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The properties of collisionless shocks, like the density jump, are usually derived
from magnetohydrodynamics (MHD), where isotropic pressures are assumed. Yet, in
a collisionless plasma, an external magnetic field can sustain a stable anisotropy. We
have already devised a model for the kinetic history of the plasma through the shock
front (J. Plasma Phys., vol. 84, issue 6, 2018, 905840604), allowing to self-consistently
compute the downstream anisotropy, and hence the density jump, in terms of the upstream
parameters. This model deals with the case of a parallel shock, where the magnetic
field is normal to the front both in the upstream and the downstream. Yet, MHD also
allows for shock solutions, the so-called switch-on solutions, where the field is normal
to the front only in the upstream. This article consists in applying our model to these
switch-on shocks. While MHD offers only one switch-on solution within a limited range
of Alfvén Mach numbers, our model offers two kinds of solutions within a slightly
different range of Alfvén Mach numbers. These two solutions are most likely the outcome
of the intermediate and fast MHD shocks under our model. While the intermediate and fast
shocks merge in MHD for the parallel case, they do not within our model. For simplicity,
the formalism is restricted to non-relativistic shocks in pair plasmas where the upstream
is cold.
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1. Introduction

Shock waves are fundamental processes in plasmas which are usually studied within the
context of magnetohydrodynamics (MHD). As an extension of fluid dynamics to plasmas,
MHD entails the same assumption of small mean free path (see for example Gurnett &
Bhattacharjee 2003, § 5.4.4, Goedbloed, Keppens & Poedts 2010, chaps. 2 and 3 or Thorne
& Blandford 2017, § 13.2). When fulfilled, collisions ensure that the pressure is isotropic
both in the upstream and downstream, which simplifies the conservation equations.
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2 A. Bret and R. Narayan

In collisionless shock, where the mean free path is larger than the size of the system, the
isotropy assumption may not be fulfilled, possibly resulting in a departure from the MHD
predicted behaviour. Such is especially the case in the presence of an external magnetic
field which can stabilize a temperature anisotropy, as has been observed in the solar wind
(Bale et al. 2009; Maruca, Kasper & Bale 2011; Schlickeiser et al. 2011) and is projected
to be studied in the laboratory (Carter ef al. 2015).

Some authors worked out the MHD conservation equations in the case of anisotropic
pressure and studied the consequences on the shock properties (Erkaev, Vogl & Biernat
2000; Double et al. 2004; Gerbig & Schlickeiser 2011). Yet, in these works, while the
upstream is assumed isotropic, the downstream degree of anisotropy is left as a free
parameter.

Recently, a self-contained theory of magnetized collisionless shocks has been
developed. By making some assumptions on the kinetic history of the plasma as it crosses
the front, we could compute the downstream degree of anisotropy, for the parallel and the
perpendicular cases, in terms of the magnetic field strength (Bret & Narayan 2018, 2019,
2020).

Noteworthily, the theory for parallel shocks described in Bret & Narayan (2018) has
been successfully tested against the Particle-In-Cell (PIC) simulations of Haggerty, Bret
& Caprioli (2022).

In MHD, several shock solutions exist when the upstream magnetic field is aligned with
the flow. The most common solution is the one where the downstream field is also aligned
with the flow. This is the fully parallel case, where the fluid and the field are decoupled
(Lichnerowicz 1976; Majorana & Anile 1987). Yet, still for the case where the upstream
field is parallel to the flow, MHD offers a second option: the switch-on shocks (Kulsrud
2005; Goedbloed et al. 2010; Fitzpatrick 2014). In such shocks, while the magnetic field
does not have any components along the shock front in the upstream, it has one in the
downstream. Indeed, the MHD conservation equations only enforce the continuity of the
field component perpendicular to the front, not the continuity of the normal component.
Therefore, they allow for solutions, the switch-on solutions, where the upstream field is
normal to the front while the downstream field is not.

The theory developed in Bret & Narayan (2018) was the collisionless version of the fully
parallel MHD case. The present article deals with the collisionless version of the MHD
switch-on shocks.

As in Bret & Narayan (2018), we consider, for simplicity, pair plasmas for which both
species have the same perpendicular and parallel temperatures to the field. In §2, we
remember the MHD results for switch-on shocks. In § 3, we explain the method used.
It significantly differs from that in Bret & Narayan (2018) since we need to account
for an oblique downstream field. In addition, MHD results suggest the obliquity of the
downstream field, labelled 6, in the following, can be as high as 0.56(m/2) (see figure 2a).
We cannot therefore work out a theory restricted to 8, = ¢, with 0 < ¢ <« 1. Then, in §§ 4
and 5, we explain the solutions found for switch-on shocks within our model.

