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ABSTRACT
We describe algorithms that produce accurate real-time interactive in-space views of the eight Thurston
geometries using ray-marching. We give a theoretical framework for our algorithms, independent of the
geometry involved. In addition to scenes within a geometry X , we also consider scenes within quotient
manifolds and orbifolds X/!. We adapt the Phong lighting model to non-euclidean geometries. The most
di!cult part of this is the calculation of light intensity, which relates to the area density of geodesic spheres.
We also give extensive practical details for each geometry.

1. Introduction

In this article, we describe a project that we initiated at the Illustrating Mathematics semester program at ICERM in Fall 2019. The
goal of this project is to implement real-time simulations of the eight Thurston geometries in the in-space view—that is, viewed from
the perspective of an observer inside of each space, where light rays travel along geodesics (Figure 1). We have collected many of our
simulations and videos of them at the website http://www.3-dimensional.space.

These simulations may be experienced with an ordinary keyboard and screen interface, and in some cases in virtual reality. We
expect that these simulations will be useful in outreach, teaching, and research. Seeing and moving within a space gives a visceral
experience of the geometry, o!en engendering understanding that is hard or impossible to obtain from “book learning” alone. Recent
research on embodied understanding [21, 28, 33] addresses these advantages.

The code for our simulations is available online [13]. We hope that other researchers will be able to use and extend our work to
visualize objects of interest in the Thurston geometries and beyond. In two previous expository papers, we described some surprising
features of the Nil [11] and Sol [12] geometries using images from our simulations.

1.1. Thurston’s eight geometries

The expansion of geometry beyond euclidean n-space traces its origins to the 19th-century discovery of hyperbolic geometry. From
here, Klein made the following wide-reaching generalization. A homogeneous geometry is a pair (G, X) consisting of a smooth
manifold X, equipped with the transitive action of a Lie group G. The manifold X de"nes the underlying space of the geometry,
and the group G de"nes the collection of allowable motions. This convenient mathematical formalism turns some of our traditional
geometric thinking upside down. Instead of de"ning euclidean geometry as Rn with a particular metric, we de"ne it as Rn with a
particular group of allowable di#eomorphisms (rotations, re$ections, and translations), and derive as a consequence the existence of
an invariant metric.

In dimension two, homogeneous geometries play an outsized role in mathematics, in large part due to the uniformization theorem.
This implies that every two-dimensional manifold can actually be equipped with a geometric structure modeled on one of the
homogeneous spaces H2, E2, or S2. Because of this, one may o!en use geometric tools in settings without an obviously geometric
nature. In the 1970s and 1980s, Thurston came to realize that a similar (but more complicated) result might hold in three dimensions.
Thurston’s geometrization conjecture stated that every closed three-manifold may be cut into "nitely many pieces, each can be built
from some homogeneous geometry. The proof of geometrization was completed by Perelman in 2003 [50–52] and provides a powerful
tool in three-dimensional topology. This also resolved the Poincaré conjecture, which had been open for more than a century. The
eight geometries required for geometrization can be de"ned abstractly as follows. A homogeneous space (G, X) is a Thurston geometry
if it has the following four properties:

(1) X is connected and simply connected.
(2) G acts transitively on X with compact point stabilizers.
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Figure 1. Inside views of tilings within each of the eight Thurston geometries. Here we have chosen similar scenes to highlight the di"erences stemming from the geometries.
Each scene is made from tiles as illustrated in Figure 3.

(3) G is not contained in any larger group of di#eomorphisms acting with compact stabilizers.
(4) There is at least one compact (G, X) manifold.

The "rst of these conditions rules out unnecessary duplicity in our classi"cation. Every connected (G, X) geometry is covered by
a simply connected universal covering geometry, so it su%ces to consider these. The second condition is the group-theoretic way of
requiring that X has a G-invariant riemannian metric, and the third condition is just the statement that G is actually the full isometry
group. A geometry satisfying (1)–(3) is called maximal. The fourth condition recalls our original motivation: to study geometric
structures on compact manifolds in dimension three; we need only concern ourselves with geometries which can be used to build
geometric structures!
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Figure 2. The Thurston geometries, and natural families grouping geometries with similar constructions.

Three dimensions is small enough that all of the Thurston geometries arise from relatively simple constructions,1 growing
out of either two-dimensional geometry or three-dimensional Lie theory. This divides the set of Thurston geometries into a
collection of overlapping families of geometries constructed by similar means. Some of these families are listed below and illustrated
in Figure 2.

(1) Isotropic geometries. A geometry (G, X) is isotropic if the point stabilizer contains O(3). This acts transitively on the unit tangent
sphere at a point. Since directions and planes are dual to each other, any G-invariant metric on X must have constant sectional
curvature. Thus, this family consists of S3 = (O(4), S3), E3 = (O(3) ! R3, R3) and H3 = (O(3, 1), H3).

(2) Products of lower dimensional geometries. The product of the unique one-dimensional geometry (denoted E in this article) and
any two-dimensional geometry gives a geometry of dimension three. This family consists of the three geometries S2 ×E, H2 ×E
and E2 × E. The latter is not maximal: its isometry group is contained in that of E3.

(3) Isometry groups of two-dimensional geometries. Each of the two-dimensional geometries (G, X) is isotropic, so G acts transitively
on the unit tangent bundle UTX. Thus, we may consider the three-dimensional geometry (G, UTX), and get a maximal geometry
by taking covers and extending the isometry group if necessary. This gives the geometries S3 and E3, as well as the new geometry
S̃L(2, R) (built from UTS2, UTE2 and UTH2 respectively).

(4) Bundles over two-dimensional geometries. Generalizing both of the previous cases, we may construct all geometries (G, X) where
X has a G-invariant bundle structure over a two-dimensional geometry. This produces one new example: Nil, a line bundle over
E2. This bundle structure has an important geometric consequence: all manifolds with these geometries are Seifert !bered.

(5) Three-dimensional Lie groups. Every three-dimensional Lie group H acts on itself freely by le! translation. Starting from the
homogeneous geometry (H, H), we may build a maximal geometry by taking covers and extending the group of isometries, if
necessary. Assuming that H is unimodular, this construction recovers the unit tangent bundle geometries and Nil, and produces
our "nal geometry, Sol [37, Section 4]. Allowing Lie groups that are not unimodular, we also recover H3 and H2 × E.

For a proof that there are only eight Thurston geometries; see, for example, Patrangenaru [49]. As a general reference for Thurston’s
geometries, see Scott [57].

1.2. Goals

We have the following goals for the algorithms we use to render our in-space views.

(1) Our images must be accurate—assuming that light rays travel along geodesics, there is a correct picture of what an observer
inside of a given geometry would see. Our images should accurately portray this picture.

(2) Real-time graphics algorithms must be very e%cient in order to run at an acceptable frame rate. This is particularly important in
virtual reality—around 90 frames per second is recommended to reduce nausea. Modern graphics cards allow for the required
speed, given e%cient algorithms.

(3) Our algorithms must allow for a full six degrees of freedom in the position and orientation of the camera, even when the simulated
geometry may not have a natural corresponding isometry. A user in a virtual reality headset can make such motions, and the
view they see must react in a sensible way.

(4) As much as is possible, our algorithm should be independent of the geometry being simulated. The idea here is that it
should be possible to change the code in a small number of places to convert between simulations of di#erent geometries.
Compartmentalizing the code in this way will make it easier to extend it to further geometries, beyond Thurston’s eight.

(5) When possible, we should make our images beautiful, allowing for graphical e#ects including lighting (hard and so!) shadows,
re$ections, fog, etc.

1There are 19 maximal geometries in dimension four [25], and 58 in dimension "ve [19]. While many of these can be constructed by analogous procedures,
some new phenomena also arise.
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Some of these goals are of course in con$ict. Adding features such as shadows and re$ections increases the amount of work needed
to be done per frame, which can reduce the frame rate. The frame rate is also dependent on the desired screen resolution. There are
many tradeo#s to be made between "delity and speed.

We use the relatively new technique of ray-marching in our implementation. We discuss this technique and compare it with other
graphics techniques in Section 2. One key feature is that the data and calculations needed to generate images for each geometry are
relatively simple in comparison to other techniques, which makes it easier to write geometry independent code.

1.3. Related work

This project owes its existence to a long history of previous work. It is a direct descendant of the hyperbolic ray-marching program
created by Nelson et al. [46], which itself was inspired by previous work in H3 and H2 × E by Hart et al. [23, 24], all of which aim
to expand upon Weeks’ Curved Spaces [66] which in turn is a descendant of work by Gunn, Levy and Phillips [38, 53] and others
at the Geometry Center in the 1990s. Thurston was a driving force for much of this visualization work. He o!en spoke about what
it would be like to be inside of a three-manifold [62]. The so!ware SnapPy [9] was originally developed by Weeks to calculate the
geometry on hyperbolic three-manifolds using Thurston’s hyperbolic ideal triangulations. Concurrent with this project’s development
at ICERM in Fall 2019, Matthias Goerner implemented an inside view for hyperbolic manifolds within SnapPy, using a ray-tracing
strategy.

Perhaps, the earliest work concerned with rendering the inside-view of non-euclidean geometries is due to theoretical physicists
predicting the appearance of black holes; this "eld goes back to the 1970s [34].

The past few years have seen a number of independent projects building real-time simulations of inside views for the Thurston
geometries, including the last three “harder” geometries. To our knowledge, Berger [3, 5] produced the "rst in-space images of all
eight Thurston geometries. He uses ray-tracing, with a fourth-order Runge–Kutta method for numerical integration to approximate
geodesic rays.

The HyperRogue project [30], by Kopczyński and Celińska-Kopczyńska implements all eight geometries with a triangle rasteriza-
tion based strategy. They restrict the parts of the world that the viewer can see in order to avoid some issues with this approach that
we identify in Section 2.3.1. For example, in certain geometries one can only see a limited distance in particular directions. They also
use a fourth-order Runge–Kutta method to approximate geodesic rays, and rely in part on lookup tables for speed. Their motivation
is more toward implementation for use in computer games. Here, it is very useful to be able to use polygon meshes to represent the
player character, enemies, and other objects in the game world. Kopczyński and Celińska-Kopczyńska [29] also provide a real-time
ray-tracing implementation of Nil, S̃L(2, R) and Sol.

Novello et al. [44, 65] share our interest in implementing virtual reality experiences. They also implement in-space views with
a ray-tracing approach, tackling all of the Thurston geometries other than the product geometries. They use Euler’s method for
numerical integration to approximate geodesic rays for S̃L(2, R) and Sol.

Other than ours, the only ray-marching approach we are aware of is due to MagmaMcFry [35], who implements E3, H3, Nil,
S̃L(2, R), and Sol. They use a second-order Runge–Kutta method to approximate geodesic rays.

A numerical integration approach is unavoidable in some cases, for example, in generic inhomogeneous geometries [42]. These
approaches can also minimize the di#erences in the code for di#erent geometries. However, such algorithms must take many steps
along each ray to maintain accuracy, and so may be slow. This may be acceptable when the scene is “dense”—implying that few rays
travel very far before hitting an object. This o!en happens for example, with a co-compact lattice. For scenes in which rays travel
large distances we lose accuracy unless the number of steps is large, meaning that we lose rendering speed.

We instead use explicit solutions for our geodesic rays in almost all cases. This moves the problem of accuracy versus speed to the
implementation of the functions involved in the solutions. In this setting, however, we have reduced the problem of understanding
the long-term behavior of the geodesic $ow to studying the long-term behavior of these component functions. It turns out that
these functions are well-understood for the eight Thurston geometries (they are trigonometric, hyperbolic trigonometric, and Jacobi
elliptic functions). Thus, we can o!en take large steps along geodesics and achieve both accuracy and speed, even for objects that are
distant from the viewer. We exploit this ability to illustrate counterintuitive, long-range behavior of geodesics in Nil and Sol [11, 12]. In
Appendix A, we give the results of some numerical experiments comparing the performance and accuracy of Euler and Runge–Kutta
numerical integration with explicit solutions in Nil and S̃L(2, R).

2. Ray-Marching

Ray-marching is a relatively new technique to produce real-time graphics using modern GPUs [69], although its roots go back to the
1980’s at least [26]. Ray-marching is similar to ray-tracing in that for each pixel of the screen, we shoot a ray from a virtual camera to
determine what color the pixel should be. Unlike most ray-tracing implementations, however, the objects in the world that our ray
can hit are not described using polygons. Instead, we use signed distance functions, which we describe in the following.

De!nition 2.1. Let X be the ambient space, and suppose that S is a closed subset of X. We refer to S as a scene. We de"ne the signed
distance function σ : X → R for S as follows. For a point p ∈ X − S, the function σ returns the radius of the largest ball centered at
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A tile. A ball is deleted from the center
of the tile.

A ball is deleted from the cen-
ter and each vertex of the tile.

(a) (b) (c)

Figure 3. Extrinsic view of some scenes with inexpensive signed distance functions for a Z3-invariant tiling in E3.
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Figure 4. Ray-marching to !nd the point at which a ray hits an object, for a scene in E2 consisting of a disk and a half-plane.

p whose interior is disjoint from S. For p ∈ S the function is non-positive, and |σ (p)| is the radius of the largest ball centered at p
contained in S. !

We will sometimes write sdf(p, S) for σ (p). We o!en refer to a part of a scene as an object. As an example, suppose that X is
euclidean three-space, E3, and our scene S is a ball of radius R, centered at the origin. Then, the signed distance function is

σ (p) = |p| − R. (2.2)

Suppose that we have multiple scenes, described by signed distance functions σi. Then, the signed distance function for the union of
the scenes is mini{σi}. The complement of a scene is given by the negative of its signed distance function. We o!en draw a tiling in an
inexpensive manner by deleting a ball from the center of each tile (Figure 3) and Remark 4.4. For more examples of signed distance
functions in E3, and more ways to combine signed distance functions, see [55].

To render an image of our scene, we place a virtual camera in the space X at a point p0. We identify each pixel of the computer
screen with a tangent vector at p0, and so determine a geodesic ray for this pixel, starting at p0. To color the pixel, we must work out
what part of the scene the ray hits. The algorithm is illustrated in Figure 4. We start at p0, the position of the camera, as shown in
Figure 4(a). We assume that p0 is not inside the scene. We evaluate the signed distance function σ at p0. Since no part of the scene is
within σ (p0) of p0, we can safely march along our ray by a distance of σ (p0) without hitting the scene. We call the resulting point p1.
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d d d 2 d 3λ λ λ

Figure 5. Typically, convergence of a ray marching into an object is geometric. If our !rst distance from the object is d, then subsequent distances follow a geometric sequence
with the base of the exponent some number λ < 1.

We can then safely march forward again by σ (p1) to reach p2. We repeat this procedure until either we reach a maximum number of
iterations, or we reach a maximum distance, or the signed distance function evaluates to a su%ciently small threshold value, ε say. In
the "rst two cases, we color the pixel by some background color. In the third case (as shown in Figure 4(d)), we declare that we have
hit the scene.

In the case that we hit the scene, we may then choose a color for the pixel based on which part of the scene we hit, apply a texture,
and/or apply various lighting techniques, for example, the Phong re$ection model [54]. Note that this model requires the normal
vector to the surface at the point our ray hits; this is easily approximated using the gradient of the signed distance function.

2.1. Geometric convergence

A concern one might have over the ray-marching algorithm is the potentially large number of steps taken before we are close enough
to the scene to declare that we have hit it. Indeed, functions called in the innermost loop of the algorithm must be made as e%cient
as possible. However, the number of steps used is generally not prohibitive. Suppose that our scene S has a smooth boundary. In this
case, when we are close enough to S its boundary may be approximated by a plane P. If our ray continues to approach P, then we
converge to it as a geometric series, see Figure 5. The base of the exponent λ depends on the angle of incidence of the ray, approaching
the worst case of λ = 1 as the ray becomes tangent to S.

Remark 2.3. If the maximum number of steps we allow before giving up is too small, then we may erroneously color pixels with the
background color whose rays would eventually hit an object. This will o!en be most visible around the outer edges of an object in
the scene, as these rays are the closest to tangent. These rays spend many steps moving a small distance close the object. Thus, they
may run out of iterations before converging. !

2.2. Distance underestimators

The signed distance function for a scene may be di%cult or expensive to calculate. In these cases, we may wish to replace it with an
easier to calculate approximation.

De!nition 2.4. Suppose that σ : X → R is the signed distance function for a scene S. We say that a function σ ′ : X → R is a distance
underestimator if

(1) The signs of σ ′(p) and σ (p) are the same for all points p ∈ X,
(2) |σ ′(p)| ! |σ (p)| for all p ∈ X, and
(3) If {p1, p2, . . .} is a sequence of points in X such that lim σ ′(pn) = 0, then lim σ (pn) = 0. !

We do not require that σ ′ is continuous, but the second and third conditions here imply that a distance underestimator vanishes
only on the boundary of S.

Lemma 2.5. When ray-marching with a distance underestimator σ ′ in place of a signed distance function σ , we limit to the same point
as when using σ .
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This result implies that a distance underestimator will give us essentially the same images as the signed distance function, given
enough iterations and a small enough threshold ε. If a distance underestimator is signi"cantly easier to compute than the signed
distance function, then trading an increased number of iterations for improved speed of computation can be advantageous, see
Sections 9.6 and 10.6 for examples of distance underestimators.

Proof of Lemma 2.5. Consider a ray γ starting at a point p /∈ S. Suppose that γ "rst meets the scene S at the point q. Using the
distance underestimator σ ′, we march through a sequence of points p = p1, p2, . . . Consider the distances dn = distγ (pn, q),
measured along the ray γ from pn to q. By conditions (1) and (2), we know that the sequence {dn} is a non-negative non-increasing
sequence. Thus {dn} converges, and so the sequence of points {pn}, converges. Thus, the distances distγ (pn, pn+1) must go to zero.
These are the distances we march along the ray, using the distance underestimator σ ′, so distγ (pn, pn+1) = σ ′(pn). Therefore,
lim σ ′(pn) = 0. By condition (3), lim σ (pn) = 0, and so lim pn = q.

In practice, we want σ ′ and σ to be “coarsely the same.” In particular, to get condition (3), we want |σ ′(p)| to be bounded below
by some function of |σ (p)|. This also allows us to control how many extra iterations are needed in ray-marching with a distance
underestimator.

Any real-world implementation cannot go all the way to the limit point q and instead stops at some su%ciently small value, ε.
Thus, a distance underestimator should not return a value smaller than ε unless the signed distance function is also small.

2.3. Advantages of ray-marching in non-euclidean geometries

Ray-marching is an attractive technique in euclidean geometry, in part because of the simplicity of its implementation. This is also
true for non-euclidean geometries. Here, we discuss some alternative techniques.

2.3.1. Z-bu!er triangle rasterization
Real-time graphics in euclidean geometry are usually rendered using z-bu"er triangle rasterization. In this technique, objects in the
scene are represented by polygon meshes. A projection matrix maps each triangle of a mesh onto the plane of the virtual camera’s
screen. For each pixel P, we look at the triangles whose projections contain the center of P. Of these triangles, the one closest to the
camera determines the color of P.

This works well for the isotropic Thurston geometries, E3, S3, and H3, in particular because geodesics in these geometries are
straight lines in their projective models, see Weeks [68]. Je# Weeks uses these in his Curved Spaces so!ware [66]. There is one
complication with S3 here, in that a single object is visible in two di#erent directions: the two directions along the great circle
containing the camera and the object. This means that each object must be projected twice. This is acceptable for S3. In Nil, Sol,
and S̃L(2, R), a single object can be visible from the camera in many directions, with no uniform bound on the number of such
directions. Even worse, in S2 × E a single object can be visible in in"nitely many directions from a single camera position.

The projection matrix used in triangle rasterization implements the inverse of the exponential map. In the cases listed above, the
exponential map is not one-to-one. This is not a problem for ray-tracing and ray-marching, which both use the forward direction of
the exponential map instead.

2.3.2. Ray-tracing
Ray-tracing is very similar to ray-marching, with the di#erence being in how we determine where in the scene a ray hits. In
many applications the objects in the scene are described by polygon meshes, as in triangle rasterization. The algorithm checks for
intersection between the ray and the polygons of the mesh. To make this e%cient for (euclidean) scenes with a large number of
polygons, much e#ort is put into checking as few triangles for collision as possible, even though each individual check is inexpensive.
However, objects described by simple equations such as spheres and other conics can also be used: all that is needed is a way to check
whether or not a ray intersects the object, and at what distance along the ray. The distance is used to decide which object is closest to
the camera and so should be drawn. For a conic in euclidean space, for example, this check and distance may be calculated by solving
a quadratic equation.

One advantage of ray-tracing over ray-marching is that ray-tracing is well suited to rendering objects given by polygon meshes.
It therefore has access to decades of development in polygon modeling techniques and rendering e%ciency for polygonal models.
On the other hand, depending on the geometry, checking for intersection between a ray and an object may be di%cult. In place of
this check in ray-tracing, for ray-marching we only need a signed distance function (or distance underestimator). If for example we
make our scene from balls, then we only need to calculate distances between points.

2.4. Accuracy

One of our goals in this project is to be able to render features accurately, even at long distances. We identify two potential sources
of error here.
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2.4.1. Floating point representation of number
First, the representation of real numbers by $oating point numbers is necessarily inaccurate. This can be a problem in a number of
ways, whether one is ray-marching, ray-tracing, or using polygon rasterizing methods.

(1) In certain models, the coordinates of points grow exponentially with distance in the geometry, and $oating point numbers quickly
lose precision. In particular, this causes problems when rendering objects that are far from the camera. Of the eight Thurston
geometries, this is an issue in H3, H2 × E, Sol, and S̃L(2, R). This can be mitigated by the choice of model [18]. Even without
exponential growth in coordinates, $oating point numbers cannot exactly represent geometric data.

(2) In certain regimes, a formula may be unstable. For example, the formula (1 − cos(t))/t2 approaches 1/2 as t approaches zero.
However, the available precision in the $oating point representation of (1 − cos(t)) near t = 0 is not very good in comparison
to the precision of t2. In such a regime, it is better to use a di#erent representation of the formula. Here, for example, we will get
much better results by using an asymptotic expansion, say 1/2 − t2/24 + · · · .

2.4.2. Accumulation of errors
Any iterative algorithm that takes the result from the previous step as the input for the next step may accumulate errors. These errors
may come from lack of precision due to $oating point representations as described above. They may also come from limitations in
the methods used to calculate geodesic $ow. As mentioned at the end of Section 1.3, to remove this second source of error we avoid
the numerical integration approach whenever possible, preferring explicit solutions.

3. General implementation details

As mentioned in Section 1.2, one of our goals in this project is to make as much of our code as possible independent of the geometry
being simulated. Following this goal, in the next few sections, we describe components needed for our simulations that are shared
across geometries. Many of these apply to all eight Thurston geometries. However, it is also useful to discuss strategies for tackling
smaller collections of geometries with certain geometric or group theoretic features. Thus to begin, we provide a second grouping of
the Thurston geometries into overlapping families, distinct from our "rst grouping by method of construction in Section 1.1.

Consider the following properties:

(1) The geodesic $ow is achieved by isometries. That is, every geodesic is the orbit of a point under a one-parameter subgroup.
(2) The projective model has straight-line geodesics. Each of the Thurston geometries (up to covers) has a model with X ⊂ RP3 and

G < GL(4; R). With this property, the geodesics of (G, X) are projective lines in this model.
(3) The group G has a normal subgroup whose action is free and transitive on X.

Property (1) implies that parallel transport is achievable directly via elements of G. Property (2) implies that totally geodesic
surfaces are planes in the projective model, which makes testing membership in polyhedral domains (for example, Dirichlet domains)
e%cient. Property (3) allows us to canonically identify tangent spaces at distinct points of X. This allows us to reduce certain di%cult
calculations (for example, the geodesic $ow) to di#erential equations in a "xed tangent space.

The constant curvature and product geometries all have properties (1) and (2), while Nil, Sol, and S̃L(2, R) have neither. These
properties are very useful in practice, so we call the "ve geometries possessing them the easier geometries, while Nil, Sol, and S̃L(2, R)

are the harder geometries. However, Nil, Sol, and S̃L(2, R) do have property (3) (along with E3 and S3) (Figure 6).

H2 × E S2 × E

H3

E3 Nil

S3

S̃L 2, R
Sol

Easier

Harder

Transitive
normal
subgroup

( )

Figure 6. The Thurston geometries, grouped into useful categories for our implementation.
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3.1. Notation

Recall that the underlying space X of a Thurston geometry (G, X) is both connected and simply connected, and can be equipped
with a G-invariant riemannian metric ds2. We "x a base point o ∈ X, which we call the origin of the space X. We denote by K the
stabilizer of o in G. Thus, X is isomorphic to G/K.

3.2. Geodesic !ow

In order to follow light rays, we need to understand geodesics in X. Moreover, since we want to march along our geodesics by speci"ed
distances, they must be given by arc length parametrizations. These are paths γ : R → X such that

∇γ̇ (t)γ̇ (t) = 0, ∀t ∈ R.

where ∇ is the Levi-Civita connection on (X, ds2). This condition corresponds to a "ve-dimensional second-order (nonlinear)
di#erential system. In some cases (for example, E3, S3 or H3), these systems are comparatively easy to solve (Table 1). Other geometries
such as Nil, Sol, and S̃L(2, R) are more subtle. Next, we describe a method to split this problem into two "rst-order di#erential systems.
This strategy has both practical and theoretical advantages that we will discuss later.

