
1: procedure StocHOPTTREE.FiT(region Ro, data D,
depth, id)
2 Zp MIN]MIZE(Z(Xi/Yi)EDH[Xi €Rple(z; Y1), z€ 2)
> Solve Equation (21)

@

Hy < ESTIMATE szo(z) ATZ =2

4: CandSplit < GENERATECANDIDATESPLITS(R, D)
. > Create the set of possible splits

5. Ceo

6: for (j,0)€ Candsplit do > Optimize the esti-

mated approximate criterion

7: (Rl,R2)<—(R0ﬂ{xERpZX]‘SQ},Ron{XE
RP: x; > 6})
8: (hy, I 2) « ESTMATE Vfi(2), Vfa(z) ATz =2
9 C— C apx-nsk/apx-soln(R RZ)
> Compute the criterion using Ho, h1, by, D
10: if C < C then (C,],G) —(C,j,0)
11:  if STOP7((],9) Ry, D, depth) then
12 return (x — id)
13:  else
14: LeftSubtree« STOocHOPTTREE.FIT (R N
{xeR’:x;<0}, D, depth+1,2id)
15: RightSubtree «StocHOPTTREE.FIT(R) N
{xeRP:x;> 0}, D, depth+1, 2id+1)
16: return (x > x; < 0?LeftSubtree(x) :
RightSubtree(x))

2.5.1. StochOptTree Algorithm. We summarize the
tree construction procedure in Algorithm 1. We will
extend Algorithm 1 to the constrained case in Section
3. This procedure partitions a generic region, R, into
two children subregions, R; and R,, by an axis-
aligned cut along a certain coordinate of covariates. It
starts with solving the optimization problem within
Ry according to Equation (21) and then finds the best
split coordinate j and cutoff Value 0 over a set of can-
didate splits by minimizing’ the estimated approxi-
mate risk criterion in Equation (19) or the estimated
approximate solution criterion in Equation (20). Once
the best split (f,8) is found, R, is partitioned into the
two subregions accordingly, and the whole procedure
continues on recursively until a stopping criterion.
There are a few subroutines to be specified. First,
there is the optimization of Zy. Depending on the struc-
ture of the problem, different algorithms may be appro-
priate. For example, if c(z; ) is the maximum of several
linear functions, a linear programming solver may be
used. More generally, because the objective has the
form of a sum of functions, methods such as stochastic
gradient descent (aka stochastic approximation; Nemir-
ovski et al. 2009) may be used. Second, there is the esti-
mation of Ho, hl, hz, which was discussed in Section 2.4.
Third, we need to generate a set of candidate splits,
which can be done in different ways. The original Rand-
Forest algorithm (Breiman 2001) randomly selects a pre-
specified number of distinct coordinates j from
{1,...,p} without replacement, and considers 6 to be all
midpoints in the X;; data, which exhausts all possible
subpartitions along each selected coordinate. Another
option is to consider a random subset of cutoff values, pos-
sibly enforcing that the sample sizes of the corresponding
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two children nodes are balanced, as in Denil et al.
(2014). This approach not only enforces balanced splits,
which is important for statistical guarantees (see Theorem
5), but it also reduces the computation time. Finally, we
need to decide when to stop the tree construction. A typi-
cal stopping criterion is when each child region reaches a
prespecified number of data points (Breiman 2001). Depth
may also additionally be restricted. In an actual imple-
mentation, if the stopping criterion would have stopped
regardless of the split chosen, we can short circuit the call
and skip the split optimization.

Notice that £y and Hy need only be computed once for
each recursive call to STocHOPTTREE.FiT, whereas h1, 1o neegl
to be computed for each candidate split. All estimators /;
discussed in Section 2.4 take the form of a sample average
over i € R;, for j = 1, 2, and therefore can be easily and
quickly computed for each candidate split. Moreover, when
candidate cutoff values consist of all midpoints of the
sample values in the j th coordinate, such sample aver-
ages can be efficiently updated by proceeding in sorted
order, where only one datapoint changes from one side
of the split to the other at a time, similarly to how the
original random forest algorithm maintains within-
subpartition averages of outcomes and their squares for
each candidate split.

Notably, the tree construction computation is typi-
cally dominated by the step of searching best splits.
This step can be implemented very efficiently with our
approximate criteria because they only involve estima-
tion of gradients and simple linear algebra operations
(Section 2.3). Only one optimization and Hessian com-
putation is needed at the beginning of each recursive
call. In particular, we do not need to solve optimization
problems repeatedly for each candidate split, which is
the central aspect of our approach and which enables
the construction of large-scale forests.

Algorithm 2 (Procedure to Fit a StochOptForest)
1: procedure StocHOPTFOREST.FiT(data D, number of
trees T)
2: forj=1toTdo
3: I;ree, I;iec «— SussamrLE({1, ..., |D|})
4: 1 «SrocHOPTTREE.FIT(X, {(X;, Y;) €D:i € I]t-ree},
1,1)
> Fit tree using the subdataset I;ree
5:  return {(t;, I]qu) j=1,...,T}

Algorithm 3 (Procedure to Make a Decision Using
StochOptForest)
1: procedure StocHOPTFOREST.DECIDE(data D, forest
{(zj, I]‘-lec) :j=1,...,T}, target x)
2:  w(x) < ZEeros(|D|)
> Create an all-zero vector of length |D|
3: forj=1,...,Tdo
4: Nx)—{ie I}jec 1i(X) = 7i(x)}
> Find the 7-neighbors of x among the
data in Ifec

5: forie N (x) do w;(x) «— w;(x) + m
> Update the sample weights
6:  return MINMIZE(Y i, v,)epWi(X)c(z; Y3), z € Z)
> Compute the forest policy Equation (3)