2. MHD results

The system considered is sketched in figure 1. The upstream field B; and velocity v,
are normal to the front, but the downstream ones B, and v, are not. They make an angle
6, and &, with the shock normal and by default, 6, # &, (even though they will be found
equal in the following).

We here briefly remember the MHD theory for switch-on shocks. Due to the complexity
of the forthcoming calculations, we treat only the case of a sonic strong shock, namely
upstream temperature 7 = 0, or equivalently, upstream sonic Mach number M, = oco.
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FIGURE 1. System considered. The upstream has density n; and isotropic temperature 7. Both
the upstream field B and velocity v are normal to the front. The downstream has density n»
and temperatures 77|, 7>, parallel and perpendicular to the downstream field, respectively. The
downstream field B; and velocity v, make an angle 8, and &, respectively, with the front normal.
The parallel and perpendicular directions are therefore defined with respect to the local magnetic
field.

For isotropic pressures in the upstream and the downstream, and 6, = &, = 0, the MHD
conservation equations for strong shock and an adiabatic index of y = 5/3 read (see for
example Kulsrud 2005, p. 141)

nyv, cos &, = nyvy, 2.1
Bg CcosS 92 = Bl , (22)
B>v;, sin6, cos & — Byv, cos B, siné, = 0, (2.3)
B2sin® 6
28—2 + nokgT, + mnzvg cos’ &= mnlvlz, 2.4)
o
B2 sin 6, cos @
mnzvg sin&, cos &, — 2 2P , (2.5)

47

SkT, Bisin’6, v¥\ B} . , 1 ;
mnov, cosér | — + — | — —=v;sinb,cos b, sin&, = —mn vy, (2.6)
2 m dmtmn, 2 47 2

where m is the mass of the particles and kg the Boltzmann constant.

Equation (2.1) stands for the conservation of mass. Equation (2.2) for the conservation
of the magnetic field normal component. Equation (2.3) for the vanishing of the z
component of the electric field. Equations (2.4) and (2.5) come from the conservation
of the momentum flux (see Appendix A), and (2.6) from the conservation of energy.

By eliminating v, and B, thanks to (2.1) and (2.2), and then eliminating 75 thanks to
(2.4), the system is amenable to three equations,

tanf, —tan&, = 0, 2.7)
M3 tan&, — rtan, = 0, (2.8)
2M§1[(r —S5)r+5-— sec? &1+ rtan6, (tan 6, + 4tané,) = 0, (2.9)
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in terms of the dimensionless density ratio r and the Alfvén Mach number My,

ny
r=—,

nj

. - (2.10)
AU B AR
The first equation imposes 6, = &,. Replacing in the last two gives

tan6,(M3, — r) =0, (2.11)
QM [(r — S)r +5 — sec? 6,] + Srtan* 6, = 0. (2.12)

Equation (2.11) clearly defines two kinds of shocks.

(i) The first kind comes from tan 6, = 0, that is, 6, = 0. Inserting it into (2.12) gives
r =1 or r = 4. The first option, r = 1, is the continuity solution, where nothing
changes between the upstream and the downstream. The second option is the parallel
shock solution, with » = 4 for a sonic strong shock and an adiabatic index y = 5/3.

(i1) Yet, (2.11) also allows for

r=Mj, (2.13)
which is the MHD switch-on solution. Inserting it into (2.12) gives

3
10M2, —2M4 =5

cos’ 6, = (2.14)

The value of 8, so defined is displayed in figure 2(a). Here, 6, # 0 is only permitted
within a finite range of Alfvén Mach numbers defined by cos?6, < 1, that is, 1 <
My < 2. Note that instead of parametrizing 6, by the Alfvén Mach number My,
we choose the variable
B}/4xn 1 2.15)
o= = —. .
mnvi M3,
This o parameter allows for a straightforward comparison with PIC simulations

where o is usually used instead of My, (see for example Sironi & Spitkovsky 2011;
Bret 2020). As a function of ¢, 6, # 0 is allowed for o € [1/4, 1].

For a finite upstream temperature 77 > 0, MHD switch-on solutions are also restricted
to a range of upstream temperatures via 8 = nikgT;/B? < 2/y, where y is the adiabatic
index (Kennel, Blandford & Coppi 1989; de Sterck & Poedts 1999; Delmont & Keppens
2011). (See in particular figure 3 in de Sterck & Poedts (1999).) Since the present work is
limited to T} = 0, it cannot explore this dimension of the switch-on solutions range.

