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Shock waves in plasma are usually dealt with using magnetohydrodynamics (MHD).
Yet, MHD entails the assumption of a short mean free path, which is not fulfilled in
a collisionless plasma. Recently, for pair plasmas, we devised a model allowing one
to account for kinetic effects within a MHD-like formalism. Its relies on an estimate
of the anisotropy generated when crossing the front, with a subsequent assessment of
the stability of this anisotropy in the downstream. We solved our model for parallel,
perpendicular and switch-on shocks. Here we bridge between all these cases by treating
the problem of an arbitrarily, but coplanar, oriented magnetic field. Even though the
formalism presented is valid for anisotropic upstream temperatures, only the case of a
cold upstream is solved. We find extra solutions which are not part of the MHD catalogue,
and a density jump that is notably less in the quasi-parallel, highly magnetized, regime.
Given the complexity of the calculations, this work is mainly devoted to the presentation
of the mathematical aspect of our model. A forthcoming article will be devoted to the
physics of the shocks here defined.
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1. Introduction

Shock waves in plasmas are typically analysed using the tools of magnetohydrodynamics
(MHD). Hence, the jump conditions derived rely on two assumptions: (1) that collisions
are frequent enough to establish an isotropic pressure, both upstream and downstream, and
(2) that all the matter upstream passes to the downstream, together with the momentum
and the energy it carries (Gurnett & Bhattacharjee (2005), § 5.4.4; Goedbloed, Keppens
& Poedts (2010) chapters 2 and 3; or Thorne & Blandford (2017), § 13.2).

It turns out that in collisionless plasmas, where the mean free path is much larger than
the size of the system, shock front included, these two assumptions may not be fulfilled.
Regarding the second one, it has been known for long that collisionless shocks can
accelerate particles which escape the ‘Rankine—Hugoniot budget’ and modify the jump
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conditions (Berezhko & Ellison 1999). As for the first assumption, namely that pressures
are isotropic, it is still valid in collisionless unmagnetized plasmas since, in such plasmas,
the Weibel instability ensures isotropic pressures are unstable (Weibel 1959; Silva, Afeyan
& Silva 2021).

Yet, still in a collisionless plasma, an external magnetic field can stabilize an anisotropy,
invalidating the second assumption (Hasegawa 1975; Gary 1993). This has been clearly
proved by in situ measurement in the solar wind (Bale et al. 2009; Maruca, Kasper
& Bale 2011; Schlickeiser et al. 2011). The present work is about departures from
MHD predictions stemming from the violation of the second assumption. Departures
stemming from the violation of the first one, namely accelerated particles escaping the
Rankine—Hugoniot budget, will not be addressed here (see Bret (2020) for a review).

Assuming an isotropic upstream, how could any anisotropy develop downstream?
Simply through an anisotropy that would be triggered at the front crossing, and then
maintained stable in the downstream by means of an external magnetic field. Such
is the scenario we have been contemplating in a series of recent articles on parallel,
perpendicular and switch-on shocks (Bret & Narayan 2018, 2019, 2020, 2022).

In our model, the plasma is compressed anisotropically when it crosses the front. Then,
depending on the resulting anisotropy degree, the field can sustain the anisotropy in the
downstream, or not. Note that for the parallel case, our model has been successfully tested
against particle-in-cell (PIC) simulations in Haggerty, Bret & Caprioli (2022).

The present work aims at bridging between all the previously treated cases. We therefore
consider the general case of an oblique shock, where the upstream magnetic field makes
an arbitrary angle with the shock normal.

The system considered is pictured in figure 1. Subscripts ‘1’ and ‘2’ refer to the upstream
and the downstream respectively. We work in the reference frame where the upstream
velocity v; is normal to the front. The upstream magnetic field B; makes an arbitrary angle
0, # 0 with the shock normal, contrary to Bret & Narayan (2018, 2022) where 6, = 0,
and to Bret & Narayan (2019) where 6, = 7t/2. The fields B, ; and the velocities v, , are
assumed coplanar.