2.5.2. StochOptForest Algorithm. In Algorithm 2, we
summarize the algorithm of building forests using
trees constructed by Algorithm 1. It involves an
unspecified subsampling subroutine. For each
j=1,...,T, we consider possibly subsampling the
data on which we will fit the j th tree (Z*) as well as
the data that we will later use to generate localized
weights for decision making (Z decy There are different
possible ways to construct these subsamples. Follow-
ing the original random forest algorithm, we may set
I;ree = I]dec equal to a bootstrap sample (a sample of
size n with replacement). Alternatively, we may set
I]t.ree :I]?lec to be sampled as a fraction of n without
replacement, which is an approach adopted in more
recent random forest literature as it is more amenable
to theoretical analysis and has similar empirical perform-
ance (Scornet et al. 2015, Mentch and Hooker 2016). Alter-
natively, we may also sequentially sample I}Iee, 79 with-
out replacement so the two are disjoint (e.g., take a
random half of the data and then further split it at random
into two). The property that the two sets are disjoint,
I}“’e N I]‘-iec =@, is known as honesty, and it is helpful in
proving statistical consistency of random forests (Denil
et al. 2014, Wager and Athey 2018, Athey et al. 2019).*

2.5.3. Final Decision. In Algorithm 3, we summarize
the algorithm of making a decision at new query
points x once we have fit a forest, that is, compute the
forest policy, Equation (3). Although the tree algo-
rithm we developed thus far, Algorithm 1, is for the
unconstrained case, we present Algorithm 3 in the
general constrained case. In a slight generalization of
Equation (3), we actually allow the data weighted by
each tree to be a subset of the whole data set (i.e.,
Iflec), as described previously. Namely, the weights
w;(x) computed by Algorithm 3 are given by

R
Z T 21’,521]1[1' € Ifec,fj(Xif) = Tj(x)]l

(25)

which is slightly more general than Equation (3).
Algorithm 3 then optimizes the average cost over the
data with sample weights given by w;(x). Under hon-
est splitting, for each single tree, each data point is
used in either placing splits or constructing weights
but not both. However, because each tree uses an
independent random subsample, every data point
will participate in the construction of some trees
and also the computation of weights by other trees.
Therefore, all observations contribute to both forest



Downloaded from informs.org by [132.174.252.179] on 14 April 2023, at 08:27 . For personal use only, all rights reserved.

Kallus and Mao: Stochastic Optimization Forests
Management Science, Articles in Advance, pp. 1-20, © 2022 INFORMS

11

construction and the weights in the final decision
making. In this sense, despite appearances, honest
splitting is not “wasting” data.

The weights {w;(x)}.; generated by Algorithm 3
represent the average frequency with which each data
point falls into the same terminal node as x. The meas-
ure given by the sum over i of w;(x) times the Dirac
measure at Y; can be understood as an estimate for the
conditional distribution of Y'| X = x. However, in con-
trast to nonadaptive weights such as given by k-near-
est neighbors or Nadaraya-Watson kernel regression
(Bertsimas and Kallus 2020), which nonparametrically
estimate this conditional distributional generically,
our weights directly target the optimization problem of
interest, focusing on the aspect of the data that is relevant
to the optimization problem, which makes our weights
much more efficient. Moreover, in contrast to using
weights given by standard random forests, which targets
prediction with minimal squared error, our weights tar-
get the right downstream optimization problem.

3. Constrained Case

In this section, we develop approximate splitting crite-
ria for training forests for general CSO problems with
constraints as described at the onset in Equation (1).
Namely, in this section, we let Z = {z eR?: h(z) =0,
k=1,...,s, h(z) <0, k=s+1,...,m} be as in Equation
(2). The oracle criterion we target remains C°%°
(R1,Ry) as in Equation (8) with the crucial difference
that now Z need not be R? and may be constrained as
earlier. We then proceed as in Section 2: We approximate
the oracle criterion in two ways, then we estimate the
approximations, and then we use these estimated split-
ting criteria to construct trees. Because the perturbation
analysis in the presence of constraints is somewhat more
cumbersome, this section will be more technical. How-
ever, the high-level idea remains the same as the simpler
unconstrained case in Section 2.

3.1. Perturbation Analysis of the Oracle
Splitting Criterion

Again, consider a region Ry C R? and its candidate sub-
partition Ro=R;URz, Ri NRy =@. We define v(t),
zj(t), fi(t) as in Equation (9) with the crucial difference
that now Z is constrained. The oracle criterion is given
by Co(Ry,Ry) = p191(1) + p2v2(1), as before. We again
approximate v1(1),v,(1) by computing v1(f),vo(t) at t =
0 (where they are equal and do not depend on the sub-
partition) and then extrapolating from there by leverag-
ing second order perturbation analysis. We present our
key perturbation result for this here.

Theorem 4 (Second-Order Perturbation Analysis: Con-
strained). Fix j = 1, 2. Suppose the following conditions hold:

1. The functions fo(z),f(z) are twice continuously
differentiable.

2. The problem corresponding to fo(z) has a unique mini-
mizer zo over Z.

3. The inf-compactness condition: there exist constants o
and to € (0,1] such that the sublevel set {z€ Z: fy(z)+
t(fi(z) — fo(z)) < a} is nonempty and uniformly bounded
over t € [0, tp).

4. The minimizer z, is associated with a unique Lagran-
gian multiplier v that also satisfies the strict complementar-
ity condition: vor >0 if ke Ky(zo), where Ky(zo)={k:
hi(zo) =0,k =s+1,---,m} is the index set of active at z,
inequality constraints.

5. The Mangasarian-Fromovitz constraint qualification
condition at zy:

Vhi(zo), ..., Vhs(zo) are linearly independent, and
Ad, s.t. Vig(zp)d, =0, k=1,...,s,
Vhi(z0)d. < 0, k € Kj(z).

6. Second-order sufficient condition:

d] | V2fo(zo) + D voxVi(zo) [d- > 0
k=1

Vi, € C(z0)\{0},
where C(zo) is the critical cone defined as follows:
Cl(zo) = {d- : d] Vi(z0) = 0, for ke {1,...,s}J Ku(z0)}.