While they have been produced in the laboratory (Craig & Paul 1973), such shocks
have been rarely detected in space due to the smallness of the parameter window that
allows them. Feng et al. (2009) reported the detection of a ‘possible’ interplanetary
switch-on shock. Also, Farris et al. (1994); Russell & Farris (1995) reported the detection
of one switch-on shock among the ISEE (International Sun-Earth Explorer; see Ogilvie,
Rosenvinge & Durney (1977)) data. The more recent review by Balogh & Treumann (2013)
still refers to the results of Farris ef al. (1994) as ‘the rare case of observation of a switch-on
shock’ in its § 2.3.6.

Finally, it is interesting to compute the MHD density jump r for any upstream angle 6.
This can be done solving the ‘shock adiabatic’ equation given in Fitzpatrick (2014, § 7.21),
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FIGURE 2. (a) Value of 6, from (2.14) in terms of o = M;lz . Its maximum value is
arccos 4/2/5 ~ 0.56(xt/2). (b) MHD density jump 7 in terms of (o, 61) for 0; € [0, t/2]. Only
the blue line, which has 6; = 6, = 0, was considered in Bret & Narayan (2018). The red line is
the switch-on solution (2.13), with 8; = 0 but 6, # 0.

and setting 7} = 0. (Vs; = 0 in the notation of Fitzpatrick (2014).) The result is pictured
in figure 2(b), in terms of 6, € [0, /2] and . Only the blue line, which has 6, = 6, = 0,
was considered in Bret & Narayan (2018). The red line is the switch-on solution (2.13),
with 8; = 0 but 6, # 0.

3. Method

Our method to determine the downstream anisotropy in terms of the upstream field relies
on a monitoring of the kinetic history of the plasma as it crosses the front. In this process,
the parallel and perpendicular temperatures of the plasma are changed according to some
prescriptions explained below. The resulting state of the plasma downstream is labelled
‘Stage 1.” Stage 1 is generally not isotropic.

Depending on the strength of the downstream field B,, Stage 1 can be stable or not.
If it is stable, then Stage 1 is the end state of the downstream. If it is unstable, then the
plasma migrates towards its instability threshold, namely mirror or firehose stability. This
is ‘Stage 2.” In such a case, Stage 2 is the end state of the downstream.

Stages 1 and 2 are therefore temporal evolving stages of the downstream plasma. This
has been verified for the parallel case by the PIC simulations performed by Haggerty et al.
(2022), where the two stages have been clearly identified.

Also, the stability alluded here is not the one of the whole shock structure, like for
example the corrugation instability (Landau & Lifshitz 2013, § 90). It is rather the stability
of the downstream plasma as an isolated and homogeneous entity.

This algorithm was applied to the parallel and perpendicular cases in Bret & Narayan
(2018) and Bret & Narayan (2019), respectively. In both cases, the orientation of B, makes
it simple to set the temperatures of Stage 1. We will now see that the obliquity of B,
demands further characterization of Stage 1.

3.1. Characterization of Stage 1

If the motion of the plasma through the front were adiabatic, the corresponding evolution
of the parallel and perpendicular temperatures would be described by the double adiabatic
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Cases T Ty
mBy\? By
Parallel, 61, =0 T + entropy T —
’ ni1B» B;
B \* B
Perpendicular, 61 > = /2 T, e T -t + entropy
niBy B>

TABLE 1. Values of 75 and 7> in Stage 1 for the parallel and perpendicular cases.

equations of Chew, Goldberger & Low (1956):

T, B
= cst,
; (3.1)
—J_ = cSt.
B

Here, like in the rest of the paper, the parallel and perpendicular are defined with respect
to the local magnetic field.

Now, since we are dealing with shockwaves, the evolution of the plasma from the
upstream to the downstream is not adiabatic. For parallel and perpendicular shocks, this
results in different prescriptions.

(i) For the parallel shock case treated in Bret & Narayan (2018), we took 6, , = &, =0
and considered the entropy excess goes into the parallel temperature. Intuitively, this
stems from the fact that the transit of the plasma through the front can be viewed as a
compression between two converging virtual walls, normal to the flow. These walls
by no means exist. They are simply an analogy of how the entropy gain is realized.
Regarding the perpendicular temperature, (3.1) simply gives 7', = cst in the parallel
case, since B, = B for such a shock. Such changes of the temperatures have been
successfully checked through PIC simulations by Haggerty et al. (2022).

(i1) For the perpendicular shock case treated in Bret & Narayan (2019), we took 6, , =
1t/2 and &, = 0. Here the plasma can still be viewed as compressed between two
virtual walls normal to the flow. We therefore considered that the temperature normal
to the flow, that is, parallel to the field, evolves adiabatically.