Even though the formalism presented is valid for anisotropic downstream and upstream
temperatures, we restrict ourselves to 7' = 7}, = 0 when solving it.

Also, we consider a plasma of electron—positron pairs. The identity of the mass of both
species allows us to deal with only one parallel and one perpendicular temperature in the
downstream, as it has been found that in collisionless shocks, species of different mass are
heated differently (Feldman et al. 1982; Guo, Sironi & Narayan 2017, 2018).

As the reader will realize, even for a coplanar geometry with 7,y = T,, =0, the
forthcoming algebra is quite involved. For this reason, the present work is mainly devoted
to the algebraic resolution of our model for the oblique case. We write down the
conservation equations and explain how to solve them symbolically. We also explain how
these solutions fit with each other within the rules of our model. Yet, as known even
for MHD, listing the solutions of the equations does not provide the full picture of the
shock physics, as some solutions which do satisfy the MHD conservation equations could
eventually be non-physical (Kennel, Blandford & Wu 1990; Falle & Komissarov 1997; Wu
2003; Kulsrud 2005; Goedbloed 2008; Delmont & Keppens 2011). An assessment of the
physical relevance of our solutions will be presented in a forthcoming article. Here, we
focus on the mathematical solutions of our model.

This article is structured as follows. In § 2, we explain our model, emphasizing how
we bridge between our previous treatments of the parallel and the perpendicular cases.
In particular, we introduce ‘Stage 1” and ‘Stage 2’ which are supposed to be two stages
of the kinetic history of the plasma. In § 3, we introduce the conservation equations for
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Downstream

n,

Upstream

FIGURE 1. System considered. The upstream magnetic field B; makes an angle 6; with the
shock normal. The downstream field B, and velocity v, make angles 6> and &, respectively with
the shock normal. We work in the reference frame where the shock is stationary and the upstream
velocity vy is normal to the front (§; = 0). The upstream has density n; and temperatures T
and 7' parallel and perpendicular to the upstream field B;. The downstream has density n, and
temperatures 77 and 7>, parallel and perpendicular to the downstream field B;. The parallel
and perpendicular directions are therefore defined with respect to the local magnetic field. Even
though the equations presented in § 3 can be applied to an anisotropic upstream, the model is
only solved for Ty = T11. = 0.

anisotropic temperatures, together with the dimensionless variables used subsequently. In
§§4, 5 and 6, Stages 1 and 2 are studied separately. Then in § 7, we explain how they
relate to each other in order to fully characterize the shock within our model for any field
obliquity 6.

2. Method

Although the method used to deal with the oblique case has been explained in Bret &
Narayan (2022), we here outline it for completeness.

Consider an upstream with temperatures 7y and 7', . If the crossing of the front could
be fully described by the isentropic Vlasov equation (Landau & Lifshitz 1981, § 27), the
downstream temperatures could be related to the other quantities through the expressions
derived in Chew, Goldberger & Low (1956):

2
n231

T, =T, —.
2L lle

(2.1)

But the crossing of the front is not isentropic since in a shock there is an entropy
increase from the upstream to the downstream. As a consequence, temperatures increase
by more than the amount specified by (2.1), as found in the PIC simulations of Haggerty
et al. (2022). In both the parallel case (¢;, = 0) and the perpendicular case (6;, =
1t/2), we considered this excess goes into the temperature parallel to the motion, since
the compression at the front can be considered to operate along this direction. As a
consequence, the temperature parallel to the motion increases, while the temperature
perpendicular to the motion remains constant.
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Hence, denoting Tyopy as the temperature correction due to entropy generation, we took