Let d be the first part of the (unique) solution of the follow-
ing linear system of equations:

Vfo(z0) + D vorVhi(zo)
P

VT HE (z9) 0
[—(ij(zo)o— Vfo(zo)) ]’ (26)

VH T (20) [d’zl
&

where VT H(zp) € R™ is the matrix whose kth row is
(Viu(z0)) ", and VT HF 1 (z9) € RGO copsists only of the
rows corresponding to equality and active inequality
constraints.

Then

vj(t) = (1 = t)fo(zo) + tfj(z0)

+ %fz{d];-r(v2f0(20) + ZVO,kvzhk(ZO))d];
k=1

+ 27 (Vf(z0) = Vfo(zo) )} + o(82), @7)

zi(t) = zo + td{; +o(t). (28)

Because of the presence of constraints, the approxima-
tions of optimal value v;(t) and optimal solution z;(t)
in Theorem 4 require more complicated conditions



Downloaded from informs.org by [132.174.252.179] on 14 April 2023, at 08:27 . For personal use only, all rights reserved.

12

Kallus and Mao: Stochastic Optimization Forests
Management Science, Articles in Advance, pp. 1-20, © 2022 INFORMS

than those in Theorem 1. In particular, we need to
incorporate constraints in the inf-compactness con-
ditions (condition 3) and second-order sufficient con-
dition (condition 6), impose uniqueness and strict
complementarity regularity conditions for the Lagran-
gian multiplier (condition 4), and assume a constraint
qualification condition (condition 5). The coefficient
matrix on the left-hand side of the linear system of
equations in Equation (26) is invertible because of the
second-order sufficient condition in condition 6 (Bert-
sekas 1995, proposition 4.2.2), which ensures that d’
uniquely exists. These regularity conditions guarantee
that the optimal value v;(t) and optimal solution z;(t)
vary smoothly with perturbations to the optimization
objective, and they rule out problems whose optimal
solution may change nonsmoothly. For example, opti-
mal solutions to linear programming problems may
change to completely different vertices under even
tiny perturbations to linear objectives.” Nevertheless,
Theorem 4 may still apply to some problems with lin-
ear costs and nonlinear constraints such as the quad-
ratically constrained problems in section 6.2 of
Elmachtoub and Grigas (2022).

Concretely, the constraints in Examples 1 to 3 all
ensure that the decision variables are bounded. There-
fore, the inf-compactness condition (condition 3) is
satisfied when there is no additional auxiliary variable
(e.g., the newsvendor problem) or when the auxiliary
variables at CSO optimal solutions are almost surely
bounded. (e.g., conditional expectation or conditional
quantiles of optimal portfolio returns in Example 2 or
3, respectively) Moreover, because these constraints
are all simple affine constraints, in Online Appendix
G, Proposition EC.14, we verify that they satisfy a
stronger linear independence constraint qualification
condition than condition 5, which ensures the unique
existence of Lagrangian multiplier v, for the solution
Zo (condition 4). Because our problems in Examples 1
to 3 are all convex, the second-order sufficient condi-
tion (condition 6) can ensure z, to be the unique opti-
mal solution (condition 2). This second-order sufficient
condition trivially holds when the Hessian matrix is
positive definite and the constraints are affine, for
example, under the conditions we discuss in Section
2.3 for Examples 1 and 2. In contrast to these condi-
tions, the strict complementary slackness in condition
4 is generally more difficult to verify exactly. However,
even if it does not hold exactly, splitting criteria based
on the approximations in Equations (27) and (28) may
still capture signals relevant to CSO problems, espe-
cially compared with RandForest, which completely
ignores the optimization problem structure.

Theorem 1 is a special case of Theorem 4 without
constraints (m = 0). Indeed, without the constraints,
the regularity conditions for the Lagrangian multiplier

and constraint qualification condition are vacuous,
and conditions 3 and 6 reduce to the inf-compactness
and positive definite Hessian matrix conditions in
Theorem 1, respectively. Without constraints, the lin-
ear equation system in Equation (26) consists only of
the part corresponding to d., and the solution exactly
coincides with the linear term in Equation (14). Theo-
rem 4 can itself be viewed as a special case of our The-
orem EC.1 in Online Appendix A, where we tackle
CSO problems with both deterministic and stochastic
constraints.

3.2. Approximate Splitting Criteria

Analogous to Theorem 1 for unconstrained problems,
Theorem 4 for constrained problems also motivates
two different approximations of the oracle splitting
criterion C°(Ry, R,) = p101(1) + pava(1). Extrapolat-
ing Equation (27) and Equation (28) to t = 1 and ignor-
ing the high-order terms gives an approximate risk
and approximate solution criterion, respectively:

—-1i 1 % S *
(apx nSk(Rl,R2) =§ Z P]d]z T szo(ZO) + ZVO,kvzhk(ZO) d{z

j=1,2 k=1
+ > pil T (Vfi(z0) = Vfo(z0),
j=1,2
(29)
CPTMNRY Ry)= S pifi(zo+dl), (30)
j=1,2
where in the approximate risk criterion,

CPXTK(R R,), we again omit from the extrapolation
the constant term ijl/zp]»(fj(zo)) = pofo(zo), as it does
not depend on the choice of subpartition.

3.2.1. Estimating the Approximate Splitting Criteria.
We next discuss a general strategy to estimate our
more general approximate splitting criteria in Equa-
tions (29) and (30) that handle constraints. First, we
start by estimating z, by its sample analogue as in
Equation (21), where crucially now Z is constrained.
Then we can estimate the gradients of f] atzoforj=0,
1, 2 and the Hessians of f; at z; in the very same way
that gradients of f; and Hessians of f, were estimated
in Section 2.3, namely, estimating them at Z,, which is
now simply solved with constraints. Gradients and
Hessians of Iy at z can be estimated by simply plug-
ging in 2, because the functions /i are known deter-
ministic functions. We can estimate Kj(z9) by Kj(Zo),
that is, the index set of the inequality constraints that
are active at Zo. Next, we can estimate v, by solving
Vf (o) + S viVii(Z0) = 0 subject to v >0 for ke
K,(Zo) and vy =0 for ke {s+1,...,m}\K,(Zy), or alter-
natively using a solver for Equation (21) that provides
associated dual solutions. Finally, we can estimate ar
by solving Equation (26) with estimates plugged in for
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unknowns. With all these pieces in hand, we can esti-
mate our approximate criteria in Equations (29)
and (30).