3.2.1. Grayson
We follow here an idea of Grayson [22]. Assume that G contains a normal subgroup G0 which acts freely and transitively on X. The
group G0 provides a preferred way to compare the tangent space at di#erent points of X. For every x ∈ X, we denote by Lx the
(unique) isometry in G0 sending the origin o to x. Let γ : R → X be a geodesic of X. For every t ∈ R, we denote by u(t) ∈ ToX the
vector such that

γ̇ (t) = doLγ (t)u(t) (3.1)

It follows from the construction that u is a path on the unit sphere of the tangent space ToX. Observe that once u is known, the
trajectory γ is the solution of the "rst-order di#erential equation given by Equation (3.1).

Since geodesics are invariant under isometries, the path u satis"es a two-dimensional "rst-order autonomous di#erential system

u̇ = F(u) (3.2)

where F does not depend on γ . In practice, Equation (3.2) is o!en straightforward to solve, see for example Section 9 and Section 10.
The corresponding $ow on the unit sphere also provides qualitative information on the geodesic $ow [14].

Let h ∈ K be an isometry of X "xing o. Observe that the path

u′ = doh ◦ u

is also a solution of Equation (3.2). Indeed, consider the geodesic γ ′ : R → X de"ned by γ ′ = h ◦ γ . Since Go is a normal subgroup
of G, for every x ∈ X we have

h ◦ Lx ◦ h−1 = Lhx.

It follows that

γ̇ ′(t) = doLγ ′(t)u′(t), ∀t ∈ R.

This proves our claim. Thanks to this observation we can take advantage of the symmetries of X to reduce the amount of computation
needed to solve Equation (3.2). See, for example, Sections 9.3 and 10.2.

3.3. Position and facing

For the moment, we will think of the observer as a single camera, based at a point of X. In Section 3.6, we will consider an observer
with stereoscopic vision.

In order to render the scene viewed by such an observer, we need to know its position, given by a point p ∈ X, and its orientation
in the space (which we call its facing). The latter is represented by an orthonormal frame f = (f1, f2, f3) of the tangent space TpX. We
adopt the following convention: from the viewpoint of the observer (Figure 7),

• f1 points to the right,
• f2 points upward, and
• f3 points backward.

Let OX be the bundle of all orthonormal frames on X. We "x once and for all a reference frame e = (e1, e2, e3) at the origin o.
This provides an identi"cation of OoX, the space of orthonormal frames at o, with O(3). In particular, this induces an embedding of
the stabilizer of the origin, K, into O(3), given by k *→ dok.
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f1

f2

f3

Figure 7. The initial tangent vector is of the form sf1 + tf2 − f3, where s and t are coordinates on the screen.

3.3.1. Parametrizing the frame bundle
Our goal is to make simulations of Thurston geometries to better understand their properties. Our audience in this endeavor consists
of entities with primary experience in E3, as far as we are aware. Thus, our audience will naturally expect to be able to move in any
direction, and orient their view in any way they wish. Thus, the user should be able to move and rotate to achieve any element of the
frame bundle OX (while preserving their orientation class). Therefore, the data we use to record the position and facing of the user
must map onto OX.

When X is isotropic, G acts transitively on the frame bundle OX. In this case, one could use an element of G to record this data.
However, when X is anisotropic, this action is not transitive. For example, if X is one of the product geometries S2 × E or H2 × E,
there is no isometry that rotates in way that breaks the product structure.

Thus, we parameterize OX by the following map.

G × O(3) → O(X)

(g, m) *→ dog ◦ m(e)

Since the action of G on X is transitive, there is an element g taking o to any given point p = go. The map dog sends ToX to TpX. By
varying m, we can send the reference frame e to any frame in TpX. Thus, the map is onto.

The group G acts on the le! on G × O(3) by multiplication of the "rst factor so that the map G × O(3) → O(X) is G-equivariant.
Note that the stabilizer K of the origin o, also acts on the right on G × O(3) as follows: for every (g, m) ∈ G × O(3) and for every
k ∈ K, we have

(g, m) · k =
(
gk, dok−1 ◦ m

)
.

This action commutes with the le! action of G. Moreover, the application G × O(3) → OX above induces a G-equivariant bijection
from the quotient (G × O(3))/K to OX.

3.3.2. Using a transitive normal subgroup
For geometries with a transitive normal subgroup G0 < G of isometries, there is a natural section of the frame bundle X → OX
given by the G0-orbit of the reference frame e at the origin. Using this frame, we can encode unit tangent vectors in TpX by points of
the unit sphere of R3. The coordinates needed to describe these unit tangent vectors are thus uniformly bounded at all points p ∈ X.
This choice of representation helps reduce numerical errors, for example, its implementation in Sol.

3.4. Moving in the space

Using the parameterization above, a pair (g, m) ∈ G × O(3) speci"es a location p ∈ X of the user, and a frame f in TpX. This
provides the necessary data to orient the user’s virtual camera within the space. To produce a real-time simulation, we need a means
of converting user input into this form.

Assume that at the current frame, the virtual camera is at a point p ∈ X. At each frame of the simulation, the virtual reality system
records the position and facing of the headset in the play area, which is (very well) approximated as a subset of E3. We interpret
the change in position between this frame and the next as a tangent vector v ∈ TpX ∼= E3, given by coordinates in the local frame
f = (f1, f2, f3) representing the facing of the observer. Alternatively, keyboard input can provide the same information.
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Remark 3.3. There is a choice to be made here in the relationship between the distance moved in the real world and the magnitude
of the vector v. In our implementation, by default one meter in the real world corresponds to one unit in the virtual world. One may
wish to change this relationship by a scaling factor to, for example, vary the perceived e#ects of curvature in H3 [63]. !

We move the observer along the geodesic γ : R → X such that γ (0) = p and γ̇ (0) = v. In addition, we update the facing of the
observer using parallel transport. Parallel transport along γ can be seen as a collection of orientation-preserving isometries

T(t) : Tγ (0)X → Tγ (t)X

such that

∇γ̇ (t)T(t) = 0, ∀t ∈ R. (3.4)

In the easier geometries (E3, S3, H3, S2 ×E, and H2 ×E), for each geodesic γ through a point p, there is a one-parameter subgroup
{g(t)} ⊂ G such that γ (t) = g(t)p. In these cases, the parallel transport operator is T(t) = dpg(t).

3.4.1. Using a transitive normal subgroup
In Nil, Sol, and S̃L(2, R), we do not have the above one-parameter subgroup. Instead, in order to compute the path of isometries
t → T(t) we again use Grayson’s method. Assume as above that G0 is a connected normal subgroup of G acting freely and transitively
on X. De"ne u : R → ToX by the relation

γ̇ (t) = doLγ (t)u(t)

where Lp is the unique isometry of G0 sending o to p. Similarly, we de"ne a path Q : R → SO(3) by letting

T(t) ◦ doLγ (0) = doLγ (t) ◦ Q(t) (3.5)

It turns out that for each of our harder geometries, Q satis"es a linear di#erential equation of the form

Q̇ + B(u)Q = 0 (3.6)

where B is skew-symmetric matrix which only depends on u (and not on γ ) and with initial condition Q(0) = Id. To solve
Equation (3.6), we use the following observation. By de"nition of parallel transport, for every t ∈ R, we have T(t)γ̇ (0) = γ̇ (t),
hence

Q(t)u(0) = u(t).

Fix now an arbitrary vector e0 ∈ R3 and a path R : R → SO(3) such that R(t)u(t) = e0, for every t ∈ R. Then

S(t) = R(t)Q(t)R(0)−1

is a rotation of angle θ(t) around Re0. Hence, in order to compute Q, and thus T, it su%ces to know the value of the angle θ . To that
end, we substitute Q(t) = R(t)−1S(t)R(0) into Equation (3.6) and obtain the "rst-order di#erential equation on θ that we solve. This
strategy gives an e#ective way to compute the parallel-transport operator.

Assume that k ∈ K is an isometry of X "xing o and let u′ = dok ◦ u. We observed previously that u′ is also a solution of
Equation (3.2). With the same kind of computation we get that Q′(t) = dok ◦ Q(t) ◦ dok−1 is a solution of

Q̇′ + B(u′)Q′ = 0

Again we can use the symmetries of X to reduce the amount of computation needed to solve Equation (3.6).
During a motion, it is convenient to use the pulled-back parallel-transport operator Q to update the position and facing. Recall

that we store the position and facing of the observer as a pair (g, m) ∈ G×O(3). At time t = 0, the observer is at the point γ (0) = go
where g = Lγ (0). Its facing is given by the frame

f = dog ◦ m(e) = doLγ (0) ◦ m(e)

A!er moving along the geodesic γ for time t, the observer reaches the point γ (t). The observer’s new facing corresponds to the frame

f ′ = T(t)f = T(t) ◦ doLγ (0) ◦ m(e).

By the de"nition of Q, we get

f ′ = doLγ (t) ◦ Q(t) ◦ m(e).

Hence, the position and facing of the observer a!er time t is given by the pair (Lγ (t), Q(t)m).
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3.5. Rendering an image from a "xed location

Assume that the position and the facing of the observer is given as pair (g, m) ∈ G × O(3). In order to render what the observer
would see, we proceed as follows. Let p be the point obtained by applying g to the origin o. Recall that the observer is looking in the
direction −f3, where f = (f1, f2, f3) is the frame f = me. The set of vectors u ∈ TpX such that

〈
u, f3

〉
= −1 de"nes an a%ne plane

P in TpX. We identify the screen of the computer with a rectangle in P centered at −f3 (Figure 7). The exact size of the rectangle is
computed in terms of the "eld of view of the observer. For each vector u ∈ TpX in this rectangle, we follow (using the ray-marching
algorithm) the geodesic starting at p in the direction of u (or more precisely the unit vector with the same direction) until it hits an
object. We color the corresponding pixel on the screen with the color of this object, or more realistically, using a physical model of
lighting as described in Section 5.

The formulas for geodesic $ow starting from an arbitrary point p can be e%ciently factored using the homogeneity of X. That is,
a conjugation by g identi"es the $ow from o with the $ow from p. In practice, for the easier geometries one might as well work at the
position of the observer, p, rather than at o. However, for the harder geometries, this signi"cantly simpli"es the code.

3.6. Stereoscopic vision

A virtual reality headset has a separate screen for each eye. This allows it to show the two eyes slightly di#erent images – parallax
di#erences between these images can then be interpreted by the user’s brain to give depth cues.

Given positions and facings for the le! eye, (p,, f ,), and the right eye, (p-, f -), we can render an image for each eye exactly as in
Section 3.5. The question is how to determine the positions and facings for the two eyes. Let ' be the interpupillary distance; that is,
the distance between the eyes. We track the position and facing (p, f ) of the user’s nose, using the sensors of the virtual reality headset
as in Section 3.4. In E3, the canonical thing to do is to set f , and f - equal to f , and to set

p, = p − ('/2)f1 p- = p + ('/2)f1
recalling that f1 is the frame vector in f pointing to the right.

This works because in euclidean space, one may naturally identify the tangent spaces at all points. For non-euclidean geometries,
a natural analogue is as follows. We set (p,, f ,) to be the result of $owing from (p, f ) for distance '/2 in the direction of −f1, and we
set (p-, f -) to be the result of $owing from (p, f ) for distance '/2 in the direction of f1.

This works reasonably well for S3, H3, and H2 × E, although there are some problems. As mentioned in [24, Section 6], in
geometries in which geodesics diverge, parallax cues tell our euclidean brains that all objects are relatively nearby. In H3 for example,
two eyes pointing directly at an object that is in"nitely far away are angled toward each other. One alternate strategy we brie$y
experimented with was to rotate the frames f , and f - slightly inwards, so that geodesics emanating from p, and p- in the directions
of their forward vectors −f ,

3 and −f -
3 converge at in"nity. This might then match the behavior our euclidean brains expect: that

objects at in"nity can be seen by looking straight ahead with both eyes. We did not notice much di#erence in our ability to perceive
the space in making this change, although this line of thinking leads us to conclude that predators in hyperbolic space would evolve
to look somewhat cross-eyed to us native euclideans.

In S3, points at distance π/2 away from the user appear to be “in"nitely far away,” while objects further than π/2 away have depth
cues reversed. One possible future direction to try to improve this experience is as follows. Modern virtual reality headsets have the
ability to track where the user’s eyes are looking. Based on this information, we could determine what object the user is looking at.
Using the distance from the viewer to the object, we could rotate the frames f , and f - to imitate the e#ects of parallax for objects at
that distance in E3. It remains to be seen whether or not these frequent rotations would induce nausea.

The situation is worse in S2 × E, Nil, Sol, and S̃L(2, R), where geodesics “spiral.” Figure 8 illustrates how a small parallax in Nil
can produce very di#erent pictures: On each row, the scene consists of a single ball textured as the earth. The di#erent images are
views of this ball from slightly di#erent positions. Using the convention that one unit represents one meter, the o#set between two
consecutive images is approximately half the interpupillary distance. Our euclidean brains are not able to interpret the combination
of these pictures. One might think that the sphere is too small (a few centimeters) and too far away form the observer (a few meters)
for our eyes to see that level of detail. However, geodesic rays in Nil spiral in such a way that the angular size of the object in the
observer’s view is very large. This makes the object appear as if it is very close to the observer. Thus this parallax distortion cannot
be ignored. New ideas are thus needed to produce stereoscopic images in all eight geometries that can be pertinently analyzed by the
brain.

Weeks [67, Section 5] uses the following approach in S3 and H3. The observer is represented by a point p in the space X. Using the
inverse of the exponential map, we send objects in that space to the tangent space TpX based at p. We then implement stereoscopic
vision using cameras based at two points near the origin of TpX. This works well when the inverse exponential map is single-valued,
but seems challenging in the harder geometries.

3.7. Signed distance functions in X

The algorithms described so far render the in-space view of a scene in the geometry X, given a signed distance function σ : X → R
for it. In the interest of both simplicity and geometric accuracy, we focus on scenes built from intrinsically de"ned objects, including
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= −0.03 = 0 = +0.03
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Figure 8. Parallax in Nil makes stereoscopic vision di#cult. The earth has radius r and is centered at the origin. In the middle picture the observer is located on the z-axis at
a distance L from the origin. On the left and right pictures, the observer is o"set by a distance ) in the x-direction. The angular size of the ball in the observer’s view is α.
Note that due to the spiraling of geodesics in Nil, this angular size is much larger than it would be for an equivalent ball in euclidean space. Indeed, an observer assuming
that they are in euclidean space would think that the ball is at distance L′ from them.

• balls (bounded by equidistant surfaces from a point),
• solid cylinders (bounded by equidistant surfaces from a geodesic), and
• half-spaces (bounded by totally geodesic codimension one submanifolds).

Note that a single object may fall into more than one of the above categories. For example, a hemi-hypersphere of S3 is both a ball
and a half-space.

3.7.1. Simple scenes
In some cases, viewing and moving relative to a single simple object is all that is needed to illustrate surprising features of a geometry.
In previous work for example, we qualitatively described counterintuitive features of Nil geometry [11] with a scene consisting of a
single ball, and we studied a single isometrically embedded copy of the euclidean plane in Sol geometry [12]. From a collection of
basic objects, many other simple scenes can be created through "nitely many applications of union, intersection and di#erence. These
operations of constructive solid geometry are particularly suited to producing scenes in a ray-marching application, as {∪, ∩,"} are
faithfully represented on the space of signed distance functions by {min, max, −} respectively [55].

In many cases, however, the interesting features of the geometry are best exhibited by more complex, unbounded scenes, which
cannot be built from the basic objects in "nitely many operations.

3.7.2. Complex scenes and symmetry
Scenes which display interesting features across unbounded regions are useful to highlight various geometric features, including

• exponential growth of volume in negative curvature,
• anisotropy in the product geometries,
• non-integrability of the contact distribution in Nil, and
• the lack of any continuous rotation symmetry in Sol.

The particular details of the scene’s contents do not matter so much as the requirement that the user may travel unbounded
distances in any direction and still be surrounded with an approximately homogeneous collection of objects.

One way to do this is to use the homogeneity of X to build an extremely symmetric scene, by choosing a signed distance function
σ : X → R invariant under the action of a discrete subgroup ! < G.
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As geometric topologists, however, we cannot help but note that covering space theory provides an alternative perspective.
Consider a scene invariant under the action of !. This is described by a signed distance function σ : X → R with σ ◦ γ = σ

for all γ ∈ !. Such maps are in natural correspondence with maps from the quotient σ : X/! → R.
Indeed, the view from a point q ∈ X/! of a signed distance function σ is identical to the view from a li! q̃ ∈ X of a signed distance

function σ invariant under !. This follows from the above topological correspondence together with the fact that the covering map
is a local isometry.

This suggests exploring the unbounded geometry of X indirectly, through the geometry of its quotients X/!.

4. Non-simply connected manifolds

Let (G, X) be a homogeneous geometry. A (G, X)-manifold is a smooth manifold M together with an atlas of charts

{(Uα ⊂ M, fα : Uα → X)}
with transition maps in G = Isom(X). The elementary theory of such (G, X)-manifolds shows that one may globalize this atlas into
a developing map from M̃ to X, equivariant with respect to a holonomy homomorphism from π1M to G [20]. Furthermore, if M is
geodesically complete, then the developing map is a di#eomorphism and M ∼= X/! is a quotient, where ! ∼= π1(M) is the image of
the holonomy homomorphism. The simplest (G, X)-manifold is X itself, and we have seen above how to ray-march simple scenes in
X. Covering space theory implies that X is the unique complete simply connected (G, X)-manifold, but non-simply connected (G, X)-
manifolds abound. Indeed, the classi"cation of compact hyperbolic manifolds up to di#eomorphism is still incomplete. Additionally,
while there are only ten euclidean manifolds up to di#eomorphism, there are uncountably many distinct euclidean structures in each
di#eomorphism class. Simulating not just the Thurston geometry X but also various (G, X)-manifolds is a natural extension of our
original goals. These manifolds may or may not have "nite volume, corresponding to the discrete subgroups ! < G being lattices
or not. Generalizing further, our algorithms can also simulate (G, X)-orbifolds and incomplete (G, X)-manifolds. Thus, we may
experience both the three-dimensional homogeneous spaces, and also the atomic building blocks of geometrization.

In the next section, we describe a method to ray-march (or ray-trace) within a quotient manifold, using a fundamental domain.
Similar ideas are outlined in [5, 29].

4.1. Teleporting

Let ! be a discrete subgroup of G, and M = X/!. To produce an intrinsic simulation of M, we wish to reuse as much as possible the
work that goes into producing a simulation of X. To that end, we describe M using a connected fundamental domain D ⊂ X with
2n faces {F±

i }i=1...n. (Alternatively, one could embed M in a higher-dimensional ambient space, and try to implement the techniques
of Section 3 in that context.) The quotient manifold M is obtained by identifying each F−

i with F+
i via an isometry γi ∈ !. These

face pairings form a generating set {γ1, . . . , γn} for !. This allows us to ray-march using the geodesic $ow on D ⊂ X, and calculate
parallel transport and position/facing using the parameterization of OX restricted to D. Indeed, given a signed distance function
σ : X/! → R pulled back to D, the only substantial change is that we must modify the ray-march algorithm to keep the geodesic
$ow in D. We can do this by using the face pairings. Similarly, when the user moves outside of D, we move them by an isometry to
keep them inside of D. In either case, we call this process teleporting (Figure 9).

Remark 4.1. As a side bene"t, the quotient manifold approach helps with $oating point errors. At each step of our ray-marching
algorithm, the basepoint of our ray is within D. In the case that M is compact for example, the coordinates of our basepoint are
bounded by a function of the diameter of D. This then avoids problem (1) of Section 2.4.1. In our experience, we see less noise

Figure 9. A light ray traveling in a domain D must teleport at the boundary to simulate the view within a torus.
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in images such as Figure 1 with this strategy, despite the potential accumulation of errors (Section 2.4.2) introduced by repeatedly
teleporting a ray’s position and tangent vector back inside of D. !

Remark 4.2. It may be useful to employ teleporting even when we are simulating a scene inside of the simply connected geometry
X rather than inside a quotient manifold. That is, we have a discrete subgroup of isometries and a fundamental domain D, and we
use teleportation to keep the viewer always within D. Whenever we teleport the user, we also teleport all other objects in the scene,
and update the signed distance function as appropriate. The advantage here is that rays begin inside of D, where their coordinates
are small. Therefore, $oating point errors only accumulate to a noticeable degree for objects which are far from the viewer. For some
geometries, such distant objects will be very small on the visual sphere. Alternatively, they may be hidden by fog. !

4.1.1. Teleporting with a Dirichlet domain
A simple, geometry independent implementation involves choosing the Dirichlet domain D for the action of !, centered at the origin
o ∈ X. To determine whether or not a point p is outside of D, we compare the distance d(p, o) with d(p, γ ±

i o) for each face pairing
isometry γi. When d(p, o) > d(p, γ ±

i o), the point p can be brought back closer to o via an application of γ ∓
i . Iterating this (relabelling

our point as p a!er each step) until d(p, o) ! d(p, γ ±
i o), we ensure that p is inside of D.

An advantage of this approach is that one does not need an analytic description of the boundary ∂D to accurately adjust the
ray-march. When the intrinsic distance d is expensive to calculate however, this adds a signi"cant extra computational burden.

4.1.2. Teleporting with a projective model and linear algebra
A second implementation that removes the need to calculate distances is possible for the Thurston geometries. Up to covers (in the
cases of S̃L(2, R) and S3), these have projective models: a representation of the geometry as an open subset r : X ↪→ RP3, together
with a linear representation Isom(X) → PGL(4; R) [39].

To lighten the notation in this section, we identify X with its image under r. We choose our fundamental domain D for the action
of ! such that D = ⋂

i H±
i , where {H±

i } is a collection of 2n half-spaces of X. The point p is outside of D if and only if there is
a half-space H±

i such that p 1∈ H±
i . Each half-space H of R3 is in natural correspondence with a linear functional φ : R3 → R,

where v ∈ H if and only if φ(v) " 1, so we can check if p ∈ H±
i by computing the value φ±

i (p). The embeddings r : X → RP3 are
inexpensive to compute in our models (Table 1): for S3, H3, S2 × R, H2 × R we divide by the fourth coordinate, and E3, Nil, Sol are
already a%ne patches. The situation for S̃L(2, R) is slightly more complicated, but similar ideas work for the fundamental domains
we have implemented. Thus, we reduce the problem to a quick calculation in linear algebra.

Knowing which of the half-planes p is not contained in, we now must "nd the element of ! which moves p back into D. We
iteratively construct this element from the γ ±

i for which (at each step) φ±
i (p) > 1. In many cases (for example when ! is a "nite

index subgroup of a re$ection group), it does not matter which such γ ±
i we choose at each step. In other cases, for reasons of e%ciency,

one must be more careful with the ordering; see, for example, Section 9.9.
Since we have projective models for the eight Thurston geometries, we use this strategy rather than the Dirichlet domain strategy.

Remark 4.3. In practice, when using the projective model we can take S = {γi} to be an arbitrary generating set for !. We then
generate the half-spaces H±

i from S. Their intersection forms a fundamental domain D. Note that multiple faces of D may lie in the
boundary of a single half-space, and the face pairings of D may involve elements of ! other than those in S. However, we need only
use elements of S to implement teleportation. See Section 9.9 for a detailed example. !

4.2. Signed distance functions in X/!

With the addition of teleportation, we may draw scenes in any complete (G, X)-manifold using the same algorithms as we use in X
itself, given the input data of a signed distance function mapping X/! to R describing the scene. Unfortunately, e%ciently calculating
a signed distance function (or even a distance underestimator) for a scene in a quotient manifold is o!en nontrivial. In practice, we
will o!en use an approximation.

We can construct a very simple approximation for a scene S as follows. Let D ⊂ X be a fundamental domain for the quotient
manifold X/!. We then view S as a subset of D. For a point p ∈ D, we may then return the signed distance from p to S, where we
measure distance in X, ignoring the quotient manifold structure entirely. Let us call this simplest approximation σ : X → R. (Here
we implicitly extend the signed distance function from D to X.)

As an example, Figure 10(a) shows the correct signed distance function for a disk in a square torus, while Figure 10(b) shows
σ . For such a square torus, σ |D will be the correct signed distance function for the quotient torus only if the disk is centered in the
square. Using σ |D in place of the correct signed distance function can lead to some serious visual artifacts. For example, consider a
ray starting at the position p marked with a small red “×” in Figure 10(b) and heading to the le!. This ray should leave through the
le! side of D, teleport to the right side of D, then hit the disk. However, the function σ |D reports that the distance from p to the disk
(indicated with the red interval) is more than half the width of the square. A march along the ray by this distance is shown with the
blue arrow: we jump straight through the disk. The result is that this li! of the disk is invisible when viewed from p.

A similar but less extreme form of visual artifact is shown in Figure 11(a). Here we see jagged errors on the boundaries between
cells. In some places near the boundary of D we erroneously jump through points of the scene. Whether or not we make such a



1212 R. COULON, E. A. MATSUMOTO, H. SEGERMAN, AND S. TRETTEL

)e signed distance function for a disk in a
torus, drawn in the universal cover.

)e simplest approximation to the signed dis-
tance function, .
(b)(a)

σ

Figure 10. Functions on a torus. We indicate the level sets by bands of color.