for the parallel case
2
I’lzB]
I =Ty (nle) + Tentropys

(2.2)
T =1, 0
21 — ILBZ
and for the perpendicular case
B\’
I =Ty (nzBl) ;
152 (2.3)
B,
T, = TIJ_B_Z + Temropy-
In order to bridge between these two extremes, we now make the following ansatz:
2
By )
Iy =Ty + T, cos” 0y, (2.4)
nle
Ty =T, 2t 4 L7 sin?e (2.5)
= —_— —1,81n ’ .
20 1L B 2 bl

where T, (subscript e for entropy) will be determined by the conservation equations.
Physically, (2.4) and (2.5) are motivated by our hypothesis that the excess energy goes
into a direction parallel to the upstream velocity, by analogy with our previous treatments
of the parallel and perpendicular shock subcases. Geometry is then used to divide the
energy excess between 77 and 75, .
The scheme chosen in (2.4) and (2.5) is the simplest one fulfilling the following
conditions:

(1) It correctly reduces to (2.2) and (2.3) for 6, = 0 and 6, = /2.
(i1) All temperature excesses sum up to 7.
(iii) It guaranties the two downstream temperatures normal to the field B, are equal,
which is required by the Vlasov equation (Landau & Lifshitz 1981, § 53).

Its relevance will have to be checked via PIC simulation, like that of Bret & Narayan
(2018) has been checked in Haggerty et al. (2022).

The downstream temperatures after the front crossing are therefore given by (2.4) and
(2.5). We refer to this state of the downstream as ‘Stage 1°. Depending of the strength of
the downstream field B,, Stage 1 can be stable or unstable.

Previous analysis showed that Stage 1 can be firehose or mirror unstable. In the case
where Stage 1 is firehose unstable, it migrates to the ‘Stage-2-firechose’ state, on the
firehose instability threshold where (Hasegawa 1975; Gary 1993; Gary & Karimabadi
2009)

Ay=—=1—-— (2.6)

with

B2y = : 2.7)
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Upstream Downstream in Stage 1 Stable? End state of the downstream
T>, and Ty Stable — Stage 1
Ty=T1.=0 given by Firehose unstable — Stage-2-firehose
(2.4) and (2.5) Mirror unstable — Stage-2-mirror

TaBLE 1. Summary of the assumed kinetic history of the plasma as it crosses the front. Although
the formalism presented in § 3 allows for an anisotropic upstream, the model is only solved for
TlH =T, =0.

A2
3.0p
2.5F

Mirror unstable
2.0F
1.5¢
1.0¢
0.5} T T T
Firehose unstable
; ‘ : : = By
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIGURE 2. Instability thresholds (2.6) and (2.8) for the firehose and mirror instabilities. The
system is stable in the shaded region and the instability domains do not overlap.

where kg is the Boltzmann constant. In the case where Stage 1 is mirror
unstable, it migrates to the ‘Stage-2-mirror’ state, on the mirror instability threshold
where

1
Ay=1+—. (2.8)
B
At any rate, imposing condition (2.6) or (2.8) in the forthcoming conservation
equations determines the state of the downstream. Our algorithm is summarized in
table 1.

The firehose instability reaches its maximum growth rate for k parallel to the field,
while the mirror instability reaches its maximum growth rate for a k£ making an oblique
angle with the field (Gary 1993, § 7.2). The instability thresholds (2.6) and (2.8) for the
firehose and mirror instabilities are plotted in figure 2. Of note, the instability domains
do not overlap in the (8,,A,) plane so that the two instabilities cannot compete with
each other.

3. Conservation equations

The conservation equations for anisotropic temperatures were derived in Hudson (1970),
Erkaev, Vogl & Biernat (2000) and Génot (2009). They have been re-derived in Bret &
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Narayan (2022) with the present notations. They are formally valid even for anisotropic
upstream temperatures, with 7' # T, . Writing them for 7,y = T, = T, they read

I’l2U2COS€2 = n vy, (31)
B, cos 6, = B, cos b, 3.2)
B>v, sin6, cos & — B,v, cos 0, sin &, = Bv; sin 6y, 3.3)
B2sin* 6, 5 i 2 2
T + nZkB(THZ cos 92 + TJ_Z Nl 92) + mnpv, COS -";:2
B2 sin* 6, 5
= B + mkgT) + mn, vy, (3.4