3.2.2. Revisiting the Running Examples. In Section
2.4, we discussed how to estimate gradients and Hes-
sians of the objectives of our running examples. Now
we revisit the examples and discuss their constraints.
The nonnegativity and capacity constraints in Example
1 can be written as h(z’) = 27:121 <C, 1 (2)=-z<
0, I=1,...,d, and the simplex constraint in Examples 2
and 3 as h(z) = Zlezl =1, hy1(z)=-2<0,1=1,...,d.
These are all deterministic linear constraints: Their
gradients are known constants and their Hessians
are zero.

3.3. Construction of Trees and Forests

It is straightforward to now extend the tree fitting
algorithm, Algorithm 1, to the constrained case. First,
we note that in line 2 that solves for Z;, we use a con-
strained feasible set Z. Then, we update line 3 to esti-
mate Vfo(Zo),szo(ZO),th(Zo),Vzhk(ZO),Kh(Zo),Vo. Next,
we update line 8 to estimate Vﬁ(zo),d];. Finally, we
update line 9 to use the general splitting criteria in
Equations (29) and (30) where we plug in these esti-
mates for the unknowns.

A crucial point that is key to the tractability of our
method even in the presence of constraints is that the
only step that requires any recomputation for each
candidate split is the estimation of Vf;(zo), d.. As in the
unconstrained case, estimators for Vfi(zg) usually con-
sist of very simple sample averages over the data in
the region R; so they can also be very quickly com-
puted. Moreover, only the right-hand side defining d.
in Equation (26) varies with each candidate split, so
the equation can be presolved using an LU decompo-
sition or a similar approach. Therefore, we can easily
and quickly consider many candidate splits, and cor-
respondingly grow large-scale forests.

Algorithm 2 for fitting the forest remains the same,
because the only change in fitting is in the considera-
tion of tree splits. Algorithm 3 was already written in
the general constrained setting and therefore also
remains the same. In particular, after growing a forest
where tree splits take the constraints into consideration
and given this forest, we impose the constraints in Z
when computing the final forest-policy decision, Z(x).

4. Empirical Study

In this section, we study our algorithm and baselines
empirically to investigate the value of optimization-
aware construction of forest policies and the success
of our algorithm in doing so. We focus on constrained
CSO problems with CVaR objectives, including one simu-
lated portfolio optimization problem and one real-data

shortest path problem. In Online Appendices C.1, C4,
and CJ5, we show additional experimental results for
unconstrained multi-item newsvendor problems (Exam-
ple 1) and constrained variance-based portfolio optimiza-
tion problems (Example 2).

Implementation and replication code are available
at https: // github.com/CausalML /StochOptForest.

4.1. CVaR Portfolio Optimization

We first apply our method to the CVaR portfolio opti-
mization problem (see Example 3). We consider d = 3
assets and p=10 covariates. The covariates X are
drawn from a standard Gaussian distribution, and
the asset returns are independent and are drawn from
the conditional distributions Y;|X ~ 1+ 0.2exp(X1) —
LogNormal(0,1 -0.5I [-3< X, <-1]), Y2 | X~1-0.2
X; —LogNormal(0,1-0.5I[-1 < X, <1]), and Y3|X ~
1+0.2]X; |- LogNormal(0,1-0.5I[1<X, <3]). We
seek an investment policy z(-) € R? that for each x
aims to achieve smallest risk CVaRg,(YTz(x)| X =x),
or equivalently the 0.8-CVaR of the portfolio loss
—YTz(x) while satisfying the simplex constraint, i.e.,
Z={zeR": 5! z=1,z >0}

We compare our StochOptForest algorithm using
either the apx-risk or apx-soln approximate criterion
for constrained problems (Equations (29) and (30)) to
five benchmarks, where all algorithms are identical
except for their splitting criterion. The first two bench-
marks are our StochOptForest algorithm using apx-
risk and apx-soln criteria that (mistakenly) ignore the
constraints (i.e., Equations (13) and (14)). The third
benchmark is a modified® GenRandForest algorithm
(Athey et al. 2019) applied to the first-order optimality
condition for the CVaR optimization problem without
the simplex constraint, as GenRandForest is designed
for unconstrained problems. The fourth benchmark is
the regular RandForest, which uses the squared error
splitting criterion in Example 4 and targets the predic-
tions of asset mean returns, and the fifth is the RandS-
plitForest algorithm, which chooses splits uniformly
at random (without using the portfolio return data).
For our approximate criteria (both constrained and
unconstrained) and the GenRanForest criterion, we
use the parametric Hessian estimator in Equations
(23) and (24) (which is misspecified in this example).
We do not compare with StochOptForest with the
oracle splitting criterion because it is too computation-
ally intensive as we investigate further (Table 1). In all
forest algorithms, we use an ensemble of 500 trees. To
compute Zg in our StochOptTree algorithm (Algo-
rithm 1, line 2) and to compute the final forest policy
for any forest, we formulate the constrained CVaR
optimization problem as a linear programming prob-
lem (Rockafellar and Uryasev 2000) and solve it using
Gurobi 9.0.2. We evaluate each forest policy Z(-) by its
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Table 1. Average Running Time in Seconds over 10
Repetitions (and Standard Deviations) of Constructing One
Tree for Different Algorithms in the CVaR Optimization
Problem

Method n =100 n =200 n =400
StochOptTree (oracle)  41.41 (5.43) 165.03 (15.77) 695.88 (83.91)
StochOptTree (apx-risk)  0.26 (0.08)  0.68 (0.36) 1.68 (0.54)
StochOptTree (apx-soln) 0.22 (0.05)  0.70 (0.20) 2.24 (0.33)

relative risk compared with the optimal z*(-), namely
the ratio of E[ CVaR,(YT2(X) | X)|D] over E[CVaRy,
(YTz*(X) | X)], which we approximate using a very
large testing data set. See Online Appendix C.2 for
more details.

