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Shock waves in plasma are usually dealt with using magnetohydrodynamics (MHD).
Yet, MHD entails the assumption of a short mean free path, which is not fulflled in
a collisionless plasma. Recently, for pair plasmas, we devised a model allowing one
to account for kinetic effects within a MHD-like formalism. Its relies on an estimate
of the anisotropy generated when crossing the front, with a subsequent assessment of
the stability of this anisotropy in the downstream. We solved our model for parallel,
perpendicular and switch-on shocks. Here we bridge between all these cases by treating
the problem of an arbitrarily, but coplanar, oriented magnetic feld. Even though the
formalism presented is valid for anisotropic upstream temperatures, only the case of a
cold upstream is solved. We fnd extra solutions which are not part of the MHD catalogue,
and a density jump that is notably less in the quasi-parallel, highly magnetized, regime.
Given the complexity of the calculations, this work is mainly devoted to the presentation
of the mathematical aspect of our model. A forthcoming article will be devoted to the
physics of the shocks here defned.
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1. Introduction

Shock waves in plasmas are typically analysed using the tools of magnetohydrodynamics
(MHD). Hence, the jump conditions derived rely on two assumptions: (1) that collisions
are frequent enough to establish an isotropic pressure, both upstream and downstream, and
(2) that all the matter upstream passes to the downstream, together with the momentum
and the energy it carries (Gurnett & Bhattacharjee (2005), § 5.4.4; Goedbloed, Keppens
& Poedts (2010) chapters 2 and 3; or Thorne & Blandford (2017), § 13.2).

It turns out that in collisionless plasmas, where the mean free path is much larger than
the size of the system, shock front included, these two assumptions may not be fulflled.
Regarding the second one, it has been known for long that collisionless shocks can
accelerate particles which escape the ‘Rankine–Hugoniot budget’ and modify the jump
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2 A. Bret and R. Narayan

conditions (Berezhko & Ellison 1999). As for the frst assumption, namely that pressures
are isotropic, it is still valid in collisionless unmagnetized plasmas since, in such plasmas,
the Weibel instability ensures isotropic pressures are unstable (Weibel 1959; Silva, Afeyan
& Silva 2021).

Yet, still in a collisionless plasma, an external magnetic feld can stabilize an anisotropy,
invalidating the second assumption (Hasegawa 1975; Gary 1993). This has been clearly
proved by in situ measurement in the solar wind (Bale et al. 2009; Maruca, Kasper
& Bale 2011; Schlickeiser et al. 2011). The present work is about departures from
MHD predictions stemming from the violation of the second assumption. Departures
stemming from the violation of the frst one, namely accelerated particles escaping the
Rankine–Hugoniot budget, will not be addressed here (see Bret (2020) for a review).

Assuming an isotropic upstream, how could any anisotropy develop downstream?
Simply through an anisotropy that would be triggered at the front crossing, and then
maintained stable in the downstream by means of an external magnetic feld. Such
is the scenario we have been contemplating in a series of recent articles on parallel,
perpendicular and switch-on shocks (Bret & Narayan 2018, 2019, 2020, 2022).

In our model, the plasma is compressed anisotropically when it crosses the front. Then,
depending on the resulting anisotropy degree, the feld can sustain the anisotropy in the
downstream, or not. Note that for the parallel case, our model has been successfully tested
against particle-in-cell (PIC) simulations in Haggerty, Bret & Caprioli (2022).

The present work aims at bridging between all the previously treated cases. We therefore
consider the general case of an oblique shock, where the upstream magnetic feld makes
an arbitrary angle with the shock normal.

The system considered is pictured in fgure 1. Subscripts ‘1’ and ‘2’ refer to the upstream
and the downstream respectively. We work in the reference frame where the upstream
velocity v1 is normal to the front. The upstream magnetic feld B1 makes an arbitrary angle
θ1 �= 0 with the shock normal, contrary to Bret & Narayan (2018, 2022) where θ1 = 0,
and to Bret & Narayan (2019) where θ1 = π/2. The felds B1,2 and the velocities v1,2 are
assumed coplanar.