No Creeping. Creeping.(a) (b)

Figure 11. Allowing the ray-march to leave the fundamental domain can cause visual artifacts on objects near its faces. Creeping up to the boundary !xes this.

jump depends on how close to the boundary of D we land before jumping across the boundary. The variability in this leads to the
jaggedness. Figure 13(a) shows related artifacts.

4.2.1. Creeping over the boundary of D
One strategy to avoid these kinds of errors uses the observation that $owing by the distance given by σ is only dangerous if our ray
leaves D. Thus, we should detect when a ray passes outside of D, and stop just outside. As usual, we are teleported back inside of D,
and continue ray-marching.

Detecting when a ray hits ∂D is a similar problem to that of detecting when the ray hits an object in the scene. We employ a variety
of di#erent methods, as follows.

(1) One way to do this is to use ray-tracing: we solve for the intersection between the ray and the boundary, and measure the distance
between this intersection point and the start of the ray.

(2) If it is di%cult to solve for this point of intersection, but the faces of D have computable signed distance functions, then we can
instead use ray-marching. We $ow by the minimum of σ and the distance to ∂D.2

2In practice, we allow a march of the distance to the nearest wall plus some small ε: this prevents wasting many steps approaching the boundary to no
appreciable theoretical disadvantage: the teleportation scheme returns us to D immediately upon overstep.
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An incorrect calculation of , using only the
disk whose center is in D.

)e correct calculation of requires calcula-
tion of the distance to at least two points.

(a) (b)σ σ

Figure 12. Calculating σ for a disk overlapping the boundary of D.

(3) When the faces do not have computable signed distance functions but we can still detect whether or not we are inside of D, we
proceed as follows: We $ow by the distance given to us by σ , and ask if the result puts us outside of D. If it does, then we perform
binary search on the distance we $ow to "nd a point just outside of D.

Creeping just over the boundary solves the problem shown in Figure 13(a), giving the correct image, Figure 13(b). In general,
creeping produces the correct pictures as long as all objects in the scene are contained within the domain D. However, this breaks
down if we wish to, for example, move a ball from one domain to another. When a ball intersects ∂D, calculating the approximation
σ requires measuring the distance to the center of the ball in D, and at least one translate of its center under some element of !

(Figure 12). Without this extra calculation, one sees objects cut in half by the boundary of D (Figure 13(b)). Solving this problem led
us to the following alternate (or additional) strategy to creeping.

4.2.2. Nearest neighbors signed distance functions
Here we use a signed distance function on D that takes into account the e#ects of the nearby translates of D.

Let A ⊂ ! be a set of isometries. De"ne

σA = min
a∈A

{σ ◦ a}

For example, σ{id} is just σ , and σ! is the correct !-invariant signed distance function. If ! is in"nite, then we cannot calculate σ!

directly. However, if the tiling of X by copies of the fundamental domain is locally "nite, then there is a "nite subset A ⊂ ! such that
σA and σ! are equal on D. Indeed, we may choose for A the set of all γ ∈ ! such that the distance from D to γ (D) is at most the
diameter of D. Depending on the shape of the fundamental domain and how it is glued to itself however, the size of A may be large.
If so, calculating this signed distance function may be prohibitively expensive.

We "nd that most visual artifacts can be resolved without the use of creeping by using σA, where A = {id}∪ {γ ±
i }. That is, we use

σ in D and its nearest neighbors, directly connected by face pairings (Figure 13(c)). In some circumstances, this may not be enough;
see for example Figure 14. Here, a ray passing close to a vertex of the tiling may not see an object diagonally adjacent to the starting
domain. In three dimensions, the equivalent problem can appear for rays crossing close to an edge of the tiling.

In general, depending on the circumstance, either creeping or using the nearest neighbors signed distance function, or some
combination of the strategies may be the most e%cient strategy to obtain correct images. Even the combination of both strategies
can produce errors in some circumstances. In Figure 15, the only solution would be to use more translates of σ than just the nearest
neighbors.

Remark 4.4. We would like to choose a scene for X/! which illustrates the geometry and topology while having a signed distance
function that is very e%cient to calculate. We o!en use the following strategy. We delete from a fundamental domain D a large ball
(or solid ellipsoid). The signed distance function for the complement of a ball in D is

σ (p) = r − dist(o, p).

Here, r is a su%ciently large radius so that the deleted ball opens windows into neighboring fundamental domains. The corresponding
tile for the cubic lattice in E3 is shown in Figure 3(b). Depending on the geometry, we may also remove a sphere centered at each
vertex of the fundamental domain, as in Figure 3(c). !
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Signed distance function restricted to D. Note the striped artifacts in various copies of the red ball.

Creeping to the boundary of D. )e striped artifacts are gone, but we can see only half of the red
ball.

Using a nearest neighbors signed distance function, without creeping.

!"#

!$#

!%#

Figure 13. Di#culties when ray-marching in a fundamental domain D. The blue sphere is contained fully in D. The red sphere is only half contained in D.

4.3. Orbifolds and incomplete structures

In our discussion so far, we have assumed that X/! is a manifold, but in fact nothing is lost by generalizing to orbifolds. Brie$y,
an orbifold is a topological space locally modeled on patches of Rn/G for G some "nite group of di#eomorphisms. When G is the
trivial group, this reduces to the de"nition of a manifold. This additional $exibility in the de"nition allows for certain controllable
singularities, such as cone axes (with cone angle π/k for some integer k > 0), while still behaving very similarly to the manifold
case. Indeed, many topological notions such as fundamental groups, covering spaces, and geometric structures carry over directly
to orbifolds. Geometric structures on orbifolds are de"ned similarly to those on manifolds (see the beginning of Section 4), with the
main di#erence being that the action of the fundamental group under the holonomy homomorphism need not be free. However, as
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Figure 14. For rays traveling near to a vertex, only using the nearest neighbors of a tile may not be enough to remove all visual artifacts without creeping.

Figure 15. Even combining creeping to the boundary with nearest neighbors may not !x all problems. Here, the scene consists of a ball that overlaps an edge of a cubical
domain D.

the image ! of the holonomy homomorphism is still discrete, we may "nd a fundamental domain D for its action and draw pictures
of the quotient orbifold X/! as before. There is however little change in visual e#ect: by [10, Corollary 2.27], every orbifold with
a (G, X) structure is "nitely covered by some (G, X) manifold. Thus, up to a "nite amount of local information in the scene, the
large-scale picture will look the same as its manifold cover.

We can generalize still further. Manifolds and orbifolds have complete geometric structures, meaning that the developing map
is a di#eomorphism. This allows the identi"cation M ∼= X/!. The more general notion of incomplete (G, X)-manifolds are also
fundamental objects in geometric topology. Allowing general immersions as developing maps M̃ → X naturally captures various
kinds of singularities, such as cone axes (where the cone angle can now be any real number) or punctures. This sort of $exibility is
crucial in some core results of geometric topology. For example, the natural extension of the Geometrization Theorem to orbifolds
requires the analysis of incomplete hyperbolic structures. However, incomplete structures are typically di%cult to deal with, as the
image of the holonomy homomorphism is indiscrete. Previous work here includes hand-drawn examples by Thurston (including
two-dimensional structures in chapter three of [61], and a three-dimensional drawing reproduced here in Figure 16(a) from [62])
and tilings of H2 by Bonahon [6].

Our ray-marching procedure for quotient manifolds extends without change to incomplete structures, allowing the accurate
rendering of these as well. Note that throughout the algorithm, only local data is required: the existence of a fundamental domain
D and face pairings {γ ±

i }. Both of these exist equally well for incomplete structures. Here, the inside view is quite di#erent than
the complete case. The ability to render incomplete structures may aid in visualization projects, such as animating hyperbolic Dehn
surgery or geometric transitions. Indeed, version 2.8 of SnapPy [9] implements the inside view of hyperbolic manifolds undergoing
hyperbolic Dehn surgery. However, interpreting these requires more mathematical sophistication than for more familiar manifolds
and orbifolds, so we will not focus on them in this article.

Remark 4.5. We create some of our spaces by directly constructing a fundamental domain D, then later "gure out which manifold,
orbifold, or incomplete manifold it is. In other cases, we start with a desired manifold, or lattice ! < G, and have to work out a
fundamental domain D. For the easier geometries, this generally involves (spherical, hyperbolic, or euclidean) trigonometry. We
discuss the construction of fundamental domains for the harder geometries in Sections 9.9, 10.9, and 11.7. !
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A cone axis of angle 2π − ε causes double images. )ese images are Figures 1 and 3 in )urston’s
paper How to See!ree Manifolds [62].

Hyperbolic cone manifold with cone axis of
angle 2π − ε.

Hyperbolic cone manifold with cone axis of
angle 2π + ε.

!"#

!$# !%#

Figure 16. The inside view of a manifold with a cone axis has double imaging of some points when the cone angle is slightly less than 2π , and hidden regions when the
cone angle is slightly greater than 2π . Figure 16(a) reproduced with permission from IOP Publishing.
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Figure 17. The geometric data required to calculate the color observed when looking from the point p in the direction v ∈ TpX at a point s, lit by a light at a point q from
the direction L ∈ TsX .

5. Lighting

Common physics-based shading techniques in computer graphics (di#use and specular lighting, re$ections, shadows, ambient
occlusion, and atmospheric e#ects) are all computed from geometric data, and so generalize naturally to riemannian geometry.
Below we brie$y review some of these techniques, and the modi"cations required. Also see [43] for a path-tracing lighting model in
the constant curvature spaces.

The e#ect from each light source in the scene can be computed separately, and the "nal color determined through a weighted (by
intensity) average of each light’s contribution. Thus, it su%ces to describe the contribution of a single light source. However, in the
geometries with positive sectional curvatures (S3, S2 × E, Nil, Sol, S̃L(2, R)), non-uniqueness of geodesics may cause even a single
light source to illuminate an object from multiple directions. As these individual contributions also combine linearly to the total, we
may further reduce the problem to understanding single-source lighting from a single direction at a time.

To "x notation, let S be a scene in X given by a signed distance function σ , lit by a light source at q ∈ X (Figure 17). Let Cs be the
base color of the point s of the scene, (represented as a three-vector storing its red-green-blue components), let Clight be the color of
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A ball in spherical geometry: more than
half of its surface is visible.

A ball in Nil geometry: the non-
uniqueness of geodesics causes a triple image
of South America.

!"# !$#

Figure 18. Balls textured as the Earth.

light source, and Ilight be its intensity. Now suppose that we are at a point p ∈ X, looking in the direction v ∈ TpX. Assume that this
line of sight ends by impacting the point s ∈ S of the scene. To compute the aforementioned lighting e#ects, we need the following
data:

• N ∈ TsX: unit outwards normal to ∂S at s,
• L ∈ TsX: unit vector at s pointing to q,
• R ∈ TsX: re$ection of −L with respect to N,
• V ∈ TsX: unit vector at s pointing to p,
• v ∈ TpX: unit vector at p pointing to s,
• ' ∈ TqX: unit vector at q pointing to s,
• dL: distance from s to q along the geodesic with tangent L,
• dV : distance from s to p along the geodesic with tangent V , and
• IL: the light intensity experienced at s from the direction L.

Here, we employ the convention that vectors in the tangent space at s are written in upper case, while vectors in tangent spaces at
other points are written in lower case.

Remark 5.1. The base color Cs for a point s of the scene can be a single color for each object, or we can texture objects in a more
complicated way. For example, we sometimes texture balls as the Earth. This provides a globally recognized coordinate system and
allows one to infer the "nal endpoints of geodesics leaving your eye (Figure 18). !

5.1. Phong lighting model

An empirical formula for accurate di#use and specular re$ection in computer graphics was published by Phong in his 1975
dissertation [54] and now bears his name. The Phong lighting model (also called the Phong re$ection model) decomposes the total
color of the surface as a sum of three components: ambient, di"use, and specular. The ambient contribution is simply the base color Cs
of the object at s. The remaining two terms are proportional to the light color Clight and the intensity IL of the light source, as well as
a third geometric quantity, as follows. Di#use lighting is also proportional to the cosine of the angle between the light direction and
the surface normal. Specular re$ection is proportional to some power of the cosine of the angle between the viewer and re$ected ray
directions. This power is a parameter controlling the “shininess” of the material of the object. When either of these angles is obtuse,
the corresponding lighting contribution is taken to be zero. This allows us to express the total lighting contribution of Phong lighting
using the riemannian metric at s

Phong(N, L, R, V , IL) = kambCs +
(
kdi# 〈N, L〉 + kspec〈R, V〉α

)
ILClight, (5.2)

where the constants are chosen to satisfy kamb + kdi# + kspec = 1. These control the relative contribution of each of these factors.

Remark 5.3. Phong justi"es his model empirically, by comparing a render with a real-life photograph of a (euclidean) scene. We use
his model far outside of the setting in which it was designed for, so one could question whether or not it produces accurate results in
our non-euclidean spaces. A reasonable test would be to compare our results with a more physically correct ray-tracer. !
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Specular highlights.

Phong lighting with multiple light sources pro-
vides realistic depth cues.

!"#&'()*+,&-(./0(1.2 !$#
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Figure 19. A collection of balls in Nil geometry.

5.2. Shadows

Phong lighting calculates the contribution of the observed color at s due to a light source in the direction L using only local
computations in TsX. While e%cient, this ignores the existence of other objects in the scene, e#ectively rendering them transparent
to the lighting calculation.

Happily, there is a simple solution to detecting objects which block the path from s to the light: simply ray-march starting at s in
the direction toward the light and see if you hit anything. If you do, then there is no need to calculate the Phong lighting contribution
for that light/direction, as s is in shadow. When modeling lights as point sources, this produces hard shadows. Realistic light sources
which emit light over an area instead produce so# shadows, as there are points in space where the light source is only partially
obscured. While modeling an extended source is computationally demanding, a multitude of empirical formulas for approximating
so! shadows with point source lights have been developed in computer graphics. We brie$y discuss a solution particularly well suited
for ray-marching below. See Quilez [56] for more details.

Instead of a simple binary value, the shadow is modeled as a scaling factor to be multiplied by the Phong lighting contribution,
smoothly interpolating between zero and one. To compute this value, we track the distance of the light ray from other objects in the
scene as we follow it backwards from s in the direction L. Let γ : [0, T] → X be the arc length parameterized geodesic from s to the
light at q with initial tangent L. The degree of shadow imparted by the surrounding scene at a point γ (t) is modeled by the distance
of γ (t) from an object in the scene, normalized by the distance traveled from s. The total degree of shadow is proportional to the
minimal value of this ratio over the path, or

Shadow(s, L) = min
{

1, K σ (γ (t))
t : t ∈ [0, T]

}
. (5.4)

Here, K " 1 is a parameter determining so!ness. As K → ∞ this reproduces the hard shadows above. In practice, we approximate
this by computing this ratio at each step of the ray-march from s to q, and then take the minimum.

5.3. Atmospheric e#ects

The fact that computing the total distance traveled along a path is trivial in a ray-marching application makes the above so!
shadow approximation e%cient. This almost free availability of path lengths also lends itself well to volumetric rendering: accounting
for contributions to the lighting from atmospheric media encountered along the path. The simplest such e#ect, distance fog, is
computationally inexpensive to implement and provides helpful distance cues in complex scenes. This replaces a fraction of the
color of a pixel with a “fog” color, Cfog, depending on the distance the ray travels before hitting an object.
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Hard Shadow.(a) (b) KSo* Shadow ( = 5).

Figure 20. A comparison of di"erent shadow rendering techniques with a sphere lit by three light sources above a plane in euclidean space.

Without fog.(a) (b) (c)With linear fog. With exponential fog.

Figure 21. A lattice of balls in euclidean space.

In many computer graphics applications, this fraction is linear in path length. This has the advantage that there is a distance at
which all of the pixel is given the fog color, and no further calculation is necessary. However, a physically realistic model based on
scattering along a path (the Beer-Lambert law in physics) implies that the fraction is actually exponential in the path length. We give
these two models below.

Fog(dV) = 1 − min
{dV

K , 1
}

, Fog(dV) = e−KdV (5.5)

Here, K > 0 is a constant determining the rate of scattering. Each of these are extremely easy to implement, as they are standard
functions of the already-available path length.

Combining the contributions from both shadows and fog, we obtain the following.

Col = Fog(dV) · Shadow(L) · Phong(N, L, R, V , IL)+
(1 − Fog(dV)) · Cfog

(5.6)

Outside of this section, our in-space images use exponential fog unless otherwise noted. We always set Cfog to be black.

5.4. Re!ections

It is also relatively simple to allow for re$ective materials in ray-marching, Upon impacting a re$ective surface at s1, one simply
initiates a new ray-march from s1 in the direction of the re$ected ray. This ray-march may impact another object, at s2 say. If so,
we may re$ect again. Computing the observed colors Coli at the points si as above, the "nal color is an average, weighted by the
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Figure 22. Re$ections in a complicated scene in hyperbolic space.

re$ectivity ri ∈ [0, 1] of the material at si. This can be carried out iteratively with no additional di%culty (other than increase in
computation time). The weighted averages for one and two re$ections are given below.

(1 − r1)Col1 + r1Col2 (1 − r1)Col1 + r1 ((1 − r2)Col2 + r2Col3)

5.5. Computing the necessary geometric quantities

As the above sections illustrate, it is relatively straightforward to calculate accurate lighting, given the geometric quantities listed at
the beginning of this section. Here we turn to the issues involved in computing these. Some of these quantities are available directly
from the ray-march itself.
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5.5.1. Computing v
The vector v ∈ TpX pointing from the viewer to the observed point s ∈ S is the initial tangent vector for the ray-march.

5.5.2. Computing V
The vector V ∈ TsX pointing back at the viewer is the negation of the "nal tangent vector for the ray-march.

5.5.3. Computing dV
The distance dV from the viewer to the observed point is the path length returned by the ray-march.

Other quantities require further computation.

5.5.4. Computing N
The unit surface normal N ∈ TsX is computable directly from the signed distance function σ . It is the gradient vector grad σ (s) dual
to dsσ via the riemannian metric. As in multivariable calculus, "xing a basis {f1, f2, f3} for TsX, this is approximated for some small
ε > 0 by

grad σ (s) 5
3∑

i=1

σ (s + εfi) − σ (s − εfi)
2ε

fi

While in principle any choice of basis of TsX su%ces, even slight discontinuities in the normal "eld over a surface are plainly visible
in the output of the Phong lighting model. To prevent this source of error, we make a globally continuous choice of basis by selecting
a section of the frame bundle. A simple construction of such a section follows from the transitivity of the G-action. Let B ⊂ G be a
subset (not necessarily a subgroup) of the isometry group such that the orbit map B → X de"ned by g *→ g.o is a di#eomorphism
(e.g., when G has a subgroup acting simply transitively, we may take this as B). The inverse of this orbit map provides a section X → G
with image B, sending s ∈ X to g(s). We promote this to a section of OX by choosing an orthonormal frame f = {f1, f2, f3} for ToX
and translating by the G-action. This assigns to s ∈ X the frame dog(s)f .

5.5.5. Computing R
The unit normal provides a means of re$ecting rays in the surface. Given any vector U ∈ TsX we may compute its re$ection in the
surface by

Re$(U) = U − 2〈U, N〉N

Thus, given the direction to the light source L ∈ TsX, we may "nd the "nal direction needed for Phong lighting, R = −Re$(L). This
leaves only four quantities to be computed, all dealing with the location of the light source; two directions L, ' and two scalars dL, IL.
These require global information about the geometry of X. We discuss this next.

5.6. Computing lighting directions, L, ", and distance dL

Calculating the direction L in which a light is visible from a point on the surface (and the other related quantities) cannot be reduced
to linear algebra in some tangent space: it involves the global geometry of X. This requires a procedure that takes two points s, q ∈ X
and returns the set of lighting pairs Ls(q) ⊂ TsX × R+. Here, each element (L, dL) ∈ Ls(q) represents the direction, L, of a geodesic
γ connecting s to q, and the length, dL, of the geodesic segment γ connecting s to q. Since we use explicit formulas for the geodesic
$ow, one can directly compute from (L, dL) the direction ' ∈ TqX and the reverse geodesic γ ′ joining q to s. In all cases, we may
use the homogeneity of X to reduce the problem to understanding geodesics from the origin, and focus on calculating the lighting
pairs Lo(q) for q ∈ X. However, for the convenience of the reader, in the isotropic and product geometries we provide formulas for
a general point s ∈ X.

In geometries with nonpositive sectional curvature, geodesics are unique by Cartan-Hadamard. Thus for each s, q ∈ X the set
Ls(q) is a singleton. In other geometries Ls(q) may be a singleton, "nite, countably in"nite, or uncountably in"nite, depending on
q. See Figure 23 for examples of lighting along multiple geodesics in S3 and S2 × E. There is no uniform approach to calculate Ls(q),
so we deal with this computation in later, geometry-dependent sections of this article.

5.7. Computing the light intensity IL

We have one remaining quantity to compute: IL, the intensity of the light source at q, as observed at s from direction L. We model our
light source as isotropic with constant intensity Ilight. To "x some notation, for any distance t > 0 and unit direction vector u ∈ TqX,
let I(t, u) be the intensity arriving from the light source a!er traveling along the geodesic ray in the direction u for distance t. For any
solid angle . (i.e., a subset of the unit tangent sphere at q denoted by UTqX), let .t ⊂ X be the surface formed by $owing outwards
from q along geodesics in the directions in . by distance t (Figure 24).
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Only the shortest geodesic.(a) (b)

(d)(c)

Correct lighting (two geodesics)

Only the shortest geodesic. 200 Geodesics.

Figure 23. A single light in S3 (top) and S2 × E (bottom). This demonstrates the necessity of dealing with multiple directions in Lp(q).

We assume that the total energy $ux through the surface .t is constant, independent of the distance traveled. (Energy is
transported by the light rays along geodesics, but not created or destroyed along the way.) This relates I(t, u) directly to the area
density of geodesic spheres. That is, for any ., t we have

∫

.
IlightdA =

∫

.
I(t, u)dA′,

where dA is the standard area form on the unit sphere in the tangent space, and dA′ is the pullback of the area form on .t ⊂ X to
. ⊂ UTqX. We may express dA′ in terms of dA; the resulting scale factor is the area density dA′ = A(t, u)dA. Thus, the quantity∫
. I(t, u)A(t, u)dA is constant in r for every solid angle . ⊂ UTqX. Assuming continuity and taking the limit over shrinking solid

angles promotes this to a pointwise invariant: I(t, u)A(t, u) is independent of t. Thus, I is inversely proportional to A, and

I(t, u) = Ilight
A(t, u)

. (5.7)

Remark 5.8. The intensity IL experienced at s from the direction L is then just IL = I(dL, ') = Ilight/A(dL, '). A further correction
to IL can occur when we add fog. Here, the intensity drops o# due both to (1) divergence/convergence of geodesics, and (2) distance
traveled through the medium. A physically correct model for scattering from an isotropic source is already complex in euclidean
space. However, as the primary goal of modeling fog is to provide useful depth cues (and hide sins), we treat these sources of loss as
if they were independent, and use

Ifog
L = Fog(dL) · IL(dL, ') = e−KdL

Ilight
A(dL, ')

when distance-dependent attenuation (fog) is desired. !

Equation (5.7) reduces the calculation of lighting intensity directly to the area density A. In the next section, we calculate this area
density by following in"nitesimal patches of area along the geodesic $ow.

5.7.1. Area density under the geodesic "ow
Fix q ∈ X to be the location of a light source, and let F : TqX → X be the exponential map. For "xed t > 0, de"ne ft(u) = F(tu), so
ft : UTqX → X is a map of the unit tangent sphere at q, UTqX into X, formed by $owing along geodesics from q for distance t. Note
that the image is not the sphere of radius t about q when t is greater than the injectivity radius of X. Recalling the notation above .t
is de"ned as ft(.), for a solid angle . ⊂ UTqX. We denote the entire image as S2

t = ft(UTqX). Let dA be the standard area form on
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Solid angle around the(a)

(b)

(c)

x-axis.

Solid angle around the z-axis. )e image of the lighter area is a tiny strip on the top of the
Sol sphere.

Solid angle around a diagonal line

Figure 24. Extrinsic views of spheres in Sol. In each !gure, the left-hand picture represents the unit sphere in the tangent space at the origin of Sol. The lighter areas
correspond to solid angles . with the same measure, but pointing in di"erent directions. The right-hand picture shows an extrinsic view of the image of the unit tangent
sphere after following the geodesic $ow for time r = 3. The lighter area is the image .t of ..

UTqX, and let dAt be the area form on S2
t ⊂ X. Recall that the area density A(t, u) is the proportionality factor of the pullback f ∗

t dAt
to dA. We may compute this given any choice two non-collinear vectors {v, w} in u⊥ as

A(t, u) = (f ∗
t dAt)(v, w)

dA(v, w)
= dAt

(
(dft)uv, (dft)uw

)

dA(v, w)
.

The area forms dA and dAt measure the areas in X of in"nitesimal parallelograms in TqX and Tft(u)X, respectively, and so may be
evaluated in the algebra of bivectors on TX, where the area spanned by v, w ∈ TpX is given by

‖v ∧ w‖ =
√

〈v, v〉〈w, w〉 − 〈v, w〉2

Thus, we have

A(t, u) = ‖(dft)uv ∧ (dft)uw‖
‖u ∧ w‖ . (5.9)

Note that the numerator is the jacobian determinant of ft . As computing area elements requires nothing more than some evaluations
of the metric, this reduces the calculation of area density to the computation of the di#erential dft .