Figure 2(a) shows the distribution of the relative
risk over 50 replications for each forest algorithm
across different training set size n € {100,200,400,
800}. The dashed boxes corresponding to “Constraint
= no” indicate that the associated method does not
take constraints into account when choosing the splits,
which applies to all four benchmarks. (All methods
consider constraints in computing the final forest-
policy decision, Z(x).) We can observe that our Sto-
chOptForest algorithms with approximate criteria that
incorporate constraints achieve the best relative risk
over all sample sizes, and their relative risks decrease
considerably when the training set size 1 increases. In

contrast, the relative risks of all benchmark methods
decrease much more slowly. Therefore, both failing to
target the cost function structure (GenRandForest,”
RandForest, and RandSplitForest) and failing to take
constraints into account (all five benchmark methods)
can significantly undermine the ultimate decision-
making quality. In contrast, our StochOptForest algo-
rithms based on the approximate criteria effectively
account for both, so they perform much better. More-
over, our results show that, although the normal
distribution assumption used to derive our Hessian
estimator (Equations (23) and (24)) is wrong in our
experiment, our proposed forest policies still achieve
superior performance, which illustrates the robustness
of our methods.

To further understand these results, we also con-
sider feature importance measures based on each for-
est algorithm. In Online Appendix B, we extend the
impurity-based feature importance measures (Hastie
et al. 2009) to our StochOptForest method. Recall there
are p = 10 covariates, and the first two determine the
distributions of asset returns. The first covariate influ-
ences the conditional mean of return distributions
more, whereas the second one influences more the
distribution tails. In Figure 2(b), we visualize the fea-
ture importance measures for our proposed method
and RandForest when n = 800. The importance meas-
ures are normalized for each method so that the most

Figure 2. (Color online) Results for the CVaR Portfolio Optimization Problem
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Notes. (a) Relative risks of different forest policies (lower relative risk means better performance). (b) Feature Importance.
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important feature has an importance value equal to
one. We can observe that our StochOptForest methods
(incorporating constraints) value the second covariate
more than the first one, which shows the importance
of signals in the return distribution tails for CVaR
optimization. In contrast, the RandForest algorithm
puts more importance on the first covariate, validating
that it is designed to target the prediction of asset
mean returns. There do not exist feature importance
measures for the GenRandForest algorithm. Instead,
we show its average frequency of splitting on each
covariate in Online Appendix C.2, Figure EC.4. We
observe that the GenRandForest method splits on
noise covariates (i.e., the 3rd to 10th covariate) more
frequently than our proposals, which may partly
explain its inferior performance.

We also consider the average running time of our
proposed algorithm in Table 1. We compare our Sto-
chOptTree algorithm with approximate criteria incor-
porating constraints to the oracle splitting criterion
(using empirical expectations). We consider 10 re-
petitions, in each of which we apply each tree algo-
rithm with the same specifications to construct a sin-
gle tree on the same training data with varying size
n € {100,200,400}. We run this experiment on a Mac-
Book with 2.7-GHz Intel Core i5 processor. We can see
that the running time of our StochOptTree algorithm
with apx-risk criterion is hundreds of times faster
than the StochOptTree algorithm with the oracle
criterion that must solve the constrained CVaR optimi-
zation problems for each candidate split. The compu-
tational gains of our approximate criteria relative to
the oracle criterion also grow with larger sample size n
(from around 200 times faster at n = 100 to more than
400 times faster at n = 400), as the CVaR optimization
problem becomes slower to solve.

Because the StochOptForest algorithm with the
oracle criterion is extremely slow, we can only evalu-
ate its performance in a small-scale experiment in

Figure EC.5 in Online Appendix C.2. Focusing on con-
structing small forests of only 50 trees with n up to
400, we find the performance of the oracle criterion is
marginally better than our approximate criteria. How-
ever, our approximate criteria are much more compu-
tationally efficient, which enables us to leverage larger
data sets for better performance. In Online Appendix
C.2, we also show that similar results hold for portfo-
lio optimization with a linear combination of CVaR
and mean return as the objective (Figure EC.6) and for
CVaR optimization with asset returns drawn from
normal distributions (Figure EC.7). We include addi-
tional empirical results on minimizing the variance of
investment portfolios (Example 2) in Online Appendix
C.4 and show that the performance of our approxi-
mate criteria is close to the oracle criterion.

4.2. CVaR Shortest Path Problem Using Uber
Movement Data

We next demonstrate our methods in a shortest path
problem, using traveling times data in Los Angeles (LA)
collected from Uber Movement (https://movement.uber.
com). We focus on 45 census tracts in downtown LA (Fig-
ure 3(a)), collecting historical data of average traveling
times from each of these census tracts to its neighbors
during five periods in each day (AM Peak, Midday, PM
Peak, Evening, Early Morning) in 2018 and 2019. This
results in 3,650 observations of traveling times Y; for j =
1,...,93 edges on a graph with 45 nodes. We consider p
= 197 covariates X including weather, period of day
and other calendar features, and lagged traveling times.
We aim to go from an eastmost census tract (Aliso Vil-
lage) to a westmost census tract (MacArthur Park) in
this region (the endpoints of the arrow in Figure 3(a)),
through a path between them, encoded by z € {0,1}
with d = 93, where z; indicates whether we travel on
edge j. In particular, we consider the CSO problem
z'(x) € arg minycz CVaRog(Y'z(x) | X = x), where Z
is given by standard flow preservations constraints,

Figure 3. (Color online) Setup and Results for the CVaR Shortest Path Problem Using Uber Movement Data
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with a source of +1 at Aliso Village and a sink of -1 at
MacArthur Park. See Online Appendix C.3 for more
details about data collection, optimization formulation,
and other experiment specifications.