An additional constraint that must always be satisfied is the equality of the two
temperatures perpendicular to the field, enforced by the Vlasov equation (Landau &
Lifshitz 1981, § 53).

These considerations are summarized in table 1 which gives the values of 75 and 75,
in the parallel and perpendicular cases.

As already stated in § 1, MHD suggests that in a switch-on shock, the obliquity 6, of the
downstream field can be as high as 0.567. Hence, we need to interpolate between the two
extremes of table 1. We cannot just elaborate from Bret & Narayan (2018) by exploring
6, =¢,with0 < ¢ < 1.
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For intermediate values of 6,, we propose the following interpolation between the two
extremes of table 1:

2

nBy )

T2|| = T1 + Te COS 92,
I’l132

(3.2)
T =120 4 L e
w=lg T ol 2.

Our ansatz is therefore that the downstream temperatures are the sum of the adiabatic
ones given by Chew et al. (1956), plus an entropy excess. For the parallel temperature, the
entropy excess is a fraction cos®#, of a quantity we label T, (subscript ‘e’ for entropy).
For the perpendicular temperature, the entropy excess is a fraction sin® 6,/2 of the same
T.. Here, the factor 1/2 accounts for the necessary identity of the two perpendicular
temperatures. Finally, the three temperature excesses sum to 7.

The cos® 0, and sin” #, functions are the simplest choice fulfilling these requirements.
Further works, notably PIC simulations (see § 6), should allow to test their relevance.

Note that T, is not arbitrary but is solved for using the conservation equations (see (B6)
in Appendix B). It represents the heat generated from the shock entropy.

We now compute the properties of Stage 1 accounting for these extended prescriptions
for Stage 1.

4. Properties of Stage 1
Due to the complexity of the calculations, we treat only the case of a sonic strong shock,
namely 77 = 0.
4.1. Conservation equations for anisotropic temperatures

The conservation equations for anisotropic temperatures in the downstream are established
in Appendix A. Though with different notation, they can be found in Hudson (1970);
Erkaev et al. (2000). With T} = 0, they read,

n2U2COS€2 = nv, (41)
Bz COoS 92 = Bl, (42)
B>v, sin 6, cos & — Brv, cos B, siné, = 0, 4.3)
B2 cos (26 B?
c0s? Oyn2kpToy + sin® OynokpTs) + mnyv? cos® & — ZT(Z) = —g + mn,v3,
4.4)
_ 5 . B? sin (26,)
sin 0, cos Oany k(T — Ty ) + mnyv; siné, cos &, — T =0, 4.5)
b
[v(Acos& + Bcosé 4 Csin&)]F =0, (4.6)
where
A = Lk Ty 4 nkyT +Bz+1 :
—21’13 I NKpl | 870 2I’I’ll/l'l),
B? 26
B = —%() + 0082 anBT” + Sil’l2 0 nkBTJ_, (47)
T
B? sin (260
C = sin6 cosO nky (T) — T.) — %
b
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(a) (b)
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FIGURE 3. (a) Values of 6, arising from Q = 0 in (B11). Solutions exist only for o € [0.432, 1].
(b) Corresponding values of the density jump from (B10). The colour code refers to the
corresponding 6,-branch. The green curves pertain to the MHD switch-on solution.

In (4.6), the notation [Q]? stands for the difference of any quantity Q between the upstream
and the downstream.
With T, = 0, prescriptions (3.2) for the downstream temperatures in Stage 1 simply read

T2|| = Te 0082 02,
4.8)

1 . 9
TZL = ETQ Sin 92.

4.2. Resolution of the system of equations

The resolution of the system (4.1)—(4.8) is lengthy and reported in Appendix B. It turns out
that it is convenient to determine first the angle 6, as a function of ¢, and then to compute
the density jump r(o).

The algebra unravels three 6,-branches for 6, = 0.

(1) One branch is simply 6, = 0, with » = 1 and » = 2. The first one, with r = 1, is the
continuity solution. The second one, with r = 2, is the parallel strong sonic shock
solution for Stage 1, already studied in Bret & Narayan (2018).

(i) The other branch defines two values of 6,(o) which correspond to our switch-on

solutions. They are pictured in figure 3(a). Then the corresponding density jump
r(o) is computed and plotted in figure 3(b). The green curve pictures the MHD
switch-on solution (2.13), defined for o € [1/4, 1]. In Stage 1, numerical exploration
shows solutions exist only for o € [0.432, 1].
Therefore, while there is only one switch-on solution in MHD, our model offers two.
Figure 3(a) shows that both of our branches merge with the MHD result for 0 = 1
as far as 6, is concerned. Such is only the case for the lower of our r-branch, as can
be seen from figure 3(b).