Even though the formalism presented is valid for anisotropic downstream and upstream
temperatures, we restrict ourselves to T1‖ = T1⊥ = 0 when solving it.

Also, we consider a plasma of electron–positron pairs. The identity of the mass of both
species allows us to deal with only one parallel and one perpendicular temperature in the
downstream, as it has been found that in collisionless shocks, species of different mass are
heated differently (Feldman et al. 1982; Guo, Sironi & Narayan 2017, 2018).

As the reader will realize, even for a coplanar geometry with T1‖ = T1⊥ = 0, the
forthcoming algebra is quite involved. For this reason, the present work is mainly devoted
to the algebraic resolution of our model for the oblique case. We write down the
conservation equations and explain how to solve them symbolically. We also explain how
these solutions ft with each other within the rules of our model. Yet, as known even
for MHD, listing the solutions of the equations does not provide the full picture of the
shock physics, as some solutions which do satisfy the MHD conservation equations could
eventually be non-physical (Kennel, Blandford & Wu 1990; Falle & Komissarov 1997; Wu
2003; Kulsrud 2005; Goedbloed 2008; Delmont & Keppens 2011). An assessment of the
physical relevance of our solutions will be presented in a forthcoming article. Here, we
focus on the mathematical solutions of our model.

This article is structured as follows. In § 2, we explain our model, emphasizing how
we bridge between our previous treatments of the parallel and the perpendicular cases.
In particular, we introduce ‘Stage 1’ and ‘Stage 2’ which are supposed to be two stages
of the kinetic history of the plasma. In § 3, we introduce the conservation equations for
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Density jump for oblique collisionless shocks in pair plasmas: allowed solutions 3

FIGURE 1. System considered. The upstream magnetic feld B1 makes an angle θ1 with the
shock normal. The downstream feld B2 and velocity v2 make angles θ2 and ξ2 respectively with
the shock normal. We work in the reference frame where the shock is stationary and the upstream
velocity v1 is normal to the front (ξ1 = 0). The upstream has density n1 and temperatures T1‖
and T1⊥ parallel and perpendicular to the upstream feld B1. The downstream has density n2 and
temperatures T2‖ and T2⊥ parallel and perpendicular to the downstream feld B2. The parallel
and perpendicular directions are therefore defned with respect to the local magnetic feld. Even
though the equations presented in § 3 can be applied to an anisotropic upstream, the model is
only solved for T1‖ = T1⊥ = 0.

anisotropic temperatures, together with the dimensionless variables used subsequently. In
§§ 4, 5 and 6, Stages 1 and 2 are studied separately. Then in § 7, we explain how they
relate to each other in order to fully characterize the shock within our model for any feld
obliquity θ1.

2. Method

Although the method used to deal with the oblique case has been explained in Bret &
Narayan (2022), we here outline it for completeness.

Consider an upstream with temperatures T1‖ and T1⊥. If the crossing of the front could
be fully described by the isentropic Vlasov equation (Landau & Lifshitz 1981, § 27), the
downstream temperatures could be related to the other quantities through the expressions
derived in Chew, Goldberger & Low (1956):

T2‖ = T1‖

(
n2B1

n1B2

)2

,

T2⊥ = T1⊥
B1

B2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.1)

But the crossing of the front is not isentropic since in a shock there is an entropy
increase from the upstream to the downstream. As a consequence, temperatures increase
by more than the amount specifed by (2.1), as found in the PIC simulations of Haggerty
et al. (2022). In both the parallel case (θ1,2 = 0) and the perpendicular case (θ1,2 =
π/2), we considered this excess goes into the temperature parallel to the motion, since
the compression at the front can be considered to operate along this direction. As a
consequence, the temperature parallel to the motion increases, while the temperature
perpendicular to the motion remains constant.
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Hence, denoting Tentropy as the temperature correction due to entropy generation, we took
for the parallel case

T2‖ = T1‖

(
n2B1

n1B2

)2

+ Tentropy,

T2⊥ = T1⊥
B1

B2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.2)

and for the perpendicular case

T2‖ = T1‖

(
n2B1

n1B2

)2

,

T2⊥ = T1⊥
B1

B2
+ Tentropy.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.3)

In order to bridge between these two extremes, we now make the following ansatz:

T2‖ = T1‖

(
n2B1

n1B2

)2

+ Te cos2 θ2, (2.4)

T2⊥ = T1⊥
B1

B2
+ 1

2
Te sin2 θ2, (2.5)

where Te (subscript e for entropy) will be determined by the conservation equations.
Physically, (2.4) and (2.5) are motivated by our hypothesis that the excess energy goes

into a direction parallel to the upstream velocity, by analogy with our previous treatments
of the parallel and perpendicular shock subcases. Geometry is then used to divide the
energy excess between T2‖ and T2⊥.