We again compare different forest algorithms as we
do in Section 4.1, but to reduce computation, we only
train them up to 100 trees. We consider four different
sample sizes ranging from 0.5-year to the whole
2-year data. For each sample size, we randomly split
the corresponding data set into two halves as training
data Dyain and testing data Diest, respectively. The dis-
tribution of Y| X is unknown, so we can no longer
benchmark the performance of each forest policy Z(-)
trained on Dyin against the CSO optimal policy z*(-)
as in Section 4.1. Instead, we compare their percen-
tages of realized improvement, termed the coefficient
of prescriptiveness in Bertsimas and Kallus (2020).
Namely, we consider the ratio between each method’s
improvement over the context-free sample average
approximation (SAA), which finds a single solution
Zsaa to optimize the average cost on the whole train-
ing data, over the improvement over SAA of the
(infeasible) perfect-information shortest path, which
in each test sample computes the shortest path for the
observed travel time Y. More effective forest policies
have higher percentages of realized improvement, but
even known distributions optimal policy z*(:) to Equa-
tion (1) cannot generally achieve 100% realized
improvement as the covariates do not perfectly pre-
dict travel times.

In Figure 3(b), we show the results across 50 realiza-
tions of random train-test splits. We observe that as
the sample sizes increase, all methods tend to perform
better. In particular, our StochOptForest algorithm
with either the apx-risk or apx-soln criterion (incorpo-
rating constraints) outperforms all benchmarks across
all sample sizes, with the clearest improvement seen
using the apx-risk criterion and in smaller data sets.
Overall, the results show that incorporating the opti-
mization problem structure in the tree construction
can lead to improvements when optimization is the
aim.

5. Asymptotic Optimality

In this section, we prove that under some regularity
conditions, our forest policy asymptotically attains the
optimal risk, namely, E[c(Z,(x);Y)|X = x] converges
in probability to min,ezE[c(z;Y)| X =x] as n — co for
any x € X.

It is well known that forests algorithms with adap-
tively constructed trees are extremely difficult to ana-
lyze, so some simplifying regularity conditions are
often needed to make the theoretical analysis tractable
(Biau and Scornet 2016). In this section, we assume the

tree regularity conditions introduced by Athey et al.
(2019) and Wager and Athey (2018).

Assumption 1 (Regular Trees). The trees constructed sat-
isfy the following regularity conditions for constants
w €(0,0.2], 7 €[0,1), and an integer k,, > 0:

1. Every tree split puts at least a fraction w of observations
in the parent node into each child node. Every leaf node in
every tree contains between k,, and 2k, — 1 observations.

2. Foran index set 7 € {1,...,p} such that E[c(z;Y) | X]=
Elc(z;Y) | X 7] for all z € Z, for each leaf of each tree and for
each j € J, the average probability of splitting along feature x; is
bounded below by Tt/p, averaging over nodes on the path from
the root to the leaf and marginalizing over any randomiza-
tion of candidate splits (and conditioning on the data).

3. Each tree grows on a subsample of size s, drawn ran-
domly without replacement from the whole training data,
and it is honest, that is, T™® N T # 0 with | T"*°| + |77
=s,forj=1,...,T.

Condition 1 in Assumption 1 specifies that the stop-
ping criterion must ensure a minimal leaf size and
that all candidate splits be balanced in that they put at
least a constant fraction of observations in each child
node. Without this condition, even when sample size
n is large, some imbalanced splits may run out of data
so quickly that some leaves are not sufficiently parti-
tioned and thus too large. As a result, the estimation
bias of the objective function may fail to vanish even
when n — co. Condition 2 requires the trees to split
along every relevant direction at sufficient frequency,
which ensures that the leaves of the trees become
small in all relevant dimensions of the feature space
as n gets large. Relevant features are described by
those such that the random cost of any decision is
mean-independent of X given only these relevant fea-
tures, which is trivially satisfied for J ={1,...,p}.
Condition 3 specifies that we use subsample splitting,
that is, the data used to construct each tree (Z*®) and
the data used to construct localized weights from this
tree for final decision making (I]‘-lec) are disjoint. This
so-called honesty property plays a critical role in the
theoretical analysis of forest algorithms, but it may be
largely technical. In Section 4, we empirically show
that our forest policies appear to achieve asymptotic
optimality even without using honest subsample
splitting. In Online Appendix C.6, we further illustrate
in Figure EC.11 that StochOptForest with no subsam-
ple splitting (i.e., Ifec = I;ree) performs better than the
honest version with splitting, which can be explained
as honest trees using fewer data for tree construction
and decision making.

In the following assumption, we further impose
some regularity conditions on the cost function c(z;y)
and the distribution of Y| X.
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Assumption 2 (Distribution Regularity). Fix x€ X and
assume the following conditions:

1. The marginal distribution of X has a density, its sup-
port X is compact, and the density is bounded away from
zero and oo on X.

2. There exist a constant a and a compact set C C Z such
that, {z€ Z:Elc(z;Y) | X =x|<a} CCand {z€ Z: 3,
wi(x)c(z;Y:) <a} €C for wi(x) in Equation (25) almost
surely eventually.

3. There exists a function b(y) such that for any
2,2 €Cye, |ezy) -c@iy) | <by) |z - 2|l More-
over, there exists a positive constant C such that E[b(Y)
X=x]< C < .

4. There exist constants L. and L, such that sup_.
sup,. . [E[c(z; Y)IX = 7] - Ele(z V)X = 1] 1< Lellxg -
Xyl and sup, . | E [b(Y)|X7 =x7] —E[b(Y) X7 = x//]|

< Lyllxg — 2yl

5. There exist positive constants 1,1, C such that

sup E[eq le(z,Y)-E[c(z;Y)|X=x]| | X = x] <C< o0,
zeC

E[en’ D)X= | x = x] <C<oo.

One important condition in Assumption 2 is that the
cost function c(z;y) is Lipschitz-continuous in z on the
compact set C. In the following proposition, we vali-
date that Examples 1 to 3 all satisfy this condition.

Proposition 2. For any z,z’ € C:

1. The cost function c(zy)= 0 max{a(z—y),
B,(y1 — z1)} for the newsvendor problem in Example 1 satis-
fies that |c(z;y) - c(z';y)| < Vd max{ay, B} Iz — .