B?sin 6, cos 6,

A+ mnyvisin, cos & = — o , (3.5)
SksT,  B’sin®@ 2
Avysingy + B+ C = mny, (22220 L 205 20 V) (3.6)
2m dmtmn, 2
where
2
./4 = sin 92 COoS 92]’!2](3 (T||2 — le) — 4—2 sin 92 COS 92,
T
B = v, cos” 0, cos Exnpkp(Typ — T12), 3.7)
k B2sin’6, 2
C = mMnp v, COng —B(T||2 + 4TL2) + 2—2 + 2 .
2m dmtmn, 2

The anisotropic upstream version of these equations is obtained by replacing the
right-hand side of each equation by the left-hand side, changing subscripts ‘2’ to ‘1’ and
then setting & = 0. Indeed, in the case where a shock propagates behind another one, the
downstream of the first shock is eventually the upstream of the next one. A formalism
accounting for an anisotropic upstream is therefore necessary since our model always
leaves an anisotropic downstream (unless B; = 0).

Even though the model can be solved, the algebra is extremely involved. The system
is symbolically solved with Mathematica. Its solutions are then numerically studied in
MATLAB. On occasions, the Mathematica calculations give rise to the resolution of
a polynomial of considerable length. In such cases, the polynomial is transferred to
MATLAB using the Mathematica Notebook described in Bret (2010).

It is useful to focus on the quantity

T2 = tan 6,, 3.8)

as the system of equations above allows one to deduce a polynomial equation for 72, easy
to solve numerically. The general pattern of the resolution consists therefore of deriving
such a polynomial and, from its roots, to compute the other downstream quantities like 7,,
in terms of the upstream parameters.
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The following dimensionless variables are used throughout this work:

2 2
s mn, v; Bi/4m 1
r = , M — —_, o = = —. 3.9a—c
n Al \ B} /47 mni M3, ( )

While the Alfvén Mach number M, ; is prominent in the shock literature, the related o
parameter is typically used in PIC simulations like those of Haggerty et al. (2022).

In order to simplify the problem, in the present work we restrict ourselves to the case
T, = 0, that is, the strong sonic shock case. This is why no sonic Mach number is defined
above.

The upstream is therefore characterized by four variables: n;, 6;, B; and v,. The
downstream is characterized by six variables: n,, 6>, B>, vy, & and T,. The six equations
(3.1)-(3.6) then allow one to solve the problem.

We now outline the resolution of the conservation equations for Stage I,
Stage-2-firehose and Stage-2-mirror.

4. Study of Stage 1
With 7}y = Ty, =0, (2.4) and (2.5) for Stage 1 read

T2|| = Te COS2 92,
L o 4.1)
T2J_ = ETE Sin 92.

4.1. Symmetries

Although not immediately visible, the system (3.1)—(3.6) with prescriptions (4.1) has some
symmetries.

It can be checked that, all other things being equal, if the set of angles (6, 6, &) is
a solution, then (—60,, —0,, —&,) is also a solution, while (—0;, +6,, £&;) is not. This
implies that we cannot ignore the negative 6,. We then restrict our exploration to 6, €
[0, /2] and solve for 6,, & € [—7t/2, /2]

4.2. Resolution
Resolving Stage 1 is then achieved through the following steps:

(1) Eliminate v, everywhere by extracting its value from (3.1).
(i1) Eliminate B, everywhere by extracting its value from (3.2).
(ii1) Use the resulting (3.4) to eliminate 7.
(iv) At this juncture, we are left with n,, 6, and &, as unknowns. Parameter &, can be
eliminated (defining X2 = tan&,). We finally obtain two equations for r = ny/n,
and 72 = tan6,.