The scheme chosen in (2.4) and (2.5) is the simplest one fulflling the following
conditions:

(i) It correctly reduces to (2.2) and (2.3) for θ2 = 0 and θ2 = π/2.
(ii) All temperature excesses sum up to Te.

(iii) It guaranties the two downstream temperatures normal to the feld B2 are equal,
which is required by the Vlasov equation (Landau & Lifshitz 1981, § 53).

Its relevance will have to be checked via PIC simulation, like that of Bret & Narayan
(2018) has been checked in Haggerty et al. (2022).

The downstream temperatures after the front crossing are therefore given by (2.4) and
(2.5). We refer to this state of the downstream as ‘Stage 1’. Depending of the strength of
the downstream feld B2, Stage 1 can be stable or unstable.

Previous analysis showed that Stage 1 can be frehose or mirror unstable. In the case
where Stage 1 is frehose unstable, it migrates to the ‘Stage-2-frehose’ state, on the
frehose instability threshold where (Hasegawa 1975; Gary 1993; Gary & Karimabadi
2009)

A2 ≡ T2⊥
T2‖

= 1 − 1
β2‖

, (2.6)

with

β2‖ = n2kBT2‖
B2

2/4π
, (2.7)
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Upstream Downstream in Stage 1 Stable? End state of the downstream

T2⊥ and T2‖ Stable → Stage 1
T1‖ = T1⊥ = 0 given by Firehose unstable → Stage-2-frehose

(2.4) and (2.5) Mirror unstable → Stage-2-mirror

TABLE 1. Summary of the assumed kinetic history of the plasma as it crosses the front. Although
the formalism presented in § 3 allows for an anisotropic upstream, the model is only solved for
T1‖ = T1⊥ = 0.

FIGURE 2. Instability thresholds (2.6) and (2.8) for the frehose and mirror instabilities. The
system is stable in the shaded region and the instability domains do not overlap.

where kB is the Boltzmann constant. In the case where Stage 1 is mirror
unstable, it migrates to the ‘Stage-2-mirror’ state, on the mirror instability threshold
where

A2 = 1 + 1
β2‖

. (2.8)

At any rate, imposing condition (2.6) or (2.8) in the forthcoming conservation
equations determines the state of the downstream. Our algorithm is summarized in
table 1.

The frehose instability reaches its maximum growth rate for k parallel to the feld,
while the mirror instability reaches its maximum growth rate for a k making an oblique
angle with the feld (Gary 1993, § 7.2). The instability thresholds (2.6) and (2.8) for the
frehose and mirror instabilities are plotted in fgure 2. Of note, the instability domains
do not overlap in the (β2‖, A2) plane so that the two instabilities cannot compete with
each other.

3. Conservation equations

The conservation equations for anisotropic temperatures were derived in Hudson (1970),
Erkaev, Vogl & Biernat (2000) and Génot (2009). They have been re-derived in Bret &
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6 A. Bret and R. Narayan

Narayan (2022) with the present notations. They are formally valid even for anisotropic
upstream temperatures, with T1‖ �= T1⊥. Writing them for T1‖ = T1⊥ ≡ T1, they read

n2v2 cos ξ2 = n1v1, (3.1)

B2 cos θ2 = B1 cos θ1, (3.2)

B2v2 sin θ2 cos ξ2 − B2v2 cos θ2 sin ξ2 = B1v1 sin θ1, (3.3)