2. The cost function c(z;y) =y z1.4 — zd+1)2 for the
variance-based portfolio optimization problem in Example 2
satisfies that |c(z;y)— c(z/;y)| < 4\/§(supiec 1Z]],)max{1,
Iy} Iz = 2/l

3. The cost function c(z;y) =1max{zs.1 —y 214, 0} —
zg+1 for the CVaR optimization problem in Example 3 satis-
fies that |e(z;y) — o2 ;y)| < (lylly + 1 +1) 2 = 2/ Il

Under the previous assumptions, we can prove that
the forest policy is asymptotically optimal.

Theorem 5. Let x € X be fixed. If Assumptions 1 and 2 hold
at the given x and if k, — oo, s, /k, — oo, logT/k, — 0,
and Tk, /s, — 0, then

S wi(x)e(z; Vo)~ Ble(z Y)IX = ]
i=1

sup £> 0. (31)

zeC

It follows that any choice Z,(x) € arg min ez > wi(x)
c(z;Y;) satisfies that as n — oo,

Po. (2

Theorem 5 provides asymptotic optimality of Z,(x)
pointwise in x. The result can straightforwardly be

E[e(Zy(x); Y)IX = x] = minE[e(z; Y)[X = x]

extended to be uniform in x if we simply assume the
conditions in Assumption 2 hold for all x € X with
common constants.

6. Discussion

In this section, we offer some discussions. First, we dis-
cuss how our work is related to and differs from work
on estimation using localized weights and forests in
particular. Then we discuss other related work on CSO
and on integrating prediction and optimization. We
discuss additional related literature about tree models
and perturbation analysis in Online Appendix F.

6.1. Comparison with Estimation

The idea of using localized weights to estimate param-
eters given covariate values has a long history in sta-
tistics and econometrics, including applications in
local maximum likelihood (Tibshirani and Hastie
1987, Fan et al. 1998), local generalized method of
moments (Lewbel 2007), local estimating equation
(Carroll et al. 1998), and so on. These early works typi-
cally use nonadaptive localized weights like nearest-
neighbor weights or Nadaraya-Watson kernel weights,
which only use the information of covariates. Recently,
some literature proposed to use forest-based weights
for local parameter estimation (Meinshausen and
Ridgeway 2006, Scornet 2016, Athey et al. 2019,
Oprescu et al. 2019), which generalizes the original ran-
dom forest algorithm for regression and classification
problems (Breiman 2001) to other estimation problems
where the estimand depends on the X-conditional dis-
tribution. These forest-based weights are derived from
the proportion of trees in which each observation falls
in the same terminal node as the target covariate value.
Because those trees are adaptively constructed using
label data as well, random forest weights are shown to
be more effective in modeling complex heterogeneity
in high dimensions than nonadaptive weights. Recent
literature has studied the statistical guarantees of ran-
dom forests in estimating conditional expectation
functions (Biau and Scornet 2016, Wager and Athey
2018) or more general parameters defined by local esti-
mating equations (Athey et al. 2019, Oprescu et al.
2019).

Among the previous statistical estimation literature,
closest to our work is Athey et al. (2019), who propose
the GenRandForest algorithm to estimate roots of con-
ditional estimating equations. This is closely related to
our decision-making problem, because the optimal
solution of unconstrained CSO is also the root of a con-
ditional estimating equation given by the first-order
optimality condition. For example, the optimal solu-
tions of conditional newsvendor problem in Example
1 without constraints are conditional quantiles, which
are also considered by Athey et al. (2019) under the
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conditional estimating equation framework. For com-
putational efficiency, Athey et al. (2019) also propose
a gradient-based approximation for roots in candidate
subpartitions (see discussions after Equation (14)) and
then find the best split that maximizes the discrepancy
of the approximate roots in the subregions, thereby
approximately minimizing the total mean squared
error of the estimated roots (Athey et al. 2019, propo-
sition 1).

In contrast, our paper has a fundamentally different
goal: we target decision-making risk (expected cost)
rather than estimation risk (accuracy). In our apx-risk
and apx-soln criteria, we directly approximate the
optimal average cost itself and use this to choose a
split rather than estimation error of the solution. In
Online Appendix C.1, we provide one empirical
example of unconstrained newsvendor problem
where the heterogeneity of optimal solution estima-
tion is drastically different from the heterogeneity of
the optimal decision making, which illustrates the
benefit of targeting decision quality when the decision
problem rather than the estimation problem is of
interest. Moreover, our methods uniquely accommo-
date constraints, which are prevalent in decision-
making problems but rare in statistical estimation
problems. For constrained CSO, the optimal solution
cannot be characterized by local estimating equations,
so the GenRandForest algorithm is not applicable. In
Section 4, we provided empirical examples of con-
strained CVaR optimization problems where taking
into account constraints is key to constructing good
trees.

6.2. CSO and Integrating Prediction and Optimization

Our paper builds on the CSO framework, and the gen-
eral local learning approach, that is, estimating the
objective (and stochastic constraints in Online Appen-
dix A) by weighted averages, with weights reflecting
the proximity of each covariate observation to the tar-
get value. Bertsimas and Kallus (2020), Hanasusanto
and Kuhn (2013), and Hannah et al. (2010) propose
the use of nonparametric weights that use only the
covariate observations X and do not depend on obser-
vations of the uncertain variable Y, such as Nadaraya-
Watson weights. Bertsimas and Kallus (2020) formally
set up the CSO framework, propose a wide variety of
machine learning methods for local weights construc-
tion, and provide rigorous asymptotic optimality
guarantees. In particular, they additionally propose
weights based on decision trees and random forests
that incorporate the uncertain variable information
and show their superiority when the covariate dimen-
sion is high. However, their tree and forest weights
are constructed from standard regression algorithms
that target prediction accuracy instead of downstream
decision quality, primarily because targeting the latter

would be too computationally expensive. Our paper
resolves this computational challenge by leveraging
approximate criteria that can be efficiently computed.