The equation for 72 reads

9
(T2 cos O, — sin6,) Z a,T2* = 0, (4.2)
k=0

———
=A
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with

ap = —128 (—=2M2, + cos(26,) + 1)’ sin 6,
a; = 128cos 6, (4My, — 2M3, + (2 — 6M3,) cos(26;) + cos(46;) + 1),
ay = —16 (16 M3, — 16 M3, + (8 — 16 M, ) cos(26;) + cos(46,) + 7) sin 6,
ay = 8cos Oy (16 M3, — 44 M, + (48 — 68 M3, ) cos(26)) + 17 cos(46;) + 31) ,
ay = 4 (—=32M;, + 40cos(20) M3, + 40M, + cos(46,) — 1) sin 6,

as = 4cos 6 (—16 (2My, + M3,) + 8 (7 — 2M3,) cos(26;) + 15 cos(46;) + 41)
ag = —2 (96 M3, — 112M3, + 8 (3 — 14M3,) cos(26,) + 9 cos(46,) + 15) sin b,

a; = 2cos 0 (32M}, + 16 M3, + 8 (5 — 6M3,) cos(26,) + 15 cos(46,) + 25),

as = 16 cos* 0, sin 6,

ay = 16.cos’ 6.

(4.3)
The equation for r reads
L 4M§15Tz3(1 + T22)’ “44)
> b2t
k=0
where
by = 8 M3, tan 6, — 4sin(26,),
by = —8 M3, + 6.c0s(26)) + 2,
b, =0,
(4.5)

by = 4M, + cos(26;) + 3,
by = 4/\/11241 tan 6; — 2sin(26,),

bs = 2 cos’ 0.

Equation (4.2) is a polynomial yielding various 72 branches as solutions. Scanning
them, and using (4.4), allows the derivation of the density jump. Note that one value of 72
gives one single value of r.

Equation (4.2) clearly displays two main branches:

(i) T2cos#; —sinf; = 0, that is, 6, = ;. Inserting in (4.4) gives r = 1. This is the
continuity solution.

(i1)) A = 0. The values of the density ratio r so defined are represented in figure 3 in
terms of (o, 0;). For 6, = 0, we recover the solutions found in Bret & Narayan (2018,
2022). For 6, = 1 /2, we recover the solutions found in Bret & Narayan (2019).

All these Stage 1 solutions do not make their way to the end state of the downstream
since some are unstable. We need now to assess the stability of Stage 1.
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a1 4 U/.{/
o
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FIGURE 3. Values of the density ratio r for Stage 1, with 6, given by A = 0 as defined by (4.2).
The red curve was studied in Bret & Narayan (2018). The blue one was studied in Bret & Narayan
(2022). The blue curve has 6, > 0. The red one has 6, = 0. The thick black curve at 6; = /2
was studied in Bret & Narayan (2019).

4.3. Stability of Stage 1

From (2.6) and (2.8), we see that assessing the stability of Stage 1 requires computing its
anisotropy A, and its 8, parameter. The anisotropy for Stage 1 is straightforwardly given
by (4.1) as

o 1 5
Ay = — =-T,t 0,. 4.6
2 Tzu ) an- o, (4.6)

The B, parameter is given by

sec? 0 M5, (r— 1) +r) —r(T2* +1)
r(T2* +2)

,BHQ == 2 . (47)

Using (4.6) and (4.7) we can then numerically assess the firehose or mirror instability
of Stage 1. Depending on the result, Stage 1 will be the end state of the downstream, or
else it will migrate to Stage-2-firehose or Stage-2-mirror, on the corresponding instability
thresholds.

5. Study of Stage-2-firehose

In the case where Stage 1 is firehose unstable, it will migrate to the firehose stability
threshold. In order to determine its properties, we need now to impose condition (2.6) to
the system (3.1)—(3.6) instead of the temperature prescriptions (4.1).