Recall that ft(u) = F(tu), where F is the exponential map. We see that (dft)uv = dFtuv for all u ∈ TqX and v ∈ Tu(TqX). To
lighten notation, for the rest of this paragraph we identify Tu′(TqX) with TqX for every u′ ∈ TqX. Given u in UTqX and v in u⊥ of
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unit length, this allows an explicit computation of (dft)uv in terms of the exponential map, as follows. Let η(v, s) = cos(s)u + sin(s)v
be the unit vector in TqX making angle s with u in the plane spanned by {u, v}. Note that η′(0) = v so we may calculate (dft)uv as

(dft)uv = dFtuv = d
ds

∣∣∣∣
s=0

F(tη(v, s)).

For each "xed s, the map t *→ F(tη(v, s)) is a unit speed geodesic in X, and the derivative dFtuv ∈ TF(tu)X is a vector "eld along
this geodesic. Computed as above, we see this is a particularly nice vector "eld: it is the derivative of the geodesic $ow along a
one-parameter family of geodesics. Such vector "elds are called Jacobi !elds.

Given a smooth one-parameter family of geodesics {γs(t)} through γ0 = γ , the Jacobi !eld associated to γs is given by J(t) =
∂γs(t)/∂s|s=0. In general, one may bypass explicit computations involving γs, and compute such Jacobi "elds by solving a di#erential
equation. The Jacobi "eld Jv along γ with initial conditions J(0) = 0, J̇(0) = v satis"es the so called Jacobi equation,

J̈v = R (Jv, γ̇ ) γ̇ (5.10)

where R is the Riemann curvature tensor. For us then, (dft)uv and (dft)uw are the Jacobi "elds along ft(u) corresponding to the
variations F(tη(v, s)) and F(tη(w, s)) respectively, so

(dft)uv = Jv(t) and (dft)uw = Jw(t). (5.11)

In the isotropic geometries and product geometries, Equation (5.10) reduces to the second-order di#erential equation with
constant coe%cients. In any geometry where one may solve Equation (5.10), the area density is given as follows. For "xed u ∈ UTqX,
choose two vectors v, w ∈ u⊥ with ‖v ∧ w‖ = 1 and solve the Jacobi equation for the two Jacobi "elds Jv, Jw. Then using Equations
5.9 and 5.11, we have

A(t, u) = ‖Jv(t) ∧ Jw(t)‖ (5.12)

In the harder geometries, solving Equation (5.10) is more challenging. Following Section 3.2.1, one could use Grayson’s method
to replace Equation (5.10) with a system of di#erential equations on ToX. This is not what we do though. Since we already computed
the exponential map F (using Grayson’s method) we directly compute its di#erential dFtu.

Let r, θ , φ be the standard spherical coordinates on TqX, with φ the angle measured from the north pole. Let u ∈ UTqX have
coordinates [θ , φ]. Note that as the coordinate vector "elds ∂θ , ∂φ are orthogonal to ∂r , we may use them to make a uniform choice
v = ∂φ , w = ∂θ , and compute

A(r, u) = ‖dFru(∂φ) ∧ dFru(∂θ )‖
‖∂φ ∧ ∂θ‖

=
‖ ∂F

∂φ (r, θ , φ) ∧ ∂F
∂θ (r, θ , φ)‖

sin φ
.

In practice, due to the rotational symmetry in Nil and S̃L(2, R) about a single axis, it is more convenient to perform this
computation in cylindrical coordinates, with ρ = r cos φ and z = r sin φ. For ease of notation, we retain r =

√
ρ2 + z2 from

spherical coordinates to denote the distance traveled along the geodesic.

A(r, u) = 2
r

∥∥∥∥

(
∂F
∂ρ

− ρ

z
∂F
∂z

)
∧ ∂F

∂θ

∥∥∥∥ (5.13)

Using either Equation (5.12) or Equation (5.13), the computation of area density is necessarily geometry-dependent, so we give
details for each geometry in the corresponding section later (Sections 7.5, 8.4, 9.8, and 10.8).

5.8. Lighting in quotient manifolds

The basic algorithms for lighting remain virtually unchanged in a quotient manifold. Phong lighting is still computed in the tangent
space, and the only modi"cation to the computation of shadows and re$ections is to modify the ray-march as in Section 4. There
is only one major change worthy of discussion: the calculation of direction vectors pointing from the surface to a given light. This
is even more necessarily multi-valued here, as light may travel in loops around the manifold before impacting the surface. Indeed,
a light in X/! is the same as a !-equivariant collection of lights in X. When required for disambiguation, we will denote the set of
lighting pairs in a space Y as LY . For the location of a light q in D, thought of as the fundamental domain for X/!, the lighting pairs
LX/!

p (q) can be written in terms of the lighting pairs LX
p of Section 5.6:

LX/!
p (q) :=

⋃

γ∈!

LX
p (γ .q)
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Note that there is no sense in which LX
p (γ .q) is some sort of “γ -translate” of LX

p (q): the individual sets in this union may not even
have the same cardinality. This occurs for instance in Nil, where even if the distance from p to q is less than the injectivity radius, there
may be a γ ∈ ! with arbitrarily many geodesics from p to γ .q. As lighting is calculated individually for each direction and summed
weighted by intensity, it is in general impossible to compute this exactly for any manifold with in"nite fundamental group. Instead,
for all but spherical manifolds and orbifolds, we must approximate the lighting by computing only for those paths with signi"cant
intensity.

Light intensity is inversely correlated with geodesic length of a segment from p to q in geometries with non-positive sectional
curvature, and in all geometries if we use fog. Thus, we get a reasonable approximation to the correct image by restricting to directions
corresponding to “su%ciently short” geodesics. Considering only the directions from lights within D (that is, when γ = id) is not
enough, as some nearby translates γ .q still contribute signi"cantly. Compare Figure 25(a) with Figure 25(c). The latter shows the
correct lighting in the quotient of the three-sphere by the binary tetrahedral group. The former shows lighting using one of the

Lighting from within(a)

(b)

(c)

D only.

Lighting from within D and its eight neighbors.

Lighting from all 24 cells.

Figure 25. Lighting of the quotient of S3 by the binary tetrahedral group, with a single point source light. There are no re$ections: the patterns are the result of (hard)
shadows cast by the scene.
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24 light sources. An improved approximation is to use the ‘nearest neighbors’ idea from Section 4.2.2, and consider only tangent
directions at p which reach the light at q ∈ D, or its translates through the faces of D (Figure 25(b)).

This is even an issue in euclidean manifolds. Note that there is a discontinuity in the lighting of the red balls in Figure 13(c). The
le! and right hemispheres are lit by di#erent collections of lights, since they sit in di#erent fundamental domains.

In geometries with positive sectional curvatures, light can converge again over long distances, meaning that there are certain
directions where even long geodesics make signi"cant contributions to the overall sum unless we use fog. Which translates of the
lights to include in a calculation then depends on both the geometry and the scene. So far, we have only a heuristic understanding of
how to choose translates appropriately, based on the light intensity function for each geometry.

5.9. Cheating

Accurate lighting and shading is a complex problem, requiring many calculations, and many ray-marches per pixel to perform
correctly. As we strive to produce as accurate a simulation as possible, we have worked to implement lighting, shadows, re$ections,
and fog as described above. However, insistence on complete “physical” accuracy is not ideal for all applications. Sometimes lighting
is best thought of as a means for euclidean humans to better perceive the geometry, rather than as a feature of the geometry in itself.
This is analogous to astrophysical simulations, where it is more important to correctly render the size and position of celestial bodies,
rather than to faithfully reproduce the brightness of the sun. In these situations it is o!en desirable to purposely employ nonphysical
lighting to improve speed and/or visibility.

We "nd that the most o!en useful change to make is in the relationship of light intensity IL with distance. There are two main
problems that we can solve here.

• First, correct lighting may give intensities of vastly di#erent magnitudes for di#erent parts of the same scene. This means that
parts of the scene will be too dark for our eyes to see any structure. Alternatively, we can increase the brightness of the lights, but
then other parts of the scene will be oversaturated.

• Second, and more subtly, we use variation in brightness as a depth cue, telling us how far away an object is from a light source.

Figure 26(a) shows a scene in H3 lit by a single light. Here, exponential fallo# in intensity with distance leaves everything other
than the central cell shrouded in darkness. We see similar behavior in Figure 28(c), when looking in a hyperbolic direction in
H2 × E. When we look in a euclidean direction in Figure 28(a), we do see neighboring cells, giving the impression that cells
are closer in that direction than in the hyperbolic directions. In Figure 27, the correct lighting calculations in S2 × E give an
approximately even brightness over the whole image, even though only the ball at the center is particularly close to the viewer. The
space S2 × E works like a "ber-optic cable – on average, the intensity of the light does not decrease with distance as we move along
the cable.

Correct intensity calculation.(a) (b) Intensity inversely proportional to geodesic
length.

Figure 26. A single light in hyperbolic space.
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Correct intensity calculation.(a) (b) Intensity inversely proportional to geodesic
length.

Figure 27. A line of balls in S2 × E lit by a single light. Each ball is also visible as a collection of rings, seen along rays that wrap around the S2 direction at least once.

Instead of the correct lighting intensity IL, we may cheat, and use an arti"cial slowly decreasing intensity (say, inversely
proportional to geodesic length). This provides more helpful depth cues and may also be less expensive to compute (Figures 26(b),
27(b), 28(b), and 28(d)). As a side bene"t, this also allows one to see distant reaches of a negatively curved space with only a few light
sources. This also reduces computational cost.

When it comes to improving speed, we may pare down the lighting pipeline to focus on giving accurate depth cues. This means
preserving Phong lighting and fog, while perhaps ignoring shadows, or not using re$ective materials. Another e%ciency gain which
does not a#ect the intelligibility of the scene is to consider only the direction to the light along the shortest geodesic, instead of the
set of all directions. Even when attempting accurate rendering, it is o!en acceptable to ignore lighting along all but the shortest few
geodesics. This is the case when using fog, or when the intensity fall-o# makes the contribution to the weighted average along longer
geodesics negligible.

However, using fewer geodesics can introduce very visible errors. In a quotient manifold, as we saw in Figures 25 and 13(c) we
may lose shadows, or introduce discontinuities in the perceived light intensity. In some geometries, using fewer geodesics can in fact
remove discontinuities in lighting intensity that should be there.

We usually indicate the position of a light with a ball in the scene centered on the light source, making sure that the shadow
calculation for that light ignores the ball. To remove visual complication, we sometimes choose to not render these balls. Along these
lines, in some situations we may not actually care, or may not be able to e%ciently calculate, the lighting pairs Ls(q). Instead, we may
simply choose for each light source a continuously varying direction "eld X → TX. We give up on correctness, but still provide a
seamless view and give visual cues. Figure 29 compares di#erent choices of illumination in Nil.

6. Implementing speci!c geometries

In the previous sections, we have described our strategies in a more-or-less geometry independent manner. Here, we begin to give
speci"c details for each of the eight Thurston geometries. To summarize the previous sections, for each geometry, we require the
following:

(1) A model for X with action of the group of isometries G. That is, we must now be explicit about how points and isometries are
described by vectors or matrices of $oating point numbers.

(2) Arc length parameterized geodesics in the model. That is, a way to $ow a position and tangent vector at that position along the
ray by a given distance, as described in Section 3.2.

(3) Signed distance functions in the model.

In order to render a quotient manifold with this geometry, we also need

(4) A fundamental domain D with face pairings {γi} ⊂ G.

For the Phong re$ection model of lighting, we need

(5) For a point s (where a ray hits a surface) and the location of a light source q, the set of lighting pairs Ls(q) of geodesics joining s
to q and vice versa (Section 5.6).

To allow the user to move, we also require

(6) Parallel transport along geodesic arcs. (Used to translate movement of the user’s frame in R3 into isometries of X.)



1228 R. COULON, E. A. MATSUMOTO, H. SEGERMAN, AND S. TRETTEL

Correct lighting, view in the(a) (b)

(d)(c)

E direction. Intensity inversely proportional to geodesic
length, view in the E direction.

Correct lighting, view in an H2 direction. Intensity inversely proportional to geodesic
length, view in an H2 direction.

Figure 28. A lattice lit by a single light in H2 × E. The distance between the centers of neighboring cells of the lattice is the same in all directions. With correct lighting, we
see many cells in the E direction, while we can barely see our neighbor in an H2 direction. With fake lighting, cells dim with distance equally in all directions. (Note that there
is no fog in these images.)

For each of the eight Thurston geometries, we list some of these ingredients in Table 1. All of our models are subsets of R4.
We give further details in the following sections. We consider the isotropic geometries in Section 7, the product geometries

in Section 8, and Nil, S̃L(2, R), and Sol in Sections 9, 10, and 11, respectively. A general reference for Thurston’s geometries
is [57].

7. Isotropic geometries

In this section, we give implementation details for E3, S3 and H3. For further background, we refer the reader to [4, Chapter I.2]. See
also Weeks [68]. Many details for these three geometries are very similar; for the convenience of the reader, we list these explicitly.
In particular, we give distance functions for some simple shapes in standard positions. They can be conjugated by isometries to
give signed distance functions for these shapes in general position. We also reference the possible discrete groups (or equivalently,
manifolds) for each geometry.
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R4 from(a) Arti+cial direction +eld (straight line in
s ∈ X ⊂ R4 to the light position).

Direction of the shortest geodesic only.

At most two geodesics. At most three geodesics.

(b)

(c) (d)

Figure 29. A line of balls in Nil along the z-axis, lit by three light sources (cyan, yellow, and magenta). The magenta light is su#ciently far away from the !rst ball that they
are connected by several geodesics. The intensity attenuation has been turned o" to emphasize the contribution of each source of light.

Table 1. The eight Thurston geometries. We denote the canonical basis {ex , ey , ez , ew}. We write (x, y, z, w) for the coordinates of a vector v in this basis. Note that Isom(R) ∼=
R ! Z/2.

Geometry Series model (set, metric, Origin o) Geodesic from o
in direction v

Isometries Example lattices

E3
R4, w = 1,
ds2 = dx2 + dy2 + dz2,
o = ew

tv R3 ! O(3) Z3

S3
R4, x2 + y2 + z2 + w2 = 1
ds2 = dx2 + dy2 + dz2 + dw2,
o = ew

cos(t)ew + sin(t)v O(4)
The eight element
quaternion group.

H3
R3,1, x2 + y2 + z2 − w2 = −1
ds2 = dx2 + dy2 + dz2 − dw2,
o = ew

cosh(t)ew + sinh(t)v O(3, 1)
The isometry group of
Seifert-Weber space.

S2 × E
R3 × R, x2 + y2 + z2 = 1
ds2 = dx2 + dy2 + dz2 + dw2,
o = ez

(
cos(λt)ez + sin(λt)

vS2

λ
, tvE

)
where

v = (vS2 , vE)
and λ = ‖vS2 ‖

O(3) × Isom(R)
1 × Z

where 1 is a discrete
subgroup of Isom(S2)

H2 × E
R2,1 × R, x2 + y2 − z2 = −1
ds2 = dx2 + dy2 − dz2 + dw2,
o = ez

(
cosh(λt)ez + sinh(λt)

vH2

λ
, tvE

)
where

v = (vH2 , vE)
and λ = ‖vH2 ‖

O(2, 1) × Isom(R)
1 × Z

where 1 is a discrete
subgroup of Isom(H2)

Nil
R4, w = 1,
See Section 9.2,
o = ew

See Section 9.3 Nil ! O(2)
Z2 !M Z

with M ∈ SL(2, Z),
parabolic

S̃L(2, R)
R2,1 × R, x2 + y2 − z2 = −1
See Section 10.1,
o = ez

See Sections 10.2 and 10.3 S̃L(2, R) ! O(2)
“Lift” of π1(2g)

with 2g compact genus g
surface

Sol
R4, w = 1,
ds2 = e−2z dx2 + e2z dy2 + dz2,
o = ew

See Section 11.2 Sol ! D8
Z2 !M Z

with M ∈ SL(2, Z),
hyperbolic
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Table 2. Examples of signed distance functions in E3.

Object Signed distance function

Ball of radius r centered at the origin o σ (p) =
√

x2 + y2 + z2 − r

Solid cylinder of radius r with axis the
geodesic γ (t) = o + tez

σ (p) =
√

x2 + y2 − r

Half-space {z ! 0} σ (p) = z

Table 3. Examples of signed distance functions in S3.

Object Signed distance function

Ball of radius r centered at the origin o σ (p) = arccos(w) − r

Solid cylinder of radius r whose axis is the
geodesic γ (t) = cos(t)o + sin(t)ez

σ (p) = arccos(
√

w2 + z2) − r

Half-space {z ! 0} σ (p) = arcsin(z)

7.1. Euclidean space

We represent E3 as the a%ne subspace X = {w = 1} of R4. The origin is the point o = [0, 0, 0, 1]. The distance between two points
p1 = [x1, y1, z1, 1] and p2 = [x2, y2, z2, 1] is given by

dist(p1, p2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Using a hyperplane to represent E3 is standard in computer graphics because the isometry group of E3 acts on X by linear
transformations of R4 preserving X. We identify the tangent space TpX at a point p ∈ X with the linear subspace {w = 0} of
R4. The arc length parametrized geodesic γ (t) starting at p and directed by the unit vector v ∈ TpX is simply γ (t) = p + tv. In
Table 2, we list signed distance functions for some simple objects in E3.

From a group theoretic point of view, the co-compact discrete subgroups of E3 have been classi"ed. These are the crystallographic
groups [2]. Note that every "nite volume euclidean three-manifold is "nitely covered by the three-torus. In Figure 30, we show the
in-space view for various scenes within the regular three-torus, rendered with a multicolor collection of "ve lights. In these images,
light intensity falls o# proportional to the inverse square of distance. An object receives lighting from the cell it is contained in and
that cell’s nearest neighbors.

7.2. The three-sphere

We endow R4 with the standard scalar product. That is, given p1 = [x1, y1, z1, w1] and p2 = [x2, y2, z2, w2] we let
〈
p1, p2

〉
= x1x2 + y1y2 + z1z2 + w1w2.

We view S3 as the set X of points p ∈ R4 satisfying the identity
〈
p, p

〉
= 1. We choose for the origin the point o = [0, 0, 0, 1]. The

distance between two points p1 and p2 is characterized by

cos
(
dist(p1, p2)

)
=

〈
p1, p2

〉
.

The isometry group of S3 acts on X by linear transformations of R4 preserving the scalar product and so X. We identify the tangent
space TpX at a point p in X with the linear subspace

{
v ∈ R4 |

〈
p, v

〉
= 0

}

of R4. The arc length parametrized geodesic γ (t) starting at p and directed by the unit vector v ∈ TpX is given by γ (t) = cos(t)p +
sin(t)v. In Table 3, we list a few examples of signed distance functions in S3.

The "nite subgroups of O(4) are classi"ed in [57, p. 449]. In Figure 31 we show the in-space view for various scenes in spherical
geometry. Figure 31(a) shows the quotient of S3 by the quaternion group of order eight, Q8. Edges of the fundamental domain are
shown as in Figure 3(c), but with balls also deleted from the edge midpoints. Figure 31(b) shows a single mirrored ball and three
light sources in Poincaré dodecahedral space. Figure 31(c) shows the li!s of some randomly chosen "bers of the unit tangent bundle
over S2 (the Hopf "bration), and their re$ected images in a ball. These are the "bers of the Seifert "ber space structure on spherical
three-manifolds.
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A single large ball.(a)

(b)

(c)

Solid cylinders around the edges of a fundamental domain.

Edges of the fundamental domain rendered by deleting a large ball from the center and smaller
balls from the vertices, as in Figure 2.1c.

Figure 30. Scenes in the regular three-torus, lit by a collection of lights represented by balls.

7.3. Hyperbolic space

We endow R4 with a lorentzian inner product: for every p1 = [x1, y1, z1, w1] and p2 = [x2, y2, z2, w2] we let
〈
p1, p2

〉
= x1x2 + y1y2 + z1z2 − w1w2.

We use the hyperboloid model of H3. This consists of the set X of points p = [x, y, z, w] in R4 such that
〈
p, p

〉
= −1 and w > 0. We

choose for the origin the point o = [0, 0, 0, 1]. The distance between two points p1 and p2 is given by

cosh
(
dist(p1, p2)

)
= −

〈
p1, p2

〉
.
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)e quotient of(a)

(b)

(c)

S3 by the quaternion group of order eight, Q8.

Poincaré dodecahedral space.

Hopf +bration.

Figure 31. Spherical geometry.

The isometry group of H3 acts on X by linear transformations of R4 preserving the lorentzian product and so X. We identify the
tangent space TpX at a point p = [x, y, z, w] in X with the linear subspace

{
v ∈ R4 |

〈
p, v

〉
= 0

}

of R4. The arc length parametrized geodesic γ (t) starting at p and directed by the unit vector v ∈ TpX is given by γ (t) = cosh(t)p +
sinh(t)v. In Table 4, we list a few examples of signed distance functions in H3.

Of the eight Thurston geometries, the classi"cation of hyperbolic manifolds (and orbifolds) is the least well understood. The
so!ware SnapPy [9] lists numerous censuses of "nite volume hyperbolic manifolds. In Figure 32, we show the in-space view for
various scenes in hyperbolic geometry. Figure 32(a) shows Seifert-Weber dodecahedral space, with a fundamental domain drawn in
a style similar to Figure 3(b). Figure 32(b) shows the "nite volume cusped orbifold formed from an ideal cube (with dihedral angles
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Table 4. Examples of signed distance functions in H3.

Object Signed distance function

Ball of radius r centered at the origin o σ (p) = arccosh(w) − r

Solid cylinder of radius r whose axis is the
geodesic γ (t) = cosh(t)o + sinh(t)ez

σ (p) = arccosh(
√

w2 − z2) − r

Half-space {z ! 0} σ (p) = arcsinh(z)

Seifert-Weber dodecahedral space.

A +nite volume hyperbolic orbifold.

An in+nite volume hyperbolic orbifold.

(a)

(b)

(c)

Figure 32. Hyperbolic geometry.
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of π/3), by identifying opposite faces with a π/2 turn. The underlying manifold is S3/Q8 (Figure 31(a)) minus the vertices of the
cube, with cone angles of π at each edge of the cube. Figure 32(c) shows a sphere in an in"nite volume hyperbolic orbifold formed
from a hyperideal cube [45, Section 6.1] (with dihedral angles of π/4), by identifying opposite faces by translation. The limit set is
visible as the limiting pattern of spheres. The underlying manifold is the three-torus, minus a ball around the vertex, with cone angles
of π at each edge of the cube.

7.4. Facing and parallel transport

By de"nition, for each isotropic geometry X, the isometry group G = Isom(X) acts transitively on the unit tangent bundle of X. It
follows that the position and facing of an observer can be captured by a single isometry, as explained in Section 3.3. Nevertheless, to
keep the code as geometry-independent as possible, we encode our position and facing by a pair (g, id) where g is an isometry of X
and id ∈ O(3) is the identity.

As we noted in Section 3.4, given any geodesic γ : R → X starting at p ∈ X, there is a one-parameter orientation preserving
subgroup h : R → G such that γ (t) = h(t)p. Thus the corresponding parallel transport operator T(t) : Tγ (0)X → Tγ (t)X is simply
T(t) = dph(t). This considerably simpli"es the computations: if an observer starts at (g, id) and follows γ for time t, then the
observer’s new position and facing are (h(t)g, id).

7.5. Lighting

The calculation of lighting intensity for the isotropic geometries is straightforward in comparison to the other geometries. Recall
from Equation (5.7) that the intensity I(r, u) is inversely proportional to the area density of geodesic spheres. Equation (5.12) relates
area density directly to Jacobi "elds along the geodesic in the direction u. Here, all sectional curvatures are equal, so all Jacobi "elds
are parallel along geodesics, and have magnitude controlled by the curvature. Precisely, if v ∈ u⊥ and vt is the parallel transport of v
along the geodesic with initial tangent u, the corresponding Jacobi "elds J are below.

JE3(t) = tvt JS3(t) = sin(t)vt JH3(t) = sinh(t)vt

Choosing a pair of orthonormal initial conditions and using Equation (5.12) gives the area densities:

AE3(r, u) = r2 AS3(r, u) = sin(r)2 AH3(r, u) = sinh(r)2.

Thus light intensity falls o# quadratically with distance in euclidean space, and exponentially in hyperbolic space. In the three-sphere,
the intensity initially decreases with distance, but beyond a distance of π/2, it increases as all light rays begin to converge toward the
antipode. Figure 33 shows graphs of the intensity function I(r, u) on the tangent space TqX. A point at distance r from the origin
in the direction u is colored by the value of I(r, u). Dark blues represent low intensity, and yellows represent high intensity. Each
plot depicts a ball of radius ten. Note that I(r, u) for the three-sphere diverges to in"nity along spheres with r = πn as, under the
exponential map, all light refocuses at the light source or its antipode.

We now turn to the calculation of the lighting pairs Ls(q): the set of pairs (L, dL) of initial tangent vectors L to geodesics joining s
to q, and their corresponding lengths dL. In all three isotropic geometries, this can be calculated using linear algebra in the ambient
space R4 where the models reside.

In euclidean space, geodesics are unique. Given s, q ∈ E3, the required direction vector is simply q − s.

LE3
s (q) =

{( q − s
‖q − s‖ , ‖q − s‖

)}

Euclidean intensity.(a) (b) (c)Spherical intensity. Hyperbolic intensity.