Optimization problems that have unknown param-
eters, such as an unknown distribution or a condi-
tional expectation, are often solved by a two-stage
approach: the unknown parameters are estimated or
predicted, then these are plugged in, and then the
approximated optimization problem is solved. The
estimation or prediction step is often done independ-
ently of the optimization step, targeting standard
accuracy measures such as mean squared error with-
out taking the downstream optimization problem into
account. However, all predictive models make errors
and when prediction and optimization are completely
divorced, the error tradeoffs may be undesirable for
the end task of decision making. To deal with this
problem, recent literature proposes various ways to
tailor the predictions to the optimization problems.

Elmachtoub and Grigas (2022) study a special CSO
problem where ¢(z;y) =y 'z is linear and constraints
are deterministic and known. In this special case, the
parameter of interest is the conditional expectation
E[Y|X = x|, which forms the linear objective’s coeffi-
cients. They propose to fit a parametric model to pre-
dict the coefficients by minimizing a convex surrogate
loss of the suboptimality of the decisions induced by
predicted coefficients. Elmachtoub et al. (2020) study
the same linear CSO problem and instead predict the
coefficients nonparametrically by decision trees and
random forests with suboptimality as the splitting cri-
terion. In Online Appendix G, Proposition EC.15, we
show this criterion is equivalent to what we termed
the oracle splitting criterion in Equation (8) in the case
of linear costs. Because this involves full reoptimiza-
tion for each candidate split, they are limited to very
few candidate splits, suggesting using one per candi-
date feature, and they consider a relatively small num-
ber of trees in their forests. In contrast, we consider
the general CSO problem and use efficient approxi-
mate criteria, which is crucial for large-scale problems
and training large tree ensembles. Hu et al. (2022) also
study linear CSO problems, and they show both theo-
retically and empirically that with correctly specified
models, integrated approaches may perform worse
than the simpler predict-then-optimize approach. Our
paper demonstrates the benefit of a forest-based inte-
grated approach in nonlinear CSO problems, where a
predict-then-optimize approach would have to learn
the whole conditional distribution and not just the
conditional expectation.

Donti et al. (2017) study smooth convex optimiza-
tion problems with a parametric model for the condi-
tional distribution of the uncertain variables (in both
objective and constraints) given covariates and fit
the parametric models by minimizing the decision
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objective directly using gradient descent methods on
the optimization risk instead of the log-likelihood.
Wilder et al. (2019) further extend this approach to
nonsmooth problems by leveraging differentiable sur-
rogate problems. However, unless the cost function
depends on the uncertain variables linearly, the
stochastic optimization problem may involve compli-
cated integrals with respect to the conditional dis-
tribution model. In contrast, our paper focuses on
nonparametric forest models that cannot be trained by
gradient-based methods, and we can straightfor-
wardly target the CSO using localized weights. Notz
(2020) considers convex optimization problems with
nondifferentiable cost functions and proposes a
subgradient boosting algorithm to directly learn a
decision policy. Although this approach can handle
complex objectives, it can only accommodate very
simple constraints like box constraints, as it is difficult
to impose complex constraints on boosting decision
policies. In contrast, our approach based on the CSO
framework can readily handle general constraints.

7. Concluding Remarks

In CSO problems, covariates X are used to reduce the
uncertainty in the variable Y that affects costs in a
decision-making problem. The remaining uncertainty
is characterized by the conditional distribution of
Y| X =x. A crucial element of effective algorithms for
learning policies for CSO from data are the integration
of prediction and optimization. One can try to fit
generic models that predict the distribution of Y| X =
x for every x and then plug this in place of the true
conditional distribution, but fitting such a model to
minimize prediction errors without consideration of
the downstream decision-making problem may lead
to ill-performing policies. In view of this, we studied
how to fit forest policies for CSO (which use a forest to
predict the conditional distribution) in a way that
directly targets the optimization costs. The naive direct
implementation of this is hopelessly intractable for
many important managerial decision-making prob-
lems in inventory and revenue management, finance,
and so on. Therefore, we instead developed efficient
approximations based on second-order perturbation
analysis of stochastic optimization. The resulting algo-
rithm, StochOptForest, is able to grow large-scale for-
ests that directly target the decision-making problem
of interest, which empirically leads to significant
improvements in decision quality over baselines.

Endnotes

1 This is, for example, a corollary of Theorem 1, although weaker
continuity conditions would be needed for this first-order state-
ment. We omit the details as the first-order analysis is ultimately
not useful.

2 Indeed the unconstrained case for the portfolio problem is in fact
uninteresting: the zero portfolio gives minimal variance, and CVaR
may be sent to infinity in either direction by infinite scaling.

3 Ties can be broken arbitrarily.

# We may similarly use the ~ 1/e fraction of the data not selected by
the bootstrap sample to construct 799 to achieve honesty, but this
is again uncommon as it is difficult to analyze.

5In the context of such linear problems, Elmachtoub et al. (2020)
propose to optimize the oracle criterion by exhaustive search. As
noted before, this is computationally burdensome, and indeed their
focus is on smaller-scale models, with particular benefits to inter-
pretability. In Proposition EC.15 in Appendix G, we formally argue
that their criterion coincides with what we called the oracle criterion
in Equation (8) in the case of linear costs.

6 We cannot apply the original GenRandForest algorithm to solve
unconstrained CVaR optimization: every step of tree construction
requires computing the optimal unconstrained solution in the region
Ry to be partitioned, which, however, does not exist because with-
out constraints the CVaR objectives can be made arbitrarily small.
We thus must slightly modify the GenRandForest algorithm to
compute the optimal constrained solution in every region to be parti-
tioned, from which we then compute the GenRandForest splitting
criterion for the first-order optimality condition of unconstrained
CVaR optimization. We furthermore regularize the Hessian matrix
as it is not generally invertible, as discussed after Equation (18),
which would make the GenRandForest splitting criterion unde-
fined. See Appendix C.2.

7 GenRandForest criterion partly captures the cost function
structure as it incorporates the corresponding first-order optimality
condition information, but it chooses splits to maximize the discrep-
ancy of approximate solutions in the induced subregions rather
than optimize their decision costs directly.
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