The resolution strategy is similar to that for Stage 1. Now 72 = tan 6, is given solving

4
ZakTZk =0, (5.1)
k=0
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(b)

0.5

20
FIGURE 4. (a) Values of r for Stage-2-firechose, where 6, is given by (5.1). The blue and red
curves were studied in Bret & Narayan (2018). The blue one has temperature anisotropy A, < 0

and is therefore non-physical. (b) Values of r for Stage-2-mirror. The blue and red curves were
studied in Bret & Narayan (2019). The blue one has A> < 0.

with
ap = —32 (M sin(26y) — 2M3, tan6;)”,
a; = —10M3, [(20M3, — 2) sin(26,) — 8 (2M, + 1) tan 6, M3, — 3sin(46))],
ay = M3, [-32M;, + 8 M, + 24 (3M], — 1) cos(26;) — 15cos(46;) — 9],
az; =0,

ay = —8Mj, cos* 6;.

(5.2)
Then the density jump reads

2M2, T2
F=— 2*“ ) (5.3)
—sin(26,) + 2M;3, tan 0, + T2 cos? 6,

Again, one value of 72 corresponds to one and only one value of r.

The density jump so defined is plotted in figure 4(a) in terms of (o, 6;). For 6, = 0,
the red arc joining (o0 = 0,r =4) to (o = 1, r = 2) fits exactly what was found in Bret
& Narayan (2018). In Bret & Narayan (2018), we argued that the blue arc, joining (o =
0,r=1)to (o0 =1,r=2), was not a shock solution since it reaches r = 1 for o = 0.
In fact, these blue solutions are discarded on an even simpler physical ground: they have
A, < 0. For Stage-2-firehose, the anisotropy is no longer given by (4.6) but by

r(T2% + 1) cos? 6,
QM (r— 1)+ rsin* 6,

When computing this quantity for the lower, blue arc, and indeed for the whole lower
surface in figure 4(a), A, < 0 is found. This property will be useful when putting Stages 1
and 2 together in § 7.

Ay =1

5.4)

6. Study of Stage-2-mirror

If Stage 1 is mirror unstable we need to impose relation (2.8) to the conservation
equations. The quantity 72 is still a solution of the polynomial equation (5.1), where the
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coefficients are now

ap = 4 (sin(26,) — 2M2, tan6,)’
2 (1AM, — 17) sin(260)) — 40 (2M, + 1) tan 6, M, — 27 sin(46,)] ,
a, = 4 M, + 8sin® 6, M3, + 30cos* 6, — cos®0; (30M3, + 19sin6;) (6.1)
az = — (1 — 2 M3, + cos(26))) sin(26;),

ay = 15cos* 6;.

a, =

Then the density jump becomes

- QM2 T2
~ —sin(26)) +2M2, tan 6, + 3T2cos? 6,

(6.2)

The results are plotted in figure 4(b) in terms of (o, ;). A pattern similar to that of
Stage-2-firehose emerges here. When treating the 6, = 1t/2 problem in Bret & Narayan
(2019), we discarded the lower branch in blue at 8, = m/2, arguing that it is not a shock
solution since it reaches r = 1 for ¢ = 0. It turns out that this branch again has anisotropy
A, < 0. For Stage-2-mirror, this quantity reads

—4M3 (r— 1) + rT2* cos(20,) + r (T2 — 2)
¥ S N T

(6.3)

and is found negative on the blue arc in figure 4(b), as well as along the lower surface that
extends from this arc.

7. Putting Stages 1 and 2 together

We finally come to the point where we can assemble Stages 1 and 2. This has been
performed in MATLAB according to the following algorithm:

(a) Solve A = 0in (4.2) for T2 in Stage 1, and record all the branches of the solutions.

(b) Then scan each Stage 1 branch. If a Stage 1 state is found stable, then this is the end
state of the downstream.

(c) IfaStage 1 state is found firehose unstable, then switch to Stage-2-firehose, end state
of the downstream.

(d) If a Stage 1 state is found mirror unstable, then switch to Stage-2-mirror, end state
of the downstream.