B2
2 sin2 θ2

8π
+ n2kB(T‖2 cos2 θ2 + T⊥2 sin2 θ2) + mn2v

2
2 cos2 ξ2

= B2
1 sin2 θ1

8π
+ n2kBT1 + mn1v

2
1, (3.4)

A + mn2v
2
2 sin ξ2 cos ξ2 = −B2

1 sin θ1 cos θ1

4π
, (3.5)

Av2 sin ξ2 + B + C = mn1v1

(
5kBT1

2m
+ B2

1 sin2 θ1

4πmn1
+ v2

1

2

)
, (3.6)

where

A = sin θ2 cos θ2n2kB
(
T‖2 − T⊥2

) − B2
2

4π
sin θ2 cos θ2,

B = v2 cos2 θ2 cos ξ2n2kB(T‖2 − T⊥2),

C = mn2v2 cos ξ2

(
kB

2m
(T‖2 + 4T⊥2) + B2

2 sin2 θ2

4πmn2
+ v2

2

2

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

The anisotropic upstream version of these equations is obtained by replacing the
right-hand side of each equation by the left-hand side, changing subscripts ‘2’ to ‘1’ and
then setting ξ1 = 0. Indeed, in the case where a shock propagates behind another one, the
downstream of the frst shock is eventually the upstream of the next one. A formalism
accounting for an anisotropic upstream is therefore necessary since our model always
leaves an anisotropic downstream (unless B1 = 0).

Even though the model can be solved, the algebra is extremely involved. The system
is symbolically solved with Mathematica. Its solutions are then numerically studied in
MATLAB. On occasions, the Mathematica calculations give rise to the resolution of
a polynomial of considerable length. In such cases, the polynomial is transferred to
MATLAB using the Mathematica Notebook described in Bret (2010).

It is useful to focus on the quantity

T2 ≡ tan θ2, (3.8)

as the system of equations above allows one to deduce a polynomial equation for T2, easy
to solve numerically. The general pattern of the resolution consists therefore of deriving
such a polynomial and, from its roots, to compute the other downstream quantities like n2,
in terms of the upstream parameters.
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The following dimensionless variables are used throughout this work:

r = n2

n1
, MA1 =

√
mn1v

2
1

B2
1/4π

, σ = B2
1/4π

mn1v
2
1

= 1
M2

A1
. (3.9a–c)

While the Alfvén Mach number MA,i is prominent in the shock literature, the related σ
parameter is typically used in PIC simulations like those of Haggerty et al. (2022).

In order to simplify the problem, in the present work we restrict ourselves to the case
T1 = 0, that is, the strong sonic shock case. This is why no sonic Mach number is defned
above.

The upstream is therefore characterized by four variables: n1, θ1, B1 and v1. The
downstream is characterized by six variables: n2, θ2, B2, v2, ξ2 and Te. The six equations
(3.1)–(3.6) then allow one to solve the problem.

We now outline the resolution of the conservation equations for Stage 1,
Stage-2-frehose and Stage-2-mirror.

4. Study of Stage 1

With T1‖ = T1⊥ = 0, (2.4) and (2.5) for Stage 1 read

T2‖ = Te cos2 θ2,

T2⊥ = 1
2 Te sin2 θ2.

}
(4.1)

4.1. Symmetries
Although not immediately visible, the system (3.1)–(3.6) with prescriptions (4.1) has some
symmetries.

It can be checked that, all other things being equal, if the set of angles (θ1, θ2, ξ2) is
a solution, then (−θ1,−θ2,−ξ2) is also a solution, while (−θ1,+θ2,±ξ2) is not. This
implies that we cannot ignore the negative θ2. We then restrict our exploration to θ1 ∈
[0,π/2] and solve for θ2, ξ2 ∈ [−π/2,π/2].

4.2. Resolution
Resolving Stage 1 is then achieved through the following steps:

(i) Eliminate v2 everywhere by extracting its value from (3.1).
(ii) Eliminate B2 everywhere by extracting its value from (3.2).

(iii) Use the resulting (3.4) to eliminate Te.
(iv) At this juncture, we are left with n2, θ2 and ξ2 as unknowns. Parameter ξ2 can be

eliminated (defning X2 ≡ tan ξ2). We fnally obtain two equations for r = n2/n1
and T2 = tan θ2.