Figure 33. Graphs of the lighting intensity functions I(r, u) for the isotropic geometries, drawn in the tangent space at the light source.
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In spherical geometry, given s, q ∈ S3 non-antipodal, let θ = arccos〈q, s〉 be the acute angle between them. The shortest geodesic
from s to q has length θ and direction v = q − 〈s, q〉q, appropriately rescaled. The second geodesic points in the opposite direction,
with length 2π − θ .

LS3
s (q) =

{(v − cos(θ)s
sin θ

, θ
)

,
(cos(θ)s − v

sin θ
, 2π − θ

)}

Remark 7.1. Strictly speaking, we should also include copies of the above pairs with distances modi"ed by adding 2πn for all integers
n > 0. However, if either the light source or the scene is opaque, then these copies are never relevant. !

In practice, we do not worry about s and q being antipodal: in a generic render, no pixels will involve such a situation. Moreover, if
we are exceedingly unlucky and do have such a pixel, GPU code does not crash when asked to, for example, divide by zero. It just gives
up and moves on to the next pixel. However, one could special-case this situation: for a pair of antipodal points s, q, all directions
from s reach q a!er traveling a distance π , and so we "nd that the set LS3

s (q) is uncountable. As the lighting intensity diverges to
in"nity as one approaches such a con"guration, the pixels should be colored as bright as possible.

In hyperbolic geometry we proceed analogously to the three sphere, except that we use the Minkowski inner product. Given
s, q ∈ H3, let δ = arccosh |〈q, s〉| be the hyperbolic distance between them. Geodesics between pairs of points in H3 are unique, so
LH3

s (q) is again a singleton:

LH3
s (q) =

{(v − cosh(δ)s
sinh δ

, δ
)}

.

8. Product geometries

Before describing the product geometries, we quickly introduce model spaces for S2 and H2.

8.1. Models of S2 and H2

Our models for S2 and H2 are the same as those for S3 and H3, with one fewer dimension:

• We view S2 as the set S of points q = [x, y, z] in R3 such that
〈
q, q

〉
= 1, where 〈· , ·〉 is the canonical scalar product in R3.

• We represent H2 as the set H of points q = [x, y, z] in R3 such that
〈
q, q

〉
= −1, where

〈
q1, q2

〉
= x1x2 + y1y2 − z1z2 is the

lorentzian product in R3.

8.2. Product geometries

Our model for S2 × E (respectively H2 × E) is the subset X = Y × R of R4, where Y = S (respectively Y = H). We choose for
the origin the point o = [0, 0, 1, 0]. The space X is equipped with the product distance. That is, given two points p1 = (q1, w1) and
p2 = (q2, w2) in Y × R we have

distX(p1, p2)
2 = distY(q1, q2)

2 + |w1 − w2|2.

The tangent space TpX at a point p = (q, w) naturally splits as TqY × R. Given a vector v ∈ TpX we denote by vY and vE its
components in TqY and R, respectively. The arc length parameterized geodesic γ (t) starting at p = (q, w) in the direction of the unit
vector v ∈ TpX is given by

γ (t) =
(
γY(‖vY‖t), w + tvE

)
,

where γY : R → Y is the geodesic ray in Y starting at q with initial tangent vector vY/‖vY‖.
Next, we consider signed distance functions. As usual, the distance formula gives us the signed distance function for a ball. We

call an object V vertical if it is the pre-image of a nonempty subset U ⊂ Y by the projection π : X → Y . The signed distance function
for such an object V is given by

σ (p) = distX(p, V) = distY(π(p), U).

We de"ne horizontal objects, and obtain their signed distance functions in an analogous way. Tables 5 and 6 list a few examples of
such signed distance functions.

Figure 34 shows vertical half-spaces in the product geometries. Figure 35 shows solid cylinders around some "bers in the E
direction for the product geometries. In Figure 35(a), we place solid cylinders around "bers above the vertices of an icosahedron in
the S2 factor. In Figure 35(b), the solid cylinders are around "bers in the E direction.
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Table 5. Examples of signed distance functions in S2 × R.

Object Signed distance function

Solid cylinder of radius r with axis the
geodesic γ (t) = o + tew

σ (p) = arccos(z) − r

Half-space {y ! 0} σ (p) = arcsin(y)

Half-space {w ! 0} σ (p) = w

Table 6. Examples of signed distance functions in H2 × R.

Object Signed distance function

Cylinder of radius r whose axis is the geodesic
γ (t) = o + tew

σ (p) = arccosh(z) − r

Half-space {y ! 0} σ (p) = arcsinh(y)

Half-space {w ! 0} σ (p) = w

S(a) (b)2 × E. H2 × E.

Figure 34. Vertical half-spaces in the S2 × E and H2 × E geometries.

8.3. Facing and parallel transport

Unlike for the isotropic geometries, the position and facing of the observer cannot be encoded with a single element of G = Isom(X).
Hence, we represent it by a pair (g, m) ∈ G × O(3) as explained in Section 3.3. Nevertheless, if γ : R → X is a geodesic starting at
the observer’s position p, there is still a one-parameter orientation preserving subgroup h : R → G such that γ (t) = h(t)p. Thus,
a!er moving along γ for a time t, the observer’s new position and facing is (h(t)g, m).

8.4. Lighting

We again use Equation (5.12) to reduce the calculation of area density (and hence light intensity) to the computation of Jacobi "elds.
Let q ∈ X, choose a unit vector u ∈ TqX and let γ be the geodesic starting at q with initial tangent u. General Jacobi "elds need not
be parallel along γ , and may rotate in the presence of a gradient in sectional curvature. When v ∈ u⊥ is such that the curvature κ of
the plane spanned by {u, v} is a local extremum, however, then the Jacobi "eld with initial condition J̇(0) = v is parallel along γ . In
this case, its magnitude is determined by κ , as in Section 7.5.

If u is vertical (that is, uY = 0), then X is symmetric under rotation about u, and all planes containing u have zero sectional
curvature. If v ∈ u⊥ has parallel translate vt along γ , then the corresponding Jacobi "eld is J(t) = tvt . Choosing two such orthonormal
conditions, Equation (5.12) implies that AX(r, u) = r2.
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Fibers in the(a) (b)S2 × E. Fibers in H2 × E.

Figure 35. Fibers of the Seifert !ber space structures in manifolds with product geometry.

)e intensity in(a) (b)S2×E periodically blows
up.

)e intensity in H2 × E
nentially away from the E direction.

drops o, expo-

Figure 36. The lighting intensity functions I(r, u) in the product geometries.

In general, suppose that u makes an angle of β with the vertical. Then, u is contained in a unique vertical plane V , which again has
zero sectional curvature. This realizes one of the extremal curvatures at u (it is a maximum for H2 × E and a minimum for S2 × E).
Choosing v ∈ TqX extending u to an orthonormal basis for V , the Jacobi "eld with initial condition v is J(t) = tvt as above.

The other extremal curvature is realized by the plane P, orthogonal to V and containing u. Using the bilinearity of the Riemann
curvature tensor, one can calculate this extremal curvature from the angle β that u makes with the vertical, and the curvature K(H) =
±1 of the horizontal H plane H

K(P) = cos2(β)K(V) + sin2(β)K(H) = ± sin2(β)

Let w ∈ TqX extend u to an orthonormal basis for P, and wt be its parallel translate along γ . The Jacobi "eld with initial condition
w is J(t) = f (t sin β)

sin β wt , where f is either sine or hyperbolic sine as K(P) is greater or less than zero respectively. Combining these with
Equation (5.12) gives the area density for each of the product geometries below.

AS2×E(r, u) = r sin(r sin β)

sin β
AH2×E(r, u) = r sinh(r sin β)

sin β
(8.1)

Figure 36 shows the behavior of I(r, u) = 1/A(r, u) on a ball of radius ten in the tangent space at q for the two product geometries.
Figure 37 shows some e#ects of this behavior on the in-space view.
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)e sphere(a)

(b)

S2 × {0} in S2 ×

×

E, lit by a single light above the north pole. )e viewer is in the same
position as the light, looking along the E direction. )e light intensity blows up at both the north and
south poles of S2 × {0}. )e viewer sees each pole as a collection of concentric rings, together with a
point for the north pole directly below.

A tiling with a single light source in
tiles in front of the viewer. From a distance, the exponential fall-o, in the hyperbolic directions makes

H2 E. )e light source is in the center of one of the bright

the light look like a spotlight shining along the E

Figure 37. In-space views highlighting consequences of the lighting intensities for the product geometries.

Finally, we must also compute the directions from a point s ∈ X to the light source at q ∈ X. To simplify the notation here, we
will write each lighting pair of Ls(q) not as a pair (L, dL), but as a vector dLL of length dL in the direction L. Let s, q ∈ X and let
dY = distY(sY , qY), dE = |qE − sE| be the distances between their projections into the respective factors of X = Y × E. Recall
that the standard basis vector ew points along the E direction. We compute the unit vector vY ∈ TsY Y pointing along the shortest
geodesic from sY to qY as in Section 7.5. The element of Ls(q) corresponding to the shortest geodesic is then dY vY +dEew. In H2 ×E
geodesics are unique, so with this we are done:

LH2×E
s (q) = {dY vY + dEew} =

{
dY

sY − cosh(dY)qY
sinh(dY)

+ dEew

}

In S2 × E, there are three cases to deal with: "rst the generic case, second when s, q lie on the same horizontal S2, and third when
sY , qY are antipodal. As for S3, in the implementation we don’t worry about the non-generic cases; the lighting intensity at such points
is the limit of the lighting intensity for the generic case.

In the generic case, there are countably many geodesics between s and q. All of these geodesics lie on the cylinder formed by
taking the product of the E direction with the great circle containing sY and qY . For each natural number n " 0, there are two
geodesics—one starting by traveling the “short way” around the S2 factor, followed by n additional full turns, and the other the “long
way” followed by n additional turns. All together, this gives the set of directions

LS2×E
s (q) =

⋃

n"0

{
(2πn + dY)vY + dEew, (2π(n + 1) − dY)vY + dEew

}
.

If sE = qE and sS2 , qS2 are not antipodal, then we just set dE = 0 above. As in Remark 7.1, all but the shortest two are irrelevant if
either the light source or the scene is opaque.
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Looking along the(a)

(b)

(c)

E direction.

Looking along an S2 direction.

Looking along the E direction.

Figure 38. S2 × E Geometry. The Hopf manifold S2 × S1.

In the third case, where sY , qY are antipodal in S2, there are uncountably many geodesics joining s to q. Their directions are a
countable sequence of rings in the unit sphere in TsX accumulating on the horizontal equatorial circle.

There are only seven manifolds with S2 × E geometry. These are listed in [57, page 457]. In Figure 38, we show the in-space view
for various scenes in the Hopf manifold S2 × S1. Figures 38(a) and 38(b) show a collection of spheres spaced at the vertices of a
regular dodecahedron. Figure 38(c) shows a slab S2 × [−ε, ε], with holes cut out at the vertices of the dodecahedron.

The manifolds with H2 × E geometry are classi"ed in [57, Theorem 4.13]. In Figure 39, we show the in-space view for various
scenes in H2 × E geometry. All of these images show the orbifold which is the product of a circle with a torus T containing a cone
point of angle π . Figures 39(a) and 39(b) show a collection of spheres, four in each fundamental domain. Figure 39(c) shows a slab
T × [−ε, ε], with four holes cut from the fundamental domain of T, and a further hole cut around the cone point.
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Looking along the(a)

(b)

(c)

E direction.

Looking along an H2 direction.

Looking along the E direction.

Figure 39. H2 × E Geometry. The product of a torus with cone point of angle π , with a circle.

9. Nil

9.1. Heisenberg model of Nil

There are several models for Nil. Probably, the most commonly used is the Heisenberg model (also known as the polarized model of
the "rst Heisenberg group). The Heisenberg group H is the group of 3 × 3 upper triangular matrices of the form




1 x z
0 1 y
0 0 1



 .
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Figure 40. Balls of radius one to !ve in the Heisenberg model of Nil. The images have been rescaled to take up approximately the same space on the page. The red curves
are invariant under the rotations !xing the origin.

We identify this with R3 through the x-, y-, and z-coordinates. The metric

ds2 = dx2 + dy2 + (dz − xdy)2

is invariant under the le! action of H on itself.
The space (H, ds2) has a major drawback for our purposes. To see this, let o be point [0, 0, 0] (corresponding to the identity matrix)

which we see as the origin of the space. The group of isometries of (H, ds2) "xing o is isomorphic to O(2). In particular, it contains
a one-parameter subgroup of rotations. These rotations are di%cult to visualize in the Heisenberg model of Nil. See Figure 40.

9.2. Rotation invariant model of Nil

For our computations we use a “rotation invariant” model of Nil. The underlying space of the model is the a%ne subspace X of R4

de"ned by w = 1. The group law is as follows: the point [x, y, z, 1] acts on X on the le! as the matrix




1 0 0 x
0 1 0 y

−y/2 x/2 1 z
0 0 0 1



 .

The origin o is the point [0, 0, 0, 1]. Its tangent space ToX is identi"ed with the linear subspace of R4 given by the equation w = 0.
Our reference frame is e = (ex, ey, ez) where (ex, ey, ez, ew) is the standard basis of R4. The metric tensor at the point p = [x, y, z, 1]
is now given by

ds2 = dx2 + dy2 +
(

dz − 1
2

(
xdy − ydx

))2
.

The map

H → X[
x, y, z

]
*→

[
x, y, z − 1

2 xy, 1
]

is an isometry between the Heisenberg model and the rotation invariant model of Nil. For every α ∈ R, we write Rα for the
transformation with matrix





cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1



 .

One can check that Rα is an isometry of X, rotating by angle α around the z-axis. Let F be the transformation with matrix




0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1



 .

This is another isometry of X, in this case it $ips the z-axis, and satis"es F ◦ Rα ◦ F−1 = R−α . These two kinds of isometries generate
the stabilizer K = O(2) of o in G = Isom(X).
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9.3. Geodesic !ow and parallel transport

The solution of the geodesic $ow in the Heisenberg model of Nil has been computed, for example in [40]. We could convert the
solution into our rotation invariant model X. Instead, we take this opportunity to illustrate Grayson’s method (Sections 3.2.1 and
3.4.1) and calculate the geodesic $ow and parallel-transport operator directly in X, as follows.

Let γ : R → X be a geodesic in Nil and T(t) : Tγ (0)X → Tγ (t)X be the corresponding parallel-transport operator. We de"ne two
paths u : R → ToX and Q : R → SO(3) by the following relations

γ̇ (t) = doLγ (t)u(t),
T(t) ◦ doLγ (0) = doLγ (t)Q(t).

Recall that the identi"cation of parallel transport with the path Q in SO(3) is done via our reference frame e = (ex, ey, ez) at the
origin o. A!er some computation, Equations (3.2) and (3.6), respectively, become






u̇x = −uzuy
u̇y = uzux
u̇z = 0

and

Q̇ + BQ = 0 where B = 1
2




0 uz uy

−uz 0 −ux
−uy ux 0



 .

For the initial condition u(0) = [a cos α, a sin α, c, 0], where a ∈ R+ and c ∈ R satisfy a2 + c2 = 1, one gets
u(t) = [a cos(ct + α), a sin(ct + α), c, 0] .

In order to get the expression for Q, we follow the strategy detailed in Section 3.4.1 and obtain

Q(t) = dRαectU1 Pe− 1
2 tU2 P−1dR−1

α , ∀t ∈ R,
where

U1 =




0 −1 0
1 0 0
0 0 0



 , U2 =




0 0 0
0 0 −1
0 1 0



 ,

and

dRα =




cos α − sin α 0
sin α cos α 0

0 0 1



 , P =




a 0 −c
0 1 0
c 0 a



 .

Note that dRα : ToX → ToX is the di#erential of the rotation Rα written in the reference frame e = (ex, ey, ez).
Let us now move back to the original geodesic γ : R → X, which we write as

γ (t) =
[
x(t), y(t), z(t), 1

]
.

Without loss of generality, we can assume that γ (0) = o. Equation (3.1) becomes





ẋ = ux
ẏ = uy

ż = uz + 1
2
(xuy − yux)

.

Plugging in our solution for u, we "nally get





x(t) = 2a
c sin

( ct
2

)
cos

( ct
2

+ α

)

y(t) = 2a
c sin

( ct
2

)
sin

( ct
2

+ α

)

z(t) = ct + 1
2

a2

c2
(
ct − sin(ct)

)

whenever c 1= 0, (9.1)

and otherwise 




x(t) = a cos(α)t
y(t) = a sin(α)t
z(t) = 0.

(9.2)
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Using Equation (9.1). One observes noise around the(a)

(b)

xy-plane.

Replacing Equation (9.1) by an asymptotic expansion in a neighborhood of
the xy-plane.

Figure 41. Fixing the instability of the formula around c = 0. Both pictures represent the lattice of Nil given by the integer Heisenberg group. The yellow ball in the center
represents a light. Here we choose a simple color scheme to highlight the noise.

Remark 9.3. If c is very small but not zero, then the above formulas are the source of signi"cant numerical errors. This is due to the
term

ct − sin(ct)
c2 ,

see Section 2.4.1(2). In practice, this causes noise around the xy-plane, see Figure 41. To "x this issue, when ct is small, we replace
the formula given in Equation (9.1) by its asymptotic expansion of order seven around zero. !

9.4. Distance to a vertical object

Observe that Nil comes with a natural 1-Lipschitz projection π : X → E2, sending [x, y, z, 1] to [x, y]. In analogy with objects in the
product geometries, we call the pre-image under π of any non-empty subset of E2 a vertical object. For example, any a%ne plane
with equation αx + βy = γ is a vertical object.

Lemma 9.4. Let S be a subset of E2 and Z = π−1(S) the associated vertical object. The distance from any point p ∈ X to Z coincides
with the distance between π(p) and S in E2.

Proof. Any isometry of X preserves the "bers of the projection π and induces an isometry of E2. Hence, applying a translation, it
su%ces to prove the claim in the case that p is the origin o. Similarly, applying a rotation, we can assume that the projection π(o) on
S is a point q of the form q = [x, 0], with x " 0. Since π is 1-Lipschitz, we have

dist (π(o), S) ! dist (o, Z) .

Let us explain the reverse inequality. We have seen previously that the map γ : R → X, mapping t to [t, 0, 0, 1], is a geodesic of Nil.
Hence, the distance in Nil between o and the pre-image q̃ = [x, 0, 0, 1] of q is at most x. Consequently

dist (o, Z) ! dist
(
o, q̃

)
! x ! dist (π(o), S) .
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(a) (b) (c)

Figure 42. Three views of a vertical half-space in Nil geometry. We see multiple re$ections of the plane in itself, due to the spiraling of geodesics. Rendered with arti!cial
(constant) light intensity, and fog.

Figure 42 shows a vertical half-space in Nil. We texture the boundary with squares of side length one in its euclidean metric. Note
that here (and in Sections 10 and 11) we extend the notion of a half-space from that given at the start of Section 3.7: the boundary
may not be totally geodesic. Figure 51(c) shows vertical solid cylinders.

9.5. Exact distance and direction to a point

Since X is homogeneous, we only need to compute the distance between any point p ∈ X and the origin. In order to calculate lighting
pairs, we need to compute the direction at the origin v ∈ ToX of the geodesics γ from o to p. Unfortunately, in Nil there is no closed-
form expression for either of these two quantities. We compute both using the same numerical approach. Using the $ip symmetry,
we may assume that the coordinates [x, y, z, 1] of p satisfy z " 0.

Assume "rst that the point p = [x, y, z, 1] lies neither on the xy-plane nor on the z-axis. Let γ be a geodesic from o to p. That is,
γ (0) = o and γ (t) = p, for some t " 0. As in Section 9.3, we write v = [a cos α, a sin α, c, 0] for its (unit) tangent vector at o. We
deduce from Equation (9.1) that

z = φ + ρ2

8 sin2(φ/2)
(φ − sin φ) ,

where ρ2 = x2 + y2 and φ = ct. These quantities have the following useful geometric interpretation:

• ρ is the distance in E2 between π(o) and π(p), and
• φ is the angle described by the projection of γ in E2.

Computing the directions from o to p consists of solving a system with "ve unknowns (a, c, α, t, and φ) and "ve equations (the three
given by Equation (9.1) along with the relations a2 + c2 = 1 and φ = ct). Once φ has been found, it is an exercise to uniquely recover
a, c, α and t by directly solving the equations. Hence, there is a one-to-one correspondence between the geodesics joining o to p and
the zeros of the function

χρ,z(φ) = −z + φ + ρ2

8 sin2(φ/2)
(φ − sin φ) ,

see Figure 43.
A geodesic γ is minimizing if and only if the corresponding angle φ belongs to (0, 2π). It turns out that χρ,z is strictly convex on

the interval (2kπ , 2kπ + 2π) for every integer k " 0. Moreover, it is increasing on (0, 2π). In order to "nd the minimizing geodesic
from o to p we numerically compute the unique zero of χρ,z on (0, 2π) using Newton’s method.

For physically accurate lighting, we also need the lighting pairs, Lo(p), as de"ned in Section 5.6. Using binary search, we "nd a
value of φ0 ∈ (2π , 4π) where χz,ρ is positive and dχz,ρ/dφ is negative. We then run Newton’s method, starting from φ0, producing a
sequence {φn}. Recall that χz,ρ is strictly convex on (2π , 4π). Hence if the equation χz,ρ(φ) = 0 admits a solution in this interval, then
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0 2 3 4 5 6

-10

10

20

π π π π π π

Figure 43. The graph of the function χρ,z for ρ = 2 and z = 15. The function is not de!ned at φ = 2kπ for k ∈ Z>0. In this case, there are exactly three geodesics joining
the origin to any point p with coordinates [ρ cos θ , ρ sin θ , z, 1].

{φn} will converge toward the "rst such solution. Otherwise, either {φn} escapes the interval (2π , 4π), or the sign of the derivative
dχz,ρ/dφ becomes positive. Either case is a halting condition for our algorithm. Repeating this procedure starting with a point for
which dχz,ρ/dφ is positive, we "nd the other solution in the interval. Depending on the level of precision that we want for lighting,
we can repeat the procedure on the next intervals (4π , 6π), (6π , 8π), …

Assume now that p = [x, y, 0, 1] lies in the xy-plane. Then, there is a unique geodesic γ joining o to p. It coincides with the
euclidean geodesic of R2 between the same points. Hence, its direction and length can be computed explicitly. Alternatively, using
continuity, we can extend the de"nition of the previous function χρ,z at φ = 0 by letting χρ,z(0) = −z. In this way, this particular
case is included in the previous discussion. Indeed the only zero of χρ,0 is φ = 0.

If p = [0, 0, z, 1] lies on the z-axis, then the path γ (t) = [0, 0, t, 1] is a geodesic from o to p with initial direction v = [0, 0, 1, 0]
and length t = z. If 2nπ ! z < 2nπ + 2π , for some integer n " 1, then o and p are joined by n other rotation-invariant families of
geodesics {γ1,α}, . . . , {γn,α} where α runs over [0, 2π). The kth of these has length

tk,α = 2kπ
√

z
kπ − 1

and direction at the origin

vk,α =




√

z − 2kπ
z − kπ cos(α),

√
z − 2kπ
z − kπ sin(α),

√
kπ

z − kπ , 0



 .

9.6. Distance underestimator for a ball

As mentioned in Section 2.2, we do not necessarily need the exact distance to an object to perform ray-marching. A distance
underestimator also works. A rough estimate using the solution of the geodesic $ow shows the following.

Lemma 9.5. Let f : R+ → R+ be the continuous increasing map de!ned by

f (d) =






d, if d <
√

6,
4
3

(
1 + 1

12
d2

)3/2
, if

√
6 ! d < 2

√
6,

1
2
√

3
d2, if 2

√
6 ! d.

If p = [x, y, z, 1] is a point at distance d from the origin o, then
√

x2 + y2 ! d and |z| ! f (d).

As a consequence, for every ψ ∈ (0, 1), for every m " 1, we have

0 <
[
(1 − ψ)

(
x2 + y2) m

2 + ψ
(
f −1(|z|)

)m] 1
m ! dist(o, p).

This allows us to build a distance underestimator σ ′ : X → R to render a ball of radius r centered at o, as follows. Let

σ ′(p) =
{

σ (p) − r, if σ (p) > r + η

dist(o, p) − r, otherwise
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p = [0, 0, 8.5, 1] p = [5, 0, 3, 1] p = [0, 5, 15, 1](a) (b) (c)

Figure 44. The z ! 0 half-space in Nil geometry, viewed from the point p. Rendered with arti!cial (constant) light intensity, and fog.

where

σ (p) =
[
(1 − ψ)

(
x2 + y2) m

2 + ψ
(
f −1(|z|)

)m] 1
m

and η > 0 is a constant that is much larger than the threshold ε used to stop the ray-marching algorithm. This is more e%cient
than the exact signed distance function: here, the rough (and inexpensive to calculate) estimate σ is used to handle points at a large
distance from the ball. When the point p is close to the ball we replace this estimate by the exact distance computed numerically as
explained in Section 9.5. We use this distance underestimator to render the balls in Figure 29 (a line of balls along the "ber direction),
and Figure 51(b) (a lattice of balls in Nil).