Figure 3(a) shows that the largest value of 8, in Stage 1 is almost as high as its MHD
counterpart.
In accordance with the method explained in § 3, we now study the stability of Stage 1.
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(@) (b)
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30 A2-(1-1/62)

251

20+

FIGURE 4. (a) Thresholds for the mirror (upper grey line) and firehose (lower grey line)
instabilities. The plasma is unstable within the shaded areas. The loop shows the curves
(Bj2(0), Az(0)) for the two 6,-branches defined previously. The two branches start from the
same point for o = 0.432, and both reach A, = 0 for o = 1. (b) Stability analysis of the blue
branch for o € [0.432, 1]. It is found firehose unstable for o € [0.82, 1].

4.3. Stability of Stage 1

If unstable, Stage 1 is mirror or firehose unstable. The thresholds for these instabilities are
given by (Gary 1993; Gary & Karimabadi 2009)

T 1
2 oAy=14—, (4.9)
Iy B2
where
nykpT:
B2 = —22 b ) (4.10)
B5/(8m)
and the ‘4’ and ‘—’ signs stand for the thresholds of the mirror and firehose instabilities,
respectively. From (4.8), we obtain the downstream anisotropy A,,
A, = 1tan® 6. 4.11)
For B),, we obtain, in Appendix C,
rotan’6, — 2r +2
B =2 : 4.12)

ro (tan* 6, + 2)
To assess the stability of Stage 1, we then proceed as follows.

(1) From (4.9), we plot the thresholds for the mirror and firehose instabilities in the
(By2, A2) plane.

(ii) Then, on the same graph, we plot the curves (B2, A) for the two non-trivial
6,-branches found in § 4.2.

The result is pictured in figure 4(a). In Bret & Narayan (2018), Stage 1 had A, = O for the
sonic strong shock case. Here, A, departs from O but remains small.

It turns out that the orange branch pictured in figure 3(a), namely the one closest to the
MHD solution, is stable for any o. Yet, the blue one is slightly unstable in some ¢ range.
For this branch, the quantity A, — (1 — ,3”_2') is plotted in figure 4(b). It is negative for
o € [0.83, 1], indicating firehose instability. In this o -range, the downstream will therefore
migrate to Stage 2, on the firehose threshold.
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10 A. Bret and R. Narayan

As can be seen in figure 4(a), the blue branch Stage 1 is only slightly unstable.
Consequently, the corresponding marginally stable Stage 2 is very close to the unstable
states. This is confirmed below in § 5, where Stage 2 is analysed.

For now, to document the differences between our two branches, we further study Stage
1 by computing its entropy and its Alfvénic downstream velocity.

4.4. Entropy of Stage 1

The two branches for Stage 1 cannot be distinguished by their energy since they both fulfil
the energy conservation equation (4.6), where the upstream energy is the same in both
cases. Their energy densities are therefore identical. Yet, they can be distinguished on the
basis of their entropy.

For a bi-Maxwellian of the form,

n v)% U}z, + vz2
F = mexp —; exXp | — b s (413)

where a = 2kgT|/m and b = 2kgT, /m, the entropy reads

1
S = —kg / FInFd*v = EkB"B + In(*ab?) — 21nn], 4.14)

where n = [ Fd*v. Using the subscript ‘b’ for the blue branch in figure 3, and subscript ‘o’
for the orange one, we get for the entropy difference per particle between the two branches,

2 /S, S [ a,b?
— <———b> =As=1In a g} +21n@,
kg \n, m | ayb}, o
WITH T2
=In| 20 12 ;2*”} +2m’,
L T2 Ty n,
[ 73, A2
—n | 220 | o 2
_Tuz,bAz,b n,
| TeoCOSZ 92,0 ’ A%u ny
—n| (=20} 2o g (4.15)
T.pcos?6yy,) A3, n,

where we have used A, = T, /T, and then T, =T, cos’ 6, for both branches.

The numerical evaluation (7, is given by (B6)) of this quantity displayed in figure 5(a)
shows that As < 0 for any o € [0.432, 1]. Therefore, S,/n, < S,/n, for any o. The orange
branch in figure 3 has lower entropy than the blue one.

4.5. Downstream Alfvénic Mach number of Stage 1

Another difference between the two branches lies in their respective Alfvénic Mach
number, namely,

,  mmuy

2T B A
From (4.2), we get B, = B,/ cos 0,. Then (4.1) gives v, = njv;/n, cos & = njv,/n, cos by,
since &, = 6, in our model as in MHD (see (2.7) for MHD and Appendix B for our model).