The equation for T2 reads

(T2 cos θ1 − sin θ1)

9∑
k=0

akT2k

︸ ︷︷ ︸
≡Λ

= 0, (4.2)
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with

a0 = −128
(−2M2

A1 + cos(2θ1) + 1
)2

sin θ1,

a1 = 128 cos θ1
(
4M4

A1 − 2M2
A1 + (

2 − 6M2
A1

)
cos(2θ1) + cos(4θ1) + 1

)
,

a2 = −16
(
16M4

A1 − 16M2
A1 + (

8 − 16M2
A1

)
cos(2θ1) + cos(4θ1) + 7

)
sin θ1,

a3 = 8 cos θ1
(
16M4

A1 − 44M2
A1 + (

48 − 68M2
A1

)
cos(2θ1) + 17 cos(4θ1) + 31

)
,

a4 = 4
(−32M4

A1 + 40 cos(2θ1)M2
A1 + 40M2

A1 + cos(4θ1) − 1
)

sin θ1,

a5 = 4 cos θ1
(−16

(
2M4

A1 + M2
A1

) + 8
(
7 − 2M2

A1

)
cos(2θ1) + 15 cos(4θ1) + 41

)
,

a6 = −2
(
96M4

A1 − 112M2
A1 + 8

(
3 − 14M2

A1

)
cos(2θ1) + 9 cos(4θ1) + 15

)
sin θ1,

a7 = 2 cos θ1
(
32M4

A1 + 16M2
A1 + 8

(
5 − 6M2

A1

)
cos(2θ1) + 15 cos(4θ1) + 25

)
,

a8 = 16 cos4 θ1 sin θ1,

a9 = 16 cos5 θ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

The equation for r reads

r = 4M2
A1T23(1 + T22)

5∑
k=0

bkT2k

, (4.4)

where

b0 = 8M2
A1 tan θ1 − 4 sin(2θ1),

b1 = −8M2
A1 + 6 cos(2θ1) + 2,

b2 = 0,

b3 = 4M2
A1 + cos(2θ1) + 3,

b4 = 4M2
A1 tan θ1 − 2 sin(2θ1),

b5 = 2 cos2 θ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Equation (4.2) is a polynomial yielding various T2 branches as solutions. Scanning
them, and using (4.4), allows the derivation of the density jump. Note that one value of T2
gives one single value of r.

Equation (4.2) clearly displays two main branches:

(i) T2 cos θ1 − sin θ1 = 0, that is, θ2 = θ1. Inserting in (4.4) gives r = 1. This is the
continuity solution.

(ii) Λ = 0. The values of the density ratio r so defned are represented in fgure 3 in
terms of (σ, θ1). For θ1 = 0, we recover the solutions found in Bret & Narayan (2018,
2022). For θ1 = π/2, we recover the solutions found in Bret & Narayan (2019).

All these Stage 1 solutions do not make their way to the end state of the downstream
since some are unstable. We need now to assess the stability of Stage 1.
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Density jump for oblique collisionless shocks in pair plasmas: allowed solutions 9

FIGURE 3. Values of the density ratio r for Stage 1, with θ2 given by Λ = 0 as defned by (4.2).
The red curve was studied in Bret & Narayan (2018). The blue one was studied in Bret & Narayan
(2022). The blue curve has θ2 > 0. The red one has θ2 = 0. The thick black curve at θ1 = π/2
was studied in Bret & Narayan (2019).

4.3. Stability of Stage 1
From (2.6) and (2.8), we see that assessing the stability of Stage 1 requires computing its
anisotropy A2 and its β2‖ parameter. The anisotropy for Stage 1 is straightforwardly given
by (4.1) as

A2 = T2⊥
T2‖

= 1
2

Te tan2 θ2. (4.6)

The β‖2 parameter is given by

β‖2 = 2
sec2 θ1

(
2M2

A1(r − 1) + r
) − r

(
T22 + 1

)
r
(
T24 + 2

) . (4.7)

Using (4.6) and (4.7) we can then numerically assess the frehose or mirror instability
of Stage 1. Depending on the result, Stage 1 will be the end state of the downstream, or
else it will migrate to Stage-2-frehose or Stage-2-mirror, on the corresponding instability
thresholds.