Steps (c¢) and (d) can be non-trivial when, for an unstable Stage 1 state (o, 6;), there are
more than one Stage 2 states with the same (o, 6;). Some criteria are needed in order to
select one Stage 2 state among the possible solutions. We apply the following ones:

(a) Discard Stage 2 states with A, < 0 since they represent non-physical solutions to the
equations.

(b) In the case where degeneracy persists, select the Stage 2 state which has 6, closest
to the unstable Stage 1.

We now check how this method retrieves our previous result, before applying it to any
intermediate angle 0.
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(a) 0,=0.00017/2 (b) 0,=0.00017/2 (c) 0,=0.00017/2
4 Stage 1 stable 4 R Stage 1 stable
Sta firehose unstable 0,=0 Stage 2 firehose margina
35 Stage 1 firehose unstab . 2 us \ Stage 2 firehose marginal
Stage 1 mirror unstable ° a age 2 mirror marginal
<0 0,50 g o B
(9] 2 = 6,=0 =
o [ 2 +
{25 0.50 £ 25 T 25
(2] ‘ ) H2>0 g
=2 - @0 2 = 2
9,70 4,70 ) =
15 15 T 15
1 = gl 1
0.2 04 0.6 08 1 12 14 0.2 04 0.6 0.8 1 12 14 02 0.4 0.6 0.8 1 12 14
o o o

FIGURE 5. (a) All solutions of Stage 1 for 8; close to zero, colour-coded according to their
stability (none is mirror unstable). (b) All Stage-2-firehose solutions. Dashed line indicates A <
0 (non-physical). (c¢) End result. The grey dashed lines show the MHD solutions.

71. Case6; ~0

The case 6, ~ 0 is pictured in figure 5. Figure 5(a) shows all Stage 1 solutions. Black
means they are stable, green means they are firechose unstable. Red would mean mirror
unstable, but, for the selected 0,, there are no such cases. The solution » = 2 has 6, =
6, ~ 0. It pertains to the parallel case which was studied in Bret & Narayan (2018). The
other solutions, which draw an open loop, pertain to the switch-on case studied in Bret &
Narayan (2022). They have 6, > 0. These switch-on solutions are physical, namely they
have A, > 0 (see figure 4a of Bret & Narayan 2022).

Figure 5(b) shows all solutions for Stage-2-firechose. We see that an unstable Stage 1
state with o = 0.9, for example, can in principle go to three Stage-2-firehose states. Out of
these three, one has A, < 0, as indicated by the dashed line in figure 5(b). Among the two
remaining options, the upper one has 6, = 0 while the lower one has 6, > 0. Therefore,
choosing the Stage 2 state which has closest 6, to the unstable Stage 1, leaves only one
possible option.

Figure 5(c) shows the end result. We recover the result of the parallel case, with a
marginal firehose jump going from r = 4to 2 for 0 < o < 1, and then Stage 1 stable with
r =2 for o > 1 (Bret & Narayan 2018). Also recovered are the two switch-on solutions
found in Bret & Narayan (2022), with a portion of the upper one being replaced by its
Stage-2-firehose counterpart.

72. Case 6, ~ 1/2

We here check the conformity of the present calculations with the results previously
derived in Bret & Narayan (2019) for the perpendicular case.

Figure 6(a) shows Stage 1 solutions. There is but one branch solution, mirror unstable
for o < o., where 0. = 0.106.

Figure 6(b) shows all Stage-2-mirror branches. There is but one, with A, < 0 below
r ~ 2.47, which is reached for 0 = o/. We checked numerically, up to the 13th digit, that
o, =0/

As a consequence, figure 6(c), which features the end result, has no gap. It fits exactly
the result of Bret & Narayan (2019). For 0 < o, Stage 1 is mirror unstable and the end
state is Stage-2-mirror. Then for ¢ > 0., Stage 1 is stable and gives the density jump of
the end state.