(4.16)
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(a) (b) Maz
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FIGURE 5. (a) Entropy difference As as defined by (4.15), between the blue branch in figure 3
and the orange one. Here, As < 0 implies the orange branch has lower entropy than the blue one.
(b) Value of My, in MHD (green) and for the two branches of our model.

We finally obtain, in terms of the dimensionless variables (2.10), with both our model and
MHD,

My 1
Mu = NG

(i) In MHD, (2.13) has r = M3, so that for the switch-on MHD shock, My, = 1
(Goedbloed et al. 2010, p. 853).

(i1) In our model, the value of My, is pictured in figure 5(b) for the two branches
represented in figure 3. Our two branches are found slightly sub-Alfvénic.

(4.17)

5. Properties of Stage 2

The firehose instability of the blue branch for o € [0.83, 1] requires studying the
properties of Stage 2 when marginally firehose stable. The conservation equations are
the same. However, instead of imposing prescriptions (3.2) for the temperatures, we now
impose firehose marginal stability for the downstream, namely,

=1 - —. 5.1
Iy Bz G-

The resolution of the system follows the same path as that described in Appendix B for
Stage 1. It yields three equations for 6,, &, and r,

tanf, —tan&, = 0, (5.2)
2tané&, tan6,
_ =0, 5.3
r M3, (5-3)
M (—sec’ & + (r—S)r+5) + rtanby tan &, + r = 0. (5.4)

Equation (5.2) imposes again 6, = &,. Replacing in (5.3) gives
tan 6, (r — 2M3,) = 0, (5.5)
which leaves two options only.

(i) 6, = 0, which pertains to the parallel shock solution. Setting then 6, = 0 in (5.4)
then gives exactly the Stage 2 solution found in Bret & Narayan (2018). (See (3.5) of
Bret & Narayan (2018) for x; = 00.)
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4.0
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25
2.0

1.5

0.4 0.6 0.8 1.0 1.2 1.4

FIGURE 6. Same as figure 3(b) but showing how Stages 1 and 2 fit together when accounting
for the firehose instability of the blue branch for o € [0.83, 1]. Stage 2 density jump r = 2 /0 is
discontinued from o = 1 since Stage 1 has no solution in this range.

(i) The other option is,

r=2M;, =2/o. (5.6)
Inserting this result in (5.4) and solving for 6, gives
cos’ 6, = ! (5.7
2T IOM2, —4ME =5 '
reminiscent of (2.14) for the MHD case. Solutions can here be found for
5—+5 V5 5
My € |:\/ [ \/ * f:| ~ [0.83, 1.34],
2 2
(5.8)
& ! E|: 4 4 :| [0.55, 1.44]
o= , ~ [0.55, 1.44].

The counterpart to switch-on shock is therefore recovered in our model for Stage 2 as well,
still in a limited range of Alfvén Mach numbers.

Figure 6 is eventually the end result of the present work. Like figure 3(b), it features the
density jump of the MHD switch-on solution, together with the two branches of our model.
However here, the way Stages 1 and 2 fit together in the o unstable range is elucidated.
Since the blue branch has been found firehose unstable for o € [0.83, 1], it is replaced by
Stage 2, namely (5.6), in this range. As expected, the corresponding density jump is very
close to that of Stage 1 since the system is almost marginally stable in this range, while
Stage 2 sits exactly on marginal stability.

In figure 6, the jump for Stage 2, namely r = 2 /0, is shown in black and plotted within
the full range (5.8) where it is defined. For o < 0.83, the line is dashed because Stage 1
is stable, and hence defines the density jump. Then for o € [0.83, 1], the blue branch is
dashed since it pertains to the unstable Stage 1. There, the jump is now given by Stage
2 through r =2/0. Beyond o = 1, Stage 1 offers no solutions. Since in our scenario
Stage 1 is the first state of the downstream after crossing the front, the shock cannot
accommodate such values of ¢ in the switch-on regime. For o > 1, there is therefore
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no Stage 1 from where the system could jump to Stage 2, even though Stage 2 offers
solutions. As a consequence, the black curve is dashed from o = 1 to 1.44.

6. Conclusion

In a collisionless non-magnetized plasma, the Weibel instability ensures isotropy, since
it makes anisotropies unstable (Weibel 1959; Silva, Afeyan & Silva 2021). Therefore, for
collisionless shocks in such medium, the only source of departures from MHD should
stem from accelerated particles (Bret 2020; Haggerty & Caprioli 2020).