5. Study of Stage-2-firehose

In the case where Stage 1 is frehose unstable, it will migrate to the frehose stability
threshold. In order to determine its properties, we need now to impose condition (2.6) to
the system (3.1)–(3.6) instead of the temperature prescriptions (4.1).

The resolution strategy is similar to that for Stage 1. Now T2 = tan θ2 is given solving

4∑
k=0

akT2k = 0, (5.1)
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10 A. Bret and R. Narayan

(a) (b)

FIGURE 4. (a) Values of r for Stage-2-frehose, where θ2 is given by (5.1). The blue and red
curves were studied in Bret & Narayan (2018). The blue one has temperature anisotropy A2 < 0
and is therefore non-physical. (b) Values of r for Stage-2-mirror. The blue and red curves were
studied in Bret & Narayan (2019). The blue one has A2 < 0.

with

a0 = −32
(MA1 sin(2θ1) − 2M3

A1 tan θ1
)2

,

a1 = −10M2
A1

[(
20M2

A1 − 2
)

sin(2θ1) − 8
(
2M2

A1 + 1
)

tan θ1M2
A1 − 3 sin(4θ1)

]
,

a2 = M2
A1

[−32M4
A1 + 8M2

A1 + 24
(
3M2

A1 − 1
)

cos(2θ1) − 15 cos(4θ1) − 9
]
,

a3 = 0,

a4 = −8M2
A1 cos4 θ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.2)

Then the density jump reads

r = 2M2
A1T2

− sin(2θ1) + 2M2
A1 tan θ1 + T2 cos2 θ1

. (5.3)

Again, one value of T2 corresponds to one and only one value of r.
The density jump so defned is plotted in fgure 4(a) in terms of (σ, θ1). For θ1 = 0,

the red arc joining (σ = 0, r = 4) to (σ = 1, r = 2) fts exactly what was found in Bret
& Narayan (2018). In Bret & Narayan (2018), we argued that the blue arc, joining (σ =
0, r = 1) to (σ = 1, r = 2), was not a shock solution since it reaches r = 1 for σ = 0.
In fact, these blue solutions are discarded on an even simpler physical ground: they have
A2 < 0. For Stage-2-frehose, the anisotropy is no longer given by (4.6) but by

A2 = 1 − r
(
T22 + 1

)
cos2 θ1

2M2
A1(r − 1) + r sin2 θ1

. (5.4)

When computing this quantity for the lower, blue arc, and indeed for the whole lower
surface in fgure 4(a), A2 < 0 is found. This property will be useful when putting Stages 1
and 2 together in § 7.

6. Study of Stage-2-mirror

If Stage 1 is mirror unstable we need to impose relation (2.8) to the conservation
equations. The quantity T2 is still a solution of the polynomial equation (5.1), where the
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coeffcients are now

a0 = 4
(
sin(2θ1) − 2M2

A1 tan θ1
)2

,

a1 = 1
4

[
2

(
74M2

A1 − 17
)

sin(2θ1) − 40
(
2M2

A1 + 1
)

tan θ1M2
A1 − 27 sin(4θ1)

]
,

a2 = 4M4
A1 + 8 sin2 θ1M2

A1 + 30 cos4 θ1 − cos2 θ1
(
30M2

A1 + 19 sin2 θ1
)
,

a3 = − (
1 − 2M2

A1 + cos(2θ1)
)

sin(2θ1),

a4 = 15 cos4 θ1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.1)

Then the density jump becomes

r = 2M2
A1T2

− sin(2θ1) + 2M2
A1 tan θ1 + 3T2 cos2 θ1

. (6.2)

The results are plotted in fgure 4(b) in terms of (σ, θ1). A pattern similar to that of
Stage-2-frehose emerges here. When treating the θ1 = π/2 problem in Bret & Narayan
(2019), we discarded the lower branch in blue at θ1 = π/2, arguing that it is not a shock
solution since it reaches r = 1 for σ = 0. It turns out that this branch again has anisotropy
A2 < 0. For Stage-2-mirror, this quantity reads

A2 = − −4M2
A1(r − 1) + rT22 cos(2θ1) + r

(
T22 − 2

)
4M2

A1(r − 1) − r
(
2T22 + 1

)
cos(2θ1) − 2rT22 + r

, (6.3)

and is found negative on the blue arc in fgure 4(b), as well as along the lower surface that
extends from this arc.