9.7. Creeping to horizontal half-spaces

In the case of vertical objects, we can use the geometry of Nil to help us build signed distance functions. For “horizontal” objects, for
example the z ! 0 half-space, we do not have anything equivalent. Thus, it is di%cult to come up with a signed distance function
(or even a distance underestimator). However, we can still detect whether a point is in a half-space or not, and so we can use the
same binary search algorithm as used to detect the boundary of a fundamental domain in Section 4.2.1. Figure 44 shows the z ! 0
half-space in Nil geometry, with boundary textured by squares in the coordinate grid of side length one.

9.8. Lighting

We addressed the calculation of lighting pairs in Section 9.5. Here, we calculate the intensity I(r, u) experienced from an isotropic
light source traveling a distance r with initial tangent u. Recall that this is inversely proportional to the area density A(r, u). Here we
calculate this area density directly by taking the derivative of the geodesic $ow as in Equation (5.9).

A parametrization of the unit speed geodesic starting at the origin o = e4 with arc length parameter r in the direction u =
[a cos α, a sin α, c, 0] ∈ ToNil is given by Equation (9.1) for the generic case (when c 1= 0) and by Equation (9.2) for geodesics in the
xy-plane. Below we concern ourselves with the generic case. Let (L, z, α) be the cylindrical coordinates on ToNil with (L, z) the norm
of the projections onto the xy plane and z axis respectively, and α ∈ [0, 2π) measured from the positive x axis. In these coordinates
the point ru ∈ ToNil is expressed (L, z, α) = (ra, rc, α). Thus, using Equation (5.13), we may calculate the area density in terms of
the L, z and α derivatives of Equation (9.1).

A = 2r2

z4

∣∣∣sin z
2

∣∣∣
∣∣∣L2z cos z

2
− 2r2 sin z

2

∣∣∣ . (9.6)

See Figure 45. As with the computation of the geodesic $ow in Section 9.3, to obtain correct lighting along the xy plane direction,
one should use the asymptotic expansion of Equation (9.6) around z = 0.

In horizontal directions, the light intensity quickly drops away. Near the vertical axis, the intensity of a light source periodically
blows up as geodesics reconverge (Figures 46–49).
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Within a ball of radius 10. Within a ball of radius 30.(a) (b)

Figure 45. The lighting intensity function I(r, u) in Nil geometry.

At most 2 geodesics. At most 4 geodesics.

At most 8 geodesics. At most 16 geodesics.

(a) (b)

(c) (d)

Figure 46. A line of balls in Nil along the z-axis, lit by three light sources (cyan, yellow, and magenta) far behind the viewer, using correct light intensity. Compare with
Figure 29, which is rendered with constant light intensity. As almost every point is reached by !nitely many geodesics, one may render accurate lighting for any compact
region of Nil by computing a su#ciently large number of possible directions.

9.9. Discrete subgroups and fundamental domains

The compact Nil manifolds are circle bundles over euclidean two-orbifolds with non-zero Euler class [57, Theorem 4.17]. The simplest
example of a Nil manifold can also be seen as the suspension M of a regular two-torus T by a Dehn twist. The fundamental group !

of M is a lattice in G. We explain here with a concrete example how to construct a fundamental domain D for the action on ! on X.
Let f be the Dehn-twist of the standard two-torus T = R2/Z2 with action given by the matrix

[
1 1
0 1

]
.

Consider the Dehn-twist torus bundle which is the mapping torus of T with monodromy f . Its fundamental group ! has presentation

! = 〈A, B, C | [A, B] = C, [A, C] = 1, [B, C] = 1〉 .

Here, A and C can be interpreted as the standard generators of π1(T) ∼= Z2. The conjugation by B is the automorphism of Z2

induced by f . Note that C is central, hence corresponds to the loop along which we are performing our Dehn twist. The group !

is actually generated by A and B only. Nevertheless it is more convenient to keep three generators as they represent translations in
three independent directions. The group ! can be identi"ed with the discrete Heisenberg group, that is the set of points with integer
coordinates in the Heisenberg model of Nil. (Recall that X is the rotation-invariant model of Nil. Hence, the group ! is not the set of
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Near the lights (one unit in front of viewer, in
the z-direction).

Far from the lights (seven units behind the
viewer, in the z-direction).

(a) (b)

Figure 47. Four lights (white, yellow, cyan, and magenta) illuminate a tiling of Nil in the style of Figure 3(b). Far away, there are curves of high intensity light caused by the
convergence of one-parameter families of geodesics. The scene does not cast shadows in these images.

Figure 48. Sunset in Nil. When the light intensity blows up far away from the light source, it may illuminate distant parts of an otherwise dark object. Standing at such a
location, the distant light sources appear large in the sky.

integer points in X. This set is actually even not a subgroup.) Concretely, A, B, and C are the elements of Nil whose coordinates in X
are

A = [1, 0, 0, 1], B = [0, 1, 0, 1], and C = [0, 0, 1, 1].

Observe that via the projection π : X → E2, every element of ! induces an isometry of E2: A and B correspond to translations along
the x- and y-axis, respectively, while C acts trivially on E2. It follows that the “cube”

D = [−1/2, 1/2]3 × {1}

is a fundamental domain for the action of ! on X. Note that A, B, and C do not directly pair the square sides of the “cube”. See
Remark 9.7. Our rotation-invariant model X for Nil is also a projective model. The fundamental domain D can be seen as the
intersection of a collection of half-spaces H±

x , H±
y , H±

z as described in Section 4.1.2. Here

H−
x = {x " −1/2} and H+

x = {x ! 1/2} .

while H±
y and H±

z are de"ned in the same way. The teleporting algorithm has two main steps. Let p = [x, y, z, 1] be a point in X.
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(a)

(d, h) = (1, 1) (d, h) = (8.5, 1) (d, h) = (45, 1)

(d, h) = (1, 7.7) (d, h) = (8.5, 7.7) (d, h) = (45, 7.7)

(d, h) = (1, 16) (d, h) = (8.5, 16) (d, h) = (45, 16)

(d, h) = (1, 30) (d, h) = (8.5, 30) (d, h) = (45, 30)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 49. Four lights illuminate the z ! 0 half-space in Nil. The viewer is above the plane at position [0, 0, d, 1], and the light sources are positioned at [k/2, 0, h, 1] for
k ∈ {−1, 0, 1, 2}. We use correct lighting with up to three geodesics, and no fog.

(1) If p does not belong to H−
x (respectively H+

x , H−
y H+

y ), then we move it by A (respectively A−1, B, B−1). A!er "nitely many steps,
the new point p will lie in

H−
x ∩ H+

x ∩ H−
y ∩ H+

y .

The isometries of E2 induced by A and B commute, so we don’t pay attention to the order in which we perform these operations.
(2) Once this is done, if p does not belong to H−

z (respectively H+
z ), then we move it by C (respectively C−1). Note that C does not

a#ect the xy-coordinates of p. Therefore, a!er this process, p lies in D.

Remark 9.7. Note that the collection of isometries {A±1, B±1, C±1} does not provide a face pairing of our fundamental domain D
in the sense of Section 4.1. Consider for example the square sides F−

x and F+
x which are the intersections of D with the a%ne planes

∂H−
x and ∂H+

x , respectively. The generator A is a shear, not an a%ne translation in R4 along the x-axis. See Figure 50(a). Thus it does
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)e fundamental domain D (yellow) and its image
(red) under the shear A. )e red, green, and blue lines
correspond to the x-, y-, and z-axes in our model of
Nil.

a

b

b

c

d

e

e

f

g

h

a

b

c

c

d

e

f

f

g

h

)e yellow, blue, and red faces are in one-to-one
correspondence via A, AC, and AC−1. )e decora-
tions indicate the edge identi+cations induced by A
and C only.

(a) (b)

Figure 50. Face pairing in Nil.

not map F−
x to F+

x . In order to get a proper face pairing, one must subdivide the sides of D and increase the number of generators.
This is illustrated in Figure 50(b). We draw the one-skeleton of D and color the sides F−

x (on the le!) and F+
x (on the right). The

yellow (respectively blue, red) face in F−
x is mapped bijectively to the face with the same color in F+

x via A (respectively AC, AC−1).
A similar subdivision can be found for the sides F−

y = D ∩ ∂H−
y and F+

y = D ∩ ∂H+
y . (No subdivision of the horizontal faces of

D is needed as C is an a%ne translation along the z-axis.) As explained in Remark 4.3 and illustrated by the above algorithm, when
using a fundamental domain de"ned as the intersection of projective half-spaces, we do not need a proper face pairing to implement
teleportation. !

In Figure 51, we show the in-space view for various scenes in Nil geometry. Figure 51(a) shows the Dehn-twist torus bundle
with monodromy f as in Section 9.9, with a fundamental domain drawn in the style of Figure 3(b). Figure 51(b) shows a lattice of
spheres, textured as the Earth, lit by a corresponding lattice of light sources. Figure 51(c) shows solid cylinders (which we implement
as vertical objects) around "bers of Nil. Compare with Figure 35.

10. S̃L(2, R)

10.1. Model

In order to build our model space, we view SL(2, R) as a circle bundle over H2. This construction is analogous to the Hopf "bration
SU(2) → S2. In the spherical case, conjugation by SU(2) (thought of as the unit quaternions) de"nes an action by rotations on R3,
seen as the Lie algebra of SU(2). More precisely, this action preserves the Killing form, which in this case has signature (0, 3). In
particular, a!er "xing a base point in the unit sphere of R3, the orbit map de"nes a projection from SU(2) onto S2, whose "bers are
circles.

We follow the same strategy for SL(2, R). The action by conjugation of SL(2, R) on its Lie algebra sl2 preserves the Killing form
which here has signature (2,1). The level set of this form is a model of H2. As above, the orbit map de"nes a projection from SL(2, R)

onto H2, whose "bers are also circles. Topologically, this realizes SL(2, R) as a trivial bundle homeomorphic to H2 × S1. Its universal
cover S̃L(2, R) is homeomorphic to H2 × R. This is the description we use for our model.

We now give detailed computations. We identify the space M2,2(R) of 2×2-matrices with R4 via the basis E = (E0, E1, E2, E3)
given by

E0 =
[

1 0
0 1

]
, E1 =

[
0 1

−1 0

]
,

E2 =
[

0 1
1 0

]
, E3 =

[
1 0
0 −1

]
.

The quadratic form k = − det is diagonal in this basis: given any point p = [p0, p1, p2, p3] in R4, we have

k(p) = −p2
0 − p2

1 + p2
2 + p2

3.
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)e Dehn-twist torus bundle with monodromy f .

Lattice of balls.

Fibers.

(a)

(b)

(c)

Figure 51. Nil Geometry.

In particular GL(2, R) and SL(2, R) correspond to the subsets

Q0 = {p ∈ R4 | k(p) 1= 0} and Q = {p ∈ R4 | k(p) = −1}

of R4. We choose for the origin the point o = [1, 0, 0, 0]. This corresponds to the identity. The group law can be rewritten as follows:
given a point p = [p0, p1, p2, p3] in Q0, the corresponding element of GL(2, R) acts on Q0 as the matrix





p0 −p1 p2 p3
p1 p0 p3 −p2
p2 p3 p0 −p1
p3 −p2 p1 p0



 .
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We endow Q0 with a GL(2, R)-invariant riemannian metric:

ds2 = 4β0(p)

k(p)2
(
dp2

0 + dp2
1 + dp2

2 + dp2
3
)

− 4β1(p)

k(p)2
(
dp0dp2 − dp1dp3

)
− 4β2(p)

k(p)2
(
dp0dp3 + dp1dp2

)
,

where





β0(p) = p2
0 + p2

1 + p2
2 + p3

3
β1(p) = p0p2 − p1p3

β2(p) = p0p3 + p1p2.

It turns out that the level sets of k are totally geodesic subspaces of Q0. The stabilizer K < G of the origin o ∈ Q is generated by:

• rotations Rα of angle α, with matrix




1 0 0 0
0 1 0 0
0 0 cos α − sin α

0 0 sin α cos α



 , and

• the $ip F, with matrix




1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0



 .

Observe that F ◦ Rα ◦ F−1 = R−α , so K is isomorphic to O(2).
The space we are really interested in is not SL(2, R), but its universal cover. Topologically, the latter is a line bundle over H2. The

identi"cation goes as follows. Consider the adjoint representation of SL(2, R) on its Lie algebra

sl2 = {M ∈ M2,2(R) | Tr(M) = 0}.

This action preserves the Killing quadratic form

K(M) = 1
2

Tr(M2)

which has signature (2, 1). Hence, it induces an action by isometries on the hyperboloid model of H2. In our context, the Lie algebra
sl2 is isomorphic to the linear space ToQ ⊂ R4 spanned by

ex = −E3, ey = E2, and ez = E1.

The Killing form is diagonal in this basis: if M = xex + yey + zez, then K(M) = x2 + y2 − z2. So we choose for the hyperboloid
model of H2 the set H as de"ned in Section 8.1:

H =
{
[x, y, z] ∈ ToQ | x2 + y2 − z2 = −1 and z > 0

}
.

We de"ne a 1-Lipschitz, SL(2, R)-equivariant projection π : SL(2, R) → H2 by sending the origin o to the point [0, 0, 1] ∈ H. (The
scaling factor four in the metric on Q0 was precisely chosen so that the best Lipschitz constant for π is one.) The "ber of the point
q = [x, y, z] is a circle parameterized as follows:

π−1(q) =
{

Swζ(q) | w ∈ [0, 4π)
}

,

where ζ : H → Q is the section given by

ζ(q) =
[√

z + 1
2

, 0, x√
2(z + 1)

, y√
2(z + 1)

]

and Sw is the transformation of Q with matrix




cos
(w

2
)

− sin
(w

2
)

0 0
sin

(w
2
)

cos
(w

2
)

0 0
0 0 cos

(w
2
)

sin
(w

2
)

0 0 − sin
(w

2
)

cos
(w

2
)




.
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Note that Sw translates points along the "ber by an angle w/2, not w. This accounts for the fact that the map SL(2, R) → SO(2, 1) is
a two-sheeted cover. Finally one observes that the projection

λ : H × R → Q
(q, w) *→ Swζ(q)

is a covering map, providing an identi"cation between S̃L(2, R) and our model space X = H × R. We call the factor H (respectively
R) the horizontal (respectively vertical or !ber) component of X.

Remark 10.1. In practice, we adopt a slightly di#erent point of view. We store a point p ∈ X as a pair (g, w) ∈ SL(2, R) × R where
g is the image of p by the covering map λ and w is the "ber component of p. This representation is redundant, but allows us to go
quickly back and forth between SL(2, R) and its universal cover. !

We choose as a base point of X the point õ = [0, 0, 1, 0] which is a pre-image of o. The covering map λ induces an isomorphism
between the stabilizer of õ and the stabilizer of o, that is O(2).

• We choose a li! R̃α of Rα with the following properties. It "xes the "ber component, and acts on the horizontal component as the
usual rotation of H2 by angle α centered at π(o). Beware that Rα is a rotation of our model space Q of SL(2, R) which is distinct
from the element of SL(2, R) representing a rotation of H2.

• The map F̃ sending p = [x, y, z, w] of X to p′ = [y, x, z, −w] is a li! of F.

10.2. Geodesic !ow and parallel transport in SL(2, R)

The solution of the geodesic $ow has been computed in [16]. We follow a slightly more geometric approach.
Since the covering map is a local isometry, the geodesics of X are li!s of geodesics in Q. Hence we "rst integrate the geodesic $ow

in Q using Grayson’s method. We endow the tangent space T̃oX with the reference frame ẽ = (̃ex, ẽy, ẽw), where

ẽx = ∂

∂x , ẽy = ∂

∂y , and ẽw = ∂

∂w .

We write e = (ex, ey, ew) for its image under d̃oλ : T̃oX → ToQ. (Note that ex and ey coincide with the previous de"nition.) It follows
from our choice of metric that e is an orthonormal basis of ToQ.

Let γ : R → Q be a geodesic in SL(2, R) and let T(t) : Tγ (0)Q → Tγ (t)Q be the corresponding parallel-transport operator. As in
Sections 3.2.1 and 3.4.1, we de"ne paths u : R → ToQ and Q : R → SO(3) by the relations

γ̇ (t) = doLγ (t)u(t), and
T(t) ◦ doLγ (0) = doLγ (t)Q(t).

A!er some computation, Equations (3.2) and (3.6) can be written relative to the basis e as follows:





u̇x = 2uyuw
u̇y = −2uxuw
u̇w = 0

and

Q̇ + BQ = 0, where B = 1
2




0 −3uw −uy

3uw 0 ux
uy −ux 0



 .

For the initial condition u(0) = a cos(α)ex + a sin(α)ey + cew, where a ∈ R+ and c ∈ R satisfy a2 + c2 = 1, one gets

u(t) = a cos(α − 2ct)ex + a sin(α − 2ct)ey + cew.

In order to calculate the expression for Q, we follow the strategy detailed above and obtain

Q(t) = dRαe−2ctU1 Pe
1
2 tU2 P−1dR−1

α , ∀t ∈ R,

where

U1 =




0 −1 0
1 0 0
0 0 0



 , U2 =




0 0 0
0 0 −1
0 1 0



 ,
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and

dRα =




cos α − sin α 0
sin α cos α 0

0 0 1



 , P =




a 0 −c
0 1 0
c 0 a



 .

Note that dRα : ToQ → ToQ is the di#erential at o of the rotation Rα , written in the frame e = (ex, ey, ew).
Let us now move back to the original geodesic γ : R → X. Equation (3.1) becomes γ̇ (t) = A(t)γ (t), where

A(t) = 1
2





0 −uw ux uy
uw 0 −uy ux
ux −uy 0 uw
uy ux −uw 0



 .

Using a change of variables, one can reformulate the previous equation into a "rst-order di#erential system with constant coe%cients
that we integrate with standard methods. We obtain that the geodesic γ , such that γ (0) = o and γ̇ (0) = a cos(α)ex+a sin(α)ey+cew,
decomposes (up to a rotation) as a product of two one-parameter subgroups:

γ (t) = Rα (η(t) ∗ ξ(t)) . (10.2)

As before, Rα is the rotation of Q by angle α and ∗ is group multiplication in SL(2, R). The spin factor ξ : R → SL(2, R) represents
a rotation of H2 "xing the origin π(o) ∈ H. It can be written in Q as

ξ(t) = [cos(ct), sin(ct), 0, 0].
The translation factor η : R → SL(2, R) can have three forms, corresponding to the three types of isometries of H2. For simplicity
we let κ =

√
|c2 − a2|.

• If c > a, then η is an elliptic transformation, given in Q by

η(t) =
[

cos
(

κt
2

)
, − c

κ
sin

(
κt
2

)
, a
κ

sin
(

κt
2

)
, 0

]
.

• If c = a, then η is a parabolic transformation, given in Q by

η(t) =
[

1, − t
2
√

2
, t

2
√

2
, 0

]
.

• If c < a, then η is a hyperbolic transformation, given in Q by

η(t) =
[

cosh
(

κt
2

)
, − c

κ
sinh

(
κt
2

)
, a
κ

sinh
(

κt
2

)
, 0

]
.

10.3. Passing to the universal cover

Let us now consider the geodesic γ̃ in the universal cover X = H×R starting at õ with initial velocity a cos(α)̃ex + a sin(α)̃ey + c̃ew.
This is a li! of the geodesic γ computed above. The horizontal component of γ̃ is obtained as the image of γ under the projection
π : SL(2, R) → H2. Note that the spin factor ξ(t) "xes the base point π(o) ∈ H. Moreover, the rotation Rα of Q induces (via the
projection π) the rotation rα of H2 by angle α centered at π(o). Consequently, π ◦ γ (t) is the image under rα of one of the following
points, depending on whether c > a, c = a, or c < a respectively:





2a
κ sin

(
κt
2
)

cos
(

κt
2
)

− 2ac
κ2 sin2 (

κt
2
)

1 + 2a2

κ2 sin2 (
κt
2
)



 ,





√
2

2 t
− 1

4 t2

1 + 1
4 t2



 ,





2a
κ sinh

(
κt
2
)

cosh
(

κt
2
)

− 2ac
κ2 sinh2 (

κt
2
)

1 + 2a2

κ2 sinh2 (
κt
2
)



 .

These are parameterizations of orbits under the one-parameter subgroups above. Their images are a circle, a horocycle, and an
equidistant curve to a geodesic, respectively.

In order to compute the "ber component of γ̃ it is convenient to introduce cylindrical coordinates on Q. Given ρ ∈ R+, θ ∈ [0, 2π)

and w ∈ [0, 4π), the point of Q with cylindrical coordinates [ρ, θ , w] is




cosh
(ρ

2
)

cos
(w

2
)

cosh
(ρ

2
)

sin
(w

2
)

sinh
(ρ

2
)

cos
(
θ − w

2
)

sinh
(ρ

2
)

sin
(
θ − w

2
)




.
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This choice has been made so that the projection π from SL(2, R) (in cylindrical coordinates) to H2 (in polar coordinates) is given by
[ρ, θ , w] *→ [ρ, θ ]. In view of the expression for γ and its projection onto H, we may calculate an expression for the "ber component
w(t) of γ̃ (t). This calculation is greatly simpli"ed by the use of polar coordinates. We obtain

w(t) = 2ct + 2φ(t)

where φ(t) is characterized by

tan φ(t) =






− c
κ

tan
(

κt
2

)
, if c > a

− t
2
√

2
, if c = a

− c
κ

tanh
(

κt
2

)
, if c < a

Observe that if c ! a, then φ(t) ∈ (−π/2, π/2). Therefore its value can be computed from the above equation using the standard
arctan function. On the other hand, if c > a, then the geodesic γ̃ spirals, and the value of φ(t) needs to be adjusted by the correct
multiple of 2π .

Note that the covering map λ : X → Q is a local isometry. Hence, the parallel transport operator in X can be obtained by li!ing
the parallel transport operator in Q. In view of Grayson’s method, this operator is encoded by a local path Q̃ : R → SO(3), see
Section 3.4.1. The identi"cation relies on a choice of a preferred frame ẽ in the tangent space T̃oX at the origin. By construction λ is
equivariant with respect to the projection S̃L(2, R) → SL(2, R). Moreover, it maps ẽ to our preferred frame e in ToQ. Thus Q̃ and Q
actually coincide.

10.4. Distance to a vertical object

Exactly as in Nil, we say that an object Z ⊂ X is vertical if it is the pre-image of the projection π ◦ λ : X → H2 of a non-empty subset
S of H2. In this situation, for any point p ∈ X we have

distX(p, Z) = distH2(π ◦ λ(p), S).

Figure 52 shows pre-images of a half-space with geodesic boundary in H2. The boundary of each is patterned with a square grid
following the induced euclidean metric on the plane. The grid has side-length 1/2.

10.5. Exact distance and direction to a point

The strategy to compute the distance and direction from the origin to an arbitrary point p with cylindrical coordinates [ρ, θ , w] is
similar to the strategy used in Nil. Because of the $ip symmetry, we may assume that w " 0. First assume that ρ > 0. Using the

One half-space. One half-space. Two half-spaces.(a) (b) (c)

Figure 52. Vertical half-spaces in S̃L(2, R) geometry.
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χρ,w(φ) =






− 1
2

w + φ − 2 tan φ
cosh(ρ/2)

√
sinh2(ρ/2) − tan2 φ

arctanh
(√

sinh2(ρ/2) − tan2 φ

cosh(ρ/2)

)

,

if φ > −π

2
and | tan φ| < sinh(ρ/2)

− 1
2

w + φ − 2 tan φ,

if φ > −π

2
and | tan φ| = sinh(ρ/2)

− 1
2

w + φ − 2 tan φ
cosh(ρ/2)

√
tan2 φ − sinh2(ρ/2)

(

arctan
(√

tan2 φ − sinh2(ρ/2)

cosh(ρ/2)

)

− sign(tan φ)

⌊ 1
2

− φ

π

⌋
π

)

,

if | tan φ| > sinh(ρ/2) and π 1= −π

2
mod π

− 1
2

w + φ − 2 cosh(ρ/2),

if φ = −π

2
mod π

Figure 53. The map χρ,w . The !rst regime corresponds to geodesics with a hyperbolic translation factor, the second to geodesics with a parabolic translation factor, and the
third and fourth to geodesics with an elliptic translation factor. In Figure 54, these are drawn in red, green, and blue respectively.

-4 -3 -2 - 0

-5

5

-4 -3 -2 - 0

-5

5

π π π π

Figure 54. The graph of the function χρ,w for ρ = 1 and w = 15. The green dot corresponds to a geodesic whose translation part is parabolic. It separates the geodesics
whose translation part are elliptic (dark blue) from those that are hyperbolic (red). The light blue strips indicate the values of φ for which χρ,w is not de!ned. There are exactly
three geodesics joining the origin to any point p with cylindrical coordinates [1, θ , 15].

solution of the geodesic $ow, we observe that the geodesics γ̃ joining õ to p are in one-to-one correspondence with the zeros of a
function

φ *→ χρ,w(φ). (10.3)
We de"ne this function in Figure 53; see Figure 54 for its graph.

Observe that along a given geodesic γ̃ , the angle φ is a decreasing function of the time parameter t. Said di#erently, when γ̃ is
moving up in the "ber direction, then its projection in H2 turns clockwise. Hence the domain of χρ,w is contained in R−. Moreover
χρ,w is decreasing around φ = 0.

As in Section 9.5, we compute the zeros of χρ,w using Newton’s method, and thus calculate the lighting pairs Lõ(p).
Assume now that ρ = 0. The path γ (t) = [0, 0, 1, t] is a geodesic from õ to p with initial direction v = ẽw and length t = w.

If 2nπ ! w < 2nπ + 2π , for some integer n " 1, then õ and p are joined by n other rotation-invariant families of geodesics
{γ1,α}, . . . , {γn,α}, where α runs over [0, 2π). Each geodesic in the kth family has length

tk,α = 2kπ
√

1
2

( w
2kπ + 1

)2
− 1.

Moreover, the initial direction at the origin is characterized by
dR̃−1

α vk,α = vk,0

=
√

(w + 2kπ)2 − (4kπ)2

2(w + 2kπ)2 − (4kπ)2 ẽx + w + 2kπ
√

2(w + 2kπ)2 − (4kπ)2
ẽw.
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tion.
Looking along the +ber. Looking near the +ber direc- A view further from the +ber

direction.
(a) (b) (c)

Figure 55. A line of unit balls spaced every 2π along the !ber direction in S̃L(2, R). (Equivalently, a single ball of radius one in SO(2, 1).)

10.6. Distance underestimator for a ball.

As we explained in Section 10.1, X ∼= S̃L(2, R) is a (metrically) twisted line bundle over H2. As a subset of R4, our model for S̃L(2, R)

is identical to our model for Y = H2 × E (Section 8). This gives an identi"cation (of course, not an isometry) between X and Y ,
which we use to approximate distances in X as follows.

Lemma 10.4. For every point p ∈ X, we have

distX(o, p) ! distY(o, p) ! 2distX(o, p).

Proof. Consider an arc length parametrized geodesic γ : [0, '] → X joining o to p. We write LY(γ ) for its length in Y . A computation
shows that LY(γ ) ! 2'. Hence, distY(o, p) ! LY(γ ) ! 2distX(o, p). Second, a similar calculation shows that the arc length
parameterized geodesic γ ′ of Y joining o to p is still parameterized by arc length when viewed as a path in X. Consequently
distX(o, p) ! LX(γ ′) ! distY(o, p).

Remark 10.5. Note that the proof here relies on the fact that these geodesics begin at the origin, o. The result does not hold for
general geodesics. !

As in Nil, we use this observation to construct a distance underestimator σ ′ : X → R to render a ball of radius r centered at o, as
follows. Let

σ ′(p) =






σ (p) − r, if σ (p) > r + η

2σ (p) − r, if σ (p) < 2(r − η)

dist(o, p) − r, otherwise,

where

σ (p) = 1
2

√
arccosh2 (

z2 − x2 − y2) + w2

is half the distance from the origin to p in Y , and η > 0 is a constant that is much larger than the threshold ε used to stop the
ray-marching algorithm. In the last case of σ ′, the exact distance is computed numerically as explained in Section 10.5. We use this
distance underestimator to render the balls in Figure 55. Compare with Figure 29, which shows a line of balls in Nil.

10.7. Creeping to horizontal half-spaces

As for Nil in Section 9.7, we can use a version of creeping to draw pictures of “horizontal” half-spaces. For example, in Figure 56, we
draw the half-space w ! 0, the boundary H2 patterned with equidistant curves to a geodesic (in white).
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d = 2 d = 4 d = 6

d = 7 d = 8 d = 10

d = 15 d = 20 d = 30

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 56. Horizontal half-space with boundary the hyperbolic plane. The plane is colored with a geodesic (white) and equidistant curves (primary colors). The observer is
at p = [0, 0, 1, d]. The !gures are rendered with a single light source at height 3 above H2, and distance fog.

10.8. Lighting

We addressed the computation of lighting pairs in Section 10.5. Here, we calculate the intensity I(r, u) experienced from an isotropic
light source at distance r and in the direction u. By Equation (5.7), this is inversely proportional to the area density A(r, u). We
calculate this directly by taking the derivative of the geodesic $ow as in Equation (5.9).

As the "rst simpli"cation, note that as the covering map λ : X → Q is a local isometry and A(r, u) is a local quantity, we may treat
dλ̃o : T̃oX → ToQ as an identi"cation and work directly in Q = SL(2, R). Let u be the unit vector u = [a cos α, a sin α, c] ∈ ToQ
expressed in the basis (ex, ey, ew). Recall that Equation (10.2) gives a parameterization of the unit speed geodesic γ (t) in direction u
as the product of two one-parameter subgroups of Q = SL(2, R) followed by a rotation of angle α about the "ber direction. These
one-parameter subgroups, and hence the geodesic $ow, come in three regimes determined by whether |c/a| is greater than, equal to,
or less than one. Below we concern ourselves with the two generic cases.

Let [ρ, α, w] be the cylindrical coordinates on ToQ with (ρ, w) the norm of the projections onto the xy-plane and w-axis
respectively, and α ∈ [0, 2π) measured from the positive x-axis. In these coordinates, the point ru ∈ ToQ is expressed as
[ρ, α, w] = [ra, α, rc]. Using Equation (5.13), we may calculate the area density in terms of the ρ, α, and w derivatives of the geodesic
$ow. Here one may deal with the two regimes (in these coordinates, |ρ| > |w| and |ρ| < |w|) separately, or unify them into a single
computation with complex trigonometric functions. This follows from the particularly nice form of the one-parameter subgroups
in Equation (10.2). In either case, even a!er much simpli"cation, the resulting formula for area density is rather complicated. We
describe it below.

Let K =
√

|ρ2 − w2| and let f1 . . . f6 denote the polynomials in ρ, w, and K:

f1 = 17ρ6 + 7ρ4w2 + 16ρ2w4 + 32w6

f2 = 48ρ2w2(ρ2 + w2)

f3 = 3ρ4(5ρ2 + 3w2)

f4 = ρ6 − 2ρ2w2 − w4 − ρ4(w2 + 1)

f5 = ρ6 + 2ρ2w2 + w4 − ρ4(w2 − 1)

f6 = 2ρ2(ρ2 + w2)K.
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Within a ball of radius 10. Within a ball of radius 30.(a) (b)

Figure 57. The lighting intensity function I(r, u) in S̃L(2, R) geometry

To combine the two regimes, we let (S(x), C(x)) denote (sin(x), cos(x)) when |w| > |ρ|, and (sinh(x), cosh(x)) for |w| < |ρ|. Finally,
let g1 and g2 be the functions

g1(ρ, w) =f1(ρ, w) − f2(ρ, w)C(K) + f3(ρ, w)C(2K)

g2(ρ, w) =f4(ρ, w) + f5(ρ, w)C(K) ± f6(ρ, w)S(K),

where the ± in g2 is positive for |w| > |ρ| and negative when |w| < |ρ|. With this notation, the area density is given by

A(r, u) =
√

ρ2 + w2

2K6

∣∣∣∣S
(K

2

)∣∣∣∣

√∣∣∣g1(ρ, w)g2(ρ, w)
∣∣∣. (10.6)

See Figure 57. As with the computation of the geodesic $ow in Section 10.2, one should use the asymptotic expansion of
Equation (10.6) to obtain correct lighting along the null cone |w| = |ρ|.
Figure 57 shows the intensity variation, as seen in the tangent space to a point.

10.9. Discrete subgroups and fundamental domains.

The manifolds with S̃L(2, R) geometry are classi"ed in [57, Theorem 4.15]. The main examples are unit tangent bundles of hyperbolic
surfaces and two-dimensional orbifolds.

Our model Q of SL(2, R) is a projective model, in the sense that it induces a faithful representation Isom(Q) → PGL(4, R). This
is not the case for X however. Nevertheless, we can adapt the strategy described in Section 4.1.2 to produce an e%cient fundamental
domain. We explain this strategy with an example.

Let ! be the fundamental group of a genus two surface 2

! = 〈A1, A2, B1, B2 | [A1, B1][A2, B2] = 1〉 .

A choice of hyperbolic metric on 2 induces a representation ! → SL(2, R). For our example, we choose this metric so that a
fundamental domain U for the action of ! on H2 is a regular octagon centered at the origin, see Figure 58. The generators of ! can
now be written as points of Q

A1 =
[√

2
2

+ 1, −
√

2
2

− 1, −
√

2
√√

2 + 1, 0
]

,

A2 =
[√

2
2

+ 1, −
√

2
2

− 1,
√

2
√√

2 + 1, 0
]

,

B1 =
[√

2
2

+ 1,
√

2
2

+ 1,
√√

2 + 1, −
√√

2 + 1
]

,

B2 =
[√

2
2

+ 1,
√

2
2

+ 1, −
√√

2 + 1,
√√

2 + 1
]

.

The pre-image !̃ of ! by the covering map λ : X → Q is now a lattice in S̃L(2, R), viewed as a subset of G, the isometries of
X = S̃L(2, R). We choose li!s Ã1, Ã2, B̃1, and B̃2 of the previous generators so that their "ber components are, respectively, −π/2,
−π/2, π/2, and π/2. For convenience, we de"ne a new element C̃ that is the translation by 2π along the "ber direction. One checks
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A1

A2

B1B2 n1

n2

n3

n4

Figure 58. A sketch of the fundamental domain in H2. The gray disc is the Klein model of the hyperbolic plane. The white octagon is the fundamental domain for the action
on H2 of the fundamental group ! of a genus-two surface.

that C̃−2 = [Ã1, B̃1][Ã2, B̃2] in !̃. Note also that C̃ commutes with Ã1, Ã2, B̃1, and B̃2. A fundamental domain for the action of ! on
X is the subset D = U × [−π , π ] of X = H × R. However, our model X is not well suited to checking easily whether a point belongs
to D or not.

To solve this problem, we consider the isometry h : H → K between the hyperboloid model H ⊂ R3 and the Klein model K ⊂ R2

of H2. The isometry h extends to a bijection

H × R → K × R

(q, w) *→
(
h(q), w

)
.

This provides yet another model X′ = K × R for S̃L(2, R). The image of D under this identi"cation is D′ = U ′ × [−π , π ] where U ′

is now an octagon in K whose sides are straight lines. We de"ne the following normal vectors in R3:

n1 = [1, 0, 0] , n3 = [0, 1, 0] ,

n2 =
[√

2
2

,
√

2
2

, 0
]

, n4 =
[

−
√

2
2

,
√

2
2

, 0
]

,

n5 = [0, 0, 1] ,

see Figure 58. To each index k ∈ {1, 2, 3, 4}, we associate two half-spaces

H−
k = {v ∈ R3 : 〈v, nk〉 " −δ}, and H+

k = {v ∈ R3 : 〈v, nk〉 ! δ},

where 〈·, ·〉 is the standard dot product in R3 and δ =
√

2
√√

2 − 1. We choose δ so that D′ is the intersection of these half-spaces.
Similarly, we let

H−
5 = {v ∈ R3 : 〈v, n5〉 " −π}, and H+

5 = {v ∈ R3 : 〈v, n5〉 ! π}.

The teleporting algorithm has two main steps. Let p = (q, w) be a point in our new model K × R of S̃L(2, R).

(1) If q does not belong to H+
1 (respectively H+

2 , H+
3 , H+

4 , H−
1 , H−

2 , H−
3 , H−

4 ), then we move p by B̃−1
1 (respectively Ã1, B̃1, Ã−1

1 , B̃−1
2 ,

Ã2, B̃2, Ã−1
2 ). Observe that U ′ is also a Dirichlet domain for the action of ! on H2. More precisely, H+

1 ∩ H+
3 is the set of points

in K which are closer to the origin o than their translates by B±1
1 . Hence the translation by B̃−1

1 moves the projection q of p to K
closer to o. It follows that a!er "nitely many steps, we can ensure that q belongs to U ′. Since we always reduce the distance from
o to p, the order in which we perform the algorithm does not matter.

(2) Once this is done, if p does not belong to H−
5 (respectively H+

5 ), then we move it by C̃ (respectively C̃−1). Note that C̃ does not
a#ect the horizontal component q of p. Therefore, a!er this process p lies in the fundamental domain D′.
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tion. direction.
Looking near the +ber direc-Looking along the +ber. A view further from the +ber(a) (b) (c)

Figure 59. The unit tangent bundle of a genus two surface.

Figure 59 shows some views within the unit tangent bundle to a genus two surface, as described in this section. The fundamental
domain is a very tall octagonal prism. To better illustrate the geometry, our scene is the complement of three spheres stacked vertically
within this domain.

In Figure 60, we show the in-space view for various scenes in S̃L(2, R) geometry. Figure 60(a) shows the same scene as Figure 59,
with a globe added at the center of each of the three spheres. Figure 60(b) shows a lattice of globes in the unit tangent bundle
for a sphere with cone points π/3, π/3, and 2π/3. Figure 60(c) shows solid cylinders (which we implement as vertical objects)
around "bers of S̃L(2, R). The lighting in these images is based on a continuously varying direction "eld rather than point light
sources.

11. Sol

11.1. Model

As with Nil and S̃L(2, R), Sol is a Lie group. The underlying space of our model is the a%ne subspace X of R4 de"ned by w = 1. The
group law is as follows: the point [x, y, z, 1] acts on X on the le! as the matrix





ez 0 0 x
0 e−z 0 y
0 0 1 z
0 0 0 1



 .

The origin o is the point [0, 0, 0, 1]. Its tangent space ToX is identi"ed with the linear subspace of R4 given by the equation w = 0.
The metric tensor at an arbitrary point p = [x, y, z, 1] is

ds2 = e−2zdx2 + e2zdy2 + dz2. (11.1)

With this metric, the action of Sol on itself is an action by isometries. The stabilizer K of the origin o is isomorphic to the dihedral
group of order eight, D8, which is generated by two symmetries acting on X as the matrices

S1 =





−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



 and S2 =





0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 1





respectively. These symmetries can be observed in the balls of Sol, see Figure 61.

11.2. Geodesic !ow and parallel transport

As for Nil and S̃L(2, R) in Sections 9.3 and 10.2, we can use Grayson’s method to study the geodesic $ow and parallel transport.
Let γ : R → X be a geodesic, and let be T(t) : Tγ (0)X → Tγ (t)X be the corresponding parallel-transport operator. Following
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A globe within the unit tangent bundle of a genus two surface.

A lattice of globes.

Li*s of the +bers in UTH2.

(a)

(b)

(c)

Figure 60. S̃L(2, R) Geometry.

Sections 3.2.1 and 3.4.1, we de"ne two paths u : R → ToX and Q : R → SO(3) by the relations

γ̇ (t) = doLγ (t)u(t), and
T(t) ◦ doLγ (0) = doLγ (t)Q(t).

A!er some computation, Equations (3.2) and (3.6) respectively become






u̇x = uxuz
u̇y = −uyuz

u̇z = u2
y − u2

x
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Figure 61. 3D-printed models of the balls of radius one to four in Sol. We scaled the ball of radius r down by a factor of r in order to keep the physical sizes reasonable.
Photograph by Edmund Harriss.

and

Q̇ + BQ = 0, where B =




0 0 −ux
0 0 uy

ux −uy 0



 .

The path u, as well as the geodesic γ , can be computed explicitly [64].3 Assume that γ starts at the origin o, so that the initial
condition is u(0) = γ̇ (0) = [a, b, c, 0]. Because of the symmetries of Sol, we can assume without loss of generality that a " 0 and
b " 0. We distinguish three cases.

Case a = 0. Here the solution for u is

u(t) =
[

0, b
cosh t + c sinh t , c + tanh t

1 + c tanh t , 0
]

.

It follows that

γ (t) =
[

0, b tanh t
1 + c tanh t , ln(cosh t + c sinh t), 1

]
.

In particular, γ stays in the plane {x = 0}. This plane is totally geodesic and isometric to H2.

Case b = 0. Here u and γ can be deduced from the previous case, via a conjugation by the symmetry S2 "xing the origin. That is,

u(t) =
[ a

cosh t − c sinh t , 0, c − tanh t
1 − c tanh t , 0

]

and

γ (t) =
[ a tanh t

1 − c tanh t , 0, − ln(cosh t − c sinh t), 1
]

.

Note that γ stays in the plane {y = 0}, which is also a totally geodesic, isometrically embedded copy of H2.

Case ab 1= 0. We "rst de"ne some auxiliary parameters. Let

k =
√

1 − 2ab
1 + 2ab and k′ = 2

√
ab

1 + 2ab .

The associated complete elliptic integrals of the "rst and second kind are respectively

K(k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

and E(k) =
∫ π

2

0

√
1 − k2 sin2 θdθ .

We denote by sn and cn the Jacobi elliptic sine and cosine functions with elliptic modulus k. We write dn for the delta amplitude and ζ

for the Jacobi zeta function, also with elliptic modulus k. For an in-depth study of elliptic functions, we refer the reader to [27, 32, 48].
Recall that sn and cn are 4K(k)-periodic. Let

µ =
√

1 + 2ab.

3A commonly cited reference for solving the geodesic #ow in Sol is [7]. However, the authors do not conduct the computation to the "nal stage – see their
Theorem 4.1(1). Moreover, the formulas given in Theorem 4.1(2) have some errors.
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We also "x α ∈ [0, 4K(k)) such that

sn α = − c√
1 − 2ab

and cn α = a − b√
1 − 2ab

.

Setting s = µt + α, we now have

u(t) =
[√

ab k cn s + dn s
k′ ,

√
ab k′

k cn s + dn s , −kµ sn s, 0
]

.

In order to write the solution for γ , we let

L = E(k)
k′K(k) − k′

2
.

We "nally get

γ (t) =





√
b
a

( 1
k′

(
ζ(s) − ζ(α)

)
+ k

k′
(

sn s − sn α
)
+

(
s − α

)
L
)

√
a
b

( 1
k′

(
ζ(s) − ζ(α)

)
− k

k′
(

sn s − sn α
)
+

(
s − α

)
L
)

1
2

ln
(b

a

)
+ arcsinh

( k
k′ cn s

)

1





.

In practice, we use a mixed approach, as follows.

• When we need to $ow for a long time (for example when all objects in the scene are very far away from the camera), then we use
the explicit formula above. However, if the initial direction γ̇ (0) is close to one of the hyperbolic planes, this formula su#ers from
many numerical errors. This is an example of the kind of error described in Section 2.4.1(2). In this case, we replace the exact
solution by its asymptotic expansion of order two.

• When we need to $ow for a short time, the above method again seems to su#er from signi"cant numerical errors. This happens
when during the ray-marching algorithm some object is very close, or when updating the position and facing of the observer
between two frames. In this situation, we numerically integrate the geodesic $ow and the parallel transport equations using the
Runge–Kutta method of order two.

Remark. Since Jacobi elliptic and zeta functions are not available in the OpenGL library, we implemented them directly, using the
AGM algorithm [1, 8, 47].

11.3. Distance to coordinate half-spaces

Given α ∈ R, we write H+
z (α) = {z " α} and H−

z (α) = {z ! α}. Note that the boundary {z = α} of these half-spaces is isometric
to a euclidean plane, but is not convex as a subspace of X. Recall that we write sdf(·, S) for the signed distance function for the scene
S.

Lemma 11.2. Fix a real number α. For every point p = [x, y, z, 1] in X, we have

sdf
(
p, H−

z (α)
)

= z − α and sdf
(
p, H+

z (α)
)

= α − z.

Proof. Observe that the collections {H+
z (α) | α ∈ R} and {H−

z (α) | α ∈ R} are both invariant under the action of Sol on itself.
Thus, without loss of generality, we can assume that p is the origin o. Similarly, the symmetry S2 "xes the origin and permutes H+

z (α)

and H−
z (α). Hence, it su%ces to prove the statement for H+

z (α). Suppose that α " 0 (the other case works in the same way). The
path γ (t) = [0, 0, t, 1] is a geodesic starting at the origin and hitting H+

z (α) at time t = α. Hence, we have dist(o, H+
z (α)) ! α.

Let us prove the other inequality. Consider a point q ∈ H+
z (α) and a minimizing arc length parameterized geodesic γ : [0, '] → X

from o to a point q. If we write the path γ as γ (t) = [x(t), y(t), z(t), 1], then from the metric given in Equation (11.1) we get that
|ż(t)| ! 1, because γ is arc length parameterized. Consequently, we have

dist(o, q) " ' " z(') " α.

This inequality holds for every point q ∈ H+
z (α), hence the result.

In Figure 62, we use these signed distance functions to draw horizontal half-spaces, patterned with square tilings.
We can similarly compute the exact distance function to a half-space bounded by a hyperbolic plane in Sol. Let H+

x (α) = {x " α}
and H−

x (α) = {x ! α}.
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H+
z (1) H−

z (−1) H+
z (1) ∪ H−

z (−1)(a) (b) (c)

Figure 62. Wide-angle views of horizontal half-spaces in Sol geometry. The boundaries of these half-spaces are tiled by squares of side length 1/5.

Lemma 11.3. Fix a real number α. For every point p = [x, y, z, 1] in X, we have

sdf
(
p, H+

x (α)
)

= −sdf
(
p, H−

x (α)
)

= arcsinh
(
(α − x)e−z).

Proof. Assume "rst that p = o is the origin. We write the proof for H+
x (α) with α > 0. The other cases work in the same way.

We claim that the distance from o to H+
x (α) is also the distance in the hyperbolic plane U = {y = 0} from o to the half plane

U+(α) = {x " α and y = 0}. We have

distX
(
o, H+

x (α)
)
! distU

(
o, U+(α)

)
.

In order to prove the converse inequality, it su%ces to show that the projection X → U sending [x, y, z, 1] to [x, 0, z, 1] is 1-Lipschitz.
To see this, take two points q and q′, and a geodesic γ : [0, T] → X joining them. We write γ (t) = [x(t), y(t), z(t), 1]. From the
metric given in Equation (11.1), we get

dist(q, q′) = L(γ ) =
∫ T

0

√
e−2zẋ2 + e2zẏ2 + ż2dt

"
∫ T

0

√
e−2zẋ2 + ż2dt

= L(π ◦ γ )

where L(γ ) and L(π ◦ γ ) stands for the length in X of γ and π ◦ γ , respectively. Thus, dist(q, q′) " dist(π(q), π(q′)).
We now compute distU(o, U+(α)). Recall that U is isometric to the hyperbolic plane H2. More precisely [x, z] is a horocycle-based

coordinate system of H2: the distance between p1 = [x1, 0, z1, 1] and p2 = [x2, 0, z2, 1] is characterized by

cosh dist(p1, p2) = cosh(z1 − z2) + 1
2

e−(z1+z2)(x1 − x2)
2.

One checks that the projection of o onto U+(α) is the point
[
α, 0, 1

2
ln(1 + α2), 1

]

and

distU
(
o, U+(α)

)
= arcsinh(α).

Assume now that p = [x, y, z, 1] is an arbitrary point. There is a unique element L of Sol sending o to p. Observe that L−1 maps
H+

x (α) to H+
x (α′) where α′ = (α − x)e−z. The result then follows from the previous discussion.

We can de"ne the half-spaces H±
y (α) as we did for H±

x (α). Using the fact that the isometry S2 "xing the origin sends [x, y, z, 1] to
[y, x, −z, 1] we get the following statement.
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H+
x (1) H−

y (−1) H+
x (1) ∪ H−

y (−1)(a) (b) (c)

Figure 63. Wide-angle view of half-spaces with hyperbolic plane boundary in Sol geometry. The boundaries are tiled by quadrilaterals formed from a family geodesics
parallel to the z-axis and the families of orthogonal horocycles. The horocycles are evenly spaced, with distance one between neighbors.

Lemma 11.4. Fix a real number α. For every point p = [x, y, z, 1] in X, we have

sdf
(

p, H+
y (α)

)
= −sdf

(
p, H−

y (α)
)

= arcsinh
(
(α − y)ez)

In Figure 63, we use these signed distance functions to draw half-spaces with hyperbolic boundary, patterned with square tilings.
Combining these signed distance functions with boolean operations, we can make tubes around vertical geodesics with square cross-
sections (Figure 64(a)).

11.4. Distance to horizontal axis-aligned solid cylinders

Following the same strategy as in Section 11.3, we compute the signed distance function for certain solid cylinders. Let cx : R → X
be the curve given by cx(t) = [t, 0, 0, 1]. Note that cx is not a geodesic of X, but it is a one-parameter subgroup of Sol.

Lemma 11.5. For every point p = [x, y, z, 1] in X, we have

cosh dist(p, cx) = cosh z + 1
2

ezy2.

Proof. Since cx is invariant under translations along the x-axis (which are isometries of X), we can assume that p has the form
p = [0, y, z, 1]. Following the argument given in the proof of Lemma 11.3, we observe that dist(p, cx) = dist(p, o). Using the distance
formula in the hyperbolic plane {x = 0}, we get the result.

Let Cx(r) be the solid cylinder of radius r around cx. That is, Cx(r) is the set of point q ∈ X such that dist(q, cx) ! r. It follows
from Lemma 11.5 that the signed distance function σ : X → R for Cx(r) is

σ (p) = arccosh
(

cosh z + 1
2

ezy2
)

− r.

Similarly, we de"ne the solid cylinder of radius r around the curve cy given by cy(t) = [0, t, 0, 1]. The signed distance function
σ : X → R for Cy(r) is

σ (p) = arccosh
(

cosh z + 1
2

e−zx2
)

− r.

Using the elements of Sol, we can translate the solid cylinders Cx(r) and Cy(r) to get signed distance functions for solid cylinders
around any translate of the x- and y-axes. See Figure 65(a).
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Tubes around vertical
geodesics with square cross-
sections.

A cube with sidelength 3. )e same (single) cube as
in Figure 11.4b, viewed from a
distance.

A lattice of cubes, dense enough that anomalies seen in Figure 11.4c are mostly hidden from view.

(a) (b) (c)

(d)

Figure 64. Scenes made from half-spaces with boolean operations.

11.5. Approximating balls and more general solid cylinders

Given a point p = [x, y, z, 1], we approximate its distance to the origin with the function

σ (p) =
√

e−2zx2 + e2zy2 + z2,

rescaled by homotheties of the domain and co-domain. This can be used to render decent “pseudo-balls”, see Figures 66 and 67(b).
It is not currently clear to us whether this function can be used to build a distance underestimator for correct balls.

We can similarly produce “solid pseudo-cylinders,” approximating the distance from a point to an orbit of a one-parameter
subgroup transverse to a plane (the horizontal plane or either hyperbolic plane). The idea is to move a point under the one-parameter
subgroup to put it in the plane, and then calculate a signed distance function there. If distances are di%cult to calculate (either
theoretically or practically) even when restricted to the plane, then we can cheat further by measuring, say, euclidean distance in the
model space.

Figure 65(b) shows solid pseudo-cylinders around the translates of the x- and y-axes. This compares well with the exact solid
cylinders shown in Figure 65(a). In Figure 65(c), we draw solid pseudo-cylinders around the geodesics x = ±y and their translates.
Note that these are the only geodesics contained in the xy-plane. In Figure 65(d), we reproduce the two hyperbolic planes of Figure 63,
represented by grids of solid cylinders. The horocycles in each grid are drawn with exact signed distance functions; for the geodesics
we use solid pseudo-cylinders.
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Around translates of the x-
and y-axes (exact sdfs).

Around translates of the x-
and y-axes (approximations).

Around geodesics in hori-
zontal planes.

Around horocyclic coordinate lines.

(a) (b) (c)

(d)

Figure 65. Solid cylinders.

11.6. Direction to a point

Although it is certainly possible to do so, we did not try to numerically compute the exact direction of geodesics joining two given
points in Sol. Recall that these data are only needed to compute lighting pairs for physically correct illumination as in Section 5. As
we explained in Section 5.9, we choose instead a more-or-less arbitrary, continuously varying direction "eld: if s is a point of the
scene S and q is the position of the light, then we run all the computations in the Phong model as if the direction from s to q were
given by the straight line between s and q in the ambient space R4 containing our model X.

11.7. Discrete subgroups and fundamental domains

The classi"cation of Sol manifolds is given in [57, Theorem 4.17]. Every Sol manifold is a surface bundle over a one-dimensional
orbifold. In particular, Sol can be seen as the universal cover of the suspension M of a regular two-torus T by an Anosov
homeomorphism.

The fundamental group ! of M provides a lattice in X. We explain here with a concrete example how to construct a fundamental
domain D for the action of ! on X.

To avoid any confusion, we denote by [u1, u2] the coordinates of a point in the universal cover R2 of the two-torus T. The
fundamental group π1(T) ∼= Z2 acts on R2 by integer translations. Let f be the Anosov homeomorphism of T acting on R2 as
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Exact ball of radius 1. Exact ball of radius 2. Exact ball of radius 3.

Level set ! = 0.6. Level set ! = 1.34. Level set ! = 2.16.

(a)

(d) (e) (f)

(b) (c)

Figure 66. Extrinsic comparison of exact and pseudo-balls. The objects have been rescaled so that they all have approximately the same size.

the matrix
[

2 1
1 1

]
.

Let M be the mapping torus of T with monodromy f . Its fundamental group ! is given by the presentation

! =
〈
A1, A2, B | [A1, A2] = 1, BA1B−1 = A2

1A2, BA2B−1 = A1A2
〉
.

Here, A1 and A2 are the standard generators of Z2, while the conjugation by B is the automorphism of Z2 induced by f . As in Nil,
! is generated by A1 and B. Nevertheless, is it more convenient to keep three generators, as they correspond to translations in three
independent directions.

We identify the universal cover M̃ of M with R3, equipped with coordinates [u1, u2, u3]. Here the set {u3 = 0} corresponds to a
copy of T̃ inside M̃. The generators A1 and A2 act by translation along u1 and u2, while B translates along u3 and applies f to the
orthogonal plane.

The next step is to identify X with M̃. Let b be the point of Sol whose coordinates in X are b = [0, 0, τ , 1]. (The value of τ > 0
will be determined later.) We require that under our identi"cation, the translation by b in X becomes the action of B on M̃. Observe
that b dilates the x-axis while contracting the y-axis. Thus we need to identify the x-direction (respectively y-direction) of X with the
expanding (respectively contracting) direction of f .

The matrix de"ning f has two eigenvalues, namely φ2 and φ−2, where φ = (1 +
√

5)/2 is the golden ratio. The corresponding
eigenvectors are

v+ = [φ, 1], and v− = [−1, φ].

We now de"ne a homeomorphism h : X → M̃ as the restriction to X of the linear map R4 → R3 given by the matrix



φ −1 0 0
1 φ 0 0
0 0 τ−1 0



 ,

where we now set τ = 2 ln φ. In addition, we write a1 and a2 for the elements of Sol whose coordinates in X are

a1 =
[

φ

φ + 2
, − 1

φ + 2
, 0, 1

]
and a2 =

[ 1
φ + 2

, φ

φ + 2
, 0, 1

]
.

It follows from our construction that the map h conjugates the translation by a1 (respectively a2, b) in X to the action of A1
(respectively A2, B) on M̃. A fundamental domain D for the action of ! on X is the image under h−1 of the cube [−1/2, 1/2]3 ⊂ M̃.
That is,

D =
{[u1φ + u2

φ + 2
, −u1 + u2φ

φ + 2
, u3τ , 1

]∣∣∣∣ u1, u2, u3 ∈ [−1/2, 1/2]
}

.
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Cubes on the xy-plane.

An Anosov torus bundle.

An Anosov torus bundle.

(a)

(b)

(c)

Figure 67. Sol Geometry.

Our model X for Sol is also a projective model. The fundamental domain D can be seen as the intersection of a collection of
half-spaces H±

1 , H±
2 , H±

3 as described in Section 4.1.2. Here

H−
1 =

{[u1φ + u2
φ + 2

, −u1 + u2φ

φ + 2
, u3τ , 1

]∣∣∣∣ u1 " −1/2, u2, u3 ∈ R
}

,

H+
1 =

{[u1φ + u2
φ + 2

, −u1 + u2φ

φ + 2
, u3τ , 1

]∣∣∣∣ u1 ! 1/2, u2, u3 ∈ R
}

.

The half-spaces H±
2 , H±

3 are de"ned in a similar way. The teleporting algorithm has two main steps. Let p = [x, y, z, 1] be a point
in X.
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(1) If p does not belong to H−
3 (respectively H+

3 ), then we move it by b (respectively b−1). A!er "nitely many steps, the new point p
lies in H−

3 ∩ H+
3 .

(2) Once this is done, if p does not belong to H−
1 (respectively H+

1 , H−
2 , H+

2 ), then we translate it by a1 (respectively a−1
1 , a2, a−1

2 ).
Note that this does not change the z-coordinate of p. Since a1 and a2 commute, we don’t pay attention to the order in which we
perform these operations. A!er "nitely many steps, the new point p belongs to D.

In Figure 67(a), we draw a lattice of cubes in a neighborhood of the xy-plane. The center of each cube is at a vertex of the tiling
of the plane T̃ corresponding to the action of the subgroup of ! generated by A1 and A2. Figure 67(b) shows the inside view of an
Anosov torus bundle, with a ball textured as the Earth for the scene. Figure 67(c) shows the same manifold, with the complement of
three solid pseudo-cylinders around the curves [tφ, −t, 0, 1], [t, tφ, 0, 1], and [0, 0, t, 1] as the scene.

12. Future directions

12.1. Virtual reality

As mentioned in Section 3.6, there are serious problems that must be addressed before we can use stereoscopic vision to give the user
depth cues in a virtual reality experience.

12.2. Sol

Some elements of our work are still incomplete for Sol geometry, namely correct lighting, and correct signed distance functions (or
even distance underestimators) for balls. One of the di%culties is that we do not yet have an e%cient method to compute the lengths
and directions of the geodesics from the origin o to an arbitrary point p.

For Nil and S̃L(2, R), we used the rotation-invariance of our model to build a one-to-one correspondence between those geodesics
and the zeros of a function φ → χ(φ) (depending on p), see Sections 9.5 and 10.5. Since χ is convex on each interval I where it is
de"ned, Newton’s method very e%ciently computes its zeros. In particular, any value φ0 ∈ I where χ(φ0) > 0 can serve as a seed for
the algorithm.

The lack of rotation invariance in Sol makes it much harder to implement similar ideas. One could use a multi-variable Newton’s
method to "nd the geodesics from o to p. It is however not obvious where to start the procedure. A deeper analysis of the solutions
of the geodesic $ow is needed here.

12.3. Directed distance underestimators

For certain scenes, it can be di%cult to produce the corresponding signed distance function, or even a distance underestimator. An
example is the xy-plane in the Nil geometry (Section 9.7). However, when we are ray-marching along a geodesic γ , we do not in fact
need to know the distance from any point p ∈ X to the scene, but only the distance to the closest point of the scene lying on γ . This
leads us to the following de"nitions.

De!nition 12.1. Given a scene S ⊂ X, the associated directed signed distance function σ : TX → R is a map characterized as follows.
Let v ∈ TpX be a tangent vector at p. Let γ be the geodesic starting at p in the direction v.

• If p does not belong to S, then σ (v) is the distance from p to the closest point of S on γ .
• If p is in S, then −σ (v) is the distance from p to the closest point of X \ S on γ . !

Such a function is a priori also very hard to obtain. Indeed it means that we can compute the intersection of any geodesic with
our scene; this is precisely the data required for ray-tracing. Nevertheless, as in Section 2.2, we can perform ray-marching using an
underestimator that takes as its input a tangent vector to a ray.

De!nition 12.2. A directed distance underestimator for the scene S is a map σ ′ : TX → R such that

(1) The signs of σ ′(v) and σ (v) are the same for all points v ∈ TX,
(2) |σ ′(v)| ! |σ (v)| for all v ∈ TX, and
(3) If {v1, v2, . . .} is a sequence of points in TX such that σ ′(vn) converges to zero, then so does σ (vn). !

Ray-marching with such a directed distance underestimator will produce the same pictures as ray-marching with an undirected
signed distance function. These, in some sense, bridge the gap between ray-tracing and undirected ray-marching. With directed
distance underestimators, we expect to expand the collection of scenes that we can render.

Directed distance underestimators may also help improve e%ciency. When using a standard signed distance function (or distance
underestimator), the length of the steps becomes very small as a geodesic ray passes very close to the scene without hitting it. If
the maximal number of steps for the algorithm is not large enough, this creates background-colored halos around objects. With a
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directed distance underestimator, we can hope that the length of the steps in this situation will be larger, thus making the algorithm
converge faster.

12.4. Non-maximal homogeneous riemannian geometries

Recall that the transitive action of a Lie group G on a manifold X determines a homogeneous geometry. To be a Thurston geometry,
a homogeneous geometry must satisfy four additional restrictions, see Section 1.1. The "rst two of these conditions, having X simply
connected and G act with compact point stabilizer, de"ne a riemannian homogeneous space. (For a complete classi"cation of three-
dimensional riemannian homogeneous spaces, see [49].) These two conditions greatly simplify calculations of the geodesic $ow,
parallel transport, and more. The second two conditions restrict to those needed for geometrization. However, we do not need these
conditions anywhere in our ray-marching algorithms. There are many interesting geometries satisfying only the "rst two conditions
that could be visualized in a similar fashion. Celińska-Kopczyńska and Kopczyński have begun to investigate visualizations of one-
parameter spaces of metrics of this kind on the three-sphere.

12.5. Homogeneous pseudo-riemannian and lorentzian geometries

Generalizing riemannian geometry, a pseudo-riemannian manifold is a manifold M together with a choice of (not necessarily positive
de"nite) nondegenerate bilinear form on each tangent space. When the bilinear form is not positive de"nite, the existence of null
vectors (nonzero v ∈ TpM with 〈v, v〉 = 0) makes these spaces di%cult to interpret visually (although see [17] for a literary
interpretation). However, there is one class of pseudo-riemannian manifolds for which there is a clear interpretation of what the
intrinsic view looks like: lorentzian manifolds. These have bilinear forms of signature (n − 1, 1) and are the basic models of space-
time in relativistic physics.

In relativity, light travels along the null geodesics (geodesics with null tangents) in a lorentzian manifold, and so the intrinsic view
may be computed by ray-marching starting with the lightcone of null vectors in the tangent space of the viewer. In the real world, we
see light that travels along null geodesics in a lorentzian four-manifold. Arguably, then, it is more natural to consider the inside view
of a lorentzian four-manifold rather than of a riemannian three-manifold.

The natural starting place is $at space-time: the Minkowski space R3,1. Ray-marching along lightcones in this geometry provides
a method of simulating the inside view in special relativity. Previous visualization work in special relativity includes [36, 41, 58, 60].
Generalizing to homogeneous space-times of constant curvature, one could produce intrinsic simulations of de Sitter and anti-de
Sitter space-time. Many of the methods described in Section 3 can be adapted to this setting. All three of these have natural projective
models in R5, and explicit descriptions for their null geodesics and isometry groups are well known (see, e.g., [31, 59]).

Beyond these, the classi"cation of general lorentzian homogenous four-manifolds has been completed [15], although it is more
complex than the case of riemannian three-manifolds discussed above. In all such manifolds, we may use analogs of the techniques
introduced in Section 3 to simplify computations.

12.6. Nonhomogeneous geometries

Giving up on symmetry, there are many nonhomogeneous riemannian and lorentzian manifolds for which intrinsic views may prove
useful. Examples include watching a three-manifold evolve under the Ricci $ow, analyzing collapsing space-times, or space-times
with singularities (black holes). In most cases, the lack of symmetry forces us to use numeric solutions for the geodesic $ow. However,
there are also interesting nonhomogeneous spaces with exactly solvable geodesic $ow. These include the matrix group SL(2, R) with
the metric it inherits from the 2 × 2 matrices M2,2(R) ∼= R4 as a hypersurface. However, these spaces all present considerable
di%culties for the methods outlined in Section 3, and will require more work.

Appendix A: Comparison between methods to integrate the geodesic "ow

In this work, whenever possible we have avoided numerical methods for following geodesics and have instead exploited explicit solutions of the
geodesic $ow. This allows us to quickly and accurately ray-march long distances, and thus render scenes with distant objects [11, 12]. To support
our choice, we ran some numerical experiments. We explain our protocol below.

Remark A.1. We do not claim to give a comprehensive and rigorous comparison of the various methods to integrate the geodesic $ow. The
computations here are made in Python (using Numpy long double $oats) on a standard desktop computer. We do not use the GPU, and no parallel
computing is involved. Nevertheless, we can use these experiments to compare the relative e%ciency of the algorithms. !

A.1. Experimental protocol

Let (G, X) be one of the Thurston geometries. We "x an integer N ∈ N and a time t ∈ R+. We compare four methods: using exact formulas, Euler’s
method, and the Runge–Kutta methods of order two and four. For the numerical methods, we also compare di#erent step sizes )t.
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Table A1. Integrating the geodesic $ow in Nil. Computation made with N = 10, 000 and t = 6.

Method )t Time Maximal Mean Number of directions Maximal angle Mean angle
needed (in s.) distance error distance error o" ()α > 60◦) error (in ◦) error (in ◦)

Exact $ow – 0.2 – – – – –
Euler 0.1 12.0 8.4e-01 5.2e-01 0 8.7e+00 4.4e+00
Euler 0.01 115.3 8.6e-02 5.2e-02 0 9.4e-01 4.8e-01
Runge–Kutta 2 0.1 17.8 9.3e-03 5.0e-03 0 1.7e-01 3.1e-02
Runge–Kutta 2 0.01 176.0 9.6e-05 5.1e-05 0 1.7e-03 3.0e-04
Runge–Kutta 4 0.1 32.4 8.2e-06 4.2e-06 0 8.1e-05 1.8e-05
Runge–Kutta 4 0.01 323.3 8.2e-10 4.2e-10 0 2.7e-08 1.2e-09

Table A2. Integrating the geodesic $ow in Nil. Computation made with N = 10, 000 and t = 10.

Method )t Time Maximal Mean Number of directions Maximal angle Mean angle
needed (in s.) distance error distance error o" ()α > 60◦) error (in ◦) error (in ◦)

Exact $ow – 0.3 – – – – –
Euler 0.1 20.4 3.8e+00 2.2e+00 690 6.0e+01 1.4e+01
Euler 0.01 191.8 4.3e-01 2.2e-01 71 5.3e+01 2.4e+00
Runge–Kutta 2 0.1 30.0 3.1e-02 1.4e-02 186 2.5e+00 7.5e-02
Runge–Kutta 2 0.01 297.0 3.3e-04 1.4e-04 19 1.5e-01 9.8e-04
Runge–Kutta 4 0.1 54.7 2.8e-05 1.2e-05 0 2.0e-02 5.7e-05
Runge–Kutta 4 0.01 540.1 2.8e-09 1.2e-09 0 3.5e-06 4.5e-09

Table A3. Integrating the geodesic $ow in S̃L(2, R). Computation made with N = 10, 000 and t = 6.

Method )t Time Maximal Mean Number of directions Maximal angle Mean angle
needed (in s.) distance error distance error o" ()α > 60◦) error (in ◦) error (in ◦)

Exact $ow – 0.8 – – – – –
Euler 0.1 33.2 3.7e+00 2.7e+00 0 5.2e+01 5.4e+00
Euler 0.01 325.1 6.6e-01 3.9e-01 0 2.7e+00 7.1e-01
Runge–Kutta 2 0.1 49.0 4.8e-02 2.8e-02 0 1.0e+00 1.3e-01
Runge–Kutta 2 0.01 485.5 6.6e-04 3.6e-04 0 9.4e-03 1.2e-03
Runge–Kutta 4 0.1 83.9 4.1e-05 2.4e-05 0 2.0e-03 1.8e-04
Runge–Kutta 4 0.01 817.5 4.7e-09 2.3e-09 0 1.9e-07 1.3e-08

Table A4. Integrating the geodesic $ow in S̃L(2, R). Computation made with N = 10, 000 and t = 10.

Method )t Time Maximal Mean Number of directions Maximal angle Mean angle
needed (in s.) distance error distance error o" ()α > 60◦) error (in ◦) error (in ◦)

Exact $ow – 0.7 – – – – –
Euler 0.1 53.7 1.1e+01 7.9e+00 594 4.0e+01 8.3e+00
Euler 0.01 523.3 6.2e+00 3.6e+00 74 3.7e+01 2.2e+00
Runge–Kutta 2 0.1 78.5 9.0e-01 3.3e-01 180 4.0e+01 5.9e-01
Runge–Kutta 2 0.01 775.1 1.3e-02 4.7e-03 25 3.4e-01 2.9e-03
Runge–Kutta 4 0.1 133.1 8.6e-04 3.6e-04 0 2.8e-01 9.1e-04
Runge–Kutta 4 0.01 1, 316.9 7.4e-08 3.1e-08 0 1.1e-04 7.5e-08

We "rst generate a list V of N unit tangent vectors at the origin o ∈ X, chosen uniformly and independently at random. For each experiment E
in each of the Tables A1–A4, we "x a method and (for the numerical methods) a time-step. We then do the following computations.

• For each direction v ∈ V , we $ow from o for time t and record the "nal position. This yields a list QE of N points. We also record the time
needed to compute QE .

• Next, for each qE ∈ QE , we measure the error of qE with respect to the exact $ow. We discuss our choice of error measurements in Section A.2.
• Finally, we compute the maximal and mean errors for the set QE .

A.2. Measuring errors

We calculate two di#erent measures of error. Fixing notation, let v ∈ V be one element in our collection of random tangent vectors and qE ∈ QE
be the point obtained by following the geodesic $ow starting at o in the direction of v in for time t in the experiment E .

A.2.1. Distance error
We compute the coordinates of the point q obtained by following the geodesic $ow starting at o in the direction of v in for time t using the exact
formulas.
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Figure A.1. Relation between angle error and resolution.

De!nition A.2. The distance error is the distance in the metric of X between qE and q. !

Remark A.3. One should worry about how accurate our computer’s implementation of the exact formulas is. As mentioned in Remark A.1, we
use NumPy for all of our calculations here, and long doubles, giving us around 19 decimal digits of accuracy. While we have not looked into the
actual implementations of the functions we use, we would certainly hope that these implementations lose at most one or two digits of accuracy on
each operation. Of course, the results of these functions then need to be combined, which compounds the errors. Without using interval arithmetic,
it is hard to say how accurate our "nal results are. However, as we will see in our experiments, with small values of t and small step size )t, our
exact calculation matches Runge–Kutta of order four ()t = 0.01) up to a distance error of around 10−9 at worst. This provides evidence that our
implementation of the exact formulas are at least this accurate in comparison with the true values, since the exact and Runge–Kutta methods take
very di#erent routes to their results. !

The distance error is natural, but the results are sometimes di%cult to interpret because of our lack of intuition in those geometries. Moreover,
our eyes place far more importance in which direction one sees an object in, over how far away it is. If we have an error in distance, then perhaps
at worst the e#ect of fog is slightly incorrect. An error in direction could cause us to see objects in the wrong place, or distorted in some way. To
better measure this, we introduce our second error measurement.

A.2.2. Angle error
We compute the tangent vector v′ so that the exact geodesic $ow starting from o in the direction of v′ hits the point qE . When there are multiple
such tangent vectors v′, we choose the one which is closest (in angle) to v.

De!nition A.4. The angle error is the angle between v and v′. !

Following our goal of producing accurate images in Section 1.2, it is reasonable to require that each pixel of our screen be colored according
to an object that should be visible through that pixel. Therefore, given the resolution of our screen and a desired "eld of view, one can calculate a
maximum acceptable angle error, as follows.

Let m and m′ be the locations on our screen corresponding to the directions v and v′. See Figure A.1. Suppose that the width of the screen is one
unit. The distance between m and m′ can be estimated as follows.

Assume that the "eld of view is β . Let α be the angle between v and the vector −f3 pointing forwards, and let )α be the angle between v and v′.
Then the distance dist(m, m′) is at most

|tan(α + )α) − tan(α)|
2 tan(β/2)

.

For a "xed angle error )α, this quantity is the largest when m is on the border of the screen, that is, when α = β/2. Hence, the worst error )m for
m is related to )α by

tan()α) = )m sin β

1 + 2)m sin2(β/2)

For the picture on the screen to be accurate, we need )m to be less than half the width of a pixel. For example, "xing the "eld of view at β = 100◦,
the maximum acceptable angle error (in degrees) is

• )α ≈ 3e-02 to produce a 1000 × 1000 pixel image,
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Figure A.2. A schematic picture of an exceptional sample.

• )α ≈ 6e-03 to produce a 5000 × 5000 pixel image.

Remark A.5. When following the geodesic $ow for a time t which is smaller than the injectivity radius of the geometry X, there is only one exact
geodesic joining o to qE . Here, there is no choice in the de"nition of v′. For longer $ow times, a new phenomenon arises. As usual, we numerically
compute the path starting at o in the direction v and reach the point qE . This path approximates the exact geodesic ray starting at o in the direction
v, which reaches the point q (Figure A.2). Suppose that multiple exact geodesics join o to q, so that in addition to the direction v, we can also reach
q along a geodesic with starting direction w. Suppose also that due to numerical errors, only one exact geodesic joins o to qE . The vector v′ is then
the only possible initial direction pointing from o to qE . It will be close to one of v and w, but it may be close to the wrong one: w. Thus, the angle
between v and v′ can be very large. However, the visual e#ect of this error will be indistinguishable from similar inaccuracies with the same distance
error.

This situation is very rare: our numerical path must approximate a non-minimizing geodesic, with endpoint qE close to the boundary of one of
the sets

Xn = {x ∈ X | x is joined to o by n geodesics}

For the Thurston geometries, these boundaries form a zero-measure set.
In our results, we indicate the number of points for which the angle between v and v′ is more than a large threshold, for example 40◦. These

cases correspond to the situation described above. We compute the maximal and mean errors excluding these exceptional samples. !

A.3. Results

We carried out our protocol for Nil and S̃L(2, R). We computed the distance and angle errors using the numerical methods described in Sections 9.5
and 10.5, respectively. See Tables A1, A2, A3, and A4. We made sure that the errors coming from use of Newton’s method to calculate v′ are negligible
compared to the results. We ran the experiments for time t = 6 and t = 10. Note that 6 is less than the injectivity radius (2π for both Nil and
S̃L(2, R)).

A.4. Discussion

The maximal angle errors for Euler’s method do not produce accurate 1000 × 1000 pixel images with "eld of view 100◦, even for small $ow time
(t = 6) and small time step ()t = 0.01). The Runge–Kutta method of order two is accurate enough for small distance only (and sometimes only
for smaller step like )t = 0.01). For medium distances (t = 10), in S̃L(2, R) only the Runge–Kutta method of order four with step )t = 0.01 meets
our criterion. The Runge–Kutta method of order four is also the only one that does not produce exceptional points in the sense of Remark A.5.

In terms of the time needed to run the computations, the exact method is superior to the numerical ones. Lookup tables may be precomputed
to avoid long calculation times, although one should then also worry about inaccuracies introduced by interpolation.
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