In contrast, a temperature anisotropy can be stabilized in a collisionless plasma by an
external magnetic field. Therefore, if the plasma turns anisotropic when crossing the front
of a collisionless shock, its downstream anisotropy could be stable, resulting in a departure
from MHD.

Several authors studied the conservation equations for a shock accounting for
anisotropic pressures. Yet, the downstream degree of anisotropy is considered a free
parameter in these works (Erkaev et al. 2000; Double et al. 2004; Gerbig & Schlickeiser
2011). In the present article, we devised a model allowing to compute the degree of
anisotropy of the downstream, in terms of the upstream parameters. We focused on the
switch-on solutions where the field is aligned with the flow in the upstream, but not in the
downstream.

For such a configuration, MHD allows for one shock solution, the switch-on solution,
for which the density jump is given by (2.13). According to our model, which has been
successfully tested against PIC simulations for the parallel case (Haggerty er al. 2022),
there are two collisionless switch-on solutions for which the angle 6, and the density jump
r are plotted in figures 3 and 6. One solution for what we named ‘Stage 1’ is stable for
any o where it is defined. The other is slightly firehose unstable within a limited o -range.
Exploring then Stage 2 in this range allows to correct the computed density jump. Since
the Stage 1 that needed to be corrected was only slightly firehose unstable, the correction
found with Stage 2 marginally firehose stable is small.

The existence of two switch-on solutions in our model instead of one in MHD could
be explained. We plotted in figure 2(b) the MHD solutions for a cold upstream and any
upstream field obliquity ;. One can see that the MHD switch-on solution for 6, = 0
splits into two different solutions for 6, > 0. These two solutions are the intermediate and
fast shocks. They merge for 8, = 0, which is why MHD switch-on shocks can be termed
intermediate or fast (Goedbloed et al. 2010, p. 853).

Possibly within our model, these two kinds of shocks do not merge for 8, = 0. Future
works dealing with the fully oblique case 6; > 0 will explore how the MHD intermediate
and fast shocks morph within our model.

Is one of our two branches physically favoured? Both pertain to a downstream plasma
with the same energy density since both fulfil the energy conservation equation (4.6)
where the upstream term is the same. We see from figures 3 and 5 that the orange one
is the closest to the MHD solution, yet we found in § 4.4 that it has lower entropy than the
blue branch. Further works, notably PIC simulations, would be needed to find out if these
two branches are just our model’s version of the oblique intermediate and fast shocks in
the limit 6, = 0.

In the same way that the theory devised for the parallel case has been tested through PIC
simulation (Bret & Narayan 2018; Haggerty et al. 2022), it would be interesting to test the
present conclusions through the same means. Yet, to our knowledge, no PIC simulations
of switch-on shocks have been performed to date (Sironi & Lembege 2022). An option in
this respect would be to reproduce in PIC the bow shock MHD simulation performed by
de Sterck & Poedts (1999). There, it was found that a portion of the bow shock produced
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by the simulation was of the switch-on type. Possibly a PIC counterpart of this work would
allow to produce a switch-on shock and study it at the kinetic scale.
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Appendix A. Derivation of the conservation equations for anisotropic temperatures

Equations (4.1)—(4.3) are identical to their MHD counterparts since they do not involve
the pressure. The differences due to anisotropic pressure are rather to be found in
(4.4)—(4.6). For (4.4) and (4.5), we start from the momentum flux density tensor equation
(Landau & Lifshitz 2013, § 7),

d(pv) Ay
a o
In the shock frame, the left-hand side vanishes. Using the basis x, y, z represented in

figure 1, where the shock jump is in the x direction, we obtain the following jump
conditions:

(A)

(1.7} =[1,]; =0 (A2)

where the notation [Q]? stands for the difference of any quantity Q between the upstream
and the downstream.

There are three contributions to the tensor I7;: ram pressure, magnetic pressure and
thermal pressure.

(i) The ram pressure part reads

nmv’cos’Eé  mmv*cosEsiné 0
My = | nmv*cosésing  nmv?sin’é 0, (A3)
0 0 0

where all quantities are to be taken with subscript 1 for the upstream and 2 for the
downstream.