7. Putting Stages 1 and 2 together

We fnally come to the point where we can assemble Stages 1 and 2. This has been
performed in MATLAB according to the following algorithm:

(a) Solve Λ = 0 in (4.2) for T2 in Stage 1, and record all the branches of the solutions.
(b) Then scan each Stage 1 branch. If a Stage 1 state is found stable, then this is the end

state of the downstream.
(c) If a Stage 1 state is found frehose unstable, then switch to Stage-2-frehose, end state

of the downstream.
(d) If a Stage 1 state is found mirror unstable, then switch to Stage-2-mirror, end state

of the downstream.

Steps (c) and (d) can be non-trivial when, for an unstable Stage 1 state (σ, θ1), there are
more than one Stage 2 states with the same (σ, θ1). Some criteria are needed in order to
select one Stage 2 state among the possible solutions. We apply the following ones:

(a) Discard Stage 2 states with A2 < 0 since they represent non-physical solutions to the
equations.

(b) In the case where degeneracy persists, select the Stage 2 state which has θ2 closest
to the unstable Stage 1.

We now check how this method retrieves our previous result, before applying it to any
intermediate angle θ1.
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(a) (b) (c)

FIGURE 5. (a) All solutions of Stage 1 for θ1 close to zero, colour-coded according to their
stability (none is mirror unstable). (b) All Stage-2-frehose solutions. Dashed line indicates A2 <
0 (non-physical). (c) End result. The grey dashed lines show the MHD solutions.

7.1. Case θ1 ∼ 0
The case θ1 ∼ 0 is pictured in fgure 5. Figure 5(a) shows all Stage 1 solutions. Black
means they are stable, green means they are frehose unstable. Red would mean mirror
unstable, but, for the selected θ1, there are no such cases. The solution r = 2 has θ1 =
θ2 ∼ 0. It pertains to the parallel case which was studied in Bret & Narayan (2018). The
other solutions, which draw an open loop, pertain to the switch-on case studied in Bret &
Narayan (2022). They have θ2 > 0. These switch-on solutions are physical, namely they
have A2 > 0 (see fgure 4a of Bret & Narayan 2022).

Figure 5(b) shows all solutions for Stage-2-frehose. We see that an unstable Stage 1
state with σ = 0.9, for example, can in principle go to three Stage-2-frehose states. Out of
these three, one has A2 < 0, as indicated by the dashed line in fgure 5(b). Among the two
remaining options, the upper one has θ2 = 0 while the lower one has θ2 > 0. Therefore,
choosing the Stage 2 state which has closest θ2 to the unstable Stage 1, leaves only one
possible option.

Figure 5(c) shows the end result. We recover the result of the parallel case, with a
marginal frehose jump going from r = 4 to 2 for 0 < σ < 1, and then Stage 1 stable with
r = 2 for σ > 1 (Bret & Narayan 2018). Also recovered are the two switch-on solutions
found in Bret & Narayan (2022), with a portion of the upper one being replaced by its
Stage-2-frehose counterpart.

7.2. Case θ1 ∼ π/2
We here check the conformity of the present calculations with the results previously
derived in Bret & Narayan (2019) for the perpendicular case.

Figure 6(a) shows Stage 1 solutions. There is but one branch solution, mirror unstable
for σ < σc, where σc = 0.106.

Figure 6(b) shows all Stage-2-mirror branches. There is but one, with A2 < 0 below
r ∼ 2.47, which is reached for σ = σ ′

c. We checked numerically, up to the 13th digit, that
σc = σ ′

c.
As a consequence, fgure 6(c), which features the end result, has no gap. It fts exactly

the result of Bret & Narayan (2019). For σ < σc, Stage 1 is mirror unstable and the end
state is Stage-2-mirror. Then for σ > σc, Stage 1 is stable and gives the density jump of
the end state.