7.3. General oblique case

Figure 7 pictures the situation for an intermediate angle 6, = 0.37/2. Figure 7(a) shows
all of Stage 1 solutions. Here, some are mirror unstable while others are firehose unstable.
Looking at figures 7(c) and 7(b) we can see that there is always a Stage 2 solution when
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FIGURE 6. (a) All solutions of Stage 1 for #; close to 1/2, colour-coded according to their
stability (none is firehose unstable). (b) All Stage-2-mirror solutions. Dashed line indicates Ay <
0 (non-physical). (c¢) End result. The grey dashed lines show the MHD solutions.
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FIGURE 7. (a) All Stage 1 solutions for 61 = 0.31w/2, colour-coded according to their
stability. (b) All Stage-2-firehose solutions. Dashed line when A, < 0 (non-physical). (¢) All
Stage-2-mirror solutions. Dashed line when A, < 0 (non-physical). (d) End result. The grey
dashed lines show the MHD solutions.

Stage 1 is unstable. For some values of o, for example 0.1 or 1.25, there are various
unstable Stage 1 solutions. As a consequence, figure 7(d) displays various solutions for
the end state corresponding to these o.

Notice also how our solutions mimic the MHD solutions (dashed grey lines) at low o
and high o.

Finally, figure 8 presents a series of plots similar to figure 7(d), for various values of
0, € [0, t/2].
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FIGURE 8. Similar to figure 7(d), but for various values of 6; € [0, /2]. The grey dashed

lines show the MHD solutions.

8. Conclusion

In a series of recent articles, we elaborated a model of collisionless shocks. Having
treated the parallel, the perpendicular and the switch-on cases (Bret & Narayan 2018,
2019, 2022), with our model for the parallel case being successfully tested against PIC
simulations (Haggerty er al. 2022), we here treated the general oblique case.

The MHD conservation equations for the general oblique case tend to be involved. The
MHD conservation equations for anisotropic temperatures are even more involved. And
our model adds temperature prescriptions to these equations. As a result, its resolution
is lengthy and requires extensive use of Mathematica, to symbolically derive the key
equations, and of MATLAB, to numerically solve them. The present work was devoted
to the exposition of the mathematical solutions offered by our model. Their physics will
be assessed in a forthcoming article.
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In this respect, our model frequently offers various solutions for the same value of
o. Yet, figure 5(a,c) shows that such is also the case in MHD. This is also visible in
figure 7(a—d) and in most of figure 8. In MHD, the solution selected depends on its physical
relevance (see second-to-last paragraph of the introduction), or on the initial conditions of
the shock formation like, for example, which initial states of a Riemann problem it is
supposed to connect. In general, this second issue, namely connecting two different states,
requires a succession of shocks rather than one single shock (see e.g. Ryu & Jones 1995).
In our model, the choice of the solution when various are offered will most probably
depend on the same factors. This topic will be addressed in a forthcoming paper.

Even though only the case of a cold upstream has been solved here, the formalism allows
in principle for an anisotropic upstream.

Although we treated the field obliquity as an arbitrary parameter, this study remains
limited in various ways:

(a) A pair plasma is considered.

(b) Velocities are non-relativistic.

(c) The upstream pressure is assumed zero.

(d) The shock is coplanar, namely upstream and downstream fields and velocities share
a common plane.

Regarding limitation (a), PIC simulations could be used to test the relevance of our
model to electron—ion plasmas, provided the o parameter in (3.9a—c) is defined using the
ion mass.

Tackling the other limitations altogether is clearly out of reach. At any rate, further
testing of our model is envisioned through PIC simulations or comparison with in
situ measurements at interplanetary shocks, by spacecrafts like Advanced Composition
Explorer, Wind or the Parker Solar Probe (see e.g. David et al. 2022).

As evidenced in figure 8, deviations from MHD are more pronounced for quasi-parallel
shocks and o > 1. This is therefore the domain where our model should preferably be
compared with PIC simulations or in situ measurements.
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