(i1) For the magnetic pressure, we start in a basis (x', y’, 7') aligned with the field. In
such a basis,

—B*/87 0 0
), = 0 B8z 0 |. (A4)
0 0  B/$n
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We now express this tensor in our basis (x, y, z), where z = z’ and (', ') are rotated
by an angle 6. Hence, we compute R‘IHr’nagR, with
cos® sinf@ O
R=|—sinf cos6 O0]. (AS)
0 0 1

The result is
2 [—cos20 —sin26 O

My = —— | —sin20  cos20 0]. (A6)
8t \ o 0o 1
(iii) The calculation is similar for the thermal pressure. We start in a basis adapted to the
field,
I, 0 O
Iy, =nkzg | 0 T, 0], (A7)
0 0 T,

where the directions || and L are considered with respect to the field. Computing
R”I'[t’hR, where the tensor R is still given by (AS), gives, in our basis (x, y, z),

Tjcos’@ + T, sin’@ (T — T )cosfsind 0
My =nkg | (T) — T )cos@sin T;sin®0 + T cos’d 0 |. (A8)
0 0 T,

When adding the contributions (A3), (A6) and (AS8), the conservation (A2) yields (4.4)
and (4.5).

For the last equation, namely (4.6), we start from the energy conservation equation
(Landau & Lifshitz 2013, § 6),

(L e .

— | =nmv* + e + €

ar \ 2 g T S
d 1

= —— v | 5m0” + Emag + €0 —i[v‘ (Mimag + Miew)] . (A9)
8xk 2 mag ! BXk i ik,mag ik, ’

where ¢ is the internal energy density,

BZ
Emag = —, Al0
¢ 8x ( )
1
Eh = EnkBT”—i—nkBTl, (All)

and [T,,, [T, are given by (A6) and (A8), respectively. Setting the left-hand side of (A9)
to 0, and equating the right-hand side between the upstream and the downstream, gives
(4.6).

Appendix B. Resolution of the system (4.1)-(4.8)

The system (4.1)—(4.8) can be reduced to a system of three equations for r = n,/ny, 6,
and T,. The pathway to do so is as follows.
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(i) We first notice that (4.3) imposes & = 6, (as in MHD). We can therefore set &, = 6,
everywhere.
(i1) We then use (4.1) to eliminate v, everywhere.
(iii) Next, we use (4.2) to eliminate B, everywhere.

At this junction, we are left with three equations which are the updated versions of
(4.4)—(4.6). They read

P*T, sin* 0, + 2r°T, cos* 0, + ro tan’ 6, — 2r +2 = 0, (B1)
r*T, [2sin(26,) + 3 sin(46,)] + 16tan6,(1 — ro) = 0, (B2)
sec” 0y + 17 [T, cos(260,) + 2T, — 1] =0, (B3)

in terms of the density ratio » and the magnetic parameter o defined in (2.15), plus

—  kgT,
T, = ——:. (B4)
mv;
For further progress, it is convenient to define
X, = arcsin 6,. (BS)

This change of variables makes the forthcoming equations polynomial in X, easy to solve
numerically. The value of T, can be extracted from (B1) and reads

2~ __Hy2
T r[(02+ 2)X? : 2]2 26 +2 56)
X2 — D(XCGX2 —4)+2)

Substituting it in (B2) and (B3) yields the two equations,

X, [r{o(4 4305 — 2)X3) — 6X5 + 10X; — 4} —2X;] =0, (B7)
=A
3
Y ax3t =0, (B8)
k=0

with
ag=2(r—2)(r—1),
a, = r(—6r+ 30 + 10) — 6,

) (BY)
a, =Tr" —2(c +2)r + 1,

az = —3r.

Equation (B7) clearly displays two branches.

(i) One branch is X, = 0, that is, 6, = 0. Inserting it into (B8) gives ay = 0, that is,
r = 1 orr = 2. The first one, with r = 1, is the continuity solution. The second one,
with r = 2, is the parallel strong sonic shock solution for Stage 1, already studied in
Bret & Narayan (2018).
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(i) The second branch pertains to A = 0. We can extract the value of r from A = 0,
namely,

2X?
r= ,
o[3(X3 —2)X5 + 4] — 6X5 + 10X3 — 4

(B10)

and substitute in (BS8). This eventually gives a polynomial equation for X, only,
which reads

4
QX)) =) biX3, (B11)
k=0
with
by = 320% — 640 + 32,
by = —800? + 2000 — 120,
b, = 760% — 2240 + 160, (B12)
by = =300 + 1000 — 84,
by =30% — 120 + 12.

It can be solved numerically and gives the two values of 6,(o) = arcsin X, (o)
plotted in figure 3(a). Solutions exist only for o € [0.432, 1]. Then (B10) allows
to compute the density jump r for each 6,-branch and plot them in figure 3(b).

Appendix C. Calculation of g2

We need to evaluate
nakpTy)

iy I

(CDhH

Equation (4.2) gives B, = B,/ cos 6,. Also, (4.8) gives Ty = T, cos? 6,. Finally, (B6) gives
T.. Expressing the result in terms of the dimensionless variables r and o yields (4.12)
for By».
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