7.3. General oblique case
Figure 7 pictures the situation for an intermediate angle θ1 = 0.3π/2. Figure 7(a) shows
all of Stage 1 solutions. Here, some are mirror unstable while others are frehose unstable.
Looking at fgures 7(c) and 7(b) we can see that there is always a Stage 2 solution when
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(a) (b) (c)

FIGURE 6. (a) All solutions of Stage 1 for θ1 close to π/2, colour-coded according to their
stability (none is frehose unstable). (b) All Stage-2-mirror solutions. Dashed line indicates A2 <
0 (non-physical). (c) End result. The grey dashed lines show the MHD solutions.

(a) (b)

(c) (d)

FIGURE 7. (a) All Stage 1 solutions for θ1 = 0.3π/2, colour-coded according to their
stability. (b) All Stage-2-frehose solutions. Dashed line when A2 < 0 (non-physical). (c) All
Stage-2-mirror solutions. Dashed line when A2 < 0 (non-physical). (d) End result. The grey
dashed lines show the MHD solutions.

Stage 1 is unstable. For some values of σ , for example 0.1 or 1.25, there are various
unstable Stage 1 solutions. As a consequence, fgure 7(d) displays various solutions for
the end state corresponding to these σ .

Notice also how our solutions mimic the MHD solutions (dashed grey lines) at low σ
and high σ .

Finally, fgure 8 presents a series of plots similar to fgure 7(d), for various values of
θ1 ∈ [0,π/2].
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FIGURE 8. Similar to fgure 7(d), but for various values of θ1 ∈ [0, π/2]. The grey dashed
lines show the MHD solutions.

8. Conclusion

In a series of recent articles, we elaborated a model of collisionless shocks. Having
treated the parallel, the perpendicular and the switch-on cases (Bret & Narayan 2018,
2019, 2022), with our model for the parallel case being successfully tested against PIC
simulations (Haggerty et al. 2022), we here treated the general oblique case.

The MHD conservation equations for the general oblique case tend to be involved. The
MHD conservation equations for anisotropic temperatures are even more involved. And
our model adds temperature prescriptions to these equations. As a result, its resolution
is lengthy and requires extensive use of Mathematica, to symbolically derive the key
equations, and of MATLAB, to numerically solve them. The present work was devoted
to the exposition of the mathematical solutions offered by our model. Their physics will
be assessed in a forthcoming article.
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In this respect, our model frequently offers various solutions for the same value of
σ . Yet, fgure 5(a,c) shows that such is also the case in MHD. This is also visible in
fgure 7(a–d) and in most of fgure 8. In MHD, the solution selected depends on its physical
relevance (see second-to-last paragraph of the introduction), or on the initial conditions of
the shock formation like, for example, which initial states of a Riemann problem it is
supposed to connect. In general, this second issue, namely connecting two different states,
requires a succession of shocks rather than one single shock (see e.g. Ryu & Jones 1995).
In our model, the choice of the solution when various are offered will most probably
depend on the same factors. This topic will be addressed in a forthcoming paper.

Even though only the case of a cold upstream has been solved here, the formalism allows
in principle for an anisotropic upstream.

Although we treated the feld obliquity as an arbitrary parameter, this study remains
limited in various ways:

(a) A pair plasma is considered.
(b) Velocities are non-relativistic.
(c) The upstream pressure is assumed zero.
(d) The shock is coplanar, namely upstream and downstream felds and velocities share

a common plane.

Regarding limitation (a), PIC simulations could be used to test the relevance of our
model to electron–ion plasmas, provided the σ parameter in (3.9a–c) is defned using the
ion mass.

Tackling the other limitations altogether is clearly out of reach. At any rate, further
testing of our model is envisioned through PIC simulations or comparison with in
situ measurements at interplanetary shocks, by spacecrafts like Advanced Composition
Explorer, Wind or the Parker Solar Probe (see e.g. David et al. 2022).

As evidenced in fgure 8, deviations from MHD are more pronounced for quasi-parallel
shocks and σ > 1. This is therefore the domain where our model should preferably be
compared with PIC simulations or in situ measurements.
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