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ARTICLE INFO ABSTRACT

Editor: Christian Herrera California's Central Valley, one of the most agriculturally productive regions, is also one of the most stressed aquifers in
the world due to anthropogenic groundwater over-extraction primarily for irrigation. Groundwater depletion is further

Keywords: exacerbated by climate-driven droughts. Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry has
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demonstrated the feasibility of quantifying global groundwater storage changes at uniform monthly sampling, though
at a coarse resolution and is thus impractical for effective water resources management. Here, we employ the Random
Forest machine learning algorithm to establish empirical relationships between GRACE-derived groundwater storage
and in situ groundwater level variations over the Central Valley during 2002-2016 and achieved spatial downscaling of
GRACE-observed groundwater storage changes from a few hundred km to 5 km. Validations of our modeled ground-
water level with in situ groundwater level indicate excellent Nash-Sutcliffe Efficiency coefficients ranging from 0.94 to
0.97. In addition, the secular components of modeled groundwater show good agreements with those of vertical dis-
placements observed by GPS, and CryoSat-2 radar altimetry measurements and is perfectly consistent with findings
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from previous studies. Our estimated groundwater loss is about 30 km® from 2002 to 2016, which also agrees well with
previous studies in Central Valley. We find the maximum groundwater storage loss rates of —5.7 + 1.2km® yr~' and
9.8 + 1.7 km® yr ! occurred during the extended drought periods of January 2007-December 2009, and October
2011-September 2015, respectively while Central Valley also experienced groundwater recharges during prolonged
flood episodes. The 5-km resolution Central Valley-wide groundwater storage trends reveal that groundwater deple-
tion occurs mostly in southern San Joaquin Valley collocated with severe land subsidence due to aquifer compaction
from excessive groundwater over withdrawal.

1. Introduction

Groundwater is an important freshwater resource that meets agricul-
tural, industrial, and domestic needs (Siebert et al., 2010; Wada et al.,
2014; Zektser et al., 2004). Over the past few decades, several aquifers
worldwide such as Central Valley, High Plains, Indus Plain, middle East,
and others, have faced unprecedented human-induced stress due to the
population growth, expansion of the irrigated areas, and other economic ac-
tivities causing a drastic increase in groundwater consumption (Bierkens
and Wada, 2019; Famiglietti, 2014). Climate change might affect the natu-
ral recharge cycle of groundwater reservoirs by altering the precipitation
and evapotranspiration patterns significantly. Climate extremes such as
floods and droughts might drastically increase or decrease the recharge
(Taylor et al., 2012). Groundwater abstraction and outflow exceeding
groundwater recharge over a long period of time and in large areas have
been reported as the main causes of groundwater depletion (Konikow and
Kendy, 2005; Wada et al., 2010). Groundwater depletion can lead to global
water security and environmental issues, food security issues (Famiglietti,
2014; Wada et al., 2010) which could trigger mass emigration. There is
an urgent need for quantifying long-term groundwater storage (GWS)
changes at frequent temporal samplings that can help in better manage-
ment of groundwater resources and characterize the groundwater depletion
in these stressed regions.

Quantifying GWS changes is especially important for Central Valley.
Here, ever-increasing irrigation demands, limited availability of surface
water, and climate extremes such as prolonged and intensified droughts re-
sulting from climate change have forced farmers to depend more on
groundwater. As a result of the continuing groundwater depletion, several
adverse impacts such as falling groundwater levels, decreasing groundwa-
ter yields, increase in pumping costs, degrading water quality, and damage
to the aquatic ecosystems and wetlands have been observed (Faunt, 2009;
Faunt and Sneed, 2015; Konikow, 2015). San Joaquin Valley, a major agri-
cultural region in Central Valley, has witnessed the largest share of such ad-
verse impacts, which have become more severe during prolonged and
recurrent droughts in California.

Several approaches for quantifying GWS changes have been applied in
the past (e.g., Bierkens and Wada, 2019). Groundwater levels from in situ
ground wells provide essential information about stresses acting on the
aquifers and play a key role in developing groundwater models (Faunt,
2009; Taylor and Alley, 2001). However, it is infeasible to use only these
data for quantifying regional GWS changes as several aquifers have poor
coverage of such wells owing to high cost of their installation and mainte-
nance. Moreover, spatio-temporal gaps in the groundwater level data
might necessitate their interpolation, which might lead to additional errors
(Ahamed et al., 2022; Thomas et al., 2017). Further, uncertainties in the
value of storage coefficients at well sites might translate into errors when
computing GWS changes (Alam et al., 2021; Scanlon et al., 2012). Another
approach to quantify GWS changes is using data from Gravity Recovery and
Climate Experiment (GRACE) twin-satellite gravimetry mission. GRACE
has enabled a continuous and uniform global Terrestrial Water Storage
(TWS) record for the time span starting from April2002 to Oct 2017, at
the “true” spatial resolution longer than 666 km (full-wavelength) and
monthly sampling (Frappart and Ramillien, 2018). Innovative processing
of GRACE data has enabled the uniform global quantification of GWS
change by removing surface water storage changes using hydrologic data
and model outputs (Famiglietti et al., 2011; Rodell et al., 2009), as well

as data assimilation (e.g., 50 km resolution in Mehrnegar et al. (2021);
12.5 km resolution in Schumacher et al. (2018)). However, due to the lim-
ited spatial resolution and the associated errors in disaggregating GRACE-
derived TWS (Scanlon et al., 2012), the application of GRACE data directly
for groundwater assessment is not feasible at the local scale (Alley and
Konikow, 2015). In Central Valley, Famiglietti et al. (2011) is the first
study which used GRACE-derived TWS changes and other hydrological var-
iables to quantify GWS changes during 2002-2011. Scanlon et al. (2012)
used updated GRACE processing and in situ groundwater level variations
to compute groundwater depletion from 2002 to 2011. The above studies
estimated GWS changes by removing soil moisture estimates simulated by
Land Surface Models (LSMs) from GRACE-derived TWS (Scanlon et al.,
2012). However, LSMs do not simulate irrigation water use; hence soil
moisture values will be particularly erroneous in the Central Valley,
where groundwater irrigation is predominant (Famiglietti et al., 2011).

Vertical deformation observed during droughts from Interferometric
Synthetic Aperture Radar (InSAR) has also been inverted to derive GWS
changes. Recent studies have used a combination of in situ, satellite, and
modeling data to quantify GWS changes. Alam et al. (2021) used a combi-
nation of GRACE, in situ wells, water balance and hydrological modeling to
quantify GWS variations during 2003-2019. Ahamed et al. (2022) used re-
mote sensing data and an ensemble of water balance methods to quantify
GWS changes in Central Valley during 2002-2020. While all these studies
have confirmed the continued loss of GWS along with dramatic rates of
subsidence during the last two decades, all the techniques except those in-
corporating in situ groundwater levels have limited capability to model
GWS changes at high spatial resolutions at frequent temporal intervals.
Groundwater levels in Central Valley can reflect complex variations due
to withdrawal for irrigation, recharge due to partial infiltration of irrigation
water, surface water impoundment, or precipitation. Climate extremes such
as drought which have put unprecedented stress on groundwater reserves
are also reflected in the groundwater fluctuations (Faunt, 2009). This
necessitates the incorporation of the in situ groundwater level data in the
groundwater models. Therefore, we propose to use Machine Learning
(ML), an effective data-driven approach, to estimate GWS changes at a
higher spatial resolution by downscaling GRACE-derived GWS changes to
model in situ groundwater level variations. ML has been used for solving
several non-linear complex problems in geoscience, (e.g., Berner et al.
(2020); Chen et al. (2021); Dramsch (2020); Sun and Scanlon (2019)), as
it does not require the knowledge of exact physical relationships between
input and response variables. Further, ML methods can jointly use different
types of data with different units, scales and accuracy, and is thus suitable
for empirically modeling complex hydrological processes, such as basin-
wide groundwater variations. Several studies in the past have incorporated
ML algorithms to downscale GRACE data and produce GWS changes at high
resolution for various aquifers (Chen et al., 2019; Chen et al., 2020; Miro
and Famiglietti, 2018; Rahaman et al., 2019).

The primary objective of this study is to downscale GRACE-derived
GWS changes in Central Valley, California, using the Random Forest ML
algorithm to model and simulate monthly groundwater level and GWS
changes at spatial resolution as fine as 5 km. This study contrasts with
Miro and Famiglietti (2018) which used Artificial Neural Networks
(ANN) to model annual GWS changes in the time period 2003-2010 for a
portion of San Joaquin Valley. We chose the period from October 2002 to
September 2016, which covers most of the operational phase of GRACE
satellite data. GRACE data beyond November 2016 was excluded to avoid
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errors due to the accelerometer data transplant; the accelerometer instru-
ment onboard one of the twin satellites (GRACE-B) had thermal issues
and was no longer operational until the end of mission (Bandikova et al.,
2019). We use GRACE data along with hydro-meteorologic/geologic data
as input and in situ groundwater level data as the response variable for
developing the RF model. Further, the Central Valley has a record of
geodetic measurements from in situ GPS, synthetic aperture radar interfer-
ometry, extensometers, and others, which have been used to quantify the
subsidence due to groundwater overdraft (Ojha et al., 2018; Sneed and
Brandt, 2015). While groundwater level change and land subsidence are
two different physical processes, the subsidence measurements data can
be used to qualitatively compare or validate our ML-modeled groundwater
levels. We then validate the ML-modeled groundwater level using GPS ver-
tical deformation data and basin-wide subsidence rate measured by a radar
altimeter over Central Valley, CA (Yang, 2020). Here we compute inelastic
storage coefficients using geodetic satellite subsidence measurements for
severely subsiding regions in Central Valley for validation. This approach
of combining multiple hydrological and geodetic data can further enhance
our understanding of aquifer dynamics. The ultimate goal of this study is to
verify the feasibility of using ML-downscaled GWS change over the whole
Central Valley. We compare our results and with estimates from prior stud-
ies which can further validate the overall results. A ML approach, such as
the one presented here, is hypothesized to be able to produce local-scale
groundwater level storage/level information for Groundwater Sustainabil-
ity Agencies to make informed management decisions under Sustainable
Groundwater Management Act (SGMA).

The rest of the paper is organized as follows. The study area is intro-
duced, data and methodology along with the details of model building
and validation are described in section 2. The numerical results and com-
parisons with previous studies are presented in section 3. The findings of
the study as well as the main limitations and the future perspectives are dis-
cussed in section 4. Finally, conclusions are drawn in section 5.

2. Materials and methods
2.1. Study area

The Central Valley aquifer system in California covers an area of 52,000
km? (Fig. 1) and produces one-fourth of the food in the US (Faunt, 2009).
Central Valley is primarily semi-arid and most precipitation occurs during
the winter and early spring months and not in summer when it is most
needed for irrigation and drinking (Jasechko and Perrone, 2020). San
Joaquin Valley is the major agricultural region and surface water quantity
here depends on seasonal snowmelt from the Sierra Nevada in the East
and Sacramento Valley in the North, which varies from year to year. Sacra-
mento Valley in the north also receive more precipitation than San Joaquin
Valley. Consequently, supplies for irrigation in San Joaquin Valley must be
met through diverted surface water sources from Sacramento Valley, and
through groundwater from confined and unconfined aquifers. Groundwa-
ter is, therefore, an essential/persistent freshwater source accounting for
up to 40 % or more of the required water supply in Central Valley.

Central Valley lost approximately 113 km® of groundwater in the 20th
century and 20 % of this depletion is estimated to be contributing to land
subsidence (Faunt, 2009). Consequently, groundwater levels have been de-
clining since the 1930s when the first in situ measurement was made
(Bertoldi, 1989; Williamson et al., 1989). Groundwater losses from
GRACE satellite observations and Central Valley Hydrological Model dur-
ing the first decade of the 21st century is estimated at 25-30 km®
(Konikow, 2013).

As groundwater depletion continues in Central Valley and other nearby
regions, California's Sustainable Groundwater Management Act (SGMA)
was enacted in 2014 to promote better groundwater management, gover-
nance and thus sustainability. Through this act, more emphasis is laid on
the sustenance of groundwater resources for all regions by optimizing the
water consumption by agricultural and other sectors. This issue is
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extremely critical for Central Valley as impacts of depletion here have
been visible since 1920s at the local scale.

2.2, Study design

We adopt an empirical approach based on Random Forest Machine
Learning algorithm to downscale the GRACE data. We develop two RF
models, one for San Joaquin Valley, and other for Sacramento Valley. Our
downscaling approach includes the following three steps (Fig. 2):

(1) Modeling the groundwater level variations at the in situ well sites using
the RF algorithm. We use GRACE-derived TWS and other hydrometeo-
rological variables as input and monthly groundwater level data from
in situ wells as response variables (Section 2.3) for model development
and validation (Section 2.4). Once the model is trained and validated,
in situ groundwater level data is no longer needed for steps (2) and (3)

(2) Comparing vertical deformation data with the modeled groundwater
level variations from RF model created in (1) (Section 2.5).

(3) Downscale GRACE data and obtain GWS at regular 5 X 5 km grids cov-
ering Central Valley using the two RF models in (1) (Section 2.6).

Using the GRACE downscaling methodology explained above, we also
propose an approach suitable for spatial downscaling of coarse resolution
GRACE-derived GWSA to higher resolution GWSA for the entire Central
Valley.

2.3. Data and pre-processing

We use six hydrometeorological and geological input variables for
developing the RF model (Table 1). Variables such as temperature, precip-
itation, soil type, soil moisture, land cover, evapotranspiration, canopy
water, transmissivity and surface runoff among others are frequently used
as input variables by previous downscaling studies involving GRACE data
(Jyolsna et al., 2021; Milewski and Seyoum, 2019; Seyoum et al., 2019;
Sun, 2013; Yin et al., 2022). The choice of these input variables depends
on the study area and type of aquifer and obviously on the availability of
reliable data.

Temperature and precipitation are important meteorological variables
and affect the hydrologic cycle. PRISM (Parameter Elevation Regression
on Independent Slopes Model), the source of precipitation and temperature
data, simulates the spatial variations of the weather and climate using in situ
observations. It uses a “weighted regression scheme” to account for differ-
ent physiographic features and climate regimes when providing final
estimates of precipitation and temperature. Precipitation is an important
water source, especially for Sacramento Valley. Since precipitation can
take a few months to recharge groundwater (Milewski and Seyoum,
2019), we have used lagged values of precipitation as input variables. We
used temperature as a proxy for evapotranspiration due to the difficulty
of modeling evapotranspiration for an irrigated region like Central Valley
(Ahamed et al., 2022; Xiao et al., 2017).

For the computation of TWSA, we used the latest GRACE data product,
the Release (RL) 06 Level 2 (L2) monthly gravity field solutions provided by
the University of Texas at Austin Center for Space Research (UTCSR). This
solution consists of monthly spherical harmonic coefficients (SHC)
complete to degree and order 60. This truncation already represents low
pass filtering in the spatial domain, resulting in the “true” GRACE spatial
resolution at 666 km (full-wavelength). Monthly SHC are then post-
processed to retrieve TWS changes with respect to a reference field, e.g,
to the long-term mean of the monthly solutions in the study period. The
post-processing involves standard steps such as replacing the zonal degree
2 coefficients from satellite laser ranging solutions (Cheng and Ries,
2018), correcting for Glacial Isostatic Adjustment (GIA) process using a
forward model (A et al., 2013), destriping using the Swenson and Wahr
(2006) method, and smoothing using a Gaussian filter with a half-width ra-
dius of 300 km (Jekeli, 1981). Further, signal leakage correction is
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Fig. 1. Location of Central Valley and borderlines of the two major basins, Sacramento (shaded) and San Joaquin (blue) Valley in north and south, respectively. Some of the
subbasins in southern San Joaquin Valley are marked in the figure. The location of wells used in this study and the number of measurements over the study period is also
shown with solid red circles. 7 GPS sites used in this study are shown by solid black triangles. The green stars represent the wells used for validation studies and for
plotting in Fig. 6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

performed by the iterative forward modeling approach (Chen et al., 2014).
More detailed descriptions for GRACE post-processing are available in sup-
plementary section 1. We finally obtained monthly TWS anomaly (TWSA)
grids oversampled at 0.25° (~ 25 km) resolution with respect to the mean
over the study period. We also compare the TWSA obtained from this
study with the TWSA from CSR Mascon (Fig. S1) which also is oversampled
to a resolution of 0.25°.

We obtained the monthly soil moisture storage from the GLDAS Noah
Land Surface Model L4 monthly 0.25° x 0.25° V2.1 (GLDAS_NOAH025_M)
[accessed October 2020]. We compute soil moisture anomaly (SMA) by re-
moving the mean soil moisture over the study period from the monthly soil
moisture values. We further computed TWSA-SMA, which provides useful
information on spatio-temporal GWS changes continuously over the study

period covering the whole Central Valley. This input variable called
GWSA has the coarsest resolution of 0.25° among the input variables.
Saturated hydraulic conductivity (K) describes the ease with which
water moves through the pore spaces in the soil and is considered as an im-
portant quantity in groundwater modeling (Mace et al., 2000; Sanchez-Vila
et al., 2006). We use the data from Zhang et al. (2018) which is the only
publicly available global dataset at such fine resolution. Texture data repre-
sent the percentage of coarse-grained material. This information is com-
puted every 15 m from lithological drill holes ranging in depth from 12 to
1200 f. below the ground level (Faunt et al., 2010). At a given site, we
have used average of texture values over the range of depth for which tex-
ture information was available. Texture is an important indicator for litho-
logical variations within Central Valley. While Sacramento valley shows
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Fig. 2. The workflow used for downscaling GRACE data and modeling groundwater changes using Random Forest.

fine-grained texture as it majorly consists of sediments derived from fine- coarser-grained sediments, making this region a good aquifer. The western
grained volcanic rocks, San Joaquin Valley shows spatial variation in tex- part near the Coast Ranges has a fine-grained texture, being richer in shale.
ture from east to west. The eastern region near the Sierra Nevada has San Joaquin Valley and Tulare Basin consist of alternating layers of coarse
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Table 1

Input and response variables of the ML model.
Variable name Source Data type Resolution

Spatial Temporal

Precipitation (PPT)
Temperature (TEMP) PRISM (Daly et al., 2008) Modeled 4 km Monthly
Terrestrial Water Storage Anomaly UTCSR GRACE L2 Remote sensing 0.25° Monthl
Soil Moisture Anomaly GLDAS Noah LSM Modeled : v
Groundwater Storage Anomaly (GWSA) TWSA - SMA
Saturated hydraulic conductivity (K) (Zhang et al., 2018) Modeled 1 km
Texture (TEX) (Faunt et al., 2010) in situ 1 km Static
Percent Slope (SLP) National Elevation Dataset (NED) Remote sensing 10m
Groundwater level (GWL) CASGEM/ USGS in situ point data - Monthly

and fine material, creating a mix of confined, unconfined, and semi-
confined units. Besides, texture is useful to determine groundwater-flow
rate as well as the magnitude and distribution of aquifer-system compac-
tion. Topographic slope is also an important topographical parameter as
its variations can also lead to differences in runoff characteristics and thus
groundwater recharge (Satapathy and Syed, 2015).

The response variable against which we train our ML model is the in situ
groundwater level obtained from the California Department of Water Re-
sources (DWR) (Department of Water Resources California Statewide
Groundwater Elevation Monitoring (DWR CASGEM), 2021a, 2021b) and
the United States Geological Survey (http://water.usgs.gov/ogw/data.
html). Though Central Valley consists of ~10,000 wells, we chose 586
wells for the entire Central Valley with good spatio-temporal coverage
over our study period. We only chose a well if it has at least biannual mea-
surement or continuous measurement over a shorter time scale within our
study period (Fig. 1).

2.4. Machine learning modeling

2.4.1. Downscaling method

We use Random Forest for downscaling GRACE data as it is a
robust model which has shown the capability to produce highly accu-
rate results for several geological and hydrological applications, (e.g.,
Hengl et al. (2018) and Tyralis et al. (2019)). Several statistical and ma-
chine learning methods, such as Multiple Linear Regression (Mukherjee
and Ramachandran, 2018; Sun et al., 2020), Artificial Neural Networks
(Agarwal, 2021; Miro and Famiglietti, 2018), Boosted Regression Tree
(Milewski and Seyoum, 2019; Seyoum et al., 2019), and Random Forest
(Jyolsna et al., 2021; Rahaman et al., 2019) have been used by previous
downscaling studies in different regions. In this study, we chose RF for
following reasons: First, RF is a simple, straightforward model
consisting of an ensemble of decision trees (DTs). It does not involve
input data scaling, can handle categorical variables and missing values
in the input variables in contrast to ANN. Second, RF uses approxi-
mately two-thirds of observations for model building in each DT (“in-
bag” samples), while remaining one -third (“out of bag” (OOB) samples)
are used for internal validation by the RF model. Each DT has a different
combination of in-bag and OOB data, and by combining predictions on
OOB data from each DT, we can get a secondary validation of modeling
accuracy of RF. Randomness in an RF is further increased by only
selecting a few input variables for each DT, reducing the correlation be-
tween individual DTs and preventing overfitting. Third, user needs to
optimize one fewer hyperparameter e.g., than Boosted Regression
Tree. Hyperparameters are values describing the model architecture
and these values are to be set by the user before running the model.
For RF model, these hyperparameters include the number of decision
trees, the number of samples in the leaf node, and the number of
variables to consider for splitting in each decision tree (Biau and
Scornet, 2016; Probst and Boulesteix, 2017). For Boosted Regression
Tree, shrinkage factor is the additional hyperparameter which needs
to be optimized.

2.4.2. Implementing random forest model

At each of the in situ well site location (numbered 1,2, 3, ...n in Fig. 3),
we consider the months for which groundwater level observation (GWL)
exist (green box under GWL column in Fig. 3). For GWL at month t, we ex-
tract value of input variable for month t using ‘scatteredInterpolant’ func-
tion with bilinear interpolation in MATLAB (yellow rows in Fig. 3). For
static variables, such as TEX, K, and SLP, we take the same values for all
months at a given in situ well location. For precipitation, we extracted
values for months ¢, t-1, t-2, t-3, and t-4 for the output GWL at month ¢,
and these input variables are labeled as PPTO, PPT1, PPT2, PPT3, and
PPT4, respectively. For coarse resolution input variables such as GWSA,
we did not use any interpolation while extracting the values at the GWL
sites, rather the value at the 0.25° grid closest to the GWL site is adopted.
Thereafter, we generated the input-output data pattern by spatio-
temporal matching of the existing groundwater level observations and
corresponding input variables for all in situ wells for all months. We devel-
oped independent RF models for San Joaquin and Sacramento valley using
data for all in situ wells located within each region's boundary. The in situ
GWL data also has missing values denoted by red boxes under the GWL
column (Fig. 3). These values were not filled in, rather after we obtain
the validated model (described in section 2.4.3), we feed the input variables
corresponding to all such sites and times (greyed rows in Fig. 3) to the val-
idated model to obtain modeled GWL.

During model development and training, we isolated 20 % of the data as
test dataset which is not used for the estimation of the model parameters.
For creating this test dataset, we draw equally from all the groundwater
wells at some randomly selected specific epochs distributed throughout
their coverage. Remaining 80 % of the data is used for the training of the
model and we implemented a k-fold cross-validation technique on this
data. In this technique, any data is further split into ‘.’ folds each of
which contains a unique combination of training and validation dataset.
In each fold, model parameters are estimated using its own training data
and the accuracy of the model is evaluated by its own validation dataset.
To obtain best accuracy for validation data (in terms of lowest RMSE), we
need to optimize the model hyperparameters through training process.
Hyperparameter optimization is usually performed by iterative approaches
and is a computationally expensive process. Commonly used methods such
as random search and grid search algorithms, are time-consuming and
might not lead to the best set of hyperparameters (Feurer and Hutter,
2019; Yin et al., 2021). Therefore, we fine-tune RF model by implementing
a more advanced method; the (BHO) Bayesian Hyperparameter Optimiza-
tion (Snoek et al., 2012). This optimization algorithm first builds a “surro-
gate” probability model of the RMSE and then use Bayesian methods on
surrogate model to find the most promising hyperparameter on actual
RMSE (Feurer and Hutter, 2019; Shahriari et al., 2010).

Applying the BHO algorithm, the model hyperparameters are optimized
for the dataset and overfitting is avoided which can severely affect the accu-
racy on test dataset. Cross-validation is important especially for smaller
sample sizes (such as the one in this study); a single validation dataset
does usually not provide an unbiased estimate of model performance
(Hawkins et al., 2003; Molinaro et al., 2005). The groundwater level re-
sponses from optimized model has lowest possible RMSE for test dataset.


http://water.usgs.gov/ogw/data.html
http://water.usgs.gov/ogw/data.html

V. Agarwal et al.

"“ﬂ TEMP | PPTO | PPTL | PPT2 | PPT3 | PPT4

3“““ TEMP PPTO PPT1 | PPT2 | PPT3 | PPT4 G
N
1 ““ TEMP | PPTO | PPT1 | PPT2 | PPT3 | PPT4 | GWL I

wells

0
1
2

Months

!
167
168

Science of the Total Environment 865 (2023) 161138

Fig. 3. Prepared input-output data patterns for Random Forest model. We compile data for the wells (numbered 1,2, 3, ..., n) separately for San Joaquin and Sacramento
Valley for all 168 months covering our study period. Here n represents the number of wells in the respective region. Column GWL represents the response variable, while

rest of the columns represent the input variables.
2.4.3. Model validation and feature importance

2.4.3.1. Model validation. The responses from optimized model are validated
against in situ groundwater level observations (both training and test data)
located in the Central Valley based on commonly used statistical perfor-
mance metrics such as correlation coefficient, root mean squared error
(RMSE), Nash-Sutcliffe efficiency (NSE) coefficient, and scaled RMSE
(R*). Supplementary section contains detailed information (including
formulae) on these quantities. These metrics, when computed and com-
pared on training and test data, ensure that ML model is not overfitted
and generalizes well to the test data and other “unseen” data. Obviously,
the RF model resulting with the highest correlation coefficient and NSE
values and the lowest RMSE both for training and test data is chosen as
the final (optimized) model.

2.4.3.2. Feature importance. We compute the feature importance by permut-
ing out of bag (OOB) observations (Breiman, 2001). The underlying con-
cept of this approach is that permuting the values of the most influential
predictor should lead to the most increase in modeling error.

To further understand the dependence of modeling accuracy on the
input variables, we use the drop-column method (Jyolsna et al., 2021;
Milewski and Seyoum, 2019; Parr et al., 2020). We consider the model de-
veloped above after training with Bayesian Hyperparameter Optimization
using all the input variables as the base model. Models are retrained after
removing one input variable at each time and the increase in RMSE on
test data compared to the base model is noted for the corresponding
dropped/removed variable. Then the obtained increase of RMSE for each
variable is normalized by dividing it to the sum of RMSE increases obtained
for all input variables.

2.5. Comparing modeled groundwater level variations with vertical deformation

Vertical deformation data from GPS and CryoSat-2 (CS-2) radar altime-
ter was not used for ML model development but rather as independent data
to compare against the modeled monthly groundwater level results. We
obtained GPS data from https://sideshow.jpl.nasa.gov/pub/JPL_GPS_
Timeseries/repro2018a/post/point/, NASA Jet Propulsion Laboratory
(JPL), California Institute of Technology. Since GPS measures daily vertical
deformation, we averaged them to monthly values for correlating them

with monthly modeled groundwater level. We also use the solid Earth ver-
tical deformation time series in Central Valley from CS-2 low-resolution
mode (LRM) radar altimetry data generated through an innovative altime-
ter data processing method (Yang, 2020). CS-2 data was waveform
retracked and spatially interpolated to obtain the 2-D vertical deformation
maps for the southern San Joaquin Valley (Fig. S2).

To obtain modeled groundwater level responses at GPS locations from
the RF model, we extracted the input variables at the GPS locations for
each month within the GPS data coverage. This extraction process for var-
iables is similar to the process we described in Section 2.4.2. Similarly,
we extracted the values of input variables at the grid locations of CS-2 altim-
eters. Hence, running our RF model with these input data we obtain the
monthly groundwater level variations at the locations of GPS sites and
CS-2 grids. We then combined these modeled monthly groundwater level
variations with vertical deformation data from GPS and CS-2 altimeter to
obtain the inelastic storage coefficient Sy,. The formula used for computing
Skv is given in Supplementary section 3.

2.6. Downscaling GRACE GWSA to 5 km grid resolution

We start with generating 0.05° (~5 km) grids covering the San Joaquin
and Sacramento Valley followed by extracting the value of input variables
at each of these grid locations. This extraction process for variables is sim-
ilar to the one mentioned in Section 2.4.2. Thereafter, we simulated
groundwater level responses from the RF models at each of the grid points
for San Joaquin and Sacramento Valley, respectively. These modeled
groundwater level responses cover all the 168 months of our study period
at each of the grid locations. Finally, we obtained groundwater level anom-
alies (GWLA) at each grid location and in each month t (GWLA (t)) using the
following relationship

GWLA(t) = GWL()-GWL @

where, GWL(t) is the modeled groundwater level at the grid location for the
tth (t = 1, 2, ..., 168) month, and GWL is the mean GWL over the whole
study period.

We further obtained the GWS changes in terms of equivalent water
height (EWH) for the whole of Central Valley by multiplying GWLA with
the specific yield (S,) value of 0.1 for the unconfined wells (<60 m deep)
as suggested by Faunt (2009) and Miro and Famiglietti (2018). Specific
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yield represents the volume of water released due to drainage from an un-
confined aquifer per unit decline in groundwater level. It ranges from
0.06 to 0.3 in Central Valley. The GWS in terms of EWH, when multiplied
by the area of Central Valley (~ 52,000 km?), gives the volumetric estimate
of GWS changes in Central Valley.

It is further important to note here that GWSA obtained from the
GRACE-derived TWSA and soil moisture anomaly from GLDAS data has
been oversampled at a resolution of 0.25°. After we integrated the coarse
resolution GRACE-derived GWSA in the ML model with other hydrological
variables, and followed the methodology described in this section, we ob-
tain GWS changes at 0.05 resolution. This methodology results in the spa-
tial downscaling of regional GWS changes from GRACE to GWSA at the
local scale.

3. Results
3.1. Overall results

3.1.1. Validation of modeling results

The results from RF models show high accuracy for both San Joaquin
and the Sacramento Valley (Fig. 4). For San Joaquin Valley, correlation
coefficient, RMSE, NSE, and R* for training (test) data are 0.99 (0.97),
1.35 (2.72), 0.99 (0.95), and 0.12 (0.21), respectively. The same metrics
computed over Sacramento valley for training (test) data are 0.99 (0.95),
1.21 (2.12), 0.98 (0.94), and 0.14 (0.26). Additional validations of model
results with respect to the out-of-bag data are provided in Supplementary
file (see Fig. S3, Table S1). Boosted Regression Tree, also based on decision
tree architecture, is slightly more prone to overfitting in our study, as seen
by worse test accuracy for both Sacramento and San Joaquin Valley
(Table S2).

3.1.2. Evaluation of feature importance

We test the usefulness of RF model in assessment of the feature impor-
tance over both Sacramento and San Joaquin valleys. Based on the permu-
tation of OOB data, RF model gives relative importance for different input
variables (Fig. 5). In San Joaquin Valley, texture, hydraulic conductivity,
slope, coarse resolution GRACE-derived GWSA, temperature and precipita-
tion are the most important input features in decreasing order. In Sacra-
mento Valley, precipitation is the most important variable, followed by
hydraulic conductivity and temperature. Texture, slope, and GRACE-
derived GWSA inputs show almost similar importance.

Precipitation is the primary source of groundwater recharge in
Central Valley. Temperature affects evapotranspiration and groundwater

Training data x
L [* Test Qata

Modeled groundwater level (m)
&
o

Science of the Total Environment 865 (2023) 161138

extraction and will therefore affect the seasonal groundwater variations.
Sacramento Valley receives high precipitation in winter months which
causes groundwater recharge, while water is abstracted during summer
months. This explain the higher importance of precipitation and tempera-
ture in Sacramento Valley. For San Joaquin Valley, both meteorological
variables, temperature and precipitation, have relatively low importance
based on OOB permutation. The valley does not receive enough precipita-
tion and must depend on diverted surface water for its irrigation needs.
Groundwater is abstracted heavily for irrigation purposes throughout the
year for yearlong cropping patterns. Irrigation water is also responsible
for some groundwater recharge which is hard to quantify. All these facts
suggest that groundwater variations show complex seasonal variations,
hence yielded low importance for temperature based on OOB permutation.
Sacramento Valley, in contrast, has balanced GWS regime which suggests
consistent seasonal signals and therefore much more importance of temper-
ature is observed.

Using the drop-column method, we find that GWSA causes the most
increase in RMSE compared to the base model for both Sacramento and
San Joaquin valley (Table S3). Based on OOB permutation, it is of mid-
importance for both San Joaquin and Sacramento Valley. The above
two findings seem contradictory. However, they can be explained by
the fact that this input variable has crucial information for modeling
groundwater variations, though at the coarsest resolution among all
input variables. Therefore, the permutation of this variable might not
significantly affect the accuracy, while its removal affects the modeling
results. Therefore, coarse resolution GRACE-derived GWSA is an impor-
tant input for modeling and used for downscaling process.

Removal of geological factors, texture, and hydraulic conductivity,
along with topographic slope, also significantly increases the RMSE of
the models. Hydraulic conductivity and texture provide important in-
formation about groundwater flow patterns in the whole Central Valley
at high spatial resolutions and the removal of both predictors causes a
significant increase in RMSE of models after their removal. These vari-
ables also show high importance when evaluated with OOB permuta-
tions. Highest importance (based on OOB permutation) of texture and
hydraulic conductivity for San Joaquin Valley reflect that these vari-
ables capture the complex geology of the San Joaquin Valley.

3.1.3. Modeling groundwater level time series

The modeled and in situ groundwater level time series match tightly
(Fig. 1, Fig. S4) as they show similar seasonality and trends, and the
largest groundwater level declines can be seen during the drought pe-
riods (Fig. 6, Fig. S5). Some mismatches can be seen, and they indicate

O 1

-60 -50 -40 -30 -20 -10 O
In-situ groundwater level (m)

-50 40 -30 -20 -10 O
In-situ groundwater level (m)

Fig. 4. The accuracy assessment for RF machine learning modeling. Correlation plots between the modeled results and in situ groundwater level variations for training and test

data for (a) San Joaquin and (b) Sacramento Valley, respectively.
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Fig. 5. Feature importance plots based on OOB permutations for (a) San Joaquin and (b) Sacramento Valley.

that the modeled results are not perfect or are not generalized too
closely while avoiding overfit. Wells in San Joaquin valley generally
show higher declines than those in Sacramento valley. Further, we
also effectively fill the data gaps in in situ groundwater level time series
through ML modeling.

3.2. Comparison of RF modeling results with vertical deformation data

Inelastic storage coefficients from vertical deformation measured
at GPS sites and modeled groundwater level using RF varies from 0.15
to 4.02 x 102 for GPS sites P544 and P303, respectively (Fig. 7a-b;
Table 2). In addition, we find a good correlation between the long-term sub-
sidence and the modeled groundwater level at the selected GPS locations
(Table 2) consistent with the findings of Liu et al. (2019). Sy, computed
from groundwater level and CS-2 varies among the subbasins with a
mean value of 5.89 x 102 for the whole Central Valley (Fig. 7).

3.3. Spatio-temporal variations of groundwater storage during the two drought
periods

Central Valley lost approximately 30 km?® of groundwater from October
2002 to September 2016 (Fig. 8a). The most rapid decline in groundwater
occurs during the two drought periods, January 2007-December 2009, and
October 2011-September 2015 (Table 3). These periods of decline usually
follow or happen during phases of low/negative annual precipitation
anomalies (Fig. 8b). Periods of positive annual precipitation anomalies
(2010-2012 and during 2016) usually are followed by periods of increase
or recovery in GWS.

Groundwater declines over San Joaquin valley are more prominent than
those over Sacramento valley, especially during the second drought period
(Fig. 8). In San Joaquin Valley, the decline during the latter drought period
can be seen in wider areas and have a higher magnitude compared to the
declines during the former period. Groundwater depletion can be seen
mainly in Tulare Lake, Delta Mendota, and Westside subbasins, although
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Fig. 6. Modeled and in situ groundwater level time series for wells in San Joaquin (left) and Sacramento valley (right). The location of the wells can be seen in Fig. 1. Table S4

shows the statistics.
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Fig. 7. Computation of inelastic storage coefficient. (a) and (b) shows modeled groundwater level and vertical displacement from GPS at sites P304 and P545 (shown in
Fig. 1), respectively. (c) the inelastic storage coefficients for subbasins computed from modeled groundwater level and vertical displacement data from CS-2 altimeter.

lower groundwater depletion can be observed in Tule, Kern County, and
Kaweah subbasins (Fig. 1, Fig. 9).

4. Discussions
4.1. Machine learning modeling

Our study achieved high accuracy for both training and test data in
Sacramento and San Joaquin valleys (Fig. 4). This suggest that downscaling
of GRACE data to model groundwater level variations at sites of in situ wells
was successful. The model development and training process adopting
cross-validation scheme, avoided overfitting. Overfitting can reduce the
confidence of ML results, which be a challenge for downscaling studies as
we seek to model groundwater variations at higher resolutions (Roelofs,
2019). Previous studies using GRACE data for downscaling have obtained
good accuracies for training data, but the accuracy on test data was signif-
icantly degraded (Jyolsna et al., 2021; Koch et al., 2019; Miro and
Famiglietti, 2018; Rahaman et al., 2019; Seyoum and Milewski, 2017;
Seyoum et al., 2019). Better accuracy achieved in this study might also be
attributed to the choice of input variables such as texture and hydraulic
conductivity which are important in groundwater modeling studies along
with GRACE, removal of which causes the highest increase in RMSE of
the models. We also found that input data used in modeling has different

Table 2
Skv computed from modeled groundwater level and vertical deformation. Sy, from
Ojha et al. (2019) is shown for reference.

GPS Skv (This study)  Correlation between groundwater Sy, (Ojha et al., 2019)
level and deformation from GPS

P303 3.46 0.90 1.87

P304 0.9 0.96 1.38

P307 1.94 0.89 1.14

P544 0.15 0.85 0.19

P565 4.02 0.91 -

P566 0.86 0.86 0.76

P545 0.42 0.94 0.33

P563 0.38 0.96 -

10

importance for Sacramento and San Joaquin Valley (Fig. 5), suggesting
that different processes are ongoing in the two regions.

In the following, we compare results from this study with those from
other downscaling studies in Central Valley. Agarwal (2021), used only
180 wells for modeling in Central Valley through the Random Forest
approach. As our accuracy estimates are similar to Agarwal (2021), we
can conclude that Random Forest can accommodate additional data with-
out sacrificing accuracy. Miro and Famiglietti (2018) used ANN to model
annual GWS changes in southern San Joaquin Valley. We therefore com-
pare similarities and differences between this study, Agarwal (2021) and
Miro and Famiglietti (2018). Miro and Famiglietti (2018) obtained test
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Fig. 8. (a) Temporal variations of groundwater storage in Central, San Joaquin and
Sacramento Valley, and (b) annual precipitation anomalies in the Central Valley.
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Table 3

Comparison of GWS loss obtained from this study with previously published estimates.

Science of the Total Environment 865 (2023) 161138

Time period

Annual groundwater volume loss (km® yr ")

This Study Results from Previous Studies Reference Study
April 2006-September 2009 -51+1.2 -7.8+0.8 (Scanlon et al., 2012)
—4.2 + 0.3 (Xiao et al., 2017)
April 2006 — March 2010 —4.2 +1.0 —-6.0 + 1.5 (Famiglietti et al., 2011)
January 2007 — December 2009 -57 1.2 -7.1+24 (Ojha et al., 2018)
—-55+0.3 (Xiao et al., 2017)
-6 (Alam et al., 2021)
-(3—-10) (Ahamed et al., 2022)
October 2011 — September 2015 —7.6 + 1.5 (San Joaquin Valley only) —6.1 * (San Joaquin Valley only) (Ojha et al., 2019)
—-9.8 + 1.7 -7 (Alam et al., 2021)
-(6-17) (Ahamed et al., 2022)
October 2012 — September 2016 -7.7 £ 1.8 —-10.0 £ 0.2 (Xiao et al., 2017)

NSE ranging from 0.039 to 0.751 when modeling GWS changes in southern
San Joaquin valley using ANN. We obtained a better NSE (0.95) for test
data in San Joaquin Valley when modeling monthly groundwater varia-
tions using RF. Even Agarwal (2021) obtained a NSE value of 0.86 for test
data with ANN. It is worth noting that even though our study used similar
input variables such as precipitation, temperature, and topographic slope
from the same source as Miro and Famiglietti (2018), we obtained more ac-
curate results. We have processed GRACE L2 data along with leakage cor-
rection, while Miro and Famiglietti (2018) used GRACE L3 monthly mass
grids. A possible reason for the lower accuracy in their study might be be-
cause Miro and Famiglietti (2018) modeled annual GWS changes, leaving
less spatio-temporal data for modeling GWS changes. Moreover, they use
kriging to interpolate groundwater level changes for each year, a process
that might lead to further errors (Deutsch, 2003; Sun et al., 2009). Since
these krigged groundwater levels were used for training their ANN
model, errors due to kriging interpolation can further propagate in the
modeled GWS variations. We therefore propose better approaches for
study design, model training and validation schemes with a potential of fur-
ther improvement in accuracy for future studies.

4.2. Spatiotemporal variations in groundwater storage during the two drought
periods

Several studies in the past have quantified GWS changes in Central Val-
ley within different time periods (Table 3). Here, we focus on the two
drought events; namely drought 1 (January 2007-December 2009), and
drought 2 (October 2011-September 2015) and compare our results with
those from previous studies. The previously estimated mean GWS losses
for drought 1 ranges from 19 km? (Alam et al., 2021) to 29 km? (Ahamed
et al., 2022), while those for drought 2 vary from 28 km? (Alam et al.,
2021) to 71 km® (Ahamed et al., 2022). Differences in the above estimates
are due to different combinations of remote sensing, in situ, and model data
used in the water balance approach. Xiao et al. (2017) estimated GWS loss
of 16.5 km?® and 40.0 km® during drought 1 and 2, respectively, using the
water balance approach, which also matched with their estimates from
GRACE. Ojha et al. (2018) estimated GWS loss of 21.32 + 7.2 km?® during
drought 1. Ojha et al. (2019) estimated that San Joaquin valley lost 24.2 +
9.3 km? of groundwater from October 2011 to September 2015 based on
GRACE data. Based on the GPS vertical deformation data, groundwater
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Fig. 9. Spatial variations in modeled groundwater storage trends at 5-km resolution between (a) January 2007-December 2009 (b) October 2011-September 2015.
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loss of 29.25 + 8.7 km® was estimated for the same region and period
(Ojha et al., 2019). GWS losses for droughts 1 and 2 are 17.1 + 3.6 and
39.2 + 5.1 km?, respectively, from this study which lie within the range
of previous estimates.

There is significant differences between the estimated GWS losses for
similar time periods. The causes of these differences include using different
methods and datasets along with their associated errors. Scanlon et al.
(2012) used a distributed specific yield ranging from 0.05 to 0.3 (Faunt,
2009) to estimate groundwater storage variations from in situ groundwater
levels. Since regions with high groundwater level declines in southern
San Joaquin valley have higher specific yields, it might have led to overes-
timation of groundwater storage changes in that region. Water balance
approach also has errors related to input variables, such as evapotranspira-
tion which was identified as the most uncertain variable (Xiao et al., 2017;
Ahamed et al., 2022). Estimates of regional GWS changes from in situ
groundwater level data will require significant spatio-temporal interpo-
lation due to issues with coverage in many regions (Fig. 1). However,
GRACE-derived TWSA used as input variable in modeling is also af-
fected by several errors during data processing, which might also have
negative impacts on our ML model.

4.3. Comparison with vertical deformation data

Several past studies have combined groundwater levels from in situ
wells with geodetic observations from GPS and InSAR to obtain inelastic
storage coefficient. Calculated inelastic storage coefficients for individual
subbasins in southern San Joaquin valley from this study is comparable
to past studies (Ojha et al., 2018). Ojha et al. (2018) computed S, of
4.08 x 10~ 2 for the whole of Central Valley, with San Joaquin having a
higher Sy,. Ojha et al. (2019) computed a mean value of as 2.3 X 1072,
while Smith et al. (2017) reported a mean value within the range of
2.3 x 1072 -11.0 x 10~ 2 using estimates of aquifer compaction
modeling for the San Joaquin Valley. These estimates compare well to
5.8 x 10~ 2 from our study.

At GPS sites, P304 and P545, vertical deformation can be seen mostly in
times of drought concurrent with the dropping groundwater levels. Be-
tween drought periods, the groundwater level was rising due to the avail-
ability of surface water; hence, little deformation occurred. Further, at the
well site near P304, the lowest water level was recorded in 1992 at 45 m
below the land surface (Faunt et al., 2016). At the end of drought 1, and
during most of the drought 2 period, modeled groundwater level at the
site of P304 was below the previous lowest level (pre-consolidation stress
level). The high correlation (~0.71) between subsidence and long-term
groundwater levels suggests that groundwater overdraft was the cause of
the subsidence (Liu et al., 2019). Further analysis could be done with
long-term modeled groundwater level data and vertical deformation data
for other sites to understand the aquifer compaction. Regions showing
higher groundwater depletion can be combined with information from
geological models to identify potential sites that might be further vul-
nerable to subsidence.

Significant groundwater depletion can be seen for subbasins in Tulare
basin and western San Joaquin valley for both drought events. These re-
gions have also been subjected to subsidence (Faunt et al., 2016; Sneed
etal., 2013; Farr et al., 2015). It is an expected consequence because this re-
gion requires water for intensive irrigation and drinking water needs. Due
to climate extremes such as droughts, surface water has dwindled over
the years. Consequently, groundwater from the deeper confined aquifers
has been extracted and the overlying aquitard belonging to the Corcoran
clay layer undergoes compaction. Due to the continued groundwater losses
in this region exacerbated during droughts, irreversible compaction of the
clay layers results in subsidence signals and might reflect the permanent
loss in groundwater (Smith et al., 2017; Vasco et al., 2019).

It is important to note that the GWS changes reflect the balance between
groundwater recharge and abstractions in an area or region and directly re-
flect groundwater depletion. Magnitude and rate of subsidence, on the
other hand, might also depend on the hydraulic and mechanical properties
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of the aquifer along with the past stress regime in the region. Our results
are, therefore, an important contribution to the study of localized ground-
water variations in the Central Valley for the study period longer than
one and a half decades.

4.4. Limitations and future studies

The downscaling approach presented here shows promise for general
applicability, however there are some caveats. For example, no ML method
including the one we used (i.e., RF) can be used for extrapolation, or in
other words, accurate predictions ahead/ forecasting cannot be made
without any prior knowledge or assumptions such as continuation of the
long-term trend seen during the training data period also out of the training
regime which may not be realistic under today's climate change conditions
(Milly et al., 2008). As a future work, we propose building deep neural net-
works incorporating larger datasets and wider regions combined with
mechanistic approaches (Razavi, 2021) to model more complex variations
and to provide at least short-term forecasts of groundwater variations
with commensurate accuracy.

Further, unlike the water balance method of Ahamed et al. (2022),
which has modeled GWS variations for the longest period, 2002-2020, so
far in Central Valley, our method is currently limited by the temporal cov-
erage of the GRACE. The GRACE mission operated from 2002 to 2017,
followed by a gap of 1 year, after which GRACE-FO was launched. Several
studies have filled the data gap using deep learning (e.g., Uz et al., 2022),
and availability of modeled GRACE data from such studies can be used to
extend the study for a longer time. This is beyond the scope of this study
and left for a future work.

Even with the mentioned limitations, the results obtained from this study
are useful for geodesy, hydrogeology, and for further downscaling studies.
We present a simple, yet robust approach for downscaling GRACE data utiliz-
ing diverse hydrometeorological and geological data and addressed the com-
plex groundwater modeling problem. GRACE temporal gravity data is a
powerful tool to quantify regional GWS changes (Famiglietti, 2014), while
in situ wells are very useful for precise measurements of groundwater level.
This study further uses this data to produce a downscaled gridded GWSA
product useful to resource managers. For example, how GWS varies with
changes in precipitation regimes and human abstractions for each subbasin
in Central Valley can be quantified reliably by the approach presented in
this study. This can be a useful first indicator of future availability of these re-
sources. We model the impact of climate extremes such as droughts on GWSA
and correlated the variations with vertical deformation to obtain storage co-
efficients which will be useful for modeling aquifers. Several machine learn-
ing and hydrological models require the continuous availability of the
groundwater level data for calibration and this study can fulfil that need.

5. Conclusions

This study advances the application of remote sensing data in the field
of hydrological sciences by demonstrating an effective and improved down-
scaling of GRACE-estimated groundwater storage variations in Central
Valley to a spatial resolution of 5 km using Random Forest ML approach
and other hydrologic, meteorologic, and geologic datasets. We applied it
in the Central Valley region, which has developed an ever-increasing
groundwater demand for irrigation given the lack of surface water supplies
within most parts and has also been impacted by two severe droughts dur-
ing our study period. Producing reliable information about local-scale
groundwater variations across Central Valley will be crucial to help twitch
the groundwater management as per the plans of SGMA.

We achieved high modeling accuracy for San Joaquin and Sacra-
mento Valley, proving that Random Forest is a robust machine learning
model for such downscaling applications. We obtained comparable or
better prediction accuracy than previous studies implementing machine
learning to quantify groundwater storage variations, possibly because of
the choice of predictors, choice, and development of machine learning
models. Development of better models, including deep learning, can
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further improve modeling. However, the Random Forest model devel-
oped here is suited for studies wherein predictor importance is required.

We also suggest new approaches for validating machine learning
modeled results by comparing long-term modeled groundwater level
changes with vertical deformation from GPS and CS-2 altimeter. The pro-
duced inelastic storage coefficient is an important aquifer mechanical fea-
ture reflecting deformation caused due to groundwater withdrawal. Since
2014, Sentinel-1 can provide information about continuous vertical defor-
mation using Interferometric Synthetic Aperture Radar (InSAR) technique.
Using a similar approach as in this study, new information about the aquifer
dynamics with higher spatial resolution using Sentinel-1, GRACE-FO, and
in situ groundwater level data can be generated.

Central Valley exhibits groundwater storage loss of ~30 km?® during
October 2002-September 2016; however, there are periods of depletion
and recharge during or followed by precipitation. Maximum amount of
groundwater depletion occurs during the drought of January 2007-
December 2009 and October 2011-September 2015, with rates of —5.7 +
1.2 and — 9.8 + 1.7 km® yr?, respectively. We produced groundwater
depletion maps at 5 km resolution for these drought periods that can identify
groundwater overdraft areas. These areas have also exhibited land subsi-
dence because of ground water decline.

We conclude that the resulting modeled time series of groundwater stor-
age variations at 5 km resolution over a decade and a half time period is effec-
tive for practical groundwater resources management. Though this study
addresses the spatial downscaling of GWS changes, the temporal downscaling
is also likely to gain more importance in the near future considering the ever-
increasing impacts of climate